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Abstract

In this paper, we propose a new task named001
Fine-grained Category Discovery under Coarse-002
grained supervision (FCDC). Without asking003
for any fine-grained knowledge, FCDC aims at004
discovering fine-grained categories with only005
coarse-grained labeled data, which can not only006
reduce significant labeling costs, but also adapt007
to novel fine-grained categories. It is also a008
challenging task since performing FCDC re-009
quires models to ensure fine-grained sample010
separability with only coarse-grained supervi-011
sion and can easily make models overfit on the012
training set. Considering most current methods013
cannot transfer knowledge from coarse-grained014
level to fine-grained level, we propose a novel015
hierarchical weighted self-contrastive network016
to approach the FCDC task. Inspired by the hi-017
erarchy of pre-trained models (e.g. BERT), we018
combine supervised learning and contrastive019
learning to learn fine-grained knowledge from020
shallow to deep. Specifically, we use coarse-021
grained labels to train bottom layers of our022
model to learn surface knowledge, then we023
build a novel weighted self-contrastive mod-024
ule to train top layers of our model to learn025
more fine-grained knowledge. Extensive ex-026
periments on two public datasets show both027
effectiveness and efficiency of our model over028
state-of-the-art methods.029

1 Introduction030

Fine-grained classification (FGC) training with031

fine-grained labeled data has attracted much atten-032

tion in both Natural Language Processing (Munikar033

et al., 2019; Suresh and Ong, 2021) and Computer034

Vision (Wei et al., 2019; Gao et al., 2020). How-035

ever, in real-world scenario, performing FGC usu-036

ally faces two challenges. On the one hand, FGC037

methods usually rely on abundant fine-grained la-038

beled data, which is both time and money consum-039

ing to obtain. On the other hand, performing FGC040

task can not discover novel fine-grained categories041

when data volume increases. So how to perform042

Figure 1: An example of proposed FCDC task (fine-
grained clusters are discovered by the FCDC task and
fine-grained label names are assigned by experts).

FGC with ability to reduce labeling costs and dis- 043

cover novel fine-grained categories is an important 044

topic. 045

To meet above requirements, we propose a novel 046

task named Fine-grained Category Discovery un- 047

der Coarse-grained supervision (FCDC). Different 048

from FGC, performing FCDC only needs coarse- 049

grained labeled data, which is easier to obtain 050

and can reduce significant labeling costs. Further- 051

more, performing FCDC can discover fine-grained 052

clusters from coarse-grained labeled data and clas- 053

sify inputs into proper fine-grained categories. As 054

shown in Figure 1, at training phase, only coarse- 055

grained (e.g. sports and arts) labeled data is avail- 056

able. Performing FCDC firstly requires models to 057

discover fine-grained clusters (e.g. tennis and mu- 058

sic), then experts can assign these clusters with ap- 059

propriate class names to construct the fine-grained 060

class taxonomy. Finally, models need to predict 061

fine-grained labels of each input in an unsupervised 062

way at testing phase. Since performing FCDC 063

only needs training data with coarse-grained la- 064

bels, most existing text classification datasets can 065

be directly used. 066

FCDC is not only more conforming to real-world 067

scenario, but also more challenging than FGC. And 068

the difficulties of solving FCDC task mainly lies 069

in two aspects. Firstly, performing FCDC can eas- 070

ily make models overfit on the training set. Since 071

FCDC needs models to be trained and tested on the 072
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same feature space but different label space, mod-073

els can easily overfit to the coarse-grained classes074

in the training set (Day and Khoshgoftaar, 2017).075

So how to fully utilize given coarse-grained su-076

pervision meanwhile avoid overfitting is a severe077

challenge. Secondly, performing FCDC needs mod-078

els to control both the intra-class and inter-class079

distance of samples with only coarse-grained su-080

pervision. Since coarse-grained classification does081

not care about intra-class distance (Bukchin et al.,082

2021), samples with the same coarse-grained labels083

will be close to each other and hard to be separated084

in the fine-grained feature space (see Figure 7). So085

how to control the intra-class distance to ensure086

fine-grained sample separability is also a serious087

challenge.088

To cope with above challenges, we propose a089

novel hierarchical weighted self-contrastive net-090

work. Inspired by the hierarchy of pre-trained mod-091

els such as BERT (Devlin et al., 2018) and their092

ability to extract features from shallow to deep (Xu093

et al., 2021; Jawahar et al., 2019; Leavitt and Mor-094

cos, 2020), the core motivation of our model is095

to learn coarse-grained knowledge by shallow lay-096

ers of BERT and learn fine-grained knowledge by097

the rest of deep layers hierarchically. This moti-098

vation is not only consistent with the feature ex-099

traction process of pre-trained models, but also100

corresponding with the learning process of humans.101

Specifically, we use given coarse-grained labels to102

train shallow layers of BERT to learn some surface103

knowledge with supervised learning, then we pro-104

pose a weighted self-contrastive module to train105

deep layers of BERT to learn more fine-grained106

knowledge with contrastive learning.107

By performing supervised and contrastive learn-108

ing on shallow and deep layers, our model can fully109

utilize given coarse-grained supervision to extract110

universal features on shallow layers while preserv-111

ing the ability to extract fine-grained features on112

deep layers (Cohen et al., 2020), which can miti-113

gate the overfitting problem. To solve the low intra-114

class differentiation problem, we propose a novel115

weighted self-contrastive module by introducing116

a novel strategy to generate positive samples and117

giving different weights to negative samples, which118

can better control the inter-class and intra-class dis-119

tance between samples as well as improve training120

efficiency of our model (see Section 6.3).121

The main contributions of our work can be sum-122

marized as threefold:123

• To mitigate limitations of the fine-grained clas- 124

sification (FGC) task, we propose a novel 125

task named Fine-grained Category Discovery 126

under Coarse-grained supervision (FCDC), 127

which can reduce labeling costs and adapt to 128

novel fine-grained categories 129

• We propose a novel model named hierarchi- 130

cal weighted self-contrastive network for the 131

FCDC task. By cooperating supervised learn- 132

ing and weighted self-contrastive learning, our 133

model can ensure both inter-class and intra- 134

class separability to facilitate the FCDC task 135

with higher training efficiency. 136

• Extensive experiments on two public datasets 137

show that our model significantly advances 138

best compared methods with more than 20% 139

improvement on accuracy and gets double 140

training efficiency than state-of-the-art con- 141

trastive learning methods. 142

2 Related work 143

2.1 Contrastive learning 144

Contrastive Learning (CL) aims at grouping similar 145

samples closer and separating dissimilar samples 146

far from each other in a self-supervised way(Le- 147

Khac et al., 2020; Jaiswal et al., 2021; Liu et al., 148

2021), which has gained popularity in both Nat- 149

ural Language Processing (NLP) (Mikolov et al., 150

2013; Wu et al., 2020; Meng et al., 2021) and Com- 151

puter Vision (CV) (Chen et al., 2020a; Chen and 152

He, 2021; Chen et al., 2017). One critical point for 153

CL is to build high-quality positive and negative 154

samples. One simple way to construct negative 155

samples is to use other in-batch data as negatives 156

(Chen et al., 2017). To keep consistency of rep- 157

resentations of negatives, He et al. (2020) built a 158

dynamic queue with momentum-updated encoder 159

to make representations of negatives change slowly. 160

However, these methods considered all negatives 161

equally important, which may lose discriminative 162

information of negatives. As for positive samples, 163

in CV, one common way is taking two different 164

transformations of the same image as the query and 165

positive sample (Dosovitskiy et al., 2014). And in 166

NLP, augmentation techniques such as word dele- 167

tion (Wu et al., 2020), back translation (Sennrich 168

et al., 2015), adversarial attack (Yan et al., 2021) 169

and dropout (Gao et al., 2021) had been proposed to 170

generate positives. Although there are some recent 171

works (Bae et al., 2021; Kim et al., 2021) using 172
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outputs from the different levels of a network as173

positives, which are similar to our self-contrastive174

strategy, we have different motivations: they aim175

at providing more high-quality positives for repre-176

sentation learning but we aim at better adjusting177

intra-class distance for the FCDC task.178

2.2 Novel Category Discovery179

With data volume increases, novel categories es-180

pecially novel fine-grained categories may be in-181

troduced into datasets (Mekala et al., 2021). To182

discover novel categories without human annota-183

tion, most previous work adopted clustering meth-184

ods and transfer learning (Pan and Yang, 2009)185

to generate pseudo labels for unlabeled data to186

train their models (Zhan et al., 2020). For example,187

Zhang et al. (2021) proposed an alignment strat-188

egy to perform DeepCluster (Caron et al., 2018)189

to discover novel categories. Ge et al. (2020) pro-190

posed a mutual mean teaching network to refine191

noisy pseudo labels to perform unsupervised per-192

son re-identification. Recently, Two similar tasks as193

ours are proposed. Bukchin et al. (2021) proposed194

to perform fine-grained image classification under195

coarse-grained supervision with angular contrastive196

learning, and they perform this task as a few-shot197

learning task (Wang et al., 2019) which needs ex-198

tra fine-grained labels for each categories. Mekala199

et al. (2021) proposed to perform fine-grained text200

classification with coarse-grained annotations, and201

they need extra fine-grained label hierarchy and202

corresponding surface names to assist in the task.203

These two tasks both rely on extra fine-grained204

knowledge from human annotations, which is usu-205

ally unavailable when novel categories appear in206

real-world applications. Comparatively, our FCDC207

task does not require any fine-grained knowledge,208

which is more adapted to the novel fine-grained209

category discovery scenarios.210

3 Problem Formulation211

The proposed FCDC task has two objectives: dis-212

covering fine-grained classes from scratch and213

classifying inputs into proper fine-grained cate-214

gories. Denote by Ycoarse = {C1, C2, ..., CM}215

a set of coarse-grained classes. The training216

set of our problem is a set of texts Dtrain =217

{D1,D2, ...,DN} with their coarse-grained labels218

{c1, c2, ..., cN}, where ci ∈ Ycoarse. Differ-219

ent from previous tasks (Bukchin et al., 2021;220

Mekala et al., 2021) where the fine-grained label221

set Yfine = {F1,F2, ...,FK} is already known, 222

FCDC task assumes we do not have any knowledge 223

about fine-grained labels. So performing FCDC re- 224

quires models to perform clustering methods (e.g. 225

K-Means) to discover fine-grained clusters as well 226

as assign inputs into different fine-grained clusters 227

with only coarse-grained labels. The number of 228

fine-grained clusters k can be estimated by elbow 229

method (Kodinariya and Makwana, 2013) or gap 230

statistic (Tibshirani et al., 2001) and we assume it 231

is known in FCDC following previous works (Lin 232

et al., 2020; Zhang et al., 2021). After discover- 233

ing fine-grained clusters, experts can assign these 234

clusters with appropriate class names and map 235

these fine-grained classes Yfine into sub-classes 236

of coarse-grained classes Ycoarse. In this way, our 237

task can construct fine-grained class taxonomy (e.g. 238

Figure 1) automatically, in the meanwhile, classify 239

inputs into proper fine-grained categories. 240

Novel fine-grained categories can be introduced 241

when data volume increases, our task can discover 242

these novel categories by re-estimating the num- 243

ber of clusters knovel and re-clustering based on 244

knovel. Specifically, we first use the algorithm in- 245

troduced in (Zhang et al., 2021) to estimate the 246

approximate value kapp, then we perform cluster- 247

ing with a set of values near kapp and select knovel 248

by the unsupervised metric Silhouette Coefficient 249

(Wold et al., 1987). Different from traditional clas- 250

sification tasks which focus on a fixed label set, our 251

task can adapt to novel fine-grained categories and 252

expand the fine-grained label set automatically. 253

4 Proposed Approach 254

As shown in Figure 2, our model mainly contains 255

three components: BERT, Dynamic Queue and 256

Momentum BERT. BERT is used to perform super- 257

vised learning at Layer L to learn coarse-grained 258

knowledge and perform weighted self-contrastive 259

learning at output layer to learn more fine-grained 260

knowledge. Dynamic Queue can store more neg- 261

ative samples grouping by their coarse-grained la- 262

bels. Momentum BERT is used to update represen- 263

tations of samples in Dynamic Queue following the 264

settings in MoCo (He et al., 2020). Inspired by the 265

"shallow to deep" learning process of humankind 266

and the ability of pre-trained models to extract fea- 267

tures from shallow to deep (Jawahar et al., 2019; 268

Xu et al., 2021), a core motivation of our model 269

is to learn fine-grained knowledge in a progres- 270

sive way. Specifically, our model can learn coarse- 271
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Figure 2: The overall architecture of our model. CE and CL mean Cross Entropy and Contrastive Learning,
respectively.

grained knowledge with supervised learning at shal-272

low layers and learn more fine-grained knowledge273

based on learned coarse-grained knowledge with274

weighted self-contrastive learning at deep layers.275

4.1 Supervised Learning276

We firstly perform supervised learning on trans-277

former layer L of BERT to learn coarse-grained278

knowledge. Given the i-th document Di with its279

coarse-grained label ci, we use all token embed-280

dings from the L layer of BERT as its shallow fea-281

tures. Then we apply a mean-pooling layer to get282

its shallow feature representation hLi :283

hLi = mean-pooling(BERTL(Di)) (1)284

where hLi ∈ Rh is the hidden state of the fea-285

ture representation, h is the dimension of hidden286

representations. Then we can perform supervised287

learning using cross entropy loss on coarse-grained288

labels to get supervised loss LLsup:289

zLi = σ(Wah
L
i + ba) (2)290

LLsup = −
1

N

N∑
i=1

log
exp((zLi )

ci)∑K
j=1 exp((z

L
i )
j)

(3)291

where zLi ∈ Rm is the output logits, m is the num-292

ber of coarse classes. σ is the Tanh activation293

function, Wa ∈ Rh∗m and ba ∈ Rm are learn-294

able weights and bias terms respectively, (zi)j is295

the j-th element of output logits zi.296

4.2 Weighted Self-contrastive Learning 297

Denote the coarse-grained inter-class and intra- 298

class distance by dcoarse and dfine, respectively. 299

Supervised learning on coarse-grained labels can 300

ensure dcoarse � 0 but will also make dfine ≈ 0, 301

which can bring difficulties for fine-grained cat- 302

egorization. So how to increase dfine to ensure 303

the separability of fine sub-classes is a severe chal- 304

lenge. In the meanwhile, increasing dfine without 305

restraint will result in overlapping between differ- 306

ent coarse classes and therefore lead to misclassi- 307

fication. So how to constrain dfine to ensure the 308

proper classification on coarse-grained classes is 309

another challenge. In summary, our total goal can 310

be described as: 311

0� dfine < dboundary � dcoarse (4) 312

where dboundary is a threshold to ensure samples 313

fall into proper coarse-grained classes. 314

To achieve above objectives, we propose a 315

weighted self-contrastive module by introducing a 316

novel generation strategy for positive samples and 317

a weighting strategy for negative samples. 318

4.2.1 Negative Key Generation 319

Given the i-th document Di, we use all token em- 320

beddings from the output layer of BERT as its deep 321

features. As same as the previous extraction pro- 322

cess for shallow features, we apply a mean-pooling 323

layer to get its deep feature representation hoi ∈ Rh: 324
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325

hoi = mean-pooling(BERTo(Di)) (5)326

In-batch negative keys Given hoi with its coarse-327

grained label ci as a query, we treat both shal-328

low and deep features of other in-batch samples329

as its in-batch negative keys, where kin− (i) =330

{hLj , hoj}j=1...N,j 6=i. In this way, we can increase331

the distance between samples so that satisfying332

dfine � 0 and dcoarse � 0. To satisfy dcoarse �333

dfine, we propose a weighting strategy by giving334

more weights to samples with the same coarse-335

grained labels as the query q to decrease their dis-336

tance. So kin− can be divided into two groups ac-337

cording to the coarse-grained labels:338

kdiff− (i) = {k ∈ kin− (i) : ck 6= ci} (6)339

ksame− (i) = {k ∈ kin− (i) : ck = ci} (7)340

Momentum negative keys To provide more neg-341

ative keys, we build a momentum BERT and a set342

of dynamic queues {Qi}Mi=1 to store previous sam-343

ples grouped by their coarse-grained labels follow-344

ing Bukchin et al. (2021), where M is the number of345

coarse-grained classes. Specifically, given hoi with346

its coarse-grained label ci as a query, we treat sam-347

ples from the queue Qci as its momentum negative348

keys:349

km− (i) = {k ∈ Qci} (8)350

Feature representations of samples in dynamic351

queues are extracted by momentum BERT, and352

the parameters of momentum BERT are updated in353

a momentum way following He et al. (2020). At354

the end of each iteration, the dynamic queues will355

be updated by adding novel samples and removing356

the earliest samples. Since samples in km− (i) have357

the same coarse-grained label as the query, they358

are much harder to be separated and beneficial to359

better representation learning.360

The overall negative keys for the query hoi is :361

k−(i) = {kdiff− (i), ksame− (i), km− (i)} (9)362

4.2.2 Positive Key Generation363

By weighting different negative samples, we can364

satisfy the condition 0 � dfine � dcoarse. But365

increasing dfine without restraint will violate the366

condition dfine < dboundary and make some sam-367

ples fall into incorrect coarse-grained classes. To368

solve this problem, we propose a self-contrastive369

strategy by treating shallow features of a query as370

Figure 3: The effectiveness of our self-contrastive mod-
ule, which can ensure both inter-class distance and
proper coarse-grained classification.

its positive keys. Specifically, given the deep fea- 371

ture representation hoi for document Di as a query, 372

we treat hLi as its positive key: 373

k+(i) = hLi (10) 374

After supervised learning on coarse-grained labels, 375

hLi can be very close to the class center of ci, so 376

pulling hoi close to hLi will also pull hoi close to 377

the class center of ci. In this way, we can in- 378

crease dfine with restraint and satisfy the condition 379

dfine < dboundary without computing the value of 380

dboundary, which is shown in Figure 3. Another ad- 381

vantage for our self-contrastive strategy is that we 382

can get double training efficiency than traditional 383

data augmentation methods (Wu et al., 2020; Gao 384

et al., 2021) since we only need to perform feed- 385

forward and back-forward propagation only once 386

to get and update both queries and positive keys. 387

(discussed in Section 6.3) 388

4.2.3 Contrastive Loss 389

Given the query hoi with its positive key k+(i) and 390

negative keys k−(i), the contrastive loss of our 391

weighted self-contrastive module is: 392

Lcont =
N∑
i=1

−log esim(hoi ,h
L
i )/τ∑

l∈k−(i)

αl
∑
k∈l

esim(hoi ,hk)/τ

(11) 393

where {αl} are weighting factors for different nega- 394

tive keys, sim(hi, hj) is cosine similarity hTi hj
‖hi‖·‖hj‖ 395

and τ is a temperature hyperparameter. 396

By weighting different negative keys and select- 397

ing shallow features as positive keys, our weighted 398

self-contrastive module can satisfy the goal in In- 399

equation 4 and provide conditions for subsequent 400

fine-grained categorization. 401

4.3 Overall Loss 402

We further find that adding supervised learning on 403

coarse-grained labels at the output layer can boost 404
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Dataset |C| |F | # Train # Dev # Test
CLINC 10 150 18,000 1,000 10,00
WOS 7 33 8,362 1,185 2,420

Table 1: Statistics of datasets. # indicates the number
of samples in each set. |C|, |F | means the number of
coarse-grained and fine-grained classes, respectively.

our model performance, since it can guarantee sam-405

ples to be classified into proper coarse-grained cat-406

egories. So the overall loss for our hierarchical407

weighted self-contrastive network is:408

L = γ1LLsup + γ2Losup + γ3Lcont (12)409

where Losup is the cross entropy loss at the output410

layer and γ1, γ2, γ3 are weighting factors.411

By performing supervised learning on shallow412

layers and weighted self-contrastive learning on413

deep layers, our model can learn fine-grained414

knowledge based on learned coarse-grained knowl-415

edge and ensure both inter-class and intra-class416

separability to facilitate FCDC task.417

5 Experiments418

5.1 Datasets419

To evaluate effectiveness of our model, we conduct420

experiments on two public datasets. Statistics of421

two datasets can be found in Table 1.422

CLINC is an intent classification dataset released423

by Larson et al. (2019).424

Web of Science (WOS) is a paper classification425

dataset released by Kowsari et al. (2017). And we426

use the WOS-11967 version.427

5.2 Compared Methods428

Since FCDC needs models to discover fine-grained429

categories with no fine-grained labeled data, We430

compare our model with a set of self-supervised431

methods.432

Baselines We firstly perform FCDC with BERT433

in unsupervised way, coarse-supervised way and434

fine-supervised way as baselines.435

Self-supervised Methods DeepCluster (Caron436

et al., 2018), CDAC+ (Lin et al., 2020) and437

DeepAligned (Zhang et al., 2021) are self-438

supervised methods using self-training techniques439

and achieve state-of-the-art results in many cate-440

gory discovery tasks. Ancor (Bukchin et al., 2021)441

is a self-supervised method designed for few-shot442

fine-grained classification with coarse-grained la-443

bels. SimCSE (Gao et al., 2021) and Delete One444

Word (Wu et al., 2020) are contrastive learning 445

methods in NLP with different data augmentation 446

techniques and achieve good performance in many 447

representation learning tasks. For a fair compari- 448

son, we use the same BERT model as ours to ex- 449

tract features for all compared methods and adopt 450

hyper-parameters in their original paper. 451

Self-supervised + Cross Entropy To investigate 452

the influence of coarse-grained supervision on com- 453

pared models, we further add the cross entropy loss 454

on coarse-grained labels to their loss function. 455

5.3 Evaluation Metrics 456

Since no fine-grained knowledge is available for 457

FCDC task, we need to perform clustering to dis- 458

cover fine-grained categories. To evaluate the per- 459

formance of clustering, we use two broadly used 460

evaluation metrics: Adjusted Rand Index (ARI) 461

and Normalized Mutual Information (NMI). To 462

evaluate the performance of fine-grained classifica- 463

tion, we use the metric Accuracy (ACC), which is 464

obtained by Hungarian algorithm (Kuhn, 1955). 465

5.4 Main Results 466

The average results over 5 runs are reported in 467

Table 2. From the results we can draw following 468

conclusions. 469

Our model significantly outperforms other com- 470

pared methods across all datasets. We get more 471

than 20% improvement on metrics ACC and ARI, 472

and more than 10% improvement on the metric 473

NMI. We contribute the reasons of better per- 474

formance of our model to the following three 475

points. Firstly, we propose a hierarchical archi- 476

tecture to learn fine-grained knowledge from shal- 477

low to deep, which is consistent with both the 478

feature extraction process of pre-trained language 479

models and the learning process of human beings. 480

Secondly, we perform supervised learning with 481

coarse-grained labels at shallow layers, which can 482

help to learn coarse-grained knowledge and lay 483

the foundation for learning fine-grained knowledge 484

on deeper layers. Thirdly, we propose a weighted 485

self-contrastive module to better learn fine-grained 486

knowledge at deep layers. Specifically, we propose 487

a weighting strategy for negative samples to bet- 488

ter control both inter-class and intra-class distance, 489

and in the meanwhile, we propose a self-contrastive 490

strategy to generate positive samples so that we can 491

avoid the overlap between different coarse classes 492

and meanwhile get double training efficiency than 493

traditional contrastive methods. 494

6



Methods
CLINC WOS

ACC ARI NMI ACC ARI NMI
Unsupervised 33.38 16.42 63.46 32.32 18.21 47.12
Coarse Supervised 45.91 32.27 75.04 39.42 33.67 61.60
Fine Supervised 96.84 95.03 98.50 83.64 72.01 81.46
CDAC+ 25.44 13.06 62.21 23.97 12.14 36.56
DeepCluster 26.40 12.51 61.26 29.17 18.05 43.34
DeepAligned 29.16 14.15 62.78 28.47 15.94 43.52
SimCSE 40.22 23.57 69.02 25.87 13.03 38.53
Ancor 45.60 33.11 75.23 41.20 37.00 65.42
Delete One Word 47.11 31.28 73.39 24.50 11.68 35.47
DeepCluster + CE 30.28 13.56 62.38 38.76 35.21 60.30
CDAC+ + CE 34.40 17.73 64.21 32.32 18.21 47.12
DeepAligned + CE 42.09 28.09 72.78 39.42 33.67 61.60
Ancor + CE 44.44 31.50 74.67 39.34 26.14 54.35
Delete One Word + CE 47.87 33.79 76.25 41.53 33.78 61.01
SimCSE + CE 52.53 37.03 77.39 41.28 34.47 61.62
Ours 74.15 64.67 89.00 68.00 56.15 73.73

Table 2: Model comparison results (%) on test sets. Average ACC, ARI and NMI over 5 runs are reported. ’+ CE’
means adding coarse-grained supervision with cross entropy loss. The statistical significance test results are shown
in Appendix A.2 and all the p-values are less than 10−8, which means our improvement is significant.

Fine-supervised BERT can be seen as upper495

bound of the FCDC task since it trains models496

with fine-grained labeled data. Self-training meth-497

ods perform badly on all datasets and evaluation498

metrics since they rely on abundant labeled data to499

generate high-quality pseudo labels for unlabeled500

data. Contrastive learning methods perform better501

than self-training methods since they do not need502

fine-grained labels to initialize their models. How-503

ever, their performance is still much worse than504

ours since they can not fully utilize given coarse-505

grained labels to control inter-class and intra-class506

distance between samples. We can also find that507

model performance of most compared methods in-508

creases with the addition of coarse-grained supervi-509

sion, which means coarse-grained supervision can510

boost model performance on fine-grained tasks.511

6 Discussion512

6.1 Ablation Study513

To investigate contributions of different compo-514

nents to our model, we compare the performance515

of our model with its variants on the the CLINC516

dataset. As shown in Table 3, removing differ-517

ent components from our model will affect model518

performance more or less, which can indicate the519

effectiveness of different components in our model.520

Removing Momentum Encoder has minimal im-521

Table 3: Results (%) of different model variants. ’-’
means that we remove the component from our model.

Model ACC ARI NMI
ALL 74.15 64.67 89.00
- Momentum 72.06 62.71 88.52
- Weighting 71.75 62.99 88.47
- LLsup 71.02 62.22 87.50
- Self-Contrast 53.21 40.05 75.36
- Losup 50.27 32.65 74.51

pact on our model, since our model is insensitive 522

to the number of negative samples (More details in 523

Appendix A.4). Removing weighting strategy or 524

cross entropy loss at shallow layers will also hurt 525

model performance since they can help to learn 526

coarse-grained knowledge and lay the foundation 527

for learning fine-grained knowledge. Above all, 528

removing self-contrastive strategy or cross entropy 529

loss at output layer results in a significant decrease 530

in model performance, since these two components 531

are responsible for controlling intra-class and inter- 532

class distance, respectively, which are two most 533

important objectives for the FCDC task. 534

6.2 Novel Fine-grained Category Discovery 535

As introduced in Section 3, performing the FCDC 536

task can discover novel fine-grained categories 537

7



Figure 4: Impact of different batch sizes on our model.

from novel data. We perform experiments on the538

WOS dataset by randomly setting 4 fine-grained539

categories as novel categories and corresponding540

data as novel data. The approximate value kapp es-541

timated by our model is 35. Then we perform clus-542

tering with a set of k = {30, 32, 34, 35, 36, 40},543

and the results are shown in Figure 4. The number544

of fine-grained categories knovel estimated by our545

model equals to the ground truth 34, which can546

show the effectiveness of our model.547

6.3 Training Efficiency548

In this section, we compare the training efficiency549

of our model with contrastive methods SimCSE550

and Delete One Word on the CLINC dataset. We551

test all methods using the BERT base model trained552

on the same hardware platform (an AMD EPYC553

CPU 7702 and a RTX 3090 GPU) with the batch554

size 128. Average results over 100 epochs are555

shown in Figure 5. Compared with SimCSE and556

Delete One Word, our model gets double train-557

ing efficiency both when adding or removing Mo-558

mentum Encoder, which benefits from our self-559

contrastive strategy. Traditional contrastive meth-560

ods like SimCSE rely on data augmentation tech-561

niques to generate positive keys, which needs to562

perform feed-forward and back-forward propaga-563

tion twice for queries and keys, respectively. Com-564

paratively, our model utilizes shallow features of565

queries as positive keys, which only needs to per-566

form feed-forward and back-forward propagation567

once to get and update both queries and positive568

keys.569

6.4 Visualization570

We visualize the learned embeddings of our model571

on the CLINC dataset using t-SNE (Van der Maaten572

and Hinton, 2008) in Figure 6. It can be seen that573

our model can ensure both inter-class and intra-574

class distance to facilitate the FCDC task. Specif-575

Figure 5: Training efficiency compared with other con-
trastive methods.

Figure 6: TSNE visualization of representations learned
by our model. Each color indicates a ground-truth
coarse-grained category.

ically, our model can separate different coarse- 576

grained categories with a large margin benefiting 577

from the supervised learning on coarse-grained 578

labels. In the meanwhile, different from tradi- 579

tional supervised learning methods which usually 580

ignore the intra-class distance, our model can bet- 581

ter increase the distance of samples within the 582

same coarse-grained categories to ensure the intra- 583

class separability, which benefits from the proposed 584

weighted self-contrastive module. 585

7 Conclusion 586

In this paper, we propose a novel task named Fine- 587

grained Category Discovery under Coarse-grained 588

supervision (FCDC), which can reduce significant 589

labeling costs and adapt to novel fine-grained cate- 590

gories. We further propose a hierarchical weighted 591

self-contrastive network to approach the FCDC 592

task. By performing multi-task learning on shallow 593

and deep layers of pre-trained models, our model 594

can learn fine-grained knowledge from shallow to 595

deep with only coarse-grained supervision. Exten- 596

sive experiments on two public datasets show that 597

our approach is more effective and efficient than 598

state-of-the-art methods. 599
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A Appendix 801

A.1 Implementation Details 802

We use the pre-trained BERT model (bert-base- 803

uncased) implemented by Pytorch (Wolf et al., 804

2020) as our backbone and adopt most of its sug- 805

gested hyper-parameters. We also freeze most of 806

its model parameters and only fine-tune the last 807

four transformer layers to speed up calculations. 808

We use the cuml library (Raschka et al., 2020) to 809

perform K-Means on GPU to speed up calculations. 810

Early stopping is used in our experiment, which 811

is decided by model performance on the valida- 812

tion set. We use the AdamW optimizer with 0.01 813

weight decay. Gradient clipping is also used with 814

the norm 1.0. For hyperparameters, temperature τ 815

is set to 0.1, layer L is set to 11, and the weighting 816

10



Figure 7: TSNE visualization of representations learned by our model, SimCSE and Coarse-supervised BERT.
Top : each color indicates a ground-truth coarse-grained category. Bottom: each color indicates a ground-truth
fine-grained category.

factors αl for {kdiff− (i), ksame− (i), km− (i)} are set817

to {1.0, 1.1, 1.0}, weighting factors {γ1, γ2, γ3}818

are set to {0.001, 1, 0.008}. The training batch size819

is set to 128, and the testing batch size is set to 64.820

The momentum queue size for each coarse-grained821

category is set to 128, and the momentum factor for822

Momentum BERT is set to 0.9. The hidden dimen-823

sion h is 768, the learning rate is set to 5e−5, the824

dropout rate is set to 0.1. The maximum training825

epoch is set to 100 and the wait patience for early826

stopping is set to 10 for all models.827

A.2 Statistical Significance Results828

To assess the significance of our experimental re-829

sults, we perform t-tests between our model and830

other compared methods on all datasets and evalua-831

tion metrics. The p-values are shown in Table 4 and832

Table 5. Specifically, the p-values are distributed833

between 10−16 to 10−9, so we can conclude that834

the performance improvement of our model over835

compared methods is statistically significant.836

A.3 Impact of Batch Sizes837

To investigate the influence of batch sizes on our838

model, we plot the figure of model performance839

with different batch sizes. As shown in Figure840

8, the performance of our model shows similar841

decreasing tendency on three metrics. Different842

from traditional insight that contrastive learning843

benefits from larger batch sizes (Chen et al., 2020b),844

Figure 8: Impact of different batch sizes on our model.

larger batch sizes are harmful to our model. When 845

batch size is small (< 128), our model gets the best 846

performance. As batch size increases, our model 847

performance drops quickly, especially when batch 848

size is larger than 512. One possible reason is that 849

when batch size increases, it will be difficult to 850

control the distance between samples in the fine- 851

grained feature space to ensure both inter-class and 852

intra-class separability. 853

A.4 Impact of Momentum Queue Sizes 854

To investigate the influence of Momentum Queue 855

size on our model, we plot the figure of model per- 856

formance with different Momentum Queue sizes 857

on CLINC dataset in Figure 9. The performance 858

of our model does not change much with different 859

Momentum Queue sizes on all three metrics. Since 860

different Momentum Queue sizes mean different 861
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Figure 9: Impact of Momentum Queue Sizes.

number of negative samples that Momentum Queue862

can provide, we can draw the conclusion that our863

model is not sensitive to the number of negatives,864

which is consistent with the conclusion in Section865

6.1. The insensitivity to negative samples of our866

model can ensure that it works well even with small867

data volume or limited hardware resource.868

A.5 Visualization869

We further visualize the learned embeddings of870

our model and compared methods using t-SNE in871

Figure 7. Firstly, our model can separate differ-872

ent coarse-grained categories with a larger margin873

than SimCSE and Coarse-supervised BERT (Top in874

Figure 7), which benefits from our strategy of com-875

bining supervised learning and contrastive learn-876

ing in a hierarchical way. Furthermore, our model877

can also separate different fine-grained categories878

with a larger margin than SimCSE and Coarse-879

supervised BERT (Bottom in Figure 7). Compared880

with traditional supervised learning methods and881

contrastive learning methods, our model can better882

increase distance of samples from different fine-883

grained categories to ensure the intra-class separa-884

bility, which benefits from the proposed weighted885

self-contrastive module. In summary, our model886

can better control both inter-class and intra-class887

distance than traditional supervised learning meth-888

ods and contrastive learning methods to perform889

the FCDC task.890
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Methods ACC ARI NMI
CDAC+ 1.4× 10−12 6.7× 10−13 7.3× 10−13

DeepCluster 3.7× 10−12 1.7× 10−13 5.5× 10−13

DeepAligned 5.2× 10−12 5.6× 10−14 8.7× 10−13

SimCSE 5.8× 10−11 3.4× 10−14 7.6× 10−12

Ancor 2.2× 10−10 4.6× 10−12 1.5× 10−10

Delete One Word 2.0× 10−10 3.2× 10−12 5.4× 10−11

DeepCluster + CE 4.9× 10−11 1.7× 10−13 7.7× 10−13

CDAC+ + CE 9.5× 10−11 3.3× 10−13 2.3× 10−10

DeepAligned + CE 9.5× 10−11 2.4× 10−12 4.0× 10−11

Ancor + CE 1.6× 10−10 5.3× 10−12 1.1× 10−10

Delete One Word + CE 2.4× 10−10 9.4× 10−12 4.8× 10−11

SimCSE + CE 6.4× 10−9 2.3× 10−11 2.1× 10−12

Table 4: Statistical significance results on CLINC dataset.

Methods ACC ARI NMI
CDAC+ 1.0× 10−12 2.8× 10−13 6.7× 10−16

DeepCluster 2.7× 10−12 8.7× 10−13 3.3× 10−13

DeepAligned 9.1× 10−13 5.7× 10−13 5.7× 10−12

SimCSE 8.7× 10−11 3.2× 10−13 1.0× 10−12

Ancor 1.4× 10−10 2.1× 10−11 1.1× 10−10

Delete One Word 1.1× 10−12 2.5× 10−13 5.3× 10−15

DeepCluster + CE 6.5× 10−12 1.0× 10−13 2.3× 10−10

CDAC+ + CE 5.4× 10−12 9.0× 10−16 9.7× 10−12

DeepAligned + CE 7.7× 10−12 5.9× 10−12 5.2× 10−10

Ancor + CE 7.6× 10−12 5.9× 10−13 1.2× 10−11

Delete One Word + CE 1.4× 10−11 6.2× 10−12 3.5× 10−10

SimCSE + CE 1.3× 10−11 7.9× 10−11 1.1× 10−10

Table 5: Statistical significance results on WOS dataset.
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