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Abstract
Online advertising systems rely on ads recom-1

mendation to deliver personalized experiences and2

high-quality ad rankings. To achieve this, large-3

scale deep learning models are employed to process4

user-ad interactions for accurate user behavior pre-5

dictions. However, existing approaches often strug-6

gle to maintain optimal performance due to the in-7

herent complexities of data distribution shifts in on-8

line serving environments and the heterogeneity of9

user preferences. To address these challenges, we10

propose novel causality-aware group learning algo-11

rithms that generate disentangled representations to12

improve ads ranking performance. Our approach13

focuses on identifying fine-grained segments and14

specific defects in existing ads ranking models, and15

developing targeted model architectural or algorith-16

mic patches to mitigate these limitations. Through17

extensive experiments, we demonstrate the bene-18

fits of our approach, showcasing its potential to en-19

hance ads recommendation in modern-scale adver-20

tising systems.21

1 Introduction22

Machine learning has revolutionized advertising and recom-23

mendation systems [He et al., 2017; Naumov et al., 2019;24

Zhang et al., 2022]. It serves as a powerful tool to process25

different types of features and produce high-quality repre-26

sentations for downstream tasks such as click-through rate27

(CTR) [McMahan et al., 2013; Guo et al., 2017] predic-28

tion and conversion rate (CVR) prediction [Ma et al., 2018],29

which serve as important metrics to improve user satisfaction30

of business providers.31

Classical machine learning methods for recommendation32

include logistic regression [McMahan et al., 2013], tree based33

models [He et al., 2014], and factorization machines [Ren-34

dle, 2010], which directly operate on features and labels from35

users’ data. These methods typically require extensive fea-36

ture engineering efforts while still failing to scale up with the37

ever-growing user-ad interactions.38

Motivated by modern deep learning techniques, there is39

a significant amount of works dedicated to improve the ads40

recommendation and ranking through different ways, such41

as neural collaborative filtering [He et al., 2017], sequen- 42

tial modeling [Kang and McAuley, 2018], multi-task learn- 43

ing [Ma et al., 2018], etc. Deep neural networks have been 44

proven capable of processing a large number of user-ad inter- 45

actions, sparse and dense features, and multi-modal inputs in 46

an end-to-end manner. 47

Despite the improved generalization performance and ef- 48

ficiency, most existing ads recommendation models either 49

lack interpretability [Zhang et al., 2020] or require inten- 50

sive engineering tricks to handle the distribution shifts and 51

biases [Chen et al., 2023]. Besides, the black-box nature 52

of the deep learning models make it difficult for practition- 53

ers to scale up the model without sacrificing certain metrics. 54

For example, one may find that although the overall perfor- 55

mance of a model is improved through scaling up the model 56

or dataset size, the performance on specific segments, such 57

as users from a particular region, may be drastically worsen, 58

leading to concerns about model explainability [Zhang et al., 59

2020]. 60

Motivated by this, we developed algorithms for effec- 61

tive causal structure learning from the heterogeneous embed- 62

dings in the large-scale ranking models, which offers more 63

causality-aware representation learning and, as a result, im- 64

proves ads ranking with measurable impacts. Our main con- 65

tributions can be summarized as follows. 66

• Group Structure Learning. Clicks and conversions 67

in ads can result from multiple underlying causes, such 68

as user interest, ad popularity, or social influence. Tra- 69

ditional models often compress these diverse causes into 70

a single embedding, which can amplify biases like pop- 71

ularity or selection bias. Through causal representation 72

learning, we aim to disentangle these causal factors, mit- 73

igate bias, and improve overall recommendation qual- 74

ity. We learn hidden group structures underlying user-ad 75

embeddings to learn more disentangled, causality-aware 76

representations to improve ads ranking prediction 77

• Residual Learning. By disentangling positive and 78

negative user responses, especially as their feature dis- 79

tributions differ significantly, we model their residuals 80

separately. This reduces the variance in both prediction 81

modes, resulting in measurable improvements in model 82

performance. 83

The rest of the paper is organized as follows. In Section 84



2 we discuss related work in ads ranking and recommenda-85

tion systems. Then we develop and analyze our algorithms86

in Section 3. We report the experimental results in Section 4.87

Finally we conclude our work in Section 5.88

Notation. We denote by ∥·∥ the ℓ2 norm for vectors and89

Frobenius norm for matrices. sg(·) denotes the stop gradient90

operator. We use CELoss(·, y) to represent the cross entropy91

loss between the logit and label y, and we use Sigmoid(·) to92

represent the sigmoid function.93

2 Related Work94

Multi-Task Ads Recommendation. Among others, multi-95

task learning (MTL) framework has been widely deployed96

for ads retrieval and ranking models in the industry. It aims97

at solving different tasks in a unified model [McCann et al.,98

2018]. A deep learning based MTL model typically includes99

two parts – a shared bottom layers and upper task-specific100

heads. The shared architecture aims at extracting high-quality101

representations from the large-scale datasets, while the task-102

specific architecture is dedicated to classification or regres-103

sion tasks of interest. Generally speaking, the tasks mainly104

include main tasks and auxiliary tasks. In recommenda-105

tion system problems, main tasks, such as click-through rate106

(CTR) [McMahan et al., 2013; Guo et al., 2017] prediction107

and conversion rate (CVR) prediction [Ma et al., 2018], pro-108

vide crucial metrics to model the user behaviors for better109

ads retrieval and ranking. Auxiliary tasks, such as condi-110

tional conversion rate prediction and distillation task [Lee and111

others, 2013; Hinton et al., 2015], are not directly used for112

ads recommendation, but are proven useful in improving the113

model performance on main tasks. They are mainly designed114

to provide additional guidance for the main model. Through-115

out the paper, we assume that our backbone model of ads116

recommendation uses an MTL structure.117

Representation Learning for Ads Recommendation.118

Representation learning [Bengio et al., 2013] plays a crui-119

cial role in various domains of modern deep learning, such120

as computer vision [He et al., 2020], natural language pro-121

cessing [Mikolov et al., 2013], graph learning [Kipf and122

Welling, 2016], etc. It enables superior and efficient fea-123

ture learning of data input with different domains or modal-124

ities. A high-quality representation can usually benefit the125

training of downstream tasks. In ads recommendation prob-126

lems, the modalities of data input can vary from text and au-127

dio to images and videos with heterogeneous domains like128

countries and regions. Hence the modern supervised and129

self-supervised representation learning techniques can be di-130

rectly adopted. We take generative recommendation [Geng131

et al., 2022; Rajput et al., 2023] as an example. Inspired132

by the next-token prediction paradigm in autoregressive mod-133

els, generative recommendation encoders items as tokens in134

a shared vocabulary for downstream tasks such as next-item135

prediction. Vector quantization plays a key role in the tok-136

enization of continuous-valued data input. Algorithms like137

Vector-Quantized Variational AutoEncoder (VQ-VAE) [Van138

Den Oord et al., 2017] or Residual-Quantized Variational Au-139

toEncoder (RQ-VAE) [Lee et al., 2022] typically adopt an140

encoder-decoder architecture and learnable codebooks to per-141

form (hiearchical) clustering, to extract different levels of in- 142

formation hidden in the data input. The idea of vector quan- 143

tization was later introduced in recommendation tasks [Hou 144

et al., 2023; Rajput et al., 2023] to produce semantic IDs for 145

downstream embedding table lookup. 146

3 Methodology 147

In this section, we introduce our main methods. Despite that 148

the recommendation systems has been studied extensively, 149

most existing deep learning based ads models lack explain- 150

ability or struggle to handle extremely heterogeneous user 151

behaviors and thus easily incur bias [Abdollahpouri, 2020] 152

and fail to generalize well on unseen data. One common pit- 153

fall that most methods have is that the newly introduced tech- 154

niques only focus on improving the overall performance, ne- 155

glecting the model performance changes on fine-grained seg- 156

ments. As a result, the metrics averaged over all segments 157

might be improved, but the metrics of certain important seg- 158

ments can be drastically degraded. To resolve this issue, we 159

consider learning segments both implicitly and explicitly. 160

Recall that an MTL model typically consists of the shared 161

architecture and task-specific heads, and thus we aim at en- 162

hancing the training of these two parts separately. We will 163

first introduce how to extract implicit grouping structure hid- 164

den in the shared architecture in Section 3.1, and then in Sec- 165

tion 3.2 we propose a novel loss function motivated by ex- 166

plicit groups given by the labels in task heads. 167

3.1 Group Structure Learning 168

We first consider an self-supervised way of classifying the 169

training data into different implicit groups, so as to enhance 170

the model training on different segments. A natural idea is to 171

conduct hierarchical clustering, such as RQ-VAE, over cer- 172

tain types of data. To begin with, we first briefly discuss 173

basics of RQ-VAE, which serves as a hierarchical grouping 174

process in our group learning framework. The RQ-VAE The 175

encoder-decoder architecture produces a reconstruction loss 176

that aims at reconstructing the input through the encoding and 177

decoding processes. 178

Lrecon(x) = ∥x− x̂∥2 (1)

where x denotes the input, and x̂ = Decoder(Encoder(x)). 179

In this way the encoded embedding stores useful information 180

that can be further utilized in a hierarchical clustering process 181

captured by the following commitment loss. 182

Lcommit(x,E)

=

m∑
i=1

(∥∥∥r(i) − sg(e(i)x )
∥∥∥2 + µ

∥∥∥sg(r(i))− e(i)x

∥∥∥2) (2)

where E = {E(1), ...,E(m)} is a collection of the codebooks 183

with E(i) = {e(i)1 , ..., e
(i)
n } being codebook i with n codes, m 184

denotes the number of codebooks, r(i) represents the residual 185

vector sent to codebook i, 186

r(i+1) = r(i) − e(i)x (3)



with r(0) = Encoder(x) being the encoded embedding of in-187

put x, e(0)x = 0, and e
(i)
x being the code closest to r(i) in188

codebook i, i.e.,189

e(i)x = argmin
e
(i)
j ∈E(i)

∥∥∥r(i) − e
(i)
j

∥∥∥ , ∀1 ≤ i ≤ m.

µ > 0 is a hyperparameter to balance two terms.190

Different from existing works that only uses the semantic191

id in the tokenization, we further utilize the codebooks during192

the training process to serve as additional embeddings that193

represent the learned groups – for each input x, we aggregate194

the closest codes in each layers, and concatenate them back195

to the input x to enhance the representation learning.196

Our method is flexible, in the sense that the data input x197

in (1) and (2) can vary from intermediate layers’ output to198

input features. We present in Section 4 the numerical results199

of different choices of x.200

3.2 Residual Learning201

In addition to the implicit grouping process, we present an ex-202

plicit grouping strategy in this section. We use x to represent203

the output of shared architecture and y ∈ {0, 1} to represent204

the label of the data, with 0 and 1 being negative and positive205

label respectively. We begin with a briefly review of classical206

wisdom in constructing loss functions in task-specific heads.207

Note that many tasks in ads recommendation are binary208

classifications. For a data label pair (x, y), the classification209

tasks typically construct the logit through a learnable function210

flr and obtain flr(x) as the logit of the cross entropy loss:211

Llr(x, y) = CELoss(flr(x), y), (4)

in which the final model prediction will be given by212

Sigmoid(flr(x)). Moreover, one could leverage pseudo label213

py associated with the data and construct214

Llr pseudo(x, py) = CELoss(flr pseudo(x), py), (5)

in which py may be obtained from a teacher model and in this215

case Llr pseudo in (5) serves as an auxiliary distillation task loss216

to help with the prediction [Lee and others, 2013; Hinton et217

al., 2015]. Thus a typical main and auxiliary task loss can be218

written as219

Llr(x, y, py) = Llr(x, y) + Llr pseudo(x, py). (6)

To further utilize the information given by the triplet220

(x, y, py) and enhance the training over different groups of221

data, we propose the following loss function222

Lres(x, y, py) =(1− y) · CELoss(f0(x), 0− py)

+ y · CELoss(f1(x), 1− py), (7)

where f0 and f1 are learnable functions and can be chosen as223

simple multilayer perceptrons (MLPs), with f0(x) and f1(x)224

being the logits of negative and positive samples. Here we225

naturally split the dataset into positive and negative samples226

according to their binary labels, and construct personalized227

model parameters to produce their logits separately.228

Additionally, we note that 0 − py and 1 − py represent229

the residuals between the true label and py , which serve as230

causal factors that indicate how well the pseudo-labels fit the 231

groundtruth, revealing the potentially underperforming or un- 232

derrepresented segments in the models. The idea of consider- 233

ing the residual has been widely used in various domains of 234

machine learning, such as model architecture design [He et 235

al., 2016] and algorithmic designs [Friedman, 2001]. It en- 236

ables faster convergence of the deep learning algorithms with 237

the variance reduction effects. We thus propose a residual 238

learning loss as 239

Lres lr(x, y, py) = Llr(x, y, py) + αLres(x, y, py) (8)

where α > 0 is a hyperparameter to control the effect of 240

residual learning. By introducing the residual loss defined 241

in (7), we encourage the learned representation x from the 242

shared architecture in the model to fit the residual of posi- 243

tive and negative samples, and thus to improve model perfor- 244

mance on the main tasks. 245

4 Experiments 246

In this section, we report experimental results of CTR and 247

CVR models on large-scale datasets. Most ads recommen- 248

dation systems adopt a multi-stage paradigm. For example, 249

the retrieval model often adopts a two-tower structure in the 250

shared architecture to handle users’ data and ads’ data sepa- 251

rately, and the model tries to retrieve relatively small amount 252

of ads from a large number of candidates, while the ranking 253

model typically builds on top of hierarchical layers [Zhang 254

et al., 2022] that tackle complex interactions between sparse 255

and dense features, to rank the selected ads for users based on 256

user-ad interactions. 257

There are two main tasks of interest in ads ranking mod- 258

els, click-through rate (CTR) prediction and conversion rate 259

(CVR) prediction. We conduct experiments on two multi-task 260

ads ranking models which focus on predicting CTR and CVR 261

respectively. Both of them adopt MTL architecture. We test 262

our proposed methods, group structure learning and residual 263

learning in Section 3, as well as certain combinations of them. 264

The results are summarized in Table 1. We apply our group 265

structure learning technique on top of user feature, user-ad 266

feature, and the output of the shared architecture. Residual 267

learning loss is directly applied on the output of the shared 268

architecture. More details can be found in the captions of 269

Table 1. 270

Metrics. We use normalized entropy (NE) [He et al., 271

2014], a metric widely used in recommendation systems and 272

ads ranking, to evaluate the model performance on different 273

tasks such as CTR and CVR prediction. In particular, for the 274

CTR model we consider the model performance on four types 275

of click-through rates prediction – (overall) click, link click, 276

website click, and profile click. 277

Observations. We can observe from Table 1 that our 278

methods consistently improve the model performance over 279

the existing baseline, across all different types of click- 280

through rate prediction, indicating that our proposed meth- 281

ods improve the model performance on both the overall and 282

fine-grained segments. 283



Table 1: NE gains of our methods on different tasks as compared to the existing baseline. We use GSL(#) to represent group structure learning
applied on # ∈ {user feature, user-ad feature, representation}, where ‘representation’ denotes the output of the shared architecture. We use
ResL to denote the residual learning loss applied on the output of the shared architecture.

Click Link-Click Website-Click Profile-Click

Baseline 0.00% 0.00% 0.00% 0.00%

GSL(user feature) 0.072% 0.078% 0.071% 0.075%

GSL(user feature), ResL 0.077% 0.10% 0.070% 0.097%

GSL(user-ad feature) 0.074% 0.081% 0.067% 0.079%

GSL(representation) 0.097% 0.086% 0.081% 0.036%

5 Conclusions284

In this paper, we propose group structure learning and resid-285

ual learning to better solve multi-task ads recommendation286

problems, where the former learns implicit groups in a self-287

supervised way for better representation learning, and the288

latter constructs an auxiliary task that leverages the explicit289

groups in a supervised way to boost the performance on main290

tasks. Through extensive numerical experiments on large-291

scale datasets, we demonstrate the benefits of our method292

over existing baselines. We hope our study can provide valu-293

able insights into the next-generation architecture design for294

multi-task learning models of recommendation system.295
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