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ABSTRACT

Transformers have revolutionized AI research, particularly in natural language
processing (NLP). However, understanding the decisions made by transformer-
based models remains challenging, which impedes trust and safe deployment in
real-world applications. While activation-based attribution methods have proven
effective in explaining transformer-based text classification models, our findings
suggest that they may suffer from class-irrelevant features within activations, po-
tentially degrading the quality of their interpretations. To address this issue, we
introduce Contrast-CAT, a novel activation contrast-based attribution method that
improves token-level attribution by filtering out class-irrelevant features from ac-
tivations. Contrast-CAT enhances interpretability by contrasting the activations of
input sequences with reference activations, allowing for the generation of clearer
and more faithful attribution maps. Our experiments demonstrate that Contrast-
CAT consistently outperforms state-of-the-art methods across various datasets and
models, achieving significant gains over the second-best methods with average
improvements in AOPC and LOdds by ×1.30 and ×2.25, respectively, under the
MoRF setting. Contrast-CAT provides a promising step forward in enhancing the
interpretability and transparency of transformer-based models.

1 INTRODUCTION

The success of transformers (Vaswani et al., 2017), particularly in natural language processing
(NLP), has been remarkable in recent years. This success has transcended both academic and in-
dustrial boundaries, integrating them more into our daily lives. Unfortunately, this integration has
also increased the risk of direct exposure to AI errors, heightening the need to ensure the safety,
security, and trustworthiness of AI models by promoting transparency in AI systems (The White
House, 2023; Dunietz et al., 2024; European Commission, 2024). As a result, developing methods
to interpret the decision-making processes of transformer-based models has become essential.

To meet this need, numerous methods have been proposed for interpreting transformer-based mod-
els, particularly for text classification, where they have demonstrated remarkable performance.
These methods often provide attribution maps telling the relative contributions of input tokens to the
model’s decisions; in Section 2, we categorize them into attention-based, LRP-based, and activation-
based attribution methods. This work focuses on activation-based attribution, which leverages a
model’s activation information to generate attribution maps, achieving state-of-the-art performance
in attribution quality thus far.

In essence, activation-based attribution maps are created using activations from a certain layer or
multiple layers of a neural network corresponding to an input sequence. Then, the output gradient
of the prospective class with respect to the activations is imposed on the activations to extract only
class-relevant features (Selvaraju et al., 2017; Qiang et al., 2022).

However, we found that this procedure can still be affected by class-irrelevant features present in
activations, hindering the creation of accurate class-specific interpretations. For example, Figure 1
shows attribution maps generated by AttCAT in panel (A), one of the state-of-the-art activation-
based attribution method (Qiang et al., 2022), for a movie review ‘It is very slow.’ classified as
negative. We expect the word ‘slow’ to be detected as relevant, with a positive attribution value for
the negative review. However, AttCAT fails to detect the word, being confused by the punctuation
mark. To the contrary, our proposed method Contrast-CAT puts the highest attribution on ‘slow’.
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Figure 1: The heatmaps display attribution values from different encoder layers of the BERTbase
model and their corresponding attribution maps for a negative review prediction. These maps are
generated by AttCAT (panel A), which applies gradients to activations, and Contrast-CAT (panel B),
which applies gradients to activation contrast information. Values closer to 1 (red) indicate a stronger
contribution to the negative prediction, while values closer to 0 indicate a weaker contribution.

In this paper, we propose Contrast-CAT, a novel activation-based attribution method for transformer-
based text classification models. Contrast-CAT is designed to produce high-quality token-level at-
tribution maps by filtering out class-irrelevant features from activations through our new activation-
contrasting framework. Our experiments demonstrate that Contrast-CAT significantly improves the
quality of token-level attribution.

Contributions Our contributions can be summarized as follows. (1) We observe that activation-
based attribution methods for transformer-based text classification models may incorporate class-
irrelevant features within activations, potentially degrading attribution quality. (2) We propose
Contrast-CAT for generating token-level attribution maps based on a novel activation-contrasting
framework tailored for transformer architecture. Unlike existing activation-based attribution meth-
ods, Contrast-CAT leverages differences between target and multiple reference activations to reduce
class-irrelevant features in the target activation, thereby improving attribution quality. (3) We pro-
vide experimental results demonstrating that Contrast-CAT significantly outperforms state-of-the-
art methods, achieving average improvements of ×1.30 and ×2.25 in AOPC and LOdds under the
MoRF setting, and×1.34 and×1.03 under the LeRF setting, compared to the second-best methods.

2 RELATED WORK

We describe attribution methods for interpreting transformer-based text classification models, cate-
gorizing them into attention-based, LRP-based, and activation-based approaches.

Attention-based Attribution Attention-based attribution methods rely on attention scores, a key
component of transformers (Vaswani et al., 2017). Under the assumption that input tokens with
high attention scores significantly influence model outputs, numerous studies (Martins & Astudillo,
2016; Mullenbach et al., 2018; Clark et al., 2019; Abnar & Zuidema, 2020; Modarressi et al., 2022;
Mohebbi et al., 2023) have employed attention scores for interpretative purposes of a model. Specifi-
cally, (Abnar & Zuidema, 2020) proposed Rollout, which integrates attention scores across multiple
layers while accounting for skip connections in transformer architectures to capture information
flow. Additionally, there have been many papers (Chrysostomou & Aletras, 2021; Barkan et al.,
2021) that introduce the gradient of attention weight for interpretation. Despite advances in attention-
based methods, significant debate remains about whether attention scores truly reflect the relevance
of model predictions, as highlighted in (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019).

LRP-based Attribution Layer-wise relevance propagation (LRP) (Bach et al., 2015) is a tech-
nique for backpropagating relevance scores through a neural network, with the scores reflecting
our specific interest in the model’s prediction. Building on LRP, several studies have derived ex-
planations for model behavior (Gu et al., 2018; Voita et al., 2019; Chefer et al., 2021). In (Voita
et al., 2019), LRP was partially used to determine the most important attention heads within a spe-
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cific transformer’s encoder layer, utilizing relevance scores for the attention weights. (Chefer et al.,
2021) introduces TransAtt, which propagates relevance scores through all layers of a transformer,
combining these scores with gradients of the attention weights and utilizing the Rollout technique
for multi-layer integration. However, LRP-based methods are limited by certain assumptions, known
as the LRP rules, designed to uphold the principle of relevance conservation (Montavon et al., 2019).

Activation-based Attribution In contrast to the methods discussed above, activation-based at-
tribution primarily relies on activation information from each layer of a transformer model. These
methods are based on core ideas originally developed for convolutional neural networks (CNNs),
which have been shown to be effective for generating high-quality interpretations with simple im-
plementations and broad versatility (Selvaraju et al., 2017; Wang et al., 2020; Lee & Han, 2022).
In (Qiang et al., 2022), the authors introduced AttCAT as the first adaptation of Grad-CAM (Sel-
varaju et al., 2017), one of the most popular activation-based methods for CNNs, to interpret the
decisions of transformer-based text classification models. AttCAT generates token-level attribution
maps by merging activations and their gradients in relation to the model’s predictions, following
Grad-CAM’s essential approach, which uses gradients to reflect class-relevant information. Simi-
larly, (Englebert et al., 2023) introduced TIS adapting Score-CAM (Wang et al., 2020): TIS uses the
centroids of activation clusters identified from the activation from all layers to compute relevance
scores in a manner akin to Score-CAM.

Although there are existing attribution methods for transformer-based text classification models that
use gradients to extract class-relevant features from activations, no approach has yet focused on
filtering out class-irrelevant features through activation contrasting to improve attribution quality.

3 PRELIMINARY

We discuss our problem setup and provide a brief overview of the transformer structure.

Problem Statement Consider a pre-trained transformer-based model as a function f processing
input tokens x := {xi}Ti=1, where T is the length of the input sequence, and each token is denoted
as xi ∈ Rn. Our objective is to generate a token-level attribution map I(x) := {I(x)i}Ti=1, where
I(x)i represents the relevance score of each input token xi regarding the output f(x).

Transformers Let us consider a transformer-based model which is composed of L stacked layers
of identical structure. We denote that the ℓ-th layer outputs an activation sequence Aℓ := {Aℓ

i}Ti=1

that corresponds to input tokens, where Aℓ
i ∈ Rn. Each layer computes its output by combining

the output from the attention layer with the previous layer’s activation, where the attention layer
calculates the attention scores:

αℓ,h := softmax
(
Qℓ,h(Aℓ−1) ·Kℓ,h(Aℓ−1)T /

√
d
)
. (1)

Here, Qℓ,h(·), Kℓ,h(·), and V ℓ,h(·) are the transformations for computing the query, key, and value
of the ℓ-th layer’s h-th head, respectively, and d is a scaling factor. αℓ,h ∈ RT×T refers to the
attention map of the h-th head, which contains attention scores, where h = 1 . . . H . We denote by
Aℓ,h the output of the h-th attention head in the ℓ-th layer:

Aℓ,h := αℓ,h · V ℓ,h(Aℓ−1).

The outputs from multiple attention heads are concatenated and then combined using a fully con-
nected layer with the skip connection: Âℓ := Concat(Aℓ,1, Aℓ,2, . . . , Aℓ,H) ·W̃ ℓ+Aℓ−1, where W̃ ℓ

is the weight of the fully connected layer. Finally, the ℓ-th layer’s output Aℓ ∈ RT×n is computed
using a feed-forward layer and skip connection:

Aℓ = Âℓ ·W ℓ + Âℓ, (2)

where W ℓ ∈ Rn×n is the weight for the feed-forward layer. We have omitted bias parameters and
layer normalization in the above expressions for simplicity.
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[SEP]
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Figure 2: The construction of an attribution map IR(x) for an input token sequence x by Contrast-
CAT, using a single reference activation, is illustrated alongside the transformer architecture. The
colors represent internal model components used to construct an attribution map: red for gradient
information, yellow for attention information, and blue for reference activation.

4 CONTRAST-CAT

We introduce Contrast-CAT (activation Contrast-based Class Activation Token), a new token-level
input attribution method for transformer architecture based on activation contrasting. Figure 2 pro-
vides a simplified illustration of the attribution map construction process for Contrast-CAT.

4.1 CONSTRUCTION OF ATTRIBUTION MAP

Suppose that c is the prospective class of a given input token sequence x, for which the output of a
transformer-based model is denoted by fc(x). For the activation map Aℓ at the ℓ-th layer of a neural
network, we can adapt the result in Lee & Han (2022) so that fc(x) is to be approximated with
respect to Aℓ(x) based on the first-order Taylor expansion as follows:

fc(x) ≈
∑
i,j

(
∂fc(x)

∂Aℓ
⊙ (Aℓ(x)− Ãℓ(x̃))

)
i,j

, (3)

where Ãℓ is the activation of an input x̃ which satisfies fc(x̃) ≈ 0, ∂fc(x)
∂Aℓ ∈ RT×n represents the

gradient of fc(x) with respect to Aℓ, and ⊙ is the element-wise multiplication. Here, i = 1, . . . , T
and j = 1, . . . , n can be considered as the indices over tokens and the elements of activation in the
case of transformers, respectively. Inspired by this, we define our attribution map IR(x) as follows:

IR(x)i :=

L∑
ℓ=1

α̂ℓ
i

n∑
j=1

(
∂fc(x)

∂Aℓ
i

⊙ (Aℓ
i −Rℓ

i)

)
j

. (4)

Here, α̂ℓ
i ∈ R is the averaged attention score for i-th token at ℓ-th layer, defined as α̂ℓ

i :=
1

HT

∑H
h=1

∑T
j=1 α

ℓ,h
i,j for αℓ,h

i,j defined in Eq. (1), and H is the number of attention heads. In Fig-

ure 2, ∂fc(x)

∂Aℓ
i

, α̂ℓ
i , and Rℓ

i are depicted in red, yellow, and blue color, respectively.

Contrastive References For Ãℓ in Eq. (3), we choose a sequence of activations Rℓ := {Rℓ
i}Ti=1

for which the corresponding input token sequence r := {ri}Ti=1 satisfies fc(r) < γ for the target
class c and a pre-defined small number γ > 0 (we used γ = 10−3 in our experiments). We call r
and Rℓ as a reference token sequence and the reference activation of the ℓ-th layer, respectively.

We consider the reference activation R to be contrastive to the target activation A since fc(A(x))
is high while fc(R(r)) is low by construction. Our attribution map (Eq. (4)) uses the subtraction
Aℓ−Rℓ for building the attribution map, where we expect that the subtraction would remove features

4
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of classes other than the target class c inherent in Aℓ and thereby reveal the important features in x
more vividly in attribution maps.

Extraction from Multiple Layers As discovered in previous studies (Jawahar et al., 2019; Turton
et al., 2021; Pascual et al., 2021), the semantic information of given input token sequences processed
by transformer-based models varies across different layers, ranging from phrase-level information
to deeper semantic meanings. Therefore, unlike traditional activation-based attribution methods for
CNNs, which only use activations extracted from a single, usually the penultimate (Selvaraju et al.,
2017; Lee & Han, 2022), layer, we use the activations Aℓ in Eq. (2) from multiple layers, where
ℓ = 1, . . . L, along with their layer-wise attention scores αℓ,h in Eq. (1) to capture layer-specific
meanings for each token across various layers. This design allows us to reflect dominantly attended
token-level information of the target activations across multiple layers by combining α̂ℓ

i .

Finally, by incorporating the gradient information ∂fc(x)
∂Aℓ ∈ RT×n element-wise, which quantifies

how changes in each element of the activations Aℓ affect the model’s prediction, we can highlight
the specific contributions of the target activations.

4.2 USE OF MULTIPLE CONTRASTS

The activation subtraction in Eq. (4) is done with a single reference belonging to a certain class.
However, it would be beneficial to contrast with multiple references of various classes, considering
that the target activation Aℓ may contain features of more than one non-target class. Furthermore,
features within the target activation that persist after subtraction with various reference activations
are more likely to represent class-relevant features unique to the target activation. For this purpose,
we create a set of attribution maps D by conducting the previous procedure in Section 4.1 with
multiple reference activation, where D := {IR(r)(x) : r ∈ training set, fc(R(r)) < γ}.
These reference activations can be sampled and cached during training and used later to generate
attribution maps – we call this the reference library. We used such a reference library with 30 pre-
computed references per class.

Refinement with Multiple Contrasts We refine Contrast-CAT using the set D. Our refinement
process involves selectively filtering out maps from D that likely contain incorrect attributes. For
this purpose, we assess the attribution quality of each map in the set D and exclude those that do not
meet our established criteria based on the assessed scores.

To evaluate the attribution quality of each map, we utilize a deletion test (Petsiuk, 2018; Wang et al.,
2020; Lee & Han, 2022). This approach is adapted here as a token-wise deletion test. For each
map in D, we calculate the average probability drop score by sequentially removing the top-ranked
tokens based on their attribution values and comparing the model’s output before and after each
modification. This measures the decrease in the model’s predictive probability due to the removal
of each token. This procedure is conducted on a token-by-token basis, where each token’s removal
is individually assessed to determine its impact on the model’s output. The average probability drop
score is then computed by taking the mean of these individual probability drops, thereby quantifying
the average quality of the attribution map for each token.

Finally, we generate Contrast-CAT by averaging over all the attribution maps:

I(x) :=
1

|M |
∑

IR(x)∈M

IR(x),

where M := {IR(x) ∈ D : S(IR(x)) ≥ ρ}. Here, S(IR(x)) represents the average probability
drop score of each map IR(x). In our experiments, we set the value of ρ as the mean plus standard
deviation of these scores from the set of attribution maps.

5 EXPERIMENTS

In all our experiments, we used PyTorch v.1.9.1, Numpy v.1.17.4, and scikit-learn v.0.22.2 libraries
on the Ubuntu 18.04.3 (64-bit) system. The hardware configuration included an Intel CPU (Xeon
Silver 4214), 32GB of memory, and an NVIDIA GPU (GeForce RTX2080Ti) with CUDA v.10.2.
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Figure 3: Quantitative comparison of the faithfulness evaluation of Contrast-CAT and other attri-
bution methods, measured under the MoRF (Most Relevant First) setting. The arrows mean that ↑:
higher is better, and ↓: lower is better.

Experiment Settings We used the pre-trained BERTbase model (Devlin et al., 2019), consisting of
12 encoder layers with 12 attention heads, as the transformer-based model for our experiments (see
supplementary material for results using other transformer-based models). We used four popular
datasets for text classification tasks: Amazon Polarity (Zhang et al., 2015), Yelp Polarity (Zhang
et al., 2015), SST2 (Socher et al., 2013), and IMDB (Maas et al., 2011). We reported our results
using 2000 random samples from the test sets of each dataset, except for SST2, for which the entire
set was used since the entire dataset had fewer than 2000 samples.

We compared our method to various attribution methods, categorized by attention-based: RawAtt,
Rollout (Abnar & Zuidema, 2020), Att-grads, Att×Att-grads, and Grad-SAM (Barkan et al., 2021);
LRP-based: Full LRP (Ding et al., 2017), Partial LRP (Voita et al., 2019), and TransAtt (Chefer
et al., 2021); and activation-based methods: CAT, AttCAT (Qiang et al., 2022), and TIS (Englebert
et al., 2023). Open-source implementations from (Qiang et al., 2022) and (Englebert et al., 2023)
were used for our experiments.

Evaluation Metrics We used the area over the perturbation curve (denoted by AOPC) (Nguyen,
2018; Chen et al., 2020) and the log-odds (LOdds) (Shrikumar et al., 2017; Chen et al., 2020)
metrics for assessing the faithfulness of attribution following the previous research (Qiang et al.,
2022). Faithfulness refers to the accuracy with which an attribution map’s scores reflect the actual
influence of each input token on the model’s prediction. The AOPC and LOdds metrics are defined
as follows: (1) AOPC(k) := 1

N

∑N
i=1(y

c
i − ỹci ), and (2) LOdds(k) := 1

N

∑N
i=1 log

(
ỹc
i

yc
i

)
. Here, N is

the total number of data points used for evaluation, and yci denotes the model’s prediction probability
for the class c of a given input token sequence x, while ỹci indicates the probability after removing
the top-k% of input tokens based on relevance scores from an attribution map.

To evaluate attribution quality more precisely using the AOPC and LOdds metrics, and to address
inconsistencies in evaluation results caused by the order of token removal (i.e., removing the most
relevant tokens first versus the least relevant tokens first) (Rong et al., 2022), we conducted experi-
ments under two settings: one where tokens were removed in descending order of relevance scores
(MoRF: Most Relevant First), and another in ascending order (LeRF: Least Relevant First). Consis-
tently achieving high-quality attribution under both conditions indicates superior attribution quality.
Specifically, under the MoRF setting, higher AOPC and lower LOdds indicate better attribution,
while under the LeRF setting, lower AOPC and higher LOdds suggest better performance.
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(A) MoRF (Most Relevant First)

Dataset Amazon Yelp SST2 IMDB

Method AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.424 0.405 0.412 0.462 0.386 0.471 0.335 0.564
Rollout 0.327 0.516 0.282 0.601 0.329 0.558 0.339 0.566

Att-grads 0.061 0.749 0.059 0.754 0.132 0.691 0.061 0.759
Att×Att-grads 0.054 0.756 0.045 0.763 0.109 0.711 0.075 0.746

Grad-SAM 0.312 0.526 0.235 0.633 0.356 0.518 0.266 0.623
Full LRP 0.242 0.592 0.190 0.652 0.310 0.538 0.233 0.631

Partial LRP 0.463 0.356 0.447 0.422 0.400 0.461 0.364 0.538
TransAtt 0.461 0.366 0.473 0.404 0.432 0.428 0.458 0.455

CAT 0.482 0.341 0.440 0.383 0.452 0.382 0.632 0.215
AttCAT 0.527 0.292 0.470 0.346 0.461 0.372 0.644 0.198

TIS 0.560 0.241 0.494 0.349 0.463 0.367 0.618 0.277
Contrast-CAT 0.703 0.117 0.687 0.131 0.654 0.157 0.738 0.101

(B) LeRF (Least Relevant First)

Dataset Amazon Yelp SST2 IMDB

Method AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.133 0.694 0.093 0.723 0.249 0.577 0.158 0.688
Rollout 0.166 0.670 0.130 0.687 0.373 0.448 0.126 0.711

Att-grads 0.636 0.186 0.560 0.252 0.601 0.223 0.588 0.271
Att×Att-grads 0.707 0.111 0.660 0.145 0.681 0.126 0.709 0.127

Grad-SAM 0.139 0.677 0.107 0.713 0.285 0.547 0.118 0.715
Full LRP 0.254 0.588 0.187 0.649 0.377 0.454 0.199 0.656

Partial LRP 0.122 0.700 0.088 0.725 0.237 0.585 0.134 0.701
TransAtt 0.089 0.731 0.063 0.751 0.215 0.605 0.061 0.761

CAT 0.108 0.712 0.087 0.727 0.213 0.611 0.128 0.697
AttCAT 0.078 0.740 0.063 0.747 0.205 0.623 0.119 0.703

TIS 0.104 0.719 0.082 0.737 0.252 0.562 0.135 0.691
Contrast-CAT 0.058 0.757 0.048 0.759 0.147 0.669 0.047 0.775

Table 1: AUC values from the faithfulness evaluation, with (A) showing results under the MoRF
(Most Relevant First) setting and (B) showing results under the LeRF (Least Relevant First) setting.
The best and second-best results are highlighted in bold and underlined, respectively. The arrows
mean that ↑: higher is better, and ↓: lower is better.

5.1 FAITHFULNESS OF ATTRIBUTION

Figure 3 illustrates the AOPC and LOdds values for attribution maps generated by each compet-
ing method, evaluated at various top-k% thresholds where k is increased by 10 within the range of
[10, 90]. Table 1 provides the corresponding AUC values. Note that Figure 3 presents results for the
MoRF setting only, while Table 1 includes results for both MoRF and LeRF settings (see supple-
mentary material for LeRF results related to Figure 3). Through this evaluation, we can analyze the
overall characteristics of an attribution map in terms of relevance scores of different threshold levels.

The trends in Figure 3 reveal that our method, Contrast-CAT, consistently maintains faithful attri-
bution quality across all threshold levels and datasets compared to other methods. Table 1 further
supports this, showing that Contrast-CAT consistently achieves top-1 attribution quality under both
MoRF and LeRF settings. Specifically, compared to the second-best cases, Contrast-CAT shows av-
erage improvements in AUC values of AOPC and LOdds under the MoRF setting by ×1.30 and
×2.25, respectively. For the LeRF setting, Contrast-CAT shows average improvements in AUC val-
ues of AOPC and LOdds by ×1.34 and ×1.03, respectively.

5.2 QUALITATIVE EVALUATION

Figure 4 illustrates the attribution maps generated by Contrast-CAT, TIS, and AttCAT, the top-3
ranked methods in our faithfulness evaluation, conducted under the MoRF setting (Table 1, (A)
MoRF). The examples provided are from the SST2 dataset. For ease of interpretation, only tokens
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SST2- 2 color map

Class : Negative Class : Positive

Contrast-CAT
AttCAT

TIS

the movie fails to live up to the sum of its parts.Input rare birds has more than enough charm to make it memorable.

a warm, funny, engaging film.my reaction in a word : disappointment.

the movie fails to live up to the sum of its parts .

the movie fails to live up to the sum of its parts .

a warm , funny , engaging , film .
a warm , funny , engaging , film .
a warm , funny , engaging , film .

rare birds has more than enough charm to make it memorable .

Contrast-CAT
AttCAT

TIS

Input

the movie fails to live up to the sum of its parts . rare birds has more than enough charm to make it memorable .

my reaction in a word : disappointment .

my reaction in a word : disappointment .
my reaction in a word : disappointment .

rare birds has more than enough charm to make it memorable .

Figure 4: Qualitative comparison of attribution quality. Relevance scores are shown with color
shades: red for the highest importance, followed by orange.

Dataset Amazon Yelp SST2 IMDB

Reference AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
Random 0.513 0.306 0.496 0.323 0.433 0.398 0.634 0.213

Same 0.144 0.667 0.159 0.650 0.089 0.728 0.124 0.614
Contrasting 0.703 0.117 0.687 0.131 0.654 0.157 0.738 0.101

Table 2: The effect of our activation contrasting approach, measured under the MoRF (Most Relevant
First) setting. ‘Random’ uses randomly selected references (the mean values over 30 repetitions are
reported), ‘Same’ uses references from the same class as the target, and ‘Contrasting’ refers to the
suggested Contrast-CAT. The best results are in boldface.

with relevance scores exceeding 0.5 are highlighted. As shown in the left side of Figure 4, Contrast-
CAT effectively identifies relevant tokens related to the predicted class, such as ‘fails’ or ‘disappoint-
ment’ for the negative prediction cases. For a positive prediction, in the input phrase ‘rare birds have
more than enough charm to make it memorable.’, Contrast-CAT highlights ‘enough’ and ‘charm’
as the most relevant tokens, with ‘than’, ‘make’, ‘more’, and ‘memorable’ following in relevance.
In contrast, AttCAT focuses only on ‘enough’ and ‘memorable’, missing ‘charm’ and ‘more’, while
TIS identifies ‘to’ as the most relevant token. In another example, ‘a warm, funny, engaging film.’,
Contrast-CAT precisely identifies ‘warm’, ‘funny’, and ‘engaging’ as key tokens, whereas the other
methods either highlight irrelevant tokens like commas or fail to highlight any relevant tokens.

5.3 THE EFFECT OF ACTIVATION CONTRASTING

To evaluate the effect of our Contrast-CAT’s activation contrasting, we compared the attribution
quality of different versions of Contrast-CAT: the ‘Random’ version uses randomly selected ref-
erences from individual training datasets instead of what had been outlined in Section 4.1, and the
‘Same’ version uses references of the same class as the target instead of different classes. The ‘Same’
version contrasts with our method, which leverages activations from different classes as contrastive
references to reduce class-irrelevant features in the target activations.

Table 2 presents AUC values of each version of Contrast-CAT, where the suggested Contrast-CAT
is denoted by ‘Contrasting’. The attribution quality is the worst with ‘Same’ and the best with ‘Con-
trasting’, which indicates that the proposed activation contrasting effectively reduces class-irrelevant
features in the activations, thereby helping to generate high-quality attribution maps.

5.4 THE EFFECT OF USING MULTIPLE LAYERS

Panel (A) of Figure 5 demonstrates the effect of using multiple layers to improve the attribution
quality of Contrast-CAT. The figure shows the average AUC values of AOPC and LOdds across
datasets, measured under the MoRF setting.

The results in panel (A) of Figure 5 indicate that the attribution quality improves as the number of
layers increases, with the best performance achieved when all layers are used, as indicated by the
higher AOPC and lower LOdds values. Specifically, there is a ×1.52 improvement in AOPC and
×3.05 improvement in LOdds when using all layers compared to using only the penultimate layer.
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(A) The effect of using multiple layers

The number of references The number of references

AOPC ↑ LOdds ↓
(B) The effect of using multiple references

(Penultimate) (All) (Penultimate) (All)
Layer Layer

AOPC ↑ LOdds ↓

Figure 5: Comparison of Contrast-CAT’s attribution quality measured under the MoRF (Most Rel-
evant First) setting: (A) as the number of layers used to generate attribution maps increases from
the penultimate layer to all layers, and (B) as the number of references used for multiple contrasts
increases from 0 to 30.

The AOPC and LOdds values tend to saturate when we use three or more layers but continue to
increase as the number increases.

5.5 THE EFFECT OF MULTIPLE CONTRASTS

Panel (B) of Figure 5 illustrates the impact of increasing the number of references for multiple
contrasts in Contrast-CAT on attribution quality. The figure presents the average AUC values for
AOPC and LOdds across datasets, measured under the MoRF setting.

The AOPC metric shows a sharp improvement as the number of references increases from 0 to 5,
with the AUC rising from around 0.55 to 0.68. After 5 references, the AUC continues to increase,
stabilizing between 25 and 30 references, plateauing around 0.70. In contrast, the LOdds metric
exhibits a sharp decline as the number of references increases, starting at approximately 0.30 and
dropping steadily, stabilizing around 0.10 after 10 references and reaching its minimum at 30 ref-
erences. These results demonstrate that increasing the number of references improves attribution
quality, with the best performance observed at 30 references, which we used in our experiment.

5.6 CONFIDENCE OF ATTRIBUTION

Method Dataset
Amazon Yelp SST2 IMDB

RawAtt 1.00 1.00 1.00 1.00
Rollout 1.00 1.00 1.00 1.00

Att-grads < 0.05 < 0.05 < 0.05 < 0.05
Att×Att-grads < 0.05 < 0.05 < 0.05 < 0.05

Grad-SAM 0.158 0.138 0.282 0.084
Full LRP 0.732 0.629 0.712 0.533

Partial LRP 0.952 0.924 0.957 0.859
TransAtt 0.153 0.135 0.342 0.061

CAT < 0.05 < 0.05 < 0.05 < 0.05
AttCAT < 0.05 < 0.05 < 0.05 < 0.05

TIS < 0.05 < 0.05 < 0.05 < 0.05
Contrast-CAT < 0.05 < 0.05 < 0.05 < 0.05

Table 3: The results of the confidence evaluation,
showing averaged rank correlation values. The val-
ues below 0.05 (marked in gray) indicate that attri-
butions tend to be class-distinct, as desired.

If an attribution method consistently gener-
ates similar attribution maps regardless of the
model’s prediction, the confidence of such a
method will be questionable. Therefore, we
conducted the confidence evaluation of the
attribution methods employing the Kendall-τ
rank correlation (Kendall, 1948), which is a
statistical measure used to assess the similar-
ity between two data by comparing the ranking
order of their respective values. We compute
an averaged rank correlation:

1

N

N∑
i=1

Kendall-τ(P c
i , P

ĉ
i ),

where P c
i is an array of token indices in de-

scending order of relevance scores for class c
in an attribution map, P ĉ

i is a similar array but
for the class ĉ ̸= c, and N is the total number
of data points used for testing. For the choice
of ĉ, we followed the settings of AttCAT as
detailed in their open-source implementation,
where the class immediately following the class c was chosen.
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If an attribution method assigns relevance scores to tokens in distinct orders for different class pre-
dictions of the inspected model, the rank correlation is expected to be low. Table 3 presents the
average rank correlation for various attribution methods tested across different datasets. The cases
with average rank correlation values under 0.05 are marked as ‘< 0.05’ and highlighted: these are
the cases where the attribution methods seem to work soundly – our Contrast-CAT seems to pass the
test, along with Att-grads, Att×Att-grads, CAT, AttCAT and TIS. In contrast, attribution methods
such as RawAtt, Rollout, and Partial LRP showed values near 1.0 consistently over the datasets, sug-
gesting that these methods have issues generating distinct attribution over different class outcomes.

6 CONCLUSION

In this work, we reported that activation-based attribution methods for interpreting transformer-
based text classification models may incorporate class-irrelevant features into attribution maps, po-
tentially leading to a degradation in attribution quality. To address this challenge, we introduced
Contrast-CAT, a novel activation-based attribution method that leverages activation contrasting to
reduce class-irrelevant features within activations, thereby generating high-quality token-level attri-
bution maps. Our extensive experiments demonstrated that Contrast-CAT significantly outperforms
state-of-the-art methods in terms of faithfulness, as measured by AOPC and LOdds metrics, under
both MoRF and LeRF settings.

Despite its effectiveness, Contrast-CAT requires reference points whose activations must be avail-
able during the creation of attribution maps. We have minimized the computational overhead using
a pre-built reference library; however, it will require larger storage as the number of classes and the
size of activation maps increase. To address this, we plan to explore replacing the reference activa-
tions with alternative tensors that can be computed and stored at a lower cost, ideally without relying
on training data in future work.

Nevertheless, given the growing need to interpret AI models’ decisions to ensure their safety, se-
curity, and trustworthiness, we believe that Contrast-CAT serves as a meaningful advancement in
improving the interpretability and transparency of transformer-based models.
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APPENDIX

In this section, we provide implementation details and additional experimental results.

A ALGORITHM AND IMPLEMENTATION

Algorithm 1 Contrast-CAT
Input: An input token sequence x with length T , a target class c, its prediction score fc(·), and the
activation A.
Input: Libc, a list of reference activations for the class c.
Parameter: Maximum number of references K.

1: Initialize I as an empty array of length K.
2: for r ← 1 to K do
3: R← Libc[r].
4: for i← 1 to T do
5: α̂ℓ

i ← 1
HT

∑H
h=1

∑T
j=1 α

ℓ,h
i,j .

6: Iℓi ← α̂ℓ
i

∑n
j=1

(
∂fc(x)
∂Aℓ ⊙ (Aℓ

i −Rℓ
i)
)
j
.

7: end for
8: I[r]←

∑
ℓ I

ℓ.
9: end for

10: for each r from 1 to K do {Parallel execution}
11: x̂, Ir ← x, I[r].
12: for from most to least relevant according to Ir do
13: Remove the token at index i from x̂.
14: S[r, i]← fc(x)− fc(x̂).
15: end for
16: S[r]← 1

T

∑
i S[r, i].

17: end for
18: D ← {indices r for which S[r] ≥ ρ}.
19: If D = ∅, D ← {1, . . . ,K}.
20: IContrast-CAT ← 1

|D|
∑

r∈D I[r]

21: return IContrast-CAT

We conducted our experiments using several libraries, including Python v3.7.4, PyTorch v1.9.1,
scikit-learn v0.22.2, Hugging Face Hub v0.14.1, Transformers v4.29.1, OpenCV-Python v4.2.0.32,
and NumPy v1.17.4. We set the random seed across all libraries to 41.

The detailed procedures of Contrast-CAT are outlined in Algorithm 1.

B DATASETS

In our experiments, we used five publicly available NLP datasets for text classification tasks: Ama-
zon Polarity (Zhang et al., 2015), Yelp Polarity (Zhang et al., 2015), SST2 (Socher et al., 2013),
IMDB (Maas et al., 2011), and AgNews (Del Corso et al., 2005). Details on the train/test set split
for each dataset are provided in Table 4.

Dataset Amazon Yelp SST2 IMDB AgNews

Trainset 3600000 560000 67349 25000 120000
Testset 400000 38000 1821 25000 7600

Table 4: The number of samples in the train/test splits for the five datasets used in our experiments.
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Model Dataset
Amazon Yelp SST2 IMDB AgNews

BERTbase 0.946 0.956 0.924 0.930 0.941
DistilBERT 0.945 0.962 0.891 0.928 0.947
RoBERTa 0.953 0.982 0.940 0.953 0.947

GPT-2 0.968 0.977 0.921 0.877 0.949

Table 5: Test accuracy of transformer-based text classification models used in our experiments.

C TRANSFORMER MODELS

We conducted our experiments using four types of transformer-based models: BERTbase (Devlin
et al., 2019), DistilBERT (Sanh et al., 2019), RoBERTa (Liu et al., 2019), and GPT-2 (Radford et al.,
2019). We used pre-trained versions of these models from Hugging Face (Wolf et al., 2019) for the
datasets used in our experiments. Table 5 presents the accuracies of each pre-trained model on the
five datasets used in our experiments.

The pre-trained BERTbase models we used are sourced from:

Amazon https://huggingface.co/fabriceyhc/
bert-base-uncased-amazon_polarity

Yelp https://huggingface.co/fabriceyhc/
bert-base-uncased-yelp_polarity

SST2 https://huggingface.co/textattack/
bert-base-uncased-SST-2

IMDB https://huggingface.co/fabriceyhc/
bert-base-uncased-imdb

AgNews https://huggingface.co/nateraw/
bert-base-uncased-ag-news

The pre-trained DistilBERT models we used are sourced from:

Amazon https://huggingface.co/AdamCodd/
distilbert-base-uncased-finetuned-sentiment-amazon

Yelp https://huggingface.co/randellcotta/
distilbert-base-uncased-finetuned-yelp-polarity

SST2 https://huggingface.co/assemblyai/
distilbert-base-uncased-sst2

IMDB https://huggingface.co/lvwerra/distilbert-imdb
AgNews https://huggingface.co/andi611/

distilbert-base-uncased-ner-agnews

The pre-trained RoBERTa models we used are sourced from:

Amazon https://huggingface.co/pig4431/amazonPolarity_
roBERTa_5E

Yelp https://huggingface.co/VictorSanh/
roberta-base-finetuned-yelp-polarity

SST2 https://huggingface.co/textattack/
roberta-base-SST-2

IMDB https://huggingface.co/textattack/
roberta-base-imdb

AgNews https://huggingface.co/textattack/
roberta-base-ag-news
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The pre-trained GPT-2 models we used are sourced from:

Amazon https://huggingface.co/ashok2216/
gpt2-amazon-sentiment-classifier-V1.0

Yelp https://huggingface.co/utahnlp/yelp_polarity_gpt2_
seed-2

SST2 https://huggingface.co/michelecafagna26/
gpt2-medium-finetuned-sst2-sentiment

IMDB https://huggingface.co/mnoukhov/
gpt2-imdb-sentiment-classifier

AgNews https://huggingface.co/xinzhel/gpt2-ag-news

D FAITHFULNESS OF ATTRIBUTION
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Figure 6: Quantitative comparison of the faithfulness evaluation of Contrast-CAT and other attribu-
tion methods, measured under the LeRF (Least Relevant First) setting.

Additional Experimental Results for the BERTbase Model Figure 6 shows the faithfulness eval-
uation results under the LeRF setting, corresponding to the results labeled as (B) LeRF in Table 1 of
our main manuscript. Table 6 presents the faithfulness evaluation results of attribution methods on
the AgNews dataset using the BERTbase model, following the settings outlined in Section 5.1.

As shown in Table 6, Contrast-CAT demonstrates consistently superior attribution quality on the
AgNews dataset compared to other competing methods, similar to the results in Table 1.

Experimental Results for Other Models We conducted the faithfulness evaluation of attribution
methods, detailed in Section 5.1, using the DistilBERT (Sanh et al., 2019), RoBERTa (Liu et al.,
2019), and GPT-2 (Radford et al., 2019) models. In these experiments, we compared Contrast-CAT
with five different attribution methods: RawAtt and Rollout (attention-based methods), and CAT,
AttCAT, and TIS (activation-based methods).

Figure 7 and Table 7 present the results for the DistilBERT model, while Figure 8 and Table 8
show the results for the RoBERTa model, and Figure 9 and Table 9 display the results for the GPT-
2 model. The results for TIS are omitted from Figure 9 and marked as N/A in Table 9 since it
is not applicable to the GPT-2 model. Table 10 shows the results on the AgNews dataset for the
DistilBERT, RoBERTa, and GPT-2 models.

The results consistently demonstrate the superior attribution quality of Contrast-CAT across dif-
ferent datasets and models. Specifically, for the DistilBERT model, average improvements across
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Setting MoRF LeRF
(Most Relevant First) (Least Relevant First)

Method AOPC↑ LOdds↓ AOPC↓ LOdds↑
RawAtt 0.268 0.580 0.152 0.663
Rollout 0.300 0.532 0.184 0.639

Att-grads 0.099 0.728 0.331 0.461
Att×Att-grads 0.084 0.739 0.379 0.394

Grad-SAM 0.270 0.578 0.180 0.632
Full LRP 0.234 0.604 0.199 0.623

Partial LRP 0.294 0.555 0.135 0.681
TransAtt 0.347 0.499 0.105 0.714

CAT 0.273 0.556 0.137 0.680
AttCAT 0.289 0.536 0.126 0.692

TIS 0.354 0.473 0.143 0.674
Contrast-CAT 0.434 0.363 0.093 0.723

Table 6: AUC values for the faithfulness evaluation of attribution methods using the BERTbase model
on the AgNews dataset under the MoRF (Most Relevant First) and LeRF (Least Relevant First)
settings. The best and the second-best cases are in boldface and underlined, respectively.

different datasets are ×1.31 in AOPC and ×2.39 in LOdds compared to the second-best methods
under the MoRF setting. Under the LeRF setting, Contrast-CAT shows average improvements in
AUC values for AOPC and LOdds by ×1.39 and ×1.07, respectively. For the RoBERTa model,
the average improvements are ×1.61 in AOPC and ×2.97 in LOdds under the MoRF setting, with
AUC improvements of×2.07 and×1.12 in AOPC and LOdds, respectively, under the LeRF setting.
Similarly, for the GPT-2 model, the average improvements across datasets are ×2.78 in AOPC and
×3.37 in LOdds under the MoRF setting. For the LeRF setting, Contrast-CAT demonstrates average
improvements of ×3.80 in AOPC and ×1.39 in LOdds.

These results align with those presented in Figure 3 and Table 1 of our main manuscript, further
validating Contrast-CAT’s superiority in generating faithful attribution maps.

(A) MoRF (Most Relevant First)
Dataset Amazon Yelp SST2 IMDB

Method AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.360 0.557 0.306 0.618 0.363 0.531 0.172 0.729
Rollout 0.307 0.638 0.242 0.676 0.322 0.587 0.231 0.700

CAT 0.521 0.361 0.528 0.334 0.469 0.392 0.625 0.235
AttCAT 0.532 0.341 0.570 0.278 0.480 0.376 0.638 0.217

TIS 0.436 0.448 0.406 0.476 0.394 0.467 0.428 0.487
Contrast-CAT 0.720 0.108 0.727 0.106 0.685 0.137 0.752 0.101

(B) LeRF (Least Relevant First)
Dataset Amazon Yelp SST2 IMDB

Method AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.174 0.626 0.122 0.649 0.283 0.508 0.121 0.673
Rollout 0.181 0.606 0.112 0.655 0.328 0.429 0.090 0.706

CAT 0.119 0.678 0.065 0.708 0.248 0.536 0.028 0.773
AttCAT 0.098 0.703 0.028 0.764 0.234 0.549 0.016 0.787

TIS 0.162 0.637 0.113 0.669 0.315 0.478 0.089 0.708
Contrast-CAT 0.068 0.737 0.020 0.779 0.142 0.669 0.015 0.788

Table 7: AUC values of the faithfulness evaluation conducted on the DistilBERT model. The best
and the second-best cases are in boldface and underlined, respectively.
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(A) MoRF (Most Relevant First)
Dataset Amazon Yelp SST2 IMDB

Method AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.245 0.615 0.164 0.713 0.260 0.619 0.272 0.676
Rollout 0.188 0.660 0.153 0.717 0.195 0.653 0.274 0.657

CAT 0.287 0.557 0.357 0.526 0.461 0.410 0.452 0.464
AttCAT 0.274 0.568 0.347 0.532 0.454 0.416 0.449 0.467

TIS 0.354 0.503 0.394 0.503 0.524 0.372 0.520 0.411
Contrast-CAT 0.688 0.140 0.684 0.160 0.686 0.160 0.738 0.131

(B) LeRF (Least Relevant First)
Dataset Amazon Yelp SST2 IMDB

Method AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.218 0.586 0.177 0.581 0.323 0.457 0.157 0.556
Rollout 0.303 0.514 0.197 0.569 0.443 0.311 0.184 0.531

CAT 0.200 0.606 0.127 0.674 0.141 0.676 0.077 0.704
AttCAT 0.200 0.604 0.124 0.677 0.137 0.678 0.077 0.709

TIS 0.191 0.613 0.119 0.669 0.143 0.679 0.076 0.712
Contrast-CAT 0.065 0.741 0.052 0.771 0.085 0.738 0.053 0.749

Table 8: AUC values of the faithfulness evaluation conducted on the RoBERTa model. The best and
the second-best cases are in boldface and underlined, respectively.

(A) MoRF (Most Relevant First)
Dataset Amazon Yelp SST2 IMDB

Method AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.385 0.622 0.138 0.690 0.303 0.420 0.163 0.699
Rollout 0.320 0.684 0.138 0.690 0.303 0.420 0.163 0.699

CAT 0.505 0.392 0.177 0.653 0.243 0.617 0.042 0.775
AttCAT 0.541 0.345 0.186 0.647 0.221 0.662 0.043 0.775

TIS N/A N/A N/A N/A N/A N/A N/A N/A
Contrast-CAT 0.744 0.136 0.617 0.188 0.636 0.188 0.706 0.132

(B) LeRF (Least Relevant First)
Dataset Amazon Yelp SST2 IMDB

Method AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.193 0.513 0.200 0.524 0.391 0.350 0.200 0.679
Rollout 0.215 0.472 0.200 0.524 0.391 0.350 0.200 0.679

CAT 0.164 0.584 0.247 0.434 0.492 0.321 0.703 0.199
AttCAT 0.129 0.646 0.216 0.488 0.506 0.359 0.679 0.231

TIS N/A N/A N/A N/A N/A N/A N/A N/A
Contrast-CAT 0.093 0.696 0.062 0.731 0.206 0.700 0.023 0.790

Table 9: AUC values of the faithfulness evaluation conducted on the GPT-2 model. The best and the
second-best cases are in boldface and underlined, respectively. N/A indicates that the method is not
applicable to GPT-2.
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(A) MoRF (Most Relevant First)

Model DistilBERT RoBERTa GPT-2

Method AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.218 0.669 0.352 0.566 0.174 0.554
Rollout 0.316 0.620 0.181 0.673 0.174 0.554

CAT 0.344 0.492 0.333 0.530 0.174 0.557
AttCAT 0.345 0.487 0.330 0.540 0.176 0.575

TIS 0.323 0.556 0.413 0.456 N/A N/A
Contrast-CAT 0.452 0.382 0.680 0.169 0.350 0.256

(B) LeRF (Least Relevant First)

Model DistilBERT RoBERTa GPT-2

Method AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.225 0.609 0.188 0.580 0.178 0.484
Rollout 0.141 0.688 0.224 0.562 0.178 0.484

CAT 0.072 0.752 0.096 0.699 0.255 0.409
AttCAT 0.068 0.752 0.098 0.698 0.256 0.393

TIS 0.154 0.702 0.109 0.690 N/A N/A
Contrast-CAT 0.072 0.746 0.061 0.742 0.161 0.588

Table 10: Faithfulness evaluation results of attribution methods conducted on the AgNews dataset
using three models: DistilBERT, RoBERTa, and GPT-2 under MoRF (Most Relevant First) and
LeRF (Least Relevant First) settings.
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Figure 7: Faithfulness evaluation of our Contrast-CAT (red) and other attribution methods conducted
on the DistilBERT model.
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Figure 8: Faithfulness evaluation of our Contrast-CAT (red) and other attribution methods conducted
on the RoBERTa model.
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Figure 9: Faithfulness evaluation of our Contrast-CAT (red) and other attribution methods conducted
on the GPT-2 model.
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E CONFIDENCE OF ATTRIBUTION

Model Dataset RawAtt Rollout CAT AttCAT TIS Contrast-CAT

D
is

til
B

E
R

T Amazon 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05
Yelp 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05
SST2 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05
IMDB 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05

AgNews 1.00 1.00 0.069 < 0.05 < 0.05 < 0.05

R
oB

E
R

Ta

Amazon 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05
Yelp 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05
SST2 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05
IMDB 1.00 1.00 < 0.05 < 0.05 < 0.05 < 0.05

AgNews 1.00 1.00 0.050 0.054 < 0.05 < 0.05

G
PT

-2

Amazon 1.00 1.00 < 0.05 < 0.05 N/A < 0.05
Yelp 1.00 1.00 < 0.05 < 0.05 N/A < 0.05
SST2 1.00 1.00 < 0.05 < 0.05 N/A < 0.05
IMDB 1.00 1.00 < 0.05 < 0.05 N/A < 0.05

AgNews 1.00 1.00 < 0.05 0.068 N/A < 0.05

Table 11: The results of confidence evaluation conducted on the DistilBERT, RoBERTa, and GPT-
2 models. Values below 0.05 are marked in gray. N/A indicates that the method is not applicable to
the given model.

Table 11 presents the confidence evaluation results for various attribution methods conducted on
the DistilBERT, RoBERTa, and GPT-2 models. The results show that Contrast-CAT consistently
achieves average rank correlation values below 0.05 across all datasets and models used, suggesting
that the attributions generated by Contrast-CAT tend to be class-distinct as desired.

F ACTIVATION VISUALIZATION

To demonstrate that Contrast-CAT’s multiple contrasting, detailed in Section 4.2, effectively re-
duces class-irrelevant features in activations, we visualized activations from different layers of the
BERTbase, DistilBERT, RoBERTa, and GPT-2 models, as shown in Figure 10. The 1st, 3rd, 5th, and
7th rows (odd-numbered rows) represent the original activations, while the 2nd, 4th, 6th, and 8th
rows (even-numbered rows) show the activations after applying Contrast-CAT’s multiple contrast-
ing. In the case of BERTbase, RoBERTa, and GPT-2, the activations of layers 2, 4, 6, 8, and 10 were
visualized. For DistilBERT, since it consists of only 6 layers, the activations of layers 1, 2, 3, 4,
and 5 were visualized. Each point represents the averaged activation across tokens in an input token
sequence, extracted from the corresponding layers. For visualization, the dimensionality of these
averaged activations was reduced to two using Principal Component Analysis (F.R.S., 1901).

As illustrated in Figure 10, the original activations (odd-numbered rows in the figure) show poor
separation between positive and negative classes. In contrast, after applying Contrast-CAT’s multiple
contrasting (even-numbered rows in the figure), the activations exhibit much clearer class separation
across all layers. This enhanced separation highlights the effectiveness of Contrast-CAT in reducing
class-irrelevant features within activations, thereby improving attribution quality by focusing on
class-relevant features.
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Figure 10: Visual representation of activations across five different layers of the BERTbase model
for four different datasets: (A) Amazon, (B) Yelp, (C) SST2, and (D) IMDB. Odd-numbered rows
show activations before applying Contrast-CAT’s multiple contrasting, and even-numbered rows
(highlighted in a red box) show activations after applying Contrast-CAT’s multiple contrasting. The
colors represent classes: positive (yellow) and negative (purple). Principal Component Analysis is
used to reduce the dimensionality of activations to two dimensions for visualization. The separa-
tion between positive (yellow) and negative (purple) classes becomes more distinct after applying
Contrast-CAT’s multiple contrasting.
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Figure 11: Visual representation of activations across five different layers of the DistilBERT model
for four different datasets: (A) Amazon, (B) Yelp, (C) SST2, and (D) IMDB. Odd-numbered rows
show activations before applying Contrast-CAT’s multiple contrasting, and even-numbered rows
(highlighted in a red box) show activations after applying Contrast-CAT’s multiple contrasting. The
colors represent classes: positive (yellow) and negative (purple). Principal Component Analysis is
used to reduce the dimensionality of activations to two dimensions for visualization. The separa-
tion between positive (yellow) and negative (purple) classes becomes more distinct after applying
Contrast-CAT’s multiple contrasting.
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Figure 12: Visual representation of activations across five different layers of the RoBERTa model
for four different datasets: (A) Amazon, (B) Yelp, (C) SST2, and (D) IMDB. Odd-numbered rows
show activations before applying Contrast-CAT’s multiple contrasting, and even-numbered rows
(highlighted in a red box) show activations after applying Contrast-CAT’s multiple contrasting. The
colors represent classes: positive (yellow) and negative (purple). Principal Component Analysis is
used to reduce the dimensionality of activations to two dimensions for visualization. The separa-
tion between positive (yellow) and negative (purple) classes becomes more distinct after applying
Contrast-CAT’s multiple contrasting.
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Figure 13: Visual representation of activations across five different layers of the GPT-2 model for
four different datasets: (A) Amazon, (B) Yelp, (C) SST2, and (D) IMDB. Odd-numbered rows show
activations before applying Contrast-CAT’s multiple contrasting, and even-numbered rows (high-
lighted in a red box) show activations after applying Contrast-CAT’s multiple contrasting. The colors
represent classes: positive (yellow) and negative (purple). Principal Component Analysis is used to
reduce the dimensionality of activations to two dimensions for visualization. The separation between
positive (yellow) and negative (purple) classes becomes more distinct after applying Contrast-CAT’s
multiple contrasting.
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