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Abstract

In this paper, we propose a new task named
Fine-grained Category Discovery under Coarse-
grained supervision (FCDC). Without asking
for any fine-grained knowledge, FCDC aims at
discovering fine-grained categories with only
coarse-grained labeled data, which can not only
reduce significant labeling costs, but also adapt
to novel fine-grained categories. It is also a
challenging task since performing FCDC re-
quires models to ensure fine-grained sample
separability with only coarse-grained supervi-
sion and can easily make models overfit on the
training set. Considering most current methods
cannot transfer knowledge from coarse-grained
level to fine-grained level, we propose a novel
hierarchical weighted self-contrastive network
to approach the FCDC task. Inspired by the hi-
erarchy of pre-trained models (e.g. BERT), we
combine supervised learning and contrastive
learning to learn fine-grained knowledge from
shallow to deep. Specifically, we use coarse-
grained labels to train bottom layers of our
model to learn surface knowledge, then we
build a novel weighted self-contrastive mod-
ule to train top layers of our model to learn
more fine-grained knowledge. Extensive ex-
periments on two public datasets show both
effectiveness and efficiency of our model over
state-of-the-art methods.

1 Introduction

Fine-grained classification (FGC) training with
fine-grained labeled data has attracted much atten-
tion in both Natural Language Processing (Munikar
et al., 2019; Suresh and Ong, 2021) and Computer
Vision (Wei et al., 2019; Gao et al., 2020). How-
ever, in real-world scenario, performing FGC usu-
ally faces two challenges. On the one hand, FGC
methods usually rely on abundant fine-grained la-
beled data, which is both time and money consum-
ing to obtain. On the other hand, performing FGC
task can not discover novel fine-grained categories
when data volume increases. So how to perform
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Figure 1: An example of proposed FCDC task (fine-
grained clusters are discovered by the FCDC task and
fine-grained label names are assigned by experts).

FGC with ability to reduce labeling costs and dis-
cover novel fine-grained categories is an important
topic.

To meet above requirements, we propose a novel
task named Fine-grained Category Discovery un-
der Coarse-grained supervision (FCDC). Different
from FGC, performing FCDC only needs coarse-
grained labeled data, which is easier to obtain
and can reduce significant labeling costs. Further-
more, performing FCDC can discover fine-grained
clusters from coarse-grained labeled data and clas-
sify inputs into proper fine-grained categories. As
shown in Figure 1, at training phase, only coarse-
grained (e.g. sports and arts) labeled data is avail-
able. Performing FCDC firstly requires models to
discover fine-grained clusters (e.g. tennis and mu-
sic), then experts can assign these clusters with ap-
propriate class names to construct the fine-grained
class taxonomy. Finally, models need to predict
fine-grained labels of each input in an unsupervised
way at testing phase. Since performing FCDC
only needs training data with coarse-grained la-
bels, most existing text classification datasets can
be directly used.

FCDC is not only more conforming to real-world
scenario, but also more challenging than FGC. And
the difficulties of solving FCDC task mainly lies
in two aspects. Firstly, performing FCDC can eas-
ily make models overfit on the training set. Since
FCDC needs models to be trained and tested on the



same feature space but different label space, mod-
els can easily overfit to the coarse-grained classes
in the training set (Day and Khoshgoftaar, 2017).
So how to fully utilize given coarse-grained su-
pervision meanwhile avoid overfitting is a severe
challenge. Secondly, performing FCDC needs mod-
els to control both the intra-class and inter-class
distance of samples with only coarse-grained su-
pervision. Since coarse-grained classification does
not care about intra-class distance (Bukchin et al.,
2021), samples with the same coarse-grained labels
will be close to each other and hard to be separated
in the fine-grained feature space (see Figure 7). So
how to control the intra-class distance to ensure
fine-grained sample separability is also a serious
challenge.

To cope with above challenges, we propose a
novel hierarchical weighted self-contrastive net-
work. Inspired by the hierarchy of pre-trained mod-
els such as BERT (Devlin et al., 2018) and their
ability to extract features from shallow to deep (Xu
et al., 2021; Jawahar et al., 2019; Leavitt and Mor-
cos, 2020), the core motivation of our model is
to learn coarse-grained knowledge by shallow lay-
ers of BERT and learn fine-grained knowledge by
the rest of deep layers hierarchically. This moti-
vation is not only consistent with the feature ex-
traction process of pre-trained models, but also
corresponding with the learning process of humans.
Specifically, we use given coarse-grained labels to
train shallow layers of BERT to learn some surface
knowledge with supervised learning, then we pro-
pose a weighted self-contrastive module to train
deep layers of BERT to learn more fine-grained
knowledge with contrastive learning.

By performing supervised and contrastive learn-
ing on shallow and deep layers, our model can fully
utilize given coarse-grained supervision to extract
universal features on shallow layers while preserv-
ing the ability to extract fine-grained features on
deep layers (Cohen et al., 2020), which can miti-
gate the overfitting problem. To solve the low intra-
class differentiation problem, we propose a novel
weighted self-contrastive module by introducing
a novel strategy to generate positive samples and
giving different weights to negative samples, which
can better control the inter-class and intra-class dis-
tance between samples as well as improve training
efficiency of our model (see Section 6.3).

The main contributions of our work can be sum-
marized as threefold:

* To mitigate limitations of the fine-grained clas-
sification (FGC) task, we propose a novel
task named Fine-grained Category Discovery
under Coarse-grained supervision (FCDC),
which can reduce labeling costs and adapt to
novel fine-grained categories

* We propose a novel model named hierarchi-
cal weighted self-contrastive network for the
FCDC task. By cooperating supervised learn-
ing and weighted self-contrastive learning, our
model can ensure both inter-class and intra-
class separability to facilitate the FCDC task
with higher training efficiency.

» Extensive experiments on two public datasets
show that our model significantly advances
best compared methods with more than 20%
improvement on accuracy and gets double
training efficiency than state-of-the-art con-
trastive learning methods.

2 Related work

2.1 Contrastive learning

Contrastive Learning (CL) aims at grouping similar
samples closer and separating dissimilar samples
far from each other in a self-supervised way(Le-
Khac et al., 2020; Jaiswal et al., 2021; Liu et al.,
2021), which has gained popularity in both Nat-
ural Language Processing (NLP) (Mikolov et al.,
2013; Wu et al., 2020; Meng et al., 2021) and Com-
puter Vision (CV) (Chen et al., 2020a; Chen and
He, 2021; Chen et al., 2017). One critical point for
CL is to build high-quality positive and negative
samples. One simple way to construct negative
samples is to use other in-batch data as negatives
(Chen et al., 2017). To keep consistency of rep-
resentations of negatives, He et al. (2020) built a
dynamic queue with momentum-updated encoder
to make representations of negatives change slowly.
However, these methods considered all negatives
equally important, which may lose discriminative
information of negatives. As for positive samples,
in CV, one common way is taking two different
transformations of the same image as the query and
positive sample (Dosovitskiy et al., 2014). And in
NLP, augmentation techniques such as word dele-
tion (Wu et al., 2020), back translation (Sennrich
et al., 2015), adversarial attack (Yan et al., 2021)
and dropout (Gao et al., 2021) had been proposed to
generate positives. Although there are some recent
works (Bae et al., 2021; Kim et al., 2021) using



outputs from the different levels of a network as
positives, which are similar to our self-contrastive
strategy, we have different motivations: they aim
at providing more high-quality positives for repre-
sentation learning but we aim at better adjusting
intra-class distance for the FCDC task.

2.2 Novel Category Discovery

With data volume increases, novel categories es-
pecially novel fine-grained categories may be in-
troduced into datasets (Mekala et al., 2021). To
discover novel categories without human annota-
tion, most previous work adopted clustering meth-
ods and transfer learning (Pan and Yang, 2009)
to generate pseudo labels for unlabeled data to
train their models (Zhan et al., 2020). For example,
Zhang et al. (2021) proposed an alignment strat-
egy to perform DeepCluster (Caron et al., 2018)
to discover novel categories. Ge et al. (2020) pro-
posed a mutual mean teaching network to refine
noisy pseudo labels to perform unsupervised per-
son re-identification. Recently, Two similar tasks as
ours are proposed. Bukchin et al. (2021) proposed
to perform fine-grained image classification under
coarse-grained supervision with angular contrastive
learning, and they perform this task as a few-shot
learning task (Wang et al., 2019) which needs ex-
tra fine-grained labels for each categories. Mekala
et al. (2021) proposed to perform fine-grained text
classification with coarse-grained annotations, and
they need extra fine-grained label hierarchy and
corresponding surface names to assist in the task.
These two tasks both rely on extra fine-grained
knowledge from human annotations, which is usu-
ally unavailable when novel categories appear in
real-world applications. Comparatively, our FCDC
task does not require any fine-grained knowledge,
which is more adapted to the novel fine-grained
category discovery scenarios.

3 Problem Formulation

The proposed FCDC task has two objectives: dis-
covering fine-grained classes from scratch and
classifying inputs into proper fine-grained cate-
gories. Denote by YVeoarse = {C1,Ca2,...,Car}
a set of coarse-grained classes. The training
set of our problem is a set of texts Dipgin =
{D1,Ds, ..., Dy} with their coarse-grained labels
{c1,¢2,....,cn}, where ¢; € Yeoarse- Differ-
ent from previous tasks (Bukchin et al., 2021;
Mekala et al., 2021) where the fine-grained label

set Vfine = {F1,F2,..., Fx } is already known,
FCDC task assumes we do not have any knowledge
about fine-grained labels. So performing FCDC re-
quires models to perform clustering methods (e.g.
K-Means) to discover fine-grained clusters as well
as assign inputs into different fine-grained clusters
with only coarse-grained labels. The number of
fine-grained clusters k can be estimated by elbow
method (Kodinariya and Makwana, 2013) or gap
statistic (Tibshirani et al., 2001) and we assume it
is known in FCDC following previous works (Lin
et al., 2020; Zhang et al., 2021). After discover-
ing fine-grained clusters, experts can assign these
clusters with appropriate class names and map
these fine-grained classes Vyipe into sub-classes
of coarse-grained classes V;oqrse- In this way, our
task can construct fine-grained class taxonomy (e.g.
Figure 1) automatically, in the meanwhile, classify
inputs into proper fine-grained categories.

Novel fine-grained categories can be introduced
when data volume increases, our task can discover
these novel categories by re-estimating the num-
ber of clusters k., and re-clustering based on
knovel- Specifically, we first use the algorithm in-
troduced in (Zhang et al., 2021) to estimate the
approximate value kg, then we perform cluster-
ing with a set of values near k,,,, and select k,pe;
by the unsupervised metric Silhouette Coefficient
(Wold et al., 1987). Different from traditional clas-
sification tasks which focus on a fixed label set, our
task can adapt to novel fine-grained categories and
expand the fine-grained label set automatically.

4 Proposed Approach

As shown in Figure 2, our model mainly contains
three components: BERT, Dynamic Queue and
Momentum BERT. BERT is used to perform super-
vised learning at Layer L to learn coarse-grained
knowledge and perform weighted self-contrastive
learning at output layer to learn more fine-grained
knowledge. Dynamic Queue can store more neg-
ative samples grouping by their coarse-grained la-
bels. Momentum BERT is used to update represen-
tations of samples in Dynamic Queue following the
settings in MoCo (He et al., 2020). Inspired by the
"shallow to deep" learning process of humankind
and the ability of pre-trained models to extract fea-
tures from shallow to deep (Jawahar et al., 2019;
Xu et al., 2021), a core motivation of our model
is to learn fine-grained knowledge in a progres-
sive way. Specifically, our model can learn coarse-
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Figure 2: The overall architecture of our model. CE and CL mean Cross Entropy and Contrastive Learning,

respectively.

grained knowledge with supervised learning at shal-
low layers and learn more fine-grained knowledge
based on learned coarse-grained knowledge with
weighted self-contrastive learning at deep layers.

4.1 Supervised Learning

We firstly perform supervised learning on trans-
former layer L of BERT to learn coarse-grained
knowledge. Given the i-th document D; with its
coarse-grained label c¢;, we use all token embed-
dings from the L layer of BERT as its shallow fea-
tures. Then we apply a mean-pooling layer to get
its shallow feature representation h’:

hE = mean-pooling(BERTL(D;)) (1)

where hl € R" is the hidden state of the fea-
ture representation, h is the dimension of hidden
representations. Then we can perform supervised
learning using cross entropy loss on coarse-grained
labels to get supervised loss Esup'

:a(W hE +b,) ()

b))
Eouw = A,EE) lexp(<fd ) @

where ziL € R™ is the output logits, m is the num-
ber of coarse classes. o is the Tanh activation
function, W, € R"™ and b, € R™ are learn-
able weights and bias terms respectively, (2;)7 is
the j-th element of output logits z;.

4.2 Weighted Self-contrastive Learning

Denote the coarse-grained inter-class and intra-
class distance by dcoarse and dfipe, respectively.
Supervised learning on coarse-grained labels can
ensure deoarse > 0 but will also make d g, ~ 0,
which can bring difficulties for fine-grained cat-
egorization. So how to increase d ;e to ensure
the separability of fine sub-classes is a severe chal-
lenge. In the meanwhile, increasing d s, without
restraint will result in overlapping between differ-
ent coarse classes and therefore lead to misclassi-
fication. So how to constrain d ;. to ensure the
proper classification on coarse-grained classes is
another challenge. In summary, our total goal can
be described as:

(RS dfine < dboundary <K deoarse (4)

where dpoundary 1 a threshold to ensure samples
fall into proper coarse-grained classes.

To achieve above objectives, we propose a
weighted self-contrastive module by introducing a
novel generation strategy for positive samples and
a weighting strategy for negative samples.

4.2.1 Negative Key Generation

Given the i-th document D;, we use all token em-
beddings from the output layer of BERT as its deep
features. As same as the previous extraction pro-
cess for shallow features, we apply a mean-pooling
layer to get its deep feature representation h; € R":



h{ = mean-pooling(BERT,(D;))  (5)

In-batch negative keys Given A with its coarse-
grained label ¢; as a query, we treat both shal-
low and deep features of other in-batch samples
as its in-batch negative keys, where k™ (i) =
{hJL, h;}jzlmNy#i. In this way, we can increase
the distance between samples so that satisfying
dfine > 0 and deoarse > 0. To satisfy deoarse >
d fine, We propose a weighting strategy by giving
more weights to samples with the same coarse-
grained labels as the query ¢ to decrease their dis-
tance. So k" can be divided into two groups ac-
cording to the coarse-grained labels:

K6y = {k e k(i) 1 cr, £ i} (6)
ksome(i) = {k € k(i) e =i} (7)

Momentum negative keys To provide more neg-
ative keys, we build a momentum BERT and a set
of dynamic queues {Q;} ij‘il to store previous sam-
ples grouped by their coarse-grained labels follow-
ing Bukchin et al. (2021), where M is the number of
coarse-grained classes. Specifically, given A with
its coarse-grained label c; as a query, we treat sam-
ples from the queue Q. as its momentum negative
keys:

E™(i) ={k € Qg } (®)

Feature representations of samples in dynamic
queues are extracted by momentum BERT, and
the parameters of momentum BERT are updated in
a momentum way following He et al. (2020). At
the end of each iteration, the dynamic queues will
be updated by adding novel samples and removing
the earliest samples. Since samples in k(i) have
the same coarse-grained label as the query, they
are much harder to be separated and beneficial to
better representation learning.
The overall negative keys for the query A is :

k_(i) = {E*7 (@), k2 (), K™ (1)} (9)

4.2.2 Positive Key Generation

By weighting different negative samples, we can
satisfy the condition 0 < dfjne < deoarse- But
increasing d ;. without restraint will violate the
condition d ¢ine < dpoundary and make some sam-
ples fall into incorrect coarse-grained classes. To
solve this problem, we propose a self-contrastive
strategy by treating shallow features of a query as

‘ Self-contrastive Learning
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Figure 3: The effectiveness of our self-contrastive mod-
ule, which can ensure both inter-class distance and
proper coarse-grained classification.

its positive keys. Specifically, given the deep fea-
ture representation A7 for document D; as a query,
we treat hiL as its positive key:

k(i) = hE (10)
After supervised learning on coarse-grained labels,
h¥ can be very close to the class center of ¢;, so
pulling h¢ close to hY will also pull h? close to
the class center of ¢;. In this way, we can in-
crease d f;, with restraint and satisfy the condition
dfine < dpoundary Without computing the value of
dpoundary> Which is shown in Figure 3. Another ad-
vantage for our self-contrastive strategy is that we
can get double training efficiency than traditional
data augmentation methods (Wu et al., 2020; Gao
et al., 2021) since we only need to perform feed-
forward and back-forward propagation only once
to get and update both queries and positive keys.
(discussed in Section 6.3)

4.2.3 Contrastive Loss
Given the query h¢ with its positive key k4 (7) and

negative keys k_ (i), the contrastive loss of our
weighted self-contrastive module is:

N esim(hf,hf)/T
Leont = Zl —log Z alz esim(hf,hk)/T
= lek_(i) kel
)
where {«; } are weighting factors for different nega-

tive keys, sim(h;, h;) is cosine similarity ”h}lﬁ%j”
and 7 is a temperature hyperparameter.

By weighting different negative keys and select-
ing shallow features as positive keys, our weighted
self-contrastive module can satisfy the goal in In-
equation 4 and provide conditions for subsequent
fine-grained categorization.

4.3 Overall Loss

We further find that adding supervised learning on
coarse-grained labels at the output layer can boost



# Train # Dev # Test
18,000 1,000 10,00
8,362 1,185 2,420

Dataset ICl |Fl
CLINC 10 150
WOS 7 33

Table 1: Statistics of datasets. # indicates the number
of samples in each set. ICl, 7| means the number of
coarse-grained and fine-grained classes, respectively.

our model performance, since it can guarantee sam-
ples to be classified into proper coarse-grained cat-
egories. So the overall loss for our hierarchical
weighted self-contrastive network is:

L= 71 ﬁsLup + '72£gup + 73£cont (12)

where L3, is the cross entropy loss at the output
layer and 71, 2, y3 are weighting factors.

By performing supervised learning on shallow
layers and weighted self-contrastive learning on
deep layers, our model can learn fine-grained
knowledge based on learned coarse-grained knowl-
edge and ensure both inter-class and intra-class

separability to facilitate FCDC task.

5 Experiments

5.1 Datasets

To evaluate effectiveness of our model, we conduct
experiments on two public datasets. Statistics of
two datasets can be found in Table 1.

CLINC is an intent classification dataset released
by Larson et al. (2019).

Web of Science (WOS) is a paper classification
dataset released by Kowsari et al. (2017). And we
use the WOS-11967 version.

5.2 Compared Methods

Since FCDC needs models to discover fine-grained
categories with no fine-grained labeled data, We
compare our model with a set of self-supervised
methods.

Baselines We firstly perform FCDC with BERT
in unsupervised way, coarse-supervised way and
fine-supervised way as baselines.

Self-supervised Methods DeepCluster (Caron
et al., 2018), CDAC+ (Lin et al., 2020) and
DeepAligned (Zhang et al., 2021) are self-
supervised methods using self-training techniques
and achieve state-of-the-art results in many cate-
gory discovery tasks. Ancor (Bukchin et al., 2021)
is a self-supervised method designed for few-shot
fine-grained classification with coarse-grained la-
bels. SImCSE (Gao et al., 2021) and Delete One

Word (Wu et al., 2020) are contrastive learning
methods in NLP with different data augmentation
techniques and achieve good performance in many
representation learning tasks. For a fair compari-
son, we use the same BERT model as ours to ex-
tract features for all compared methods and adopt
hyper-parameters in their original paper.
Self-supervised + Cross Entropy To investigate
the influence of coarse-grained supervision on com-
pared models, we further add the cross entropy loss
on coarse-grained labels to their loss function.

5.3 Evaluation Metrics

Since no fine-grained knowledge is available for
FCDC task, we need to perform clustering to dis-
cover fine-grained categories. To evaluate the per-
formance of clustering, we use two broadly used
evaluation metrics: Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI). To
evaluate the performance of fine-grained classifica-
tion, we use the metric Accuracy (ACC), which is
obtained by Hungarian algorithm (Kuhn, 1955).

5.4 Main Results

The average results over 5 runs are reported in
Table 2. From the results we can draw following
conclusions.

Our model significantly outperforms other com-
pared methods across all datasets. We get more
than 20% improvement on metrics ACC and ARI,
and more than 10% improvement on the metric
NMI. We contribute the reasons of better per-
formance of our model to the following three
points. Firstly, we propose a hierarchical archi-
tecture to learn fine-grained knowledge from shal-
low to deep, which is consistent with both the
feature extraction process of pre-trained language
models and the learning process of human beings.
Secondly, we perform supervised learning with
coarse-grained labels at shallow layers, which can
help to learn coarse-grained knowledge and lay
the foundation for learning fine-grained knowledge
on deeper layers. Thirdly, we propose a weighted
self-contrastive module to better learn fine-grained
knowledge at deep layers. Specifically, we propose
a weighting strategy for negative samples to bet-
ter control both inter-class and intra-class distance,
and in the meanwhile, we propose a self-contrastive
strategy to generate positive samples so that we can
avoid the overlap between different coarse classes
and meanwhile get double training efficiency than
traditional contrastive methods.



Methods CLINC WOS

ACC ARI NMI ACC ARI NMI
Unsupervised 33.38 16.42 63.46 32.32 18.21 47.12
Coarse Supervised 4591 32.27 75.04 39.42 33.67 61.60
Fine Supervised 96.84 95.03 98.50 83.64 72.01 81.46
CDAC+ 25.44 13.06 62.21 23.97 12.14 36.56
DeepCluster 26.40 12.51 61.26 29.17 18.05 43.34
DeepAligned 29.16 14.15 62.78 28.47 1594 4352
SimCSE 40.22 23.57 69.02 | 25.87 13.03 38.53
Ancor 45.60 33.11 75.23 41.20 37.00 65.42
Delete One Word 47.11 31.28 73.39 24.50 11.68 35.47
DeepCluster + CE 30.28 13.56 62.38 38.76 35.21 60.30
CDAC+ + CE 34.40 17.73 64.21 32.32 18.21 47.12
DeepAligned + CE 42.09 28.09 72.78 39.42 33.67 61.60
Ancor + CE 44.44 31.50 74.67 39.34 26.14 54.35
Delete One Word + CE | 47.87 33.79 76.25 41.53 33.78 61.01
SimCSE + CE 52.53 37.03 7739 | 41.28 34.47 61.62
Ours 74.15 64.67 89.00 | 68.00 56.15 73.73

Table 2: Model comparison results (%) on test sets. Average ACC, ARI and NMI over 5 runs are reported. ’+ CE’
means adding coarse-grained supervision with cross entropy loss. The statistical significance test results are shown
in Appendix A.2 and all the p-values are less than 10~8, which means our improvement is significant.

Fine-supervised BERT can be seen as upper
bound of the FCDC task since it trains models
with fine-grained labeled data. Self-training meth-
ods perform badly on all datasets and evaluation
metrics since they rely on abundant labeled data to
generate high-quality pseudo labels for unlabeled
data. Contrastive learning methods perform better
than self-training methods since they do not need
fine-grained labels to initialize their models. How-
ever, their performance is still much worse than
ours since they can not fully utilize given coarse-
grained labels to control inter-class and intra-class
distance between samples. We can also find that
model performance of most compared methods in-
creases with the addition of coarse-grained supervi-
sion, which means coarse-grained supervision can
boost model performance on fine-grained tasks.

6 Discussion

6.1 Ablation Study

To investigate contributions of different compo-
nents to our model, we compare the performance
of our model with its variants on the the CLINC
dataset. As shown in Table 3, removing differ-
ent components from our model will affect model
performance more or less, which can indicate the
effectiveness of different components in our model.
Removing Momentum Encoder has minimal im-

Table 3: Results (%) of different model variants. ’-’
means that we remove the component from our model.

Model ACC ARI NMI
ALL 74.15 | 64.67 | 89.00
- Momentum 72.06 | 62.71 | 88.52
- Weighting 7175 | 62.99 | 88.47
- Lk, 71.02 | 6222 | 87.50
- Self-Contrast | 53.21 | 40.05 | 75.36
- L3, 50.27 | 32.65 | 74.51

pact on our model, since our model is insensitive
to the number of negative samples (More details in
Appendix A.4). Removing weighting strategy or
cross entropy loss at shallow layers will also hurt
model performance since they can help to learn
coarse-grained knowledge and lay the foundation
for learning fine-grained knowledge. Above all,
removing self-contrastive strategy or cross entropy
loss at output layer results in a significant decrease
in model performance, since these two components
are responsible for controlling intra-class and inter-
class distance, respectively, which are two most
important objectives for the FCDC task.

6.2 Novel Fine-grained Category Discovery

As introduced in Section 3, performing the FCDC
task can discover novel fine-grained categories
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Figure 4: Impact of different batch sizes on our model.

from novel data. We perform experiments on the
WOS dataset by randomly setting 4 fine-grained
categories as novel categories and corresponding
data as novel data. The approximate value kqp,, es-
timated by our model is 35. Then we perform clus-
tering with a set of & = {30, 32, 34, 35, 36,40},
and the results are shown in Figure 4. The number
of fine-grained categories ke estimated by our
model equals to the ground truth 34, which can
show the effectiveness of our model.

6.3 Training Efficiency

In this section, we compare the training efficiency
of our model with contrastive methods SimCSE
and Delete One Word on the CLINC dataset. We
test all methods using the BERT base model trained
on the same hardware platform (an AMD EPYC
CPU 7702 and a RTX 3090 GPU) with the batch
size 128. Average results over 100 epochs are
shown in Figure 5. Compared with SimCSE and
Delete One Word, our model gets double train-
ing efficiency both when adding or removing Mo-
mentum Encoder, which benefits from our self-
contrastive strategy. Traditional contrastive meth-
ods like SImCSE rely on data augmentation tech-
niques to generate positive keys, which needs to
perform feed-forward and back-forward propaga-
tion twice for queries and keys, respectively. Com-
paratively, our model utilizes shallow features of
queries as positive keys, which only needs to per-
form feed-forward and back-forward propagation
once to get and update both queries and positive
keys.

6.4 Visualization

We visualize the learned embeddings of our model
on the CLINC dataset using t-SNE (Van der Maaten
and Hinton, 2008) in Figure 6. It can be seen that
our model can ensure both inter-class and intra-
class distance to facilitate the FCDC task. Specif-
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Figure 5: Training efficiency compared with other con-
trastive methods.
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Figure 6: TSNE visualization of representations learned
by our model. Each color indicates a ground-truth
coarse-grained category.

ically, our model can separate different coarse-
grained categories with a large margin benefiting
from the supervised learning on coarse-grained
labels. In the meanwhile, different from tradi-
tional supervised learning methods which usually
ignore the intra-class distance, our model can bet-
ter increase the distance of samples within the
same coarse-grained categories to ensure the intra-
class separability, which benefits from the proposed
weighted self-contrastive module.

7 Conclusion

In this paper, we propose a novel task named Fine-
grained Category Discovery under Coarse-grained
supervision (FCDC), which can reduce significant
labeling costs and adapt to novel fine-grained cate-
gories. We further propose a hierarchical weighted
self-contrastive network to approach the FCDC
task. By performing multi-task learning on shallow
and deep layers of pre-trained models, our model
can learn fine-grained knowledge from shallow to
deep with only coarse-grained supervision. Exten-
sive experiments on two public datasets show that
our approach is more effective and efficient than
state-of-the-art methods.
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A Appendix

A.1 Implementation Details

We use the pre-trained BERT model (bert-base-
uncased) implemented by Pytorch (Wolf et al.,
2020) as our backbone and adopt most of its sug-
gested hyper-parameters. We also freeze most of
its model parameters and only fine-tune the last
four transformer layers to speed up calculations.
We use the cuml library (Raschka et al., 2020) to
perform K-Means on GPU to speed up calculations.
Early stopping is used in our experiment, which
is decided by model performance on the valida-
tion set. We use the AdamW optimizer with 0.01
weight decay. Gradient clipping is also used with
the norm 1.0. For hyperparameters, temperature 7
is set to 0.1, layer L is set to 11, and the weighting
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Figure 7: TSNE visualization of representations learned by our model, SimCSE and Coarse-supervised BERT.
Top : each color indicates a ground-truth coarse-grained category. Bottom: each color indicates a ground-truth

fine-grained category.

factors oy for {k‘d_iff(i), ks9me (), k™ (i)} are set
to {1.0, 1.1, 1.0}, weighting factors {71, v2,73}
are set to {0.001, 1, 0.008}. The training batch size
is set to 128, and the testing batch size is set to 64.
The momentum queue size for each coarse-grained
category is set to 128, and the momentum factor for
Momentum BERT is set to 0.9. The hidden dimen-
sion h is 768, the learning rate is set to 5¢7°, the
dropout rate is set to 0.1. The maximum training
epoch is set to 100 and the wait patience for early
stopping is set to 10 for all models.

A.2 Statistical Significance Results

To assess the significance of our experimental re-
sults, we perform t-tests between our model and
other compared methods on all datasets and evalua-
tion metrics. The p-values are shown in Table 4 and
Table 5. Specifically, the p-values are distributed
between 10716 to 1079, so we can conclude that
the performance improvement of our model over
compared methods is statistically significant.

A.3 Impact of Batch Sizes

To investigate the influence of batch sizes on our
model, we plot the figure of model performance
with different batch sizes. As shown in Figure
8, the performance of our model shows similar
decreasing tendency on three metrics. Different
from traditional insight that contrastive learning
benefits from larger batch sizes (Chen et al., 2020b),
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Figure 8: Impact of different batch sizes on our model.

larger batch sizes are harmful to our model. When
batch size is small (< 128), our model gets the best
performance. As batch size increases, our model
performance drops quickly, especially when batch
size is larger than 512. One possible reason is that
when batch size increases, it will be difficult to
control the distance between samples in the fine-
grained feature space to ensure both inter-class and
intra-class separability.

A.4 Impact of Momentum Queue Sizes

To investigate the influence of Momentum Queue
size on our model, we plot the figure of model per-
formance with different Momentum Queue sizes
on CLINC dataset in Figure 9. The performance
of our model does not change much with different
Momentum Queue sizes on all three metrics. Since
different Momentum Queue sizes mean different



90 -

85 -

—— NMI
805 —— ACC
ARI

/\/

Metrics (%)

o 200 400 600 800 1000 1200
Momentum Queue Size
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number of negative samples that Momentum Queue
can provide, we can draw the conclusion that our
model is not sensitive to the number of negatives,
which is consistent with the conclusion in Section
6.1. The insensitivity to negative samples of our
model can ensure that it works well even with small
data volume or limited hardware resource.

A.5 Visualization

We further visualize the learned embeddings of
our model and compared methods using t-SNE in
Figure 7. Firstly, our model can separate differ-
ent coarse-grained categories with a larger margin
than SimCSE and Coarse-supervised BERT (Top in
Figure 7), which benefits from our strategy of com-
bining supervised learning and contrastive learn-
ing in a hierarchical way. Furthermore, our model
can also separate different fine-grained categories
with a larger margin than SimCSE and Coarse-
supervised BERT (Bottom in Figure 7). Compared
with traditional supervised learning methods and
contrastive learning methods, our model can better
increase distance of samples from different fine-
grained categories to ensure the intra-class separa-
bility, which benefits from the proposed weighted
self-contrastive module. In summary, our model
can better control both inter-class and intra-class
distance than traditional supervised learning meth-
ods and contrastive learning methods to perform
the FCDC task.
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Methods ACC ARI NMI
CDAC+ 14x1072  67x1078  73x10°1
DeepCluster 3.7x10712  1.7x1071  55x10713
DeepAligned 52x 10712 56x107%  87x 10713
SimCSE 58 x 1071 34 %107 7.6 x 10712
Ancor 22x10710  46x10712 1.5x10710
Delete One Word 20x 10710 32x10712 54 x107M
DeepCluster + CE 49x107" 1.7x1078  7.7x10713
CDAC+ + CE 9.5x 1071 33x1071  23x10710
DeepAligned + CE 9.5x 107" 24x10712  4.0x 107!
Ancor + CE 1.6x10710  53x1072 1.1x1071
Delete One Word + CE | 24 x 10719 94x10712 48 x 10!
SimCSE + CE 6.4 x 107° 23x 1071 21 x10712
Table 4: Statistical significance results on CLINC dataset.

Methods ACC ARI NMI

CDAC+ 1.0x1072  28x1078  6.7x10°1°
DeepCluster 2.7x10712  87x 1071  3.3x10713
DeepAligned 9.1x10713  57x1071  57x10712
SimCSE 87x 10711  32x10718  1.0x 1072
Ancor 14x10719  21x1071  1.1x10°10
Delete One Word 1.1x1072  25x10718 53 x10715
DeepCluster + CE 6.5x 10712  1.0x107% 23 x1071Y
CDAC+ + CE 54x10712  9.0x10716 97 x 10712
DeepAligned + CE 7.7x10712  59x107'2  52x 1071
Ancor + CE 76%x10712  59x10713  12x10" M
Delete One Word+ CE | 1.4 x 107" 62x10712 35x10710
SimCSE + CE 1.3x1071  79x1071  1.1x10°10

Table 5: Statistical significance results on WOS dataset.
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