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Abstract001

Large language models (LLMs) have demon-002
strated remarkable success across a wide range003
of tasks; however, they still encounter chal-004
lenges in reasoning tasks that require under-005
standing and inferring relationships between006
distinct pieces of information within text se-007
quences. This challenge is particularly pro-008
nounced in tasks involving multi-step pro-009
cesses, such as logical reasoning and multi-hop010
question answering, where understanding im-011
plicit relationships between entities and lever-012
aging multi-hop connections in the given con-013
text are crucial. Graphs, as fundamental data014
structures, explicitly represent pairwise rela-015
tionships between entities, thereby offering the016
potential to enhance LLMs’ reasoning capabili-017
ties. External graphs have proven effective in018
supporting LLMs across multiple tasks. How-019
ever, in many reasoning tasks, no pre-existing020
graph structure is provided. Can we structure021
implicit knowledge derived from context into022
graphs to assist LLMs in reasoning? In this pa-023
per, we propose Reasoning with Graphs (RwG)024
by first constructing explicit graphs from the025
context and then leveraging these graphs to en-026
hance LLM reasoning performance on reason-027
ing tasks. Extensive experiments demonstrate028
the effectiveness of the proposed method in im-029
proving both logical reasoning and multi-hop030
question answering tasks.031

1 Introduction032

In recent years, Large Language Models (LLMs)033

have demonstrated remarkable capabilities in a va-034

riety of tasks, such as question answering (Zhuang035

et al., 2024; Lan et al., 2022), summarization (Pu036

et al., 2023), and language understanding (Zhao037

et al., 2023). Despite these successes, LLMs still038

face significant challenges in certain areas (Zhao039

et al., 2023; Minaee et al., 2024). A key limitation040

lies in their struggle with reasoning tasks (Yang041

et al., 2024; Huang et al., 2023), particularly with042
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Figure 1: Comparison of Reasoning with Graph (RwG)
to other prompting methods.

logical reasoning (Nezhurina et al., 2024), which 043

requires models to infer missing relationships be- 044

tween distinct pieces of information, and multi-hop 045

reasoning (Yang et al., 2024), where they must 046

trace a reasoning path or follow some structures 047

through the context to arrive at the correct answer. 048

To enhance the reasoning capabilities of LLMs, 049

several prompting methods have been proposed. 050

Chain-of-Thought (CoT) prompting (Wei et al., 051

2022; Kojima et al., 2022) aids LLMs in rea- 052

soning by generating intermediate steps that lead 053

to the final answer. CoT has shown significant 054

improvement in certain reasoning tasks without 055

requiring model tuning. Building on CoT, the 056

Self-Consistency method (Wang et al., 2022b) fur- 057

ther enhances reasoning by generating multiple 058

CoT pathways and selecting the most consistent 059

one. Additionally, Tree of Thought (ToT) (Yao 060

et al., 2024) and Graph of Thoughts (GoT) (Besta 061

et al., 2024) extend this approach by structuring 062

the LLMs’ thought process using trees and graphs, 063

respectively. These methods prompt LLMs to gen- 064

erate initial thoughts and organize them into var- 065

ious structures. Despite the successes of these 066

approaches, they still face challenges in handling 067

complex reasoning tasks, such as logical reason- 068

ing (Nezhurina et al., 2024) and multi-hop question 069

answering (Yang et al., 2024). 070
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For these complex reasoning tasks, LLMs need071

to figure out the relationships between entities in072

the context and infer missing components. Take073

the AIW+ problem (Nezhurina et al., 2024) as074

one example, LLMs are asked to solve problems075

such as Alice has 3 sisters. Her mother has 1 sister076

who does not have children - she has 7 nephews077

and nieces and also 2 brothers. Alice’s father has078

a brother who has 5 nephews and nieces in to-079

tal, and who has also 1 son. How many cousins080

does Alice’s sister have? In this problem, LLMs081

need to infer the relationships between each char-082

acter, such as the relation between Alice and her083

mother’s sister. Additionally, LLMs must infer084

the missing roles in the question, such as identi-085

fying the nephews and nieces that Alice’s father’s086

brother has. These types of questions pose sig-087

nificant challenges for LLMs, with many popular088

models achieving nearly zero accuracy on these089

tasks (Nezhurina et al., 2024). Typically, LLMs090

treat the information as a sequence. However, a hu-091

man solving such a problem would naturally draw092

a graph to represent relationships between charac-093

ters and infer missing links based on that structure.094

This is because graphs provide a fundamental data095

structure for representing relationships between en-096

tities, making them well-suited as reasoning graphs097

for reasoning tasks.098

Several works have shown the effectiveness of099

leveraging external graphs to help LLMs in rea-100

soning, such as improving retrieval quality using101

graph structures (He et al., 2024; Tian et al., 2024)102

or reasoning on an external graph (Jin et al., 2024;103

Luo et al., 2023). However, these methods rely on104

pre-existing graph structures. In most common rea-105

soning tasks, only textual sequences are available.106

Therefore, a natural question arises: “Can LLMs107

enhance their reasoning abilities by structuring im-108

plicit knowledge into explicit graphs?"109

In this work, we aim to explore reasoning with110

graphs by constructing explicit graph structures111

from the context. Unlike previous prompting ap-112

proaches, which construct trees or graphs based113

on LLMs’ thoughts, our Reasoning with Graphs114

(RWG) method directly constructs explicit graphs115

from the context, where nodes are the entities in116

the context. The comparison is shown in Figure 1.117

Specifically, we first design a graph construction118

method with multiple rounds of verification to gen-119

erate a graph from the given context for the reason-120

ing problem. We then assess the LLMs’ reasoning121

abilities with the constructed graph. Experimental122

results demonstrate that the proposed RWG signifi- 123

cantly improves the performance of various LLMs 124

on both logical reasoning and multi-hop question 125

answering tasks. RWG showcases the potential of 126

leveraging explicit graph structures derived from 127

the context to enhance LLM reasoning capabilities, 128

offering a promising new direction for incorporat- 129

ing structured knowledge into LLM-driven tasks. 130

2 Related Works 131

2.1 Reasoning of Large Language Models 132

Reasoning is a fundamental aspect of human intel- 133

ligence, crucial for problem solving, decision mak- 134

ing, and critical thinking. Recent advancements in 135

LLMs, such as GPT-4 (Achiam et al., 2023) and 136

LLaMA-3 (Touvron et al., 2023), suggest that the 137

ability for reasoning is already embedded within 138

these large-scale models. Various prompting meth- 139

ods have been proposed to better utilize the rea- 140

soning capabilities of LLMs. Chain-of-Thought 141

(CoT) (Wei et al., 2022) is one of the most popular 142

methods, prompting LLMs to generate reasoning 143

paths. Building on this concept, Tree-of-Thought 144

(ToT) (Yao et al., 2024) and Graph-of-Thought 145

(GoT) (Besta et al., 2024) similarly model differ- 146

ent reasoning paths using tree or graph structures. 147

In addition to designing prompts, adopting addi- 148

tional strategies, such as incorporating verifiers, 149

has contributed to enhancing the reasoning abili- 150

ties of large language models. For instance, self- 151

consistency (Wang et al., 2022b) improves LLMs’ 152

reasoning by using majority voting among multiple 153

generated paths. Studies by (Weng et al., 2022) 154

and (Stechly et al., 2024) demonstrate that LLMs 155

can benefit from self-verification or external ver- 156

ification methods. Additionally, other techniques 157

have been introduced to enhance LLMs’ reasoning 158

abilities, such as in-context learning (Lampinen 159

et al., 2022), fine-tuning (Rajani et al., 2019), and 160

retrieval-augmented generation (RAG)(Huang and 161

Chang, 2022; Qiao et al., 2022; Gao et al., 2023). 162

Recent studies (Wang and Zhou, 2024) reveal that 163

CoT reasoning paths can be elicited from pre- 164

trained LLMs simply by altering the decoding pro- 165

cess without explicit prompting. This demonstrates 166

that the effectiveness of CoT lies in guiding LLMs 167

toward different decoding paths; for example, CoT 168

can choose longer and more reliable paths instead 169

of relying on greedy decoding. In this paper, we 170

explore a different approach to prompting LLMs’ 171

reasoning abilities. Rather than leveraging multiple 172

2



generated thoughts, we model the reasoning prob-173

lem as graphs, where the nodes represents entities174

in the question, and test the LLMs’ ability to reason175

directly with these graph structures.176

2.2 Graphs for LLMs177

Graphs, which represent relationships between enti-178

ties, are popular data structures widely used across179

various domains (Ma and Tang, 2021). Recently,180

numerous studies have explored the integration of181

graphs with LLMs (Chen et al., 2024; Han et al.,182

2024). Specifically, several works have sought to183

enhance LLMs’ reasoning abilities using graphs by184

retrieving relevant information. These methods typ-185

ically involve extracting ego subgraphs based on186

related nodes and edges (Zhang et al., 2022b; Tian187

et al., 2024) or paths within knowledge graphs (Luo188

et al., 2023). Furthermore, GraphReason (Cao,189

2023) constructs a graph based on LLMs’ out-190

puts and then verifies the output using the graph.191

However, these methods rely on external graphs192

or generate graphs based on LLMs’ reasoning193

paths; they do not explore the effects of directly194

constructing a graph from the reasoning problems.195

Two related approaches are worth mentioning: GE-196

Reasoning (Park et al., 2024), which decomposes197

multi-hop questions into sub-questions to form a198

graph and prompts LLMs to answer based on the199

chronological order of the graph and Structure-200

Guided Prompting (Cheng et al., 2024), which201

builds a graph from text to solve graph-based tasks.202

In this paper, we construct graphs from the con-203

text of complex reasoning questions and use these204

graphs to assist LLMs in their reasoning processes.205

3 Reasoning with Graph206

Many reasoning tasks involve inferring missing207

entities and relationships that are not explicitly pre-208

sented in the question. Graphs provide an explicit209

structure to represent relationships between key en-210

tities and serve as a useful tool for inferring missing211

connections. However, reasoning problems typi-212

cally do not come with explicit graph representa-213

tions. Reasoning with Graph (RWG) teaches large214

language models to tackle complex reasoning ques-215

tions by structuring the implicit knowledge within216

the questions into explicit graph representations217

and leveraging these graph structures to solve the218

problems. This mirrors how humans often solve219

complex reasoning problems — by organizing in-220

formation in a structured way, such as drawing dia-221

grams to clarify connections between concepts. In 222

RWG, no additional or external graph information 223

is used. 224

We roughly decompose the process of proposed 225

RWG into two key stages: (1) Graph Construc- 226

tion: The graph construction prompt guides LLMs 227

to build an explicit graph based on the context of 228

the reasoning question. We expect the graph to 229

meet different requirements depending on the tasks, 230

which are detailed in sections 4. (2) Reasoning 231

with graph: Once the graph is constructed, the rea- 232

soning question is answered by leveraging the in- 233

formation encoded in the graph structure. Next, we 234

will provide a detailed explanation of each stage. 235

3.1 Graph Construction 236

The goal of this step is to construct a graph from 237

unstructured reasoning problems, representing the 238

relationships between the entities mentioned in the 239

reasoning question. However, there may be missing 240

entities or relationships that are not explicitly stated 241

in the context. These missing elements could be 242

critical to solve the reasoning question. Therefore, 243

we should refine the constructed graph by inferring 244

additional relationships or entities, ensuring that it 245

satisfies the requirements of the reasoning problem. 246

Take the context of AIW+ problem as an exam- 247

ple: Alice has 3 sisters. Her mother has 1 sister 248

who does not have children—she has 7 nephews 249

and nieces and also 2 brothers. Alice’s father has a 250

brother who has 5 nephews and nieces in total, and 251

who also has 1 son. In the constructed graph, all 252

the characters mentioned in the context, such as Al- 253

ice, and Alice’s father’s brother should be included. 254

Additionally, it should include missing roles and 255

relationships. For instance, Alice and her sisters 256

account for only 4 of the 5 nephews and nieces 257

of her father’s brother, implying that there is one 258

missing individual, which should be included in 259

the graph. 260

There are several traditional methods for graph 261

construction, such as entity and relation extrac- 262

tion (Zhong et al., 2023). With the advancements 263

in LLMs, recent works (Edge et al., 2024; Zhang 264

and Soh, 2024) have also leveraged LLMs to auto- 265

matically detect entities and relationships for graph 266

construction. These methods can be used to gener- 267

ate an initial graph for reasoning questions. 268

However, the constructed initial graphs may 269

only capture the entities and relationships explicitly 270

mentioned in the context, which may not fully meet 271

the requirements for different tasks. For example, 272
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Context: Alice has 3 sisters. Her mother has 1 sister who does not have 
children — she has 7 nephews and nieces and also 2 brothers. Alice’s father 
has a brother who has 5 nephews and nieces in total, and who also has 1 son. 

Step 1: Initial Graph Generation

Entity and relation extraction.

Step 2: Verification

Alice’s Maternal Aunt has 7 nephews and nieces? 

Step 3: Generation

F

Alice S1 S2 S3

MMAMU1MU2 PU

C
F

Alice S1 S2 S3

MMAMU1MU2 PU

MC1MC2MC3 C

Step i+1: Verification

Step 4: Verification

Step i: Generation
……

F

Alice S1 S2 S3

MMAMU1MU2 PU

MC1MC2MC3 C PC2

Q: How many cousins does Alice’s sister have?

: Mother
: Father
: Sister 1
: Sister 2
: Sister 3
: Maternal Aunt
: Maternal Uncle 1
: Maternal Uncle 2
: Paternal Uncle
: Paternal Cousin
: Maternal Cousin 1
: Maternal Cousin 1
: Maternal Cousin 1
: Paternal Cousin 2

M
F
S1
S2
S3
MA
MU1
MU2
PU
C
MC1
MC1
MC1
PC2

Figure 2: The procedure of RWG for the AIW+ example. Blue nodes represent entities explicitly mentioned in the
context and included in the initial graph, while red nodes denote inferred entities added during the graph generation
and verification processes. The node names are based on their relationship to Alice.

in the logical reasoning tasks, there might be some273

constraints in the context, such as “Alice’s father’s274

brother has 5 nephews and nieces". In multi-hop275

question-answering tasks, crucial relationships be-276

tween entities may be missing, which are essential277

for reasoning. To address this, we propose an iter-278

ative graph construction method that updates the279

graph repeatedly to meet the specific requirements280

for different tasks. Specifically, this process mainly281

involves two steps: graph generation and graph282

verification. The graph generation step aims to con-283

struct a graph based on the context, previous graph284

and feedback from the verifier. The graph verifi-285

cation step verifies whether the generated graph286

meets the requirements.287

We begin by prompting the LLMs to generate288

an initial graph based on the given query. Next, we289

ask the LLMs to verify whether the graph satisfies290

the requirements. If the graph does not meet the291

requirements, the LLMs are prompted to add the292

missing entities or relations to update the graph.293

This process of graph verification and graph gen-294

eration is repeated until the graph satisfies all the295

requirements or the maximum number of iterations296

is reached. After construction, the graph is repre-297

sented as a list of triples, with each triple consisting298

of a (Head Entity, Relation, Tail Entity).299

The process of constructing a graph for the300

AIW+ example is illustrated in Figure 2. We first301

prompt the LLMs to extract entities and relation-302

ships from the context to generate an initial graph.303

The blue nodes represent entities explicitly stated304

in the context and are shown in the initial graph,305

while the red nodes are inferred during the mul-306

tiple rounds of graph verification and generation. 307

During the graph generation and verification steps, 308

LLMs can better understand the context and infer 309

missing relationships by utilizing the explicit graph 310

structure. Once the graph is complete, it can then 311

be used to answer the questions. 312

3.2 Reasoning with graphs 313

Reasoning with the graph involves answering rea- 314

soning questions using both the constructed graph 315

and the given context. Many existing methods 316

leverage external graphs, such as training a graph- 317

based encoder (Tian et al., 2024; Zhang et al., 318

2022b), retrieving subgraphs (He et al., 2024; 319

Zhang et al., 2022a), or reasoning along a path 320

within the graph (Luo et al., 2023; Sun et al., 2023). 321

The constructed graph can also be utilized in these 322

ways. However, in this paper, we focus on hav- 323

ing LLMs directly solve the reasoning question 324

by leveraging the graph and context. We prompt 325

LLMs to answer reasoning questions based on 326

the constructed graph and context. Additional ap- 327

proaches to utilizing the constructed graph can be 328

explored as future work. 329

4 Experiments 330

Our framework is inherently task-agnostic, de- 331

signed to accommodate a wide range of tasks 332

with versatility. To evaluate whether the proposed 333

RWG approach can enhance LLMs’ reasoning and 334

grounded generation capabilities, we test it on two 335

distinct reasoning tasks: logical reasoning and 336

multi-hop question answering. In all experiments, 337

we follow a zero-shot setting. 338
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Table 1: The results on the AIW and AIW+ datasets. Since the AIW+ dataset contains many possible relationships,
there are no RWG + Relation results.

Datasets AIW AIW+
Methods Claude GPT-4o Llama3.1-8B Llama3.1-70B Claude GPT-4o Llama3.1-8B Llama3.1-70B
Vanilla 0.026 0.066 0.053 0.013 0.0588 0.1176 0 0.2941

CoT 0.013 0.5733 0.066 0.053 0 0.2352 0.058 0.3529
ToT 0 0.2800 0 0.066 0.0588 0.2941 0 0.3529
GoT 0 0.4533 0.040 0.093 0.0588 0.2352 0 0.2941

Self-Consistency 0 0.053 0 0 0.0588 0.0588 0 0.1176
Least-to-Most 0 0.4533 0.0266 0.053 0 0.1764 0 0.1764

RWG 0.026 0.6266 0 0.12 0.2941 0.5294 0 0.4545
RWG + Relation 0.026 0.8666 0.0266 0.5733 - - - -

Table 2: The results on LogiQA and AR-LSAT datasets.

Datasets LogiQA AR-LSAT
Methods Claude GPT-4o Llama3.1-8B Llama3.1-70B Claude GPT-4o Llama3.1-8B Llama3.1-70B
Vanilla 0.387 0.5698 0.1827 0.5698 0.2565 0.3608 0.1217 0.313

CoT 0.3978 0.5483 0.3548 0.5053 0.213 0.3565 0.1782 0.2434
ToT 0.4494 0.6021 0.3225 0.3978 0.2043 0.3304 0.2521 0.2913
GoT 0.3656 0.6236 0.3225 0.4838 0.2565 0.3782 0.1826 0.3217

Self-Consistency 0.3871 0.5806 0.172 0.5483 0.2608 0.3521 0.1217 0.2826
Least-to-Most 0.3225 0.5806 0.2795 0.5483 0.2652 0.3565 0.1695 0.2695

RWG 0.4516 0.6344 0.3871 0.5913 0.2782 0.4043 0.1826 0.3173
RWG + Self-Consistency 0.4408 0.6451 0.3548 0.5591 0.3086 0.4521 0.2086 0.3217

4.1 Task1: Logical Reasoning339

Logical reasoning is a crucial aspect of human read-340

ing comprehension and question answering. A typ-341

ical logical reasoning problem consists of a para-342

graph of facts and a question that requires the testee343

to draw a valid conclusion based on those facts. To344

generate a correct answer, a machine must not only345

understand the facts but also recognize the rela-346

tionships between the different components in the347

question. By constructing a graph for the logical348

reasoning question, we explicitly extract the key349

entities and their relationships, while also inferring350

any missing entities and relations — an essential351

step for effective logical reasoning. The general352

generation and verification process for logical rea-353

soning task in RWG is as follows: (1) Generation:354

Generate a graph based on the context by updat-355

ing the previous graph, inferring missing entities356

and relations; (2) Verification: Verify whether the357

graph meets all requirements outlined in context.358

4.1.1 Datasets359

We selected four popular logical question answer-360

ing datasets: AIW, AIW+(Nezhurina et al., 2024),361

LogiQA (Liu et al., 2020) and AR-LSAT (Wang362

et al., 2022a). Specifically, the AIW and AIW+363

datasets mainly focus on answering questions re-364

lated to Alice and her family. The LogiQA dataset365

includes various types of reasoning questions. The366

AR-LSAT dataset is a complex logical reasoning 367

dataset that tests the ability to analyze a scenario 368

governed by a set of constraints and determine 369

which option satisfies or conflicts with those con- 370

straints. For these datasets, where the answers are 371

numbers or options, we use accuracy as the evalua- 372

tion metric. For more details on these datasets and 373

pre-processing, please refer to Appendix A.1.1. 374

4.1.2 Baselines 375

We evaluate our method on four widely used 376

LLMs: GPT-4o (Achiam et al., 2023), Claude 377

3-sonnet (Anthropic, 2024), LLaMA3.1 8B, and 378

LLaMA3.1 70B (Touvron et al., 2023). Ad- 379

ditionally, we compare our results with sev- 380

eral representative baselines, such as the Chain- 381

of-Thought (CoT) (Wei et al., 2022), Tree-of- 382

Thought (ToT) (Yao et al., 2024), Graph-of- 383

Thought (GoT) (Besta et al., 2024), Least-to- 384

Most Prompting (Zhou et al., 2022), and Self- 385

Consistency (Wang et al., 2022b). For the AIW 386

dataset, there are only 3 different relations between 387

entities, i.e., brother-brother, brother-sister, sister- 388

sister. We introduce a variant of RWG called RWG- 389

Relation, where explicit relationships are provided 390

during the graph generation process. For RWG, we 391

set the maximum number of graph generation and 392

verification steps to 5. The prompts in the proposed 393

RWG for these dataset are shown in Appendix A.2. 394
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4.1.3 Results395

The results of different LLMs on the AIW and396

AIW+ datasets are presented in Table 1, while397

the results for the LogiQA and LSAT datasets are398

shown in Table 2. From these results, we can make399

the following observations:400

• Reasoning with graphs (RWG) generally en-401

hances the logical reasoning capabilities of var-402

ious LLMs on all datasets.403

• RWG outperforms the ToT and GoT methods,404

which generate trees or graphs where nodes rep-405

resent the thoughts of LLMs.406

• Stronger models, such as GPT-4 and LLaMA407

70B, tend to benefit more from RWG. However,408

if the original model struggles to solve the prob-409

lem, as seen with LLaMA 3.1-8B on the AIW410

and AIW+ datasets, applying RWG usually does411

not yield significant improvements.412

• When explicit relationships are provided, as in413

RWG-Relation for the AIW problem, the rea-414

soning ability is further enhanced.415

• The proposed RWG can be incorporated with416

other methods, such as Self-Consistency, and417

combining these approaches may achieve even418

better results, such as on AR-LSAT dataset.419

4.1.4 Case studies420

To understand why the proposed RWG improves421

performance on logical reasoning questions, we422

conduct case studies. Detailed results and addi-423

tional examples are provided in Appendix A.4.424

Here, we analyze the behavior of RWG with GPT-425

4o using the example shown in Figure 2. The step-426

by-step procedure of RWG is presented in Figure 3.427

In the first phase, RWG generates an initial graph428

with the explicit entities mentioned in the ques-429

tion. The graph is then updated if it fails verifi-430

cation. For example, RWG adds more entities to431

the maternal and paternal parts during the first and432

second rounds of verification, respectively. In the433

third round, RWG identifies an incorrect relation434

from the second round and corrects it, successfully435

passing verification. Finally, the LLMs can an-436

swer the question correctly based on the complete437

graph. For other baselines, the LLMs may fail438

due to incomplete information, as demonstrated in439

Appendix A.4.1.440

4.1.5 Analysis441

Based on the case studies, the effectiveness of442

RWG may stem from its ability to infer missing443

AIW+ example with RwG

Initial Graph
Alice’s Mother – Alice
Alice’s Mother – Alice’s Sister 1
...
1st Round Verification and Generation
Alice’s Maternal Uncle 1–Maternal Cousin 1
Alice’s Maternal Uncle 1–Maternal Cousin 2
Alice’s Maternal Uncle 2–Maternal Cousin 3
2nd Round Verification and Generation
Alice’s Paternal Uncle’s Wife – Paternal Nephew 1
3rd Round Verification and Generation
Alice’s Paternal Uncle’s Wife – Paternal Nephew 1
Alice’s Paternal Uncle – Paternal Cousin 2
The graph passes verification.
Answer: Total Cousins
3 (Maternal) + 2 (Paternal) = 5 Cousins

Figure 3: The graph updating procedure of RWG ap-
plied to the AIW+ example using GPT-4o.

entities and relationships. To validate this assump- 444

tion, we designed an experiment where we manu- 445

ally added the missing roles and relationships in 446

the AIW+ problem. Specifically, we completed 447

the graph by incorporating the missing relation- 448

ships. For example, we add One of Alice’s mother’s 449

brother has 1 son while another has 2 sons. Alice’s 450

father also have another brother who has 1 son. 451

to the AIW+ example. We refer to this dataset as 452

AIW+ Complete. 453

The results are shown in Table 3. From these 454

results, we observe that all models, except for 455

LLaMA 3.1-8B, perform well on this dataset. The 456

performance difference between the AIW+ and 457

AIW+ Complete datasets demonstrates that miss- 458

ing entities and relationships in the questions are 459

a major barrier to LLM reasoning. The proposed 460

RWG addresses this issue by inferring the missing 461

entities and relationships during the graph verifica- 462

tion and generation processes, thereby improving 463

performance. Additionally, RWG continues to im- 464

prove performance on the AIW+ Complete dataset, 465

demonstrating that explicit graph structures can 466

assist LLMs with this task. 467

Table 3: The results of AIW+ Complete dataset.
Claude GPT-4o Llama3.1-8B Llama3.1-70B

Vanilla 0.5882 0.8823 0 0.7058
CoT 0.5294 0.9411 0 0.8823
RWG 0.7058 1 0.058 1

We further analyze the performance gain of the 468

proposed RWG with respect to the number of verifi- 469

cation steps. The number of verification and gener- 470

ation steps required to obtain the final graph varies 471

depending on the question. If a question contains 472

most of the entities and relationships, fewer verifi- 473
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cation steps are needed to construct the final graph.474

In contrast, if many verification and generation475

steps are required, the question is likely missing476

many entities and relationships, making it more dif-477

ficult to solve. We select the AR-LSAT dataset and478

compare the performance of the proposed RWG479

with vanilla models, as shown in Figure 4.

(a) GPT-4o (b) Cluade

Figure 4: Comparison of performances under different
verification steps.

480

We observe that when the verification step is 1,481

meaning the initial graph passes verification, the482

performance gap between RWG and the vanilla483

models is small. However, as more generation steps484

are required to pass verification, the performance485

gap increases, which aligns with our assumption.486

4.2 Task 2: Multi-hop Question Answering487

Multi-hop question answering typically provides488

several paragraphs of knowledge and requires an-489

swering a question that involves a sequence of in-490

terdependent reasoning steps leading to the final491

answer. These reasoning steps and their dependen-492

cies can often be represented as a directed acyclic493

graph (DAG). Therefore, the proposed RWG aims494

to extract such reasoning graphs from given con-495

text to answer the multi-hop question. Since the496

given context can be lengthy and LLMs struggle497

to comprehend large graphs (Dai et al., 2024), we498

build only a subgraph related to the question rather499

than constructing the entire graph. The general500

generation and verification process for the multi-501

hop question answering task in RWG is as follows:502

(1) Generation: Generate a graph related to the503

question by updating the previous graph, inferring504

missing relations, or adding more entities and re-505

lations from the context. (2) Verification: Verify506

whether the graph contains enough information to507

answer the multi-hop question.508

4.2.1 Datasets 509

We selected four widely used multi-hop reason- 510

ing datasets: 2WikiMultihopQA (Ho et al., 2020), 511

MuSiQue (Trivedi et al., 2022), HotpotQA (Yang 512

et al., 2018) and Clutrr (Sinha et al., 2018). More 513

details are shown in Appendix A.1.2 514

4.2.2 Baselines 515

We evaluate the proposed RWG for multi-hop 516

question answering using two LLMs: Claude 3- 517

sonnet (Anthropic, 2024) and GPT-4o (Achiam 518

et al., 2023). Additionally, we choose the follow- 519

ing baselines: CoT (Wei et al., 2022), ToT (Yao 520

et al., 2024), GoT (Besta et al., 2024), Least-to- 521

Most (Zhou et al., 2022), Structure-Guided Prompt- 522

ing (Cheng et al., 2024). The detailed prompts can 523

be found in Appendix A.2. 524

4.2.3 Results 525

The overall performance on the selected datasets 526

is shown in Table 4. Additionally, we evaluate 527

the performance of different hop questions for the 528

MuSiQue and Clutrr datasets, with results pre- 529

sented in Appendix A.3. Specifically, we illustrate 530

the performance on different hop questions for the 531

Clutrr dataset using Claude in Figure 5.
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Figure 5: Performance on different hop questions in the
Clutrr dataset.

532From these results, we can make the following 533

observations: 534

• The proposed RWG outperforms all baselines 535

on these representative multi-hop question an- 536

swering datasets. 537

• The performance of all methods tends to de- 538

crease as the number of hops increases in both 539

the MuSiQue and Clutrr datasets. However, the 540

proposed RWG performs well across both low 541

and high hop questions. 542

• Chain-of-Thought (CoT) tends to perform well 543

when the number of hops is low, but its per- 544

formance declines with higher hop questions, 545

especially when using Claude. 546
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Table 4: Comparison of different models on the Multi-hop Question Answering datasets

Dataset Hotpot MuSiQue 2WikiMultihopQA Clutrr
Multi-hop QA Claude GPT-4o Claude GPT-4o Claude GPT-4o Claude GPT-4o

Vanilla 0.700 0.7219 0.5008 0.6131 0.6608 0.8493 0.2488 0.5485
CoT 0.6941 0.7294 0.5492 0.6064 0.8160 0.8660 0.3721 0.6594
ToT 0.7211 0.7589 0.5961 0.6452 0.8076 0.8859 0.2941 0.5764
GoT 0.7223 0.7666 0.5509 0.6539 0.7276 0.8826 0.2721 0.5135

Least-to-Most 0.6943 0.7452 0.5799 0.6331 0.8160 0.8859 0.3385 0.6503
Structure Prompting 0.6547 0.7435 0.5594 0.6094 0.7594 0.8660 0.3834 0.6413

RWG 0.7399 0.7742 0.6395 0.7187 0.8202 0.9040 0.4558 0.6911

4.2.4 Case studies547

In this section, we aim to understand why the pro-548

posed RWG improves performance on multi-hop549

question answering tasks by analyzing several rep-550

resentative cases.551

Case 1: We select one example from the Clutrr552

dataset, which requires LLMs to infer multi-hop553

family relationships between Christian and Jeff.554

The procedure of RWG with GPT-4o is shown in555

Figure 6. The proposed RWG would infer missing556

relationships during the graph construction. For557

example, after the first round of verification and558

generation, the LLMs inferred an edge between559

Jason and Jeff, reducing the reasoning path length560

between Christian and Jeff from 4 to 2.

Initial Graph

Verification and Generation
Ruth is the parent of Jeff
- (Ruth, parent, Jeff)
Since Ruth and Jason are Stephanie's parents, we can infer 
that Jeff is also Jason's child.
- (Jason, parent, Jeff)
Answer
Based on this graph, we can confirm the relationship between 
Christian and Jeff:
- (Christian, uncle, Jeff)

Figure 6: The illustration of Case 1.
561

More examples can be found in Appendix A.4.562

Based on the case studies, the proposed RWG aids563

LLMs in multi-hop question answering from two564

key perspectives: (1) The constructed graph re-565

duces irrelevant information while maintaining an566

explicit reasoning structure; (2) The graph shortens567

the reasoning path length for the question.568

AIW+ LogiQA MuSiQue Hotpot0.0
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0.4
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RwG-w/o-Graph  Claude
RwG  Claude
RwG-w/o-Graph  GPT 4o
RwG  GPT 4o

Figure 7: The comparison between variants of RWG

4.3 Analysis 569

We further analyze the necessity of using graphs 570

to solve reasoning problems. To do so, we adopt a 571

variant of RwG that follows the same verification 572

and generation process but lacks an explicit graph 573

structure, referred to as RWG-w/o-Graph. The re- 574

sults on both Reasoning and Multi-hop QA datasets 575

are shown in Figure 7. We observe that RWG con- 576

sistently outperforms RWG-w/o-Graph across all 577

datasets, highlighting the importance of incorporat- 578

ing graph structures in the proposed RWG. Addi- 579

tionally, we analyze the computational complexity 580

of RWG in Appendix A.5 and examine the effec- 581

tiveness of the iterative generation and verification 582

process in Appendix A.6. Furthermore, we eval- 583

uate RWG on other types of tasks, as shown in 584

Appendix A.7. 585

5 Conclusion 586

In this paper, we propose a novel Reasoning with 587

Graphs (RWG) method to structure implicit knowl- 588

edge to enhance the reasoning capabilities of LLMs. 589

Our method constructs graphs through multiple 590

rounds of generation and verification, leveraging 591

these graphs to answer complex questions. We eval- 592

uate our approach on both logical reasoning and 593

multi-hop question-answering tasks using several 594

widely recognized datasets. Experimental results 595

demonstrate that RWG significantly improves the 596

performance of various LLMs across both tasks. 597
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6 Limitations598

In this paper, we aim to improve the reasoning abil-599

ity of LLMs by modeling input as a graph structure,600

which mirrors the way humans often approach rea-601

soning tasks. We conducted experiments on four602

popular LLMs: GPT-4o, Claude, Llama 3.1-8B,603

and Llama 3.1-70B. However, more LLMs can604

be tested with the proposed RWG in future stud-605

ies. Additionally, while we explored why explicit606

graph structures can aid LLM reasoning primarily607

through experimental results and case studies, a608

more rigorous theoretical analysis is an interesting609

direction for future work. Furthermore, our evalu-610

ation focused on logical reasoning and multi-hop611

question answering tasks, but other tasks can also612

be explored to assess the broader applicability of613

RWG.614
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A Appendix848

A.1 Datasets849

In this section, we introduce the used datasets in850

the logical reasoning task and multi-hop question851

answering task.852

A.1.1 Logical Reasoning Task853

For the logical reasoning task, we select 4854

datasets, i.e., AIW, AIW+ (Nezhurina et al., 2024),855

LogiQA (Liu et al., 2020) and AR-LSAT (Wang856

et al., 2022a). The details of each dataset are as857

follows:858

AIW: AIW dataset contains a set of “Alice in859

Wonderland Problems", which typically follow the860

format: “Alice has N brothers and she also has861

M sisters. How many sisters does Alice’s brother862

have?". This dataset is popular to evaluate the863

reasoning abilities of LLMs.864

AIW+: The AIW+ dataset is an extension of the865

AIW problem, describing a more complex family866

structure. It introduces additional hierarchy and dis-867

tractors when depicting relational family structures,868

making the reasoning task more challenging. In869

the AIW+ problem, multiple solutions could arise870

if the model assumes that Alice’s parents have ad-871

ditional children, which is also a feasible solution.872

To eliminate this ambiguity, we added a constraint873

to the problem: Alice’s parents do not have any874

other children.875

LogiQA: LogiQA is a widely used logical rea-876

soning dataset that includes questions involving877

various types of reasoning, such as categorical rea-878

soning, sufficient conditional reasoning, necessary879

conditional reasoning, disjunctive reasoning, and880

conjunctive reasoning. The dataset is divided into881

training, validation, and test sets. Since we do not882

train or fine-tune the LLMs, we selected 100 sam-883

ples from the test set to evaluate different methods.884

AR-LSAT: AR-LSAT is a dataset collected from885

the Law School Admission Test (LSAT). There886

are three dominant game types in LSAT: ordering887

games, grouping games, and assignment games. In888

ordering games, participants must be ordered based889

on given facts and rules. Grouping games involve890

separating participants into groups according to891

specific facts and rules. Assignment games require892

assigning characteristics to participants, such as893

scheduling tasks for individuals, while adhering to894

given rules. We use all the test data to evaluate the895

proposed method and baselines.896

A.1.2 Multi-hop Question Answering Task 897

For the multi-hop question answering task, we 898

select 4 widely used datasets, i.e., 2WikiMul- 899

tihopQA (Ho et al., 2020), MuSiQue (Trivedi 900

et al., 2022), HotpotQA (Yang et al., 2018) and 901

Clutrr (Sinha et al., 2018). The details of each 902

dataset are as follows: 903

2WikiMultihopQA: The 2WikiMultihopQA 904

dataset is built from Wikipedia and Wikidata. It 905

contains several related paragraphs and one ques- 906

tion, with various types of multi-hop questions 907

such as comparison, inference, compositional, and 908

bridge-comparison questions. We randomly sam- 909

pled 100 questions from the test set of 2WikiMulti- 910

hopQA for the experiments. 911

MuSiQue: The MuSiQue dataset contains 912

multi-hop questions via single-hop question com- 913

position. Like 2WikiMultihopQA, it includes sev- 914

eral related paragraphs per question. The dataset 915

features 2-hop, 3-hop, and 4-hop questions. For 916

each hop type, we randomly sampled 100 ques- 917

tions. Detailed results for each hop can be found in 918

Appendix A.3. 919

HotpotQA: HotpotQA is a widely used multi- 920

hop question dataset. It provides 10 paragraphs 921

to answer a single question. There are different 922

difficulty levels, and the easier questions are typ- 923

ically solvable by LLMs. We randomly selected 924

a subset of 100 hard bridging questions from the 925

development set of HotpotQA. 926

Clutrr: The Clutrr (Compositional Language 927

Understanding with Text-based Relational Reason- 928

ing) dataset differs from the other three multi-hop 929

question datasets. It primarily contains a single 930

paragraph that describes relationships between fam- 931

ily members, and the task is to infer the relationship 932

between two specified members. The dataset in- 933

cludes different path lengths between the predicted 934

family members. For our experiments, we selected 935

path lengths from 4 to 9, as shorter paths are gener- 936

ally easier for LLMs to solve. We report the overall 937

performance in Table 4 while the detailed results 938

for each hop can be found in Appendix A.3. 939

A.2 Prompts of RWG 940

In this section, we provide the prompt of the pro- 941

posed RWG for logical reasoning and multi-hop 942

question answering tasks. The system prompt of 943

the proposed RWG is shown in Tabel 5. 944
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A.2.1 Logical Reasoning945

There are mainly three steps in the proposed RWG,946

i.e., initial graph generation, graph verification and947

graph generation. During the experiments, we948

merge the graph verification and graph generation949

into one prompt for convenient. The initial graph950

generation prompt is shown in Table 6. The graph951

verification and generation prompt is shown in Ta-952

ble 7, and the question answering prompt is shown953

in Table 8 .954

A.2.2 Multi-hop Question Answering955

The prompts for Multi-hop Question Answering are956

similar to those used for logical reasoning. How-957

ever, during graph generation, we only extract the958

entities and relationships relevant to the question to959

prevent the graph from becoming too large. During960

the verification stage, we check whether the cur-961

rent graph contains all the necessary information962

to answer the question. Specifically, the graph ini-963

tialization prompt is shown in Table 9, the graph964

verification and generation prompt is shown in Ta-965

ble 10, and the question answering prompt is shown966

in Table 11 .967

A.3 More results968

We provide detailed results for the different hop969

questions in the MuSiQue and Clutrr datasets.970

Specifically, the MuSiQue dataset contains 2, 3,971

and 4-hop questions, and the results are shown972

in Table 12. Additionally, the results for 4 to 9-973

hop questions in the Clutrr dataset are provided in974

Table 13. From the results, we observe that the975

proposed RWG outperforms all baselines across all976

hop levels.977

A.4 Case Studies978

In this section, we present additional cases gener-979

ated by GPT-4o. Due to the lengthy context gen-980

erated by GPT-4o, we have removed some non-981

essential content.982

A.4.1 Failure case of AIW+ problem with983

Chain-of-Thought prompting984

In section 4.1.4, we analyzed how the proposed985

RWG solves the AIW+ example. Here, we present986

a failure case using GPT-4o with Chain-of-Thought987

prompting.988

Question: Alice has 3 sisters. Her mother has989

1 sister who does not have children - she has 7990

nephews and nieces and also 2 brothers. Alice’s991

father has a brother who has 5 nephews and nieces992

in total, and who has also 1 son. Alice’s parents 993

have no other children. How many cousins does 994

Alice’s sister have? Please think step by step and 995

explain your reasoning. 996

Response of GPT-4o with CoT: 997

To solve this problem, we need to determine the 998

number of cousins Alice and her sisters have. We’ll 999

approach this step by step: 1000

1. Alice’s Family Structure: 1001

- Alice has 3 sisters. 1002

- Alice’s parents have no other children, so Alice 1003

and her 3 sisters are the only children in their 1004

immediate family. 1005

1006

2. Maternal Side: 1007

- Alice’s mother has 1 sister and 2 brothers. 1008

- The mother’s sister has no children. 1009

- The mother’s 2 brothers collectively have 7 1010

nephews and nieces. 1011

- Since Alice and her 3 sisters (4 children in 1012

total) are part of these 7 nephews and nieces, the 1013

remaining 3 must be Alice’s cousins from her 1014

maternal uncles. 1015

1016

3. Paternal Side: 1017

- Alice’s father has 1 brother. 1018

- This brother has 5 nephews and nieces in total. 1019

- Alice and her 3 sisters are 4 of these nephews and 1020

nieces. 1021

- Therefore, there must be 1 more nephew or niece, 1022

who is Alice’s cousin from her paternal uncle. 1023

- This paternal uncle also has 1 son, who is Alice’s 1024

cousin. 1025

1026

4. Total Cousins: 1027

- Alice has 3 cousins from her maternal side. 1028

- Alice has 1 cousin from her paternal side. 1029

- Therefore, Alice has a total of 3 + 1 = 4 cousins. 1030

1031

From the response, we can see that GPT-4o fails 1032

to infer one cousin from the paternal side, high- 1033

lighting the effectiveness of the proposed RWG. 1034

A.4.2 Case from LogiQA dataset with RWG 1035

Context: There are nine cards, one to nine. A, 1036

B, C, D four people take cards, each take 2. It is 1037

known that the sum of the two cards taken by A is 1038

10; the difference between the two cards taken by 1039

B is 1; the product of the two cards taken by C is 1040

24; and the quotient of the two cards taken by D is 1041

3. 1042

Question: Which of the following is the left 1043

13



Table 5: System prompt of RWG.

You are an expert of knowledge graphs. Knowledge Graphs aim to represent the relationships between
entities. You are good at reasoning based on the graph. When you are asked to output the graph, please
write [latest graph] first, followed by all triples, such as (entity1, relation, entity2) in the graph.

Table 6: Initial graph generation prompt for logical reasoning task.

Please build a knowledge graph based on the given context: {Context} and question: {Question}. The
graph aim to answer the question. The nodes represent entities while edges represent their relations.

Table 7: Graph verification and generation prompt for logical reasoning task.

Does the latest graph meet all the requirements? Please first define each relationships in the context. And
then carefully verify all the requirements. If the old graph meets all the requirements, please write [YES]
at the end. If the old graph is wrong, please update the graph by inferring missing relations and nodes ->
Write the [latest graph] with new edge list first, followed by [No].

Table 8: Answer generation prompt for logical reasoning task.

Please answer the following question based on the latest graph and context: {Question}.

Table 9: Initial graph generation prompt for multi-hop question answering task.

2WikiMultihopQA,
MuSiQue,
HotpotQA

There are multiple paragraphs in the given context: {Context}. Please first find
all paragraphs that may related to the question: {Question}. Please extract all the
entities and relations of these paragraphs. Then build a knowledge graph based on
these entities and relations.

Clutrr Please build a family relation knowledge graph based on the context sentence by
sentence. Nodes represent roles, and edges represent relationships. The graph should
be bidirectional, including ([entity1], relation, [entity2]) and ([entity2], reverse
relation, [entity1]).

Table 10: Graph verification and generation prompt for multi-hop question answering task.

2WikiMultihopQA,
MuSiQue,
HotpotQA

Does the graph include all the entities and relations related to the questions: {Ques-
tion}? Please recursively add new entities and relations after you have new entities.
If the old graph meets the requirement, please write [YES] at the end. If the old
graph can not, please update the graph by retrieving more entities and relations from
the given contexts. Add these information to form a new graph. -> Write the [latest
graph] with new edge list first, followed by [No].

Clutrr Can the [latest graph] contains enough information to answer the question: {Ques-
tion}? Please confirm your conclusion. If yes, please write [YES] at the end. If not,
update the graph by inferring missing relations between entities as many as possible
based on the graph to form a new graph. Then, provide the [latest graph], followed
by [No]. Please think step by step and explain your reasoning.

Table 11: Answer generation prompt for multi-hop question answering task.

Please answer the following question: {Question} based on the latest graph and context: {Context}.
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Table 12: The results of different hop questions in MuSiQue dataset

Hops MuSiQue 2 MuSiQue 3 MuSiQue 4
Methods Claude GPT-4o Claude GPT-4o Claude GPT-4o
Vanilla 0.6011 0.7302 0.4937 0.5608 0.4076 0.5484

Cot 0.6472 0.7091 0.4967 0.5893 0.5039 0.5208
ToT 0.6944 0.7437 0.5770 0.6342 0.5171 0.5577
GoT 0.6495 0.7494 0.5365 0.6248 0.4667 0.5876

Least-to-Most 0.6900 0.7340 0.5222 0.6288 0.5275 0.5365
Structure Prompting 0.6325 0.7216 0.5572 0.5952 0.4886 0.5115

RWG 0.7488 0.8126 0.6346 0.7032 0.5353 0.6403

Table 13: The results of different hop questions in Clutrr dataset

Hops Clutrr 4 Clutrr 5 Clutrr 6 Clutrr 7 Clutrr 8 Clutrr 9
Methods Claude GPT-4o Claude GPT-4o Claude GPT-4o Claude GPT-4o Claude GPT-4o Claude GPT-4o
Vanilla 0.3736 0.5263 0.2816 0.6091 0.2336 0.5981 0.2500 0.5902 0.1000 0.4800 0.2016 0.4873

Cot 0.5105 0.7894 0.4022 0.6839 0.4299 0.6915 0.3333 0.625 0.2666 0.5466 0.2352 0.5714
Least-to-Most 0.3947 0.7894 0.3965 0.7068 0.3457 0.7102 0.2986 0.5694 0.2800 0.5400 0.2796 0.5294

Structure Prompting 0.4736 0.7421 0.3563 0.7183 0.4112 0.6635 0.3958 0.6041 0.3466 0.5466 0.2857 0.5126
RWG 0.5894 0.8315 0.4655 0.7471 0.4953 0.7102 0.4236 0.6597 0.3733 0.5533 0.3361 0.5798

card? 0. Six.; 1. Three.; 2. Seven.; 3. Four.1044

Initial Graph Generation The possible cards1045

assignments:1046

A: (1, 9), (2, 8), (3, 7), (4, 6)1047

B: (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)1048

C: (3, 8), (4, 6)1049

D: (3, 1), (6, 2), (9, 3)1050

Initial Graph:1051

- A - 1 ; A - 91052

- B - 8 ; B - 71053

- C - 4 ; C - 61054

- D - 3 ; D - 91055

1056

First Round Verification and generation1057

There is overlap using card 9. New graph:1058

- A - 1 ; A - 91059

- B - 2 ; B - 31060

- C - 4 ; C - 61061

- D - 6 ; D - 21062

1063

Second Round Verification and generation1064

Still found overlap. New graph:1065

- A - 1 ; A - 91066

- B - 4 ; B - 51067

- C - 3 ; C - 81068

- D - 6 ; D - 21069

1070

Third Round Verification and generation1071

Pass the verification.1072

Answer: The left card is 7.1073

A.4.3 Case from AR-LSAT dataset with RWG 1074

Context: A maintenance company that takes ser- 1075

vice requests from three clients—Image, Solide, 1076

and Truvest—plans to set targets for its average ser- 1077

vice response times. Service targets will be set at 3 1078

days, 2 days, or 1 day. Two service targets are set 1079

for each client—one for requests received through 1080

the maintenance company’s website and one for 1081

requests received by voicemail. The six targets are 1082

set according to the following conditions: None of 1083

the clients can have a website target that is longer 1084

than its voicemail target. Image’s voicemail target 1085

must be shorter than the other clients’ voicemail 1086

targets. Solide’s website target must be shorter than 1087

Truvest’s website target. 1088

Initial Graph Generation 1089

1. Identify the variables: 1090

- There are six targets: 1091

- Image’s website target (IW) and voicemail target 1092

(IV). 1093

- Solide’s website target (SW) and voicemail target 1094

(SV). 1095

- Truvest’s website target (TW) and voicemail 1096

target (TV). 1097

The generated graph: 1098

- IW ≤ IV 1099

- IV < SV 1100

- IV < TV 1101

- SW < TW 1102

- TW < TV 1103

- SW < TV 1104

1105
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Question: If Truvest’s website target is shorter1106

than its voicemail target, which one of the follow-1107

ing must be true? 0. Image’s voicemail target is 21108

days.; 1. Image’s website target is 2 days.; 2. Im-1109

age’s website target is 1 day.; 3. Solide’s website1110

target is 2 days.; 4. Solide’s website target is 1 day.1111

Answer:1112

- Option 0: Image’s voicemail target is 2 days.1113

This option doesn’t directly relate to the constraints1114

provided. The constraints don’t specify a numeric1115

value for IV, just that IV < SV and IV < TV. There-1116

fore, this option is not necessarily true based on the1117

graph.1118

- Option 1: Image’s website target is 2 days.1119

Similar to Option 0, there is no specific constraint1120

that pins IW to a numeric value. The constraint1121

IW ≤ IV doesn’t specify that IW must be 2 days.1122

Hence, this option is not necessarily true. - Option1123

2: Image’s website target is 1 day.1124

If IW is 1 day, it satisfies IW ≤ IV. However, there’s1125

no direct constraint requiring IW to be exactly 11126

day. Therefore, this option is not necessarily true.1127

- Option 3: Solide’s website target is 2 days.1128

For SW to be 2 days, while it satisfies SW < TW,1129

the constraints don’t dictate that SW must be ex-1130

actly 2 days. No direct necessity is derived from1131

the constraints for SW to be 2 days. Thus, this1132

option is not necessarily true.1133

- Option 4: Solide’s website target is 1 day.1134

Given SW < TW and SW < TV, if SW is set to 1 day,1135

it is possible to meet the condition of SW being the1136

shortest among SW, TW, and TV, considering that1137

TW > SW and TV > SW because of the constraints.1138

Setting SW to 1 day ensures that it is less than TW1139

and TV, which aligns with the necessary condition1140

SW < TW and SW < TV. This option aligns well1141

with the constraints and scenario.1142

A.4.4 Case from MuSiQue dataset with RWG1143

We select an example from the MuSiQue dataset,1144

where GPT-4o provided incorrect answers. In this1145

example, 19 paragraphs are given, and the question1146

is: When was the death penalty abolished in the1147

country which, along with Eisenhower’s VP’s coun-1148

try, recognized Gaddafi’s government early on?1149

The graph constructed by GPT-4o is in Table 14.1150

This graph provides a condensed representation of1151

the entire context, containing essential reasoning1152

structure to answer the question. By focusing on1153

this explicit knowledge graph, which includes only1154

the necessary information, LLMs can avoid irrel-1155

evant details that might otherwise interfere with1156

their response generation (Shi et al., 2023).

Table 14: The illustration of Case in MuSiQue dataset
(Dwight D. Eisenhower) –[was President of]–> (United States)
(Richard Nixon) –[was Vice President of]–> (United States)
(United States) –[recognized government of]–> (Muammar Gaddafi)
(United Kingdom) –[recognized government of]–> (Muammar Gaddafi)
(Capital Punishment) –[abolished in]–> (Great Britain) [in 1965]
(Capital Punishment) –[abolished in]–> (Northern Ireland) [in 1973]
(Capital Punishment) –[abolished in]–> (United Kingdom) [in 1998]

1157

A.4.5 Case from 2WikiMultihopQA dataset 1158

with RWG 1159

In the 2WikiMultihopQA dataset, most questions 1160

require only 2 hops, making it easier to extract the 1161

relevant entities in a single step. 1162

Question: Which film has the director born ear- 1163

lier, Haiducii (Film) or My Wife’S Best Friend? 1164

Initial Graph Generation 1165

- (Haiducii, directed_by, Dinu Cocea) 1166

- (My Wife’s Best Friend, directed_by, Richard 1167

Sale) 1168

- (Dinu Cocea, birthdate, 22 September 1929) 1169

- (Richard Sale, birthdate, December 17, 1911) 1170

1171

Answer: My Wife’s Best Friend 1172

A.4.6 Case from MuSiQue dataset with RWG 1173

In the MuSiQue dataset, we selected a 4-hop ques- 1174

tion answering example for this case study. 1175

Question: Based on population alone, what is 1176

the ranking of the city having the Courthouse of the 1177

birthplace of James Glisson in the country winning 1178

the rugby 7 in Las Vegas? 1179

Initial Graph Generation: 1180

- (James Glisson) –born in–> (Jackson County, 1181

Florida) 1182

- (Jacksonville, Florida) –located in–> (Jackson 1183

County, Florida) 1184

- (Bermuda) –participated in–> (Las Vegas 7’s) 1185

- (Las Vegas, Nevada) –hosted–> (Las Vegas 7’s) 1186

- (Jacksonville, Florida) –is ranked as most 1187

populous in–> (Florida) 1188

First Round Verification and Generation 1189

- (James Glisson) –born in–> (Jackson County, 1190

Florida) 1191

- (Jacksonville, Florida) –located in–> (Jackson 1192

County, Florida) 1193

- (Bermuda) –won–> (Las Vegas 7’s) 1194

- (Las Vegas, Nevada) –hosted–> (Las Vegas 7’s) 1195

- (Jacksonville, Florida) –is ranked 12th most 1196

populous city in–> (United States) 1197

1198

Answer: 12th 1199
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Table 15: Average number of iterations for different datasets.

AIW+ LogiQA LSAT MuSiQue2 MuSiQue3 MuSiQue4
GPT-4o 3.29 1.53 1.65 1.43 1.81 1.97
Claude 2.01 1.37 1.42 2.19 2.56 2.75

Table 16: The peformance comparision between RWG and RWG-1 on AIW+ and LogiQA dataset.

AIW+ LogiQA
GPT-4o Llama3.1-70B GPT-4o Llama3.1-70B

RwG - 1 0.2352 0.1176 0.5925 0.5606
RwG 0.5294 0.4545 0.6344 0.5913

A.5 The Computational Complexity of RWG1200

Compared to vanilla LLMs, RwG does require ad-1201

ditional resources due to the iterative process of1202

graph construction. To assess the extent of resource1203

consumption, we calculated the average number of1204

iterations required to generate the graph across dif-1205

ferent datasets as shown in Table 15. From the1206

results, we observe that the average number of1207

iterations required to generate the graph is rela-1208

tively low, indicating that the resource consump-1209

tion of RwG is manageable. Interestingly, for the1210

MuSiQue dataset, we note that as the reasoning1211

complexity (number of hops) increases, the pro-1212

posed RwG requires slightly more steps to generate1213

the final graph.1214

It is worth noting that other baselines, such as1215

self-consistency, also require multiple generations.1216

Similarly, methods like GoT and ToT involve gen-1217

erating additional thoughts for reasoning, which1218

can result in an exponential increase in LLM calls1219

as the depth of reasoning increases.1220

A.6 The Effectiveness of Verification and1221

Generation Process in RWG1222

To demonstrate the effectiveness of verification and1223

generation Process in RWG, we evaluated the per-1224

formance of the graph generated one step before1225

it fully meets all requirements on the AIW+ and1226

LogiQA datasets. For cases requiring only one iter-1227

ation to generate the final graph, the final graph is1228

used. We denote this method as RWG-1. The pe-1229

formance comparision between RWG and RWG-11230

on AIW+ and LogiQA dataset is shown in Table 16.1231

From the results, we observe that the performance1232

of RwG-1, which uses the last but one graph, is1233

significantly worse than that of RwG, which uses1234

the final graph that passes the verification.1235

A.7 Results on Time-Sensitive-QA dataset 1236

To further evaluate the versatility of the proposed 1237

RwG method, we added a temporal reasoning 1238

dataset, Time-Sensitive-QA (Chen et al., 2021), 1239

which involves reasoning about fact evolution over 1240

time. The performance comparison between the 1241

proposed RWG with baselines are shown in Ta- 1242

ble 17. The results further demonstrate the effec- 1243

tiveness of the proposed RwG method. 1244

Table 17: The performance comparison on Time-
Sensitive-QA dataset

Method GPT-4o Llama3.1-70B
Vanilla 0.7161 0.5277

CoT 0.7541 0.7179
ToT 0.7483 0.5542
GoT 0.7301 0.6524
RwG 0.7862 0.7712
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