
Published as a conference paper at ICLR 2025

LEVERAGING SUBMODULE LINEARITY ENHANCES
TASK ARITHMETIC PERFORMANCE IN LLMS

Rui Dai 1 Sile Hu 2 Xu Shen ∗ 2 Yonggang Zhang 3 Xinmei Tian ∗1 Jieping Ye 2

1National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application,
University of Science and Technology of China
2Independent Researcher
3Hong Kong Baptist University
∗shenxuustc@gmail.com, xinmei@ustc.edu.cn

ABSTRACT

Task arithmetic is a straightforward yet highly effective strategy for model merg-
ing, enabling the resultant model to exhibit multi-task capabilities. Recent re-
search indicates that models demonstrating linearity enhance the performance of
task arithmetic. In contrast to existing methods that rely on the global linearization
of the model, we argue that this linearity already exists within the model’s sub-
modules. In particular, we present a statistical analysis and show that submodules
(e.g., layers, self-attentions, and MLPs) exhibit significantly higher linearity than
the overall model. Based on these findings, we propose an innovative model merg-
ing strategy that independently merges these submodules. Especially, we derive a
closed-form solution for optimal merging weights grounded in the linear proper-
ties of these submodules. Experimental results demonstrate that our method con-
sistently outperforms the standard task arithmetic approach and other established
baselines across different model scales and various tasks. This result highlights the
benefits of leveraging the linearity of submodules and provides a new perspective
for exploring solutions for effective and practical multi-task model merging.

1 INTRODUCTION

In recent years, the growing scale of large language models has significantly increased the demand
for data and training costs in fine-tuning multi-task models. To integrate the capabilities of various
existing single-task models into a unified model, various model merging techniques have been de-
veloped (Yu et al., 2024; Jin et al., 2023; Matena & Raffel, 2022; Yadav et al., 2023). Task arithmetic
(Ilharco et al., 2023) is one of the simplest and most efficient model merging strategies. It involves
a straightforward weighted combination of the weights from single-task models, allowing the final
merged model to exhibit multi-task capabilities without the need for additional training or data.

Recent studies (Ortiz-Jiménez et al., 2023; Zhou et al., 2024) have revealed a connection between
the linearity of fine-tuned models and the effectiveness of the weighting operations in task arith-
metic. Here, linearity specifically refers to the linear relationship between the differences in model
weights and the differences in output features caused by fine-tuning1 (Ortiz-Jiménez et al., 2023;
Zhou et al., 2024), which is very different from the Traditional Linear Properties2. This linearity
intuitively aligns with the linear weighting operations in task arithmetic (Ilharco et al., 2023). Re-
search (Ortiz-Jiménez et al., 2023; Tang et al., 2024; Jin et al., 2024; Liu et al., 2024) has shown that
models exhibiting linearity retain their individual task performance better when merged using task
arithmetic, leading to superior multi-task models. However, models produced through conventional
fine-tuning often lack this ideal linear property (Ortiz-Jiménez et al., 2023). To address this issue,
existing methods (Ortiz-Jiménez et al., 2023; Tang et al., 2024; Jin et al., 2024; Liu et al., 2024) have

∗Corresponding authors. Code: https://github.com/deep-analysis-research/SLTA.
1f(x; θ0 + ατ) ≈ f(x; θ0) + α∆f(x; θ0 + τ) where τ = θ − θ0 is the weight difference caused by

fine-tuning and ∆f(x; θ0 + τ) = f(x; θ0 + τ)− f(x; θ0) is the corresponding output feature difference.
2These two properties are easily confused. More discussions see Appendix A.5.1.
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(b) Non-linearity in the context of model merging
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Figure 1: (a) Comparison of non-linearity in full models and submodules for fine-tuned models,
measured using Non-linearity Score defined in Definition 2. A lower value indicates better linearity,
based on data from three fine-tuned models detailed in Section 4.1. (b) Comparison of non-linearity
in full models and submodules within the context of model merging, assessed via Eq.8 (Zhou et al.,
2024). A lower value indicates better linearity, based on data from three merging combinations
outlined in the caption of Figure 3. Error bars represent standard deviation.

explored adjustments to the fine-tuning paradigm, retraining the model using original training data
to enhance the linearity and the final merging outcomes.

In contrast to existing methods that rely on global linearization of the model, which impose require-
ments for retraining with the original data, we argue that this linearity has already existed within the
model’s submodules. Intuitively, the most straightforward approach to seek linearity from a complex
nonlinear function is to decompose it into simpler ones. Following this idea, we divide the model
into multiple shallower submodules (e.g., layers, self-attentions, MLPs) and discover that these sub-
modules exhibit a level of linearity that significantly surpasses that of the overall model. Figure 1
compares the linearity characteristics of full models and their constituent modules. In panel (a), the
non-linearity of full models is significantly higher than that of the decomposed submodules, which
exhibit scores close to zero, indicating their strong linearity. In panel (b), we further evaluate the
linear properties in the context of model merging3 using the metric introduced by Zhou et al. (2024).
The results reveal a distinct gap in non-linearity between full models and submodules, suggesting
that the latter can demonstrate good linearity even when the full models do not.

Inspired by these observations, we propose an innovative training-free model merging strategy: 1)
Decompose the models into submodules that exhibit linear characteristics. 2) Compute the optimal
merging weights for each submodule by leveraging their linear properties. 3) Apply these derived
weights to facilitate the merging of the models. To obtain the optimal merging weights under the
linearity assumption of the modules, we derived a closed-form solution by minimizing the distance
between the output features of the merged module and those of the corresponding module across
fine-tuned tasks (Jin et al., 2023). Notably, this computational process necessitates only a minimal
amount of data (30 samples per task) and a limited number of model inference iterations.

To validate the effectiveness of our proposed method, we conducted merging experiments across
models fine-tuned from Llama-2-7B and Llama-2-13B (Touvron et al., 2023) for three distinct tasks:
Math, Coding, and Translate. The experimental results demonstrate that our method significantly
outperforms various baseline techniques, including standard arithmetic approaches, across different
model scales and diverse tasks, particularly with respect to the decomposition level of layers and
attn/MLPs. These findings provide strong evidence that leveraging the linearity inherent in submod-
ules holds substantial potential for enhancing model merging performance with task arithmetic.

2 ANALYZING THE LINEARITY OF MODEL AND MODULES

In this section, we first introduce some definitions regarding linearity (Ortiz-Jiménez et al., 2023)
and task arithmetic(Ilharco et al., 2023). We then present a score that can quantitatively compare the

3f(x; θ0+
∑T

t=1 αtτt) ≈ f(x; θ0)+
∑T

t=1 αt∆f(x; θ0+τt), where τt = θt−θ0 is the weight difference
caused by fine-tuning in the tth model and ∆f(x; θ0 + τt) = f(x; θ0 + τt) − f(x; θ0) is the corresponding
output feature difference in the tth model.
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linearity of models and modules. Subsequently, following the insight outlined in the introduction,
we divide the model into submodules to examine linearity, discovering that the linearity of the
module surpasses that of the model. Finally, we further validate the linearity when merging multiple
modules, laying a foundation for the methodologies proposed in the next section.

2.1 PRELIMINARY

Notation. Let f : X × Θ → Y be a neural network taking inputs x ∈ X and parameterized by a
set of weights θ ∈ Θ. Consider T tasks, where Dt ⊆ X is a dataset used to fine-tune the models
starting from the pre-trained weights θ0 and obtain the fine-tuned weights θt.

Task Arithmetic. (Ilharco et al., 2023) Task arithmetic is a simple, efficient, and widely used model
merging strategy. It assigns multi-task performance to the merged model through a simple weighted
combination of the weights of models, without the need for additional training or data support.

Task vector for task t is defined as the difference between the fine-tuned and the pre-trained weights,
namely, τt = θt − θ0. The approach of task arithmetic involves a weighted combination of the task
vectors, which is then added to the pre-trained model θ0. This can be expressed as

θmerge = θ0 +

T∑
t=1

αtτt, (1)

where αt represents the weight corresponding to τt.

Here, linearity specifically refers to the linear relationship between the differences in model weights
and the differences in output features caused by fine-tuning

Definition 1 (Linearity). Let θ be a fine-tuned model and θ0 be its corresponding pre-trained model.
If we assert that θ exhibits linearity, the differences in model weights caused by fine-tuning are
linearly related to the differences in output features caused by fine-tuning for any x ∈ X , i.e.

f(x; θ0 + ατ) ≈ f(x; θ0) + α∆f(x; θ0 + τ) (2)

where τ = θ − θ0 is the differences in model weights before and after fine-tuning, and ∆f(x; θ0 +
τ) = f(x; θ0+ τ)−f(x; θ0) is the differences in model output features before and after fine-tuning.
It is very different from the Traditional Linear Properties.4

Research (Ortiz-Jiménez et al., 2023; Jin et al., 2024) has shown that models demonstrating linearity
retain higher single-task performance when merged via task arithmetic, leading to enhanced multi-
task models. However, models developed through conventional fine-tuning methods typically lack
this desired linearity (Ortiz-Jiménez et al., 2023).

Proposed Linearity Metric. The interpolation model θinter between the model θ and the pre-trained
model θ0 lies on the line connecting θ and θ0 in the parameter space. If the model θ satisfies linearity
in Definition 1, then its output features f(θinter, x) should also lie on the line formed by the output
features f(θ, x) and f(θ0, x). Moreover, the distance between f(θinter, x) and f(θ0, x) should be
proportional to the interpolation weight. Based on this idea, to measure and compare the linearity of
models quantitively, we propose the Non-linearity Score.

Definition 2 (Non-linearity Score). For a fine-tuned model θ and its corresponding pre-trained
model θ0, if θ satisfies linearity in Definition 1 under any distance metric D(a, b) = ∥a − b∥ in
the feature space, where ∥ · ∥ denotes the norm operation, then for any α, β ∈ [0, 1], the following
approximation holds:

D(f(x; θ0 + ατ), f(x; θ0 + βτ)) ≈ |α− β| D(f(x; θ), f(x; θ0)) (3)

where τ = θ − θ0.

4The preliminary investigation into the relationship between task arithmetic and linearity commenced with
the linearity conclusion derived from the research on the Neural Tangent Kernel (NTK)(Jacot et al., 2018; Chizat
et al., 2019). It was established that the output of a neural network can be approximated using a first-order
Taylor expansion:f(x; θ0 + ατ) ≈ f(x; θ0) + ατ⊤∇θf(x; θ0), which presents a more rigorous conclusion.
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When we replace the approximation in Eq.3 with equality, it indicates a state of perfect linearity.
Therefore, we define the Non-linearity Score of model θ as the measure of the deviation of model θ
from this ideal linear condition:

Non-linearity Score =

∫ 1

0

∫ 1

0

(
D(f(x; θ0 + ατ), f(x; θ0 + βτ))

D(f(x; θ), f(x; θ0))
− |α− β|

)2

dαdβ (4)

We calculated the Non-linearity Score 5 for models fine-tuned on various tasks and presented the
results in Figure 2. Our observations indicate that nearly all models exhibit a lack of satisfactory
linearity at the model level. This finding aligns with conclusions drawn in other research Ortiz-
Jiménez et al. (2023) employing different methodologies.

2.2 ANALYZING THE LINEARITY OF SINGLE FINE-TUNED MODELS

Following the idea of seeking linearity by decomposition, we divide the entire model according to its
architecture into multiple levels, including layers, self-attention, MLP, and head levels. Analogous
to Definition 1, the linearity at the module level can be expressed as follows:

Property 1 (Linearity of Module). Let θi be a module weight from the fine-tuned model θ and θi0 be
its corresponding module’s weight from the pre-trained model. If we assert that θi exhibits linearity,
the differences in module weights caused by fine-tuning are linearly related to the differences in this
module’s output features caused by fine-tuning for any x ∈ Hi, i.e.

f(x; θi0 + ατ i) ≈ f(x; θi0) + α∆f(x; θi0 + τ i) (5)

where τ i = θi− θi0 is the differences in module weight before and after fine-tuning, and ∆f(x; θi0+
τ i) = f(x; θi0 + τ i) − f(x; θi0) is the differences in module output features before and after fine-
tuning with same input x ∈ Hi, Hi corresponds to the input feature space of module i.6
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Figure 2: Comparison of Non-linearity Score in full models and submodules for models fine-tuned
from tasks of Math, Coding, and Translate in Llama-2-7B and Llama-2-13B. A lower value indicates
better linearity. Error bars represent standard deviation across different modules.

Linearity in Models and Modules. We can employ the same Non-Linearity Score defined in 2 to
assess the degree of satisfaction concerning this property for multiple fine-tuned models and different
sets of corresponding submodules. In Figures 2(a) and (b), we compare the average linearity at
both the module level and model level across models fine-tuned on three distinct tasks, on two
different scales of Llama-2 backbones. Several observations can be derived from these figures: 1)
All submodules exhibit a degree of linearity that significantly exceeds that of the overall model. 2)
The Non-Linearity scores for all submodules are near zero, suggesting an adequate approximation
as indicated in Eq.5. 3) The pronounced linearity disparity between the model level and the module
level remains consistent across all three fine-tuned tasks and both scales of the model.

5For practical reasons, in this paper, we employ a discrete approximation of the metric, which we continue
to refer to as the Non-linearity Score for simplicity. Further details can be found in Appendix A.2.

6We make a slight abuse of notation f by omitting the subscripts that distinguish between different archi-
tectures for the sake of simplicity.
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In conclusion, these observations provide compelling evidence that the modules can exhibit linear-
ity even when the models do not. This suggests a considerable opportunity to leverage the linear
properties at the submodule level when integrating fine-tuned models with task arithmetic, even if
the overall model does not exhibit the same degree of linearity.

2.3 ANALYZING THE LINEARITY OF MERGING MULTIPLE FINE-TUNED MODELS

Property 1 pertains to the linearity of modules within a single fine-tuned model. However, in the con-
text of model merging, multiple fine-tuned models are involved. Consequently, we extend Property
1 to encompass multiple models:

Property 2 (Linearity of Merged Modules). Let θi be a module weight from the fine-tuned model
θ and θi0 be its corresponding module’s weight from the pre-trained model. If we assert that θi ex-
hibits linearity of merging, we imply that the differences in output features originating from different
models can be linearly separated, i.e., for any x ∈ Hi,

f(x; θi0 +

T∑
t=1

αi
tτ

i
t ) ≈ f(x; θi0) +

T∑
t=1

αi
t∆f(x; θi0 + τ it ) (6)

where τ it = θit − θi0 is the differences in module i weight from model t and ∆f(x; θi0 + τ it ) =
f(x; θi0 + τ it )− f(x; θi0) is the differences in module output features before and after fine-tuning.

Assesing Linearity in the Context of Model Merging. Property 2 is only feasible in the presence
of Property 1 for all corresponding models; however, its occurrence is not guaranteed. The com-
bination of multiple models fine-tuned for distinct tasks may introduce additional non-linearity due
to the approximations inherent in these equations. To ascertain whether the previously mentioned
observations regarding linearity remain applicable within the context of model merging, we adopted
the methodology delineated by Zhou et al. (2024), which evaluates linearity using a feature space
metric. For clarity and convenience, we refer to this metric as Projection Distance in this paper.

Specifically, we firstly calculate the cosine similarity between two sets of feature differences:
the differences between the output features of the merged module (derived from multiple fine-
tuned models) and those of the pre-trained module, denoted as ∆f(x; θi0 +

∑T
t=1 α

i
tτ

i
t ) =

f(x; θi0 +
∑T

t=1 α
i
tτ

i
t ) − f

(
x; θi0

)
, as well as the corresponding weighted combination of the dif-

ferences in output features from each fine-tuned model, represented as
∑T

t=1 α
i
t∆f

(
x; θi0 + τ it

)
=∑T

t=1 αt

(
f
(
x; θi0 + τ it

)
− f

(
x; θi0

))
. This similarity is denoted by the following equation

cosinemerge(x;α
i
1...T ) = cos

(
∆f(x; θi0 +

T∑
t=1

αi
tτ

i
t ),

T∑
t=1

αi
t∆f

(
x; θi0 + τ it

))
(7)

where cos(a, b) = a · b/(∥a∥∥b∥) is the Cosine Similarity. As follow, the Projection Distance
projEmerge(α

i
1...T ) between these two sets of feature deltas is represented as

projEmerge(α
i
1...T ) = |1− Ex∈Hi

∥∆f(x; θi0 +
∑T

t=1 α
i
tτ

i
t )∥cosinemerge(x;α

i
1...T )

∥
∑T

t=1 α
i
t∆f

(
x; θi0 + τ it

)
)∥

| (8)

where E represents expectation and Hi represents the input feature set corresponding to module i,
with further details provided in Appendix A.3.3.

Results of Projection Distance7. In Figure 3 (a) and (b), we present the projection distances result-
ing from the merging of two and three models. Both configurations reveal a trend that submodules
exhibit superior linearity compared to the model level, consistent with the observations made for
single models presented in Figure 2. It is noteworthy that the projection distance for merging three
models is significantly lower than that observed for the merging of two models across layers, atten-
tions, and MLPs. This suggests that there exists an even more favorable condition for linear merging

7Follow Zhou et al. (2024), we also analyze the metric of cosine similarity, please refer to Appendix A.1.1
for more results and analysis.
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Figure 3: Comparison of Projection Distances in full models and submodules within the context of
model merging. A lower value indicates better linearity. For each backbone, we computed the results
across all possible combinations of three fine-tuned models, alongside the corresponding merging
weights α1 and α2 (and α3). In the case of merging two models, there are three combinations of fine-
tuned models, yielding 25 possible configurations for merging weights αt ∈ [0.2, 0.4, 0.6, 0.8, 1]
where t ∈ [1, 2]. For merging three models, there’s only one combination of fine-tuned models,
resulting in 27 configurations for merging weights αt ∈ [0.3, 0.5, 0.7] with t ∈ [1, 2, 3]. Error bars
represent standard deviations.

when three models are considered compared to when only two models are merged, particularly when
analyzed at these granular levels.

In summary, these findings validate the applicability of Property 2 within submodules, demonstrat-
ing its relevance to the merging of both two and three models. As illustrated in Section 3, this
property facilitates a closed-form solution for determining the optimal merging weights, thereby
enhancing the task arithmetic performance while minimizing associated costs.

3 MERGING MODULES WITH LINEARITY

The selection of merging weights is a pivotal factor influencing model merging performance in task
arithmetic. In (Ilharco et al., 2023), the authors propose determining this parameter through abla-
tion while maintaining equal weights across different models to constrain the search space within a
manageable range. Although this method demonstrates a commendable balance between cost and
efficiency at the model level, it becomes impractical when merging models at the module level. In
such cases, the search space expands exponentially relative to the number of modules; for instance,
ablating n candidate weights results in a search space of nm for m modules. Fortunately, by lever-
aging Property 2, we can derive a closed-form solution for the optimal merging weights, thereby
circumventing the cumbersome ablation process and expanding the solution space by relaxing the
constraint of equal weights. Here we first introduce a commonly used objective in model merging
(Jin et al., 2023; Ortiz-Jiménez et al., 2023), which is also regarded as the objective of task arithmetic
(Ortiz-Jiménez et al., 2023).

The Objective of Model Merging. Let D = {Dt ⊂ X}t∈[T ] be a collection of T datasets,
with θ1, . . . , θT representing the parameters of models fine-tuned from θ0 using the corresponding
datasets. The parameters resulting from the merging process are denoted by θmerge. The objective of
model merging is defined as:

f(x; θmerge) =

{
f(x; θt) if x ∈ Dt

f(x; θ0) if x /∈
⋃T

t=1 Dt
(9)

Next, we will independently apply the objective to each module that satisfies linearity, using standard
weighted operations of task arithmetic, i.e., θimerge = θi0 +

∑T
t=1 α

i
tτ

i
t .

Objectives Function for Each Module. For a module located at position i (which could be a
layer/attention/MLP/head), let θit represent the weights of this module from model t, and f(x; θit)
denote the output of this module given input x. The merging parameters αi

1, α
i
2, . . . , α

i
T for

θi1, θ
i
2, . . . , θ

i
T can be obtained by

αi
1, α

i
2, . . . , α

i
T = argmin

T∑
t=1

Ex∈Hi
t

∥∥∥∥∥f
(
x; θi0 +

T∑
t′=1

αi
t′τ

i
t′

)
− f(x; θit)

∥∥∥∥∥
2

(10)

6



Published as a conference paper at ICLR 2025

where τ it = θit − θi0, Hi
t represent the set of input features of module i corresponding to Dt. In this

paper, Hi
t is obtained by inputting all x ∈ Dt into the model θ0 and collecting the input features

corresponding to module i, more details please refer to Appendix A.3.3.

If module i satisfies linearity, by applying Property 1 and Property 2, we have

αi
1, α

i
2, . . . , α

i
T = argmin

T∑
t=1

Ex∈Hi
t

∥∥∥∥∥∥
T∑

t′=1,t′ ̸=t

αi
t′∆f

(
x; θit′

)
+ (αi

t − 1)∆f
(
x; θit

)∥∥∥∥∥∥
2

(11)

where ∆f
(
x; θit

)
= f

(
x; θit

)
− f(x; θi0)

Solving this equation allows us to directly obtain the closed-form solutions for αi
1, α

i
2, . . . , α

i
T :

[αi
1, α

i
2, ..., α

i
T ]

⊤ = A−1b (12)

where A ⊆ RT×T and b ⊆ RT ,

Aj,k =

T∑
t=1

Bi
tjk , bj =

T∑
t=1

Bi
tjt , (13)

and

Bi
abc = Ex∈Hi

a

d∑
k=1

∆f
(
x; θib

)
k
∆f

(
x; θic

)
k
,

∆f
(
x; θit

)
= f

(
x; θit

)
− f(x; θi0).

(14)

where d denote the dimension of vector f
(
x; θi

)
. The detailed derivation process can be found in

the Appendix A.3.1.

We present our merging process at the layer-level decomposition detailed in Algorithm 1. Initially,
the input feature sets Hi

t are compiled for all layers by feeding a randomly sampled subset from the
task-related datasets into the pre-trained model θ0. Subsequently, for each layer, we apply Eq.12
to derive the optimal merging weights, which are then utilized to perform linear merging. The
adaptation of this algorithm to other granularities is straightforward, as described in Appendix A.3.3.

Algorithm 1 Merging Modules with Linearity at Layer Level
Input: T Fine-tuned Models with L layers θ1 = {θ11, θ21, ..., θL1 }, ..., θT = {θ1T , θ2T , ..., θLT },
Pre-trained Model θ0 = {θ10, θ20, ..., θL0 }, Task-Related Datasets D1, D2, ..., DT

Output: Merged Model θmerge = {θ1merge, θ
2
merge, ..., θ

L
merge}

for t = 1 to T do
dt ← {x ∈ Dt |x is sampled randomly, |dt| = N} ▷ Sample a small set of task-related data
H1

t ← dt ▷ Set the input of first layer
for i = 1 to L− 1 do

Hi+1
t ← f(x; θi0), ∀ x ∈ Hi

t ▷ Prepare input feature sets for Eq.12
for i = 1 to L do
αi
1, α

i
2, ..., α

i
T ← Eq.12 ▷ Calculate optimal merging weights with Eq.12

θimerge ← θi0 +
∑T

t=1 α
i
t(θ

i
t − θi0) ▷ Merge modules from different models linearly

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Models, Datasets and Evaluation Metrics. We utilize Llama-2-7B and Llama-2-13B as our back-
bone models. Fine-tuning is conducted across three distinct tasks: mathematics, coding, and trans-
lation. For the mathematics task, we employ the GSM8K (Cobbe et al., 2021) training set. For the
coding task, we utilize the Code Alpaca (Chaudhary, 2023) dataset. Lastly, for the translation task,
we apply the zh↔en dataset from Xu et al. (2024a). During training, we adopt the prompt of the

7
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Table 1: Results of merging fine-tuned models by different methods with Llama-2-13b as the back-
bone. For each setting, we fully replicate our method three times with different data sample seeds
and compute the mean and standard deviation of the three results. The best and second-best results
are highlighted in bold and underlined, respectively. For the hyperparameters of other baselines, we
conducted a grid search in each merging setting based on the recommendations in the original paper
and reported the best results. We only report the average results of different task evaluations here;
for more detailed results, please refer to the Appendix A.1.2.

Methods Math
& Coding

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Fine-tuned Model 34.02 65.16 51.26 50.14

Weight Avg 33.57 64.57 52.28 46.95
DARE 32.97 62.47 54.33 47.51
Task Arithmetic 34.60 64.72 53.22 48.24

Ours Layer Level 34.47±0.17 66.08±0.14 52.42±0.15 50.80±0.17

Ours Attn/MLP Level 35.11±0.29 66.11±0.11 52.51±0.26 51.05±0.16

FastChat (Zheng et al., 2023) template and fine-tune the models for 3 epochs with a batch size of
128 and a learning rate of 2× 10−5.

For evaluation, we test mathematical capability using the GSM8K (Cobbe et al., 2021) test set,
coding capability with the HumanEval (Chen et al., 2021), and translation capability with the tools
and datasets from (Xu et al., 2024a).

Algorithm Implementation Details. In practice, we observed varying levels of bias in the fea-
ture magnitudes across different datasets. To mitigate potential adverse impact, we implemented a
mechanism to balance the influence of each sample, thereby resulting in a minor modification of
the original formula. For further details, please refer to the Appendix A.3.2. Due to the constraints
of our compact computational and storage budget, we use a limited dataset of only 30 samples per
task for calculating the merging weights. Surprisingly, this minimal data size demonstrates a com-
mendable performance, underscoring the efficiency of our method in terms of data requirements and
computational costs.

4.2 MAIN RESULTS

We compare our proposed method with several baseline approaches: Weight Average (Wortsman
et al., 2022a;b): Weight Average is the simplest and most direct model merging method, which
involves taking the average of the parameters of fine-tuned models. Task Arithmetic(Ilharco et al.,
2023): Task arithmetic entails a straightforward weighted combination of the task vectors and weight
of the pre-trained model. DARE(Yu et al., 2024): DARE builds upon task arithmetic by employing
random dropout of parameters within the task vectors to reduce conflicts between different task
vectors during the merging process.

We present the results of merging fine-tuned models employing various methodologies, utilizing
Llama-2-13b and Llama-2-7b (Touvron et al., 2023) as the fine-tuning backbones. The findings are
detailed in Table 1 and Table 2, respectively. Each value indicates the average evaluation results
across multiple related tasks. It is evident that our approach surpasses the baseline in most merging
settings, particularly in the case of merging three models, where a performance improvement of
3% is observed, albeit slightly lower results were achieved in the merging of code and translation
models. This validates the effectiveness of our method. Furthermore, the similar outcomes on both
Llama-2-7b and Llama-2-13b demonstrate that our method has consistent performance.

4.3 ABLATION AND DISCUSSION

Since the optimal merging weights are derived through a closed-form solution, our proposed merg-
ing method lacks adjustable hyperparameters. Consequently, our discussion centers on the influence
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Table 2: Results of merging fine-tuned models by different methods with Llama-2-7b as the back-
bone. The details of this table are the same as Table 1. For more results, please refer to the Appendix
A.1.2.

Methods Math
& Coding

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Fine-tuned Model 32.35 62.62 50.99 48.65

Weight Avg 25.14 53.70 49.25 38.30
DARE 19.11 50.77 50.15 39.00
Task Arithmetic 27.45 54.65 51.11 39.59

Ours Layer Level 27.18±0.04 49.79±0.43 50.64±0.64 42.68±0.26

Ours Attn/MLP Level 27.33±0.10 55.86±0.48 49.80±0.23 42.88±0.27

Table 3: Ablation results of merging fine-tuned models by different levels in our method. For each
setting, we fully replicate our method three times with different seeds and compute the mean and
standard deviation of the three results.

Level Math
& Coding

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Llama-2-7B

Ours Model Level 28.34±0.22 13.38±0.57 46.51±0.15 35.95±0.51

Ours Layer Level 27.18±0.04 49.79±0.43 50.64±0.64 42.68±0.26

Ours Attn/MLP Level 27.33±0.10 55.86±0.48 49.80±0.23 42.88±0.27

Ours Head/MLP Level 13.08±9.33 14.17±1.14 41.14±12.39 8.16±1.30

Llama-2-13B

Ours Model Level 31.27±0.43 18.90±2.45 15.75±7.60 50.68±0.10

Ours Layer Level 34.47±0.17 66.08±0.14 52.42±0.15 50.80±0.17

Ours Attn/MLP Level 35.11±0.29 66.11±0.11 52.51±0.26 51.05±0.16

Ours Head/MLP Level 12.91±15.60 30.17±19.36 13.71±3.50 22.59±19.65

of decomposition granularity on our approach. In addition to the Layer-Level and Attention/MLP-
Level configurations previously illustrated, we also apply our method at the Model-Level, which
serves as a baseline setting without any decomposition, as well as at the Head/MLP-Level, where
attentions are further vertically divided into individual heads. 8

Results at the Model Level. We also attempted to directly apply our method for model merging
at the model level. The results in Table 3 indicate that, in most cases, it failed to yield reasonable
outcomes. A visualization of the parameters calculated at the model level can be found in Table 13.
The failure at the model level can be attributed to the lack of sufficient linear correlation between
the weight differences caused by fine-tuning and the differences in output features resulting from
fine-tuning. The absence of linearity prevents us from leveraging feature-level computations to
reasonably merge parameters, ultimately leading to unpredictable results. This implies that our
method is only effective under linear conditions.

Results at the Head/MLP Level. Despite exhibiting good linearity at the Head level, the merging
with our method at this level reveals unstable outcomes, shown in Table 3. We also provide a visual
example of the parameters during actual Head level merging in Figure 5.

8For the Head/MLP-level, due to the architecture of the transformer, the output features corresponding to a
single head cannot be directly obtained. Therefore, we employed certain techniques to achieve this in practice.
Please refer to Appendix A.3.5 for additional results and analysis.
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We offer a conjectural explanation for the occurrence of this situation here. Many studies (Wang
et al., 2023; Chen et al., 2024; Zhang et al., 2024) indicate that each head in the model serves dif-
ferent functions during inference. After fine-tuning various tasks, certain heads may take on distinct
roles, while our objective function may ask the head to simultaneously average close to multiple
heads with different functionalities. This requirement can be quite challenging for an individual
head, ultimately leading to a collapse of functionality of the merged head.

However, this may not indicate that the linearity of the head is unhelpful for the merging process.
Considering the specific functionality of the head (or the particular task associated with that head)
during the merging to redefine a more reasonable merging objective could be a valuable direction
for future research.

5 RELATED WORK

Weight Interpolation and Task Arithmetic. In recent years, the increasing scale of large language
models has significantly heightened the demand for data and training costs associated with fine-
tuning multi-task models. To merge the capabilities of various existing single-task models into a
unified framework, several model merging techniques (Daheim et al., 2024; Jin et al., 2023; Wan
et al., 2024; Yang et al., 2024b) have been developed. The simplest and most intuitive approach
is weight interpolation(Frankle et al., 2020; Izmailov et al., 2018; Ramé et al., 2023; 2022), which
has been applied to enhance model generalization(Wortsman et al., 2022b), improve specific single-
task performance(Wortsman et al., 2022a), and boost multi-task effectiveness(Ilharco et al., 2022;
Li et al., 2022). Subsequently, Task Arithmetic(Ilharco et al., 2023) was introduced, enabling the
merging of multiple models through a weighted operation on the parameter difference τ . Many
subsequent methods(Yang et al., 2024c; Yu et al., 2024; Yadav et al., 2023; Zhang et al., 2023) have
been proposed based on the principles of Task Arithmetic.

Linearity and Task Arithmetic. The research conducted by Ortiz-Jiménez et al. (2023) begins
with the relevant theories of the Neural Tangent Kernel (NTK)(Jacot et al., 2018; Chizat et al., 2019)
to explore the connection between linearity and task arithmetic. Although experimental validations
indicate that fine-tuned models do not comply with NTK’s conclusion regarding the approximate
one-order Taylor expansion of models, Ortiz-Jiménez et al. (2023) observes that linearity still can
aid task arithmetic. To enhance model linearity, Ortiz-Jiménez et al. (2023) proposes a constraint on
the parameter update space during fine-tuning, thereby fine-tuning a model that achieves linearity,
ultimately improving the efficiency of model merging. To expedite this training process, various
studies have attempted to linearize only a subset of parameters during training. For instance, Jin
et al. (2024) suggest linearly fine-tuning solely the linear layers in the attention modules. Tang
et al. (2024) combine linearly fine-tuning with Parameter-Efficient Fine-Tuning (PEFT) techniques
by linearizing only the Adapter modules, thereby reducing computational costs. Liu et al. (2024)
derives a closed-form linearized solution for efficiently fine-tuning Transformer networks.

In conclusion, modifying fine-tuning methods to achieve a more linear model can reduce interference
during model merging. However, these methods still require training data and retraining, which is
often challenging in practical scenarios.

6 CONCLUSION

In this study, we performed a statistical analysis to investigate the linearity of model-level and de-
composed submodule-level components. Our findings indicate that the missing linearity in full
models can be found in the submodules. This observation motivated us to develop an innovative,
training-free approach to enhance task arithmetic performance. Specifically, we first decompose
the model into its constituent submodules and then compute the optimal merging weights for each
module based on a closed-form solution derived from linear properties. Subsequently, we perform
a linear merging of all submodules using the corresponding merging weights. Our experimental re-
sults demonstrate that this approach significantly outperforms various baseline techniques, including
standard task arithmetic methods, across different model scales and diverse task scenarios. These
findings underscore the advantages of leveraging the linearity of submodules and present a novel
perspective for investigating effective and practical solutions for multi-task model merging.
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A APPENDIX

A.1 MORE RESULTS

A.1.1 MORE RESULTS IN ANALYZING THE LINEARITY OF SINGLE FINE-TUNED MODELS

To ascertain whether the previously mentioned observations regarding linearity remain applicable
within the context of model merging, we followed the methodology outlined in Zhou et al. (2024).
We analyzed two types of linearity metrics introduced in their work, cosine similarity and projection
distance in feature space.

Specifically, we analyze the cosine similarity between two sets of feature deltas: the differ-
ences between the output features of the merged module (derived from multiple fine-tuned mod-
els) and those of the pre-trained module, denoted as ∆f(x; θi0 +

∑T
t=1 α

i
tτ

i
t ) = f(x; θi0 +∑T

t=1 α
i
tτ

i
t ) − f

(
x; θi0

)
, as well as the corresponding weighted combination of the differ-

ences in output features from the fine-tuned models, represented as
∑T

t=1 α
i
t∆f

(
x; θi0 + τ it

)
=∑T

t=1 αt

(
f
(
x; θi0 + τ it

)
− f

(
x; θi0

))
. This similarity is denoted by the following equation:

cosinemerge(x;α
i
1...T ) = cos

(
∆f(x; θi0 +

T∑
t=1

αi
tτ

i
t ),

T∑
t=1

αi
t∆f

(
x; θi0 + τ it

))
(15)

and
cosineEmerge(α

i
1...T ) = Ex∈Hicosinemerge(x;α

i
1...T ). (16)

Following Zhou et al. (2024), we compare these cosine similarities against a natural baseline: the
average cosine similarity of the feature deltas induced by fine-tuning across all possible pairs of the
tuned models, denoted as:

cosineEbase = Ex∈Hi

1

T (T − 1)

∑
1≤t<t′≤T

cos(∆f
(
x; θi0 + τ it

)
,∆f

(
x; θi0 + τ it′

)
) (17)
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Figure 4: Comparison of Cosine Similarity in full models and submodules within the context of
model merging. A lower value indicates better linearity. For each backbone, we computed the results
across all possible combinations of three fine-tuned models, alongside the corresponding merging
weights α1 and α2 (and α3). In the case of merging two models, there are three combinations of fine-
tuned models, yielding 25 possible configurations for merging weights αt ∈ [0.2, 0.4, 0.6, 0.8, 1]
where t ∈ [1, 2]. For merging three models, there’s only one combination of fine-tuned models,
resulting in 27 configurations for merging weights αt ∈ [0.3, 0.5, 0.7] with t ∈ [1, 2, 3]. Error bars
represent standard deviations.

Results of Cosine Similarity. As illustrated in Figure 4 (a) and (b), we observe cosine similarity re-
sults consistent with Zhou et al. (2024), revealing a significant disparity between 1−EαcosineEmerge

and the baseline 1−cosineEbase. Furthermore, a greater gap and reduced values are noted at the mod-
ule level compared to the model level, suggesting a more favorable condition for linear merging.

A.1.2 MORE RESULTS IN MERGING MODULES WITH LINEARITY

In this section, we report more detailed results of Tables 1 and 2 in Tables 4 and 5, as well as the
outcomes of our approach on additional models and datasets. The results of model merging on the

16
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Qwen-2-0.5B(Yang et al., 2024a) model, along with datasets Gsm8k(Cobbe et al., 2021), Cosmos
QA (Huang et al., 2019), Ropes (Lin et al., 2019), and Winogrande (Sakaguchi et al., 2020), are
presented in Table 6. We also report result on Qwen-2-7B(Qwen Team, 2024) model. During
training, we adopt the prompt template from FastChat (Zheng et al., 2023), fine-tuning the models
for 3 epochs with a batch size of 128 and a learning rate of 2× 10−5.

Table 4: Detailed experimental results on LLama-2-13B.

Method
Llama-2-13B

Merging Two Models
Math Coding Avg Math Translate Avg

Fine-tuned Model 47.91 20.12 34.02 47.91 82.40 65.16

Weight Avg 42.76 24.39 33.57 45.11 84.04 64.57
DARE 41.55 24.39 32.97 40.94 83.99 62.47

Task Arithmetic 45.41 23.78 34.60 45.87 83.58 64.72

Ours Model Level 48.12±0.29 14.43±0.57 31.27±0.43 0.20±0.09 37.60±4.91 18.90±2.45

Ours Layer Level 46.37±0.34 22.56±0.00 34.47±0.17 48.42±0.25 83.75±0.04 66.08±0.14

Ours Attn/MLP Level 46.85±0.00 23.37±0.57 35.11±0.29 48.55±0.20 83.68±0.03 66.11±0.11

Ours Head/MLP Level 15.87±20.86 9.96±10.45 12.91±15.60 16.27±17.88 44.07±20.93 30.17±19.36

Method
Llama-2-13B

Merging Two Models Merging Three Models
Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 20.12 82.40 51.26 47.91 20.12 82.40 50.14

Weight Avg 20.12 84.43 52.28 33.13 23.78 83.95 46.95
DARE 24.39 84.27 54.33 34.87 23.78 83.88 47.51

Task Arithmetic 21.95 84.48 53.22 38.36 22.56 83.80 48.24

Ours Model Level 0.00±0.00 31.50±15.19 15.75±7.60 47.08±0.68 23.58±0.29 81.38±0.43 50.68±0.10

Ours Layer Level 20.53±0.29 84.31±0.02 52.42±0.15 45.21±0.26 23.37±0.29 83.81±0.04 50.80±0.17

Ours Attn/MLP Level 20.73±0.50 84.29±0.04 52.51±0.26 45.59±0.09 23.78±0.50 83.78±0.01 51.05±0.16

Ours Head/MLP Level 0.00±0.00 27.43±7.00 13.71±3.50 14.99±20.24 8.13±11.07 44.66±27.65 22.59±19.65

Table 5: Detailed experimental results on LLama-2-7B.

Method
Llama-2-7B

Merging Two Models
Math Coding Avg Math Translate Avg

Fine-tuned Model 43.97 20.73 32.35 43.97 81.26 62.62

Weight Avg 31.99 18.29 25.14 25.02 82.38 53.70
DARE 21.15 17.07 19.11 19.41 82.14 50.77

Task Arithmetic 37.83 17.07 2745 27.07 82.24 54.65

Ours Model Level 43.47±0.50 13.21±0.76 28.34±0.22 2.27±0.34 24.48±0.80 13.38±0.57

Ours Layer Level 35.25±0.21 19.11±0.29 27.18±0.04 17.77±0.84 81.82±0.03 49.79±0.43

Ours Attn/MLP Level 35.96±0.09 18.70±0.29 27.33±0.10 30.00±0.98 81.73±0.03 55.86±0.48

Ours Head/MLP Level 17.41±13.21 8.74±6.57 13.08±9.33 0.58±0.72 27.77±1.57 14.17±1.14

Method
Llama-2-7B

Merging Two Models Merging Three Models
Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 20.73 81.26 50.99 43.97 20.73 81.26 48.65

Weight Avg 15.85 82.64 49.25 17.66 15.24 81.99 38.30
DARE 17.68 82.62 50.15 19.64 15.24 82.13 39.00

Task Arithmetic 19.51 82.70 51.11 22.29 14.63 81.86 39.59

Ours Model Level 11.79±0.29 81.23±0.18 46.51±0.15 41.57±0.62 14.43±0.57 51.84±1.54 35.95±0.51

Ours Layer Level 18.90±1.32 82.38±0.03 50.64±0.64 30.50±0.54 15.85±0.50 81.68±0.05 42.68±0.26

Ours Attn/MLP Level 17.28±0.57 82.33±0.12 49.80±0.23 32.02±0.31 14.84±0.57 81.79±0.03 42.88±0.27

Ours Head/MLP Level 16.06±2.74 66.22±22.41 41.14±12.39 0.00±0.00 0.00±0.00 24.48±3.90 8.16±1.30

A.1.3 ABLATION STUDY ON NUMBER OF MODEL TO BE MERGED

To demonstrate the advantages of our method in scenarios where more models are merged simul-
taneously, we increase the number of task-specific models merged simultaneously gradually and
calculate the average performance of the merged models.
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Table 6: Detailed experimental results on Qwen-2-0.5B.

Method
Qwen-2-0.5B

Merging Three Models
gsm8k cosmos qa ropes Avg gsm8k cosmos qa winogrande Avg

Fine-tuned Model 31.61 65.01 45.65 47.42 31.61 65.01 56.59 51.07

Weight Avg 25.09 51.91 37.50 38.17 17.74 49.31 51.82 39.62
DARE 34.57 40.09 41.61 38.76 31.24 45.14 51.34 42.57

Task Arithmetic 26.54 50.83 37.56 38.31 22.52 48.63 51.82 40.99

Ours Model Level 31.35±0.11 22.71±2.15 46.95±0.09 33.67±0.65 14.56±0.00 47.95±0.00 52.96±0.00 38.49±0.00

Ours Layer Level 30.52±0.11 51.76±0.05 38.07±0.03 40.12±0.01 27.71±0.04 51.00±0.03 52.31±0.00 43.67±0.02

Ours Attn/MLP Level 30.55±0.08 52.07±0.08 37.62±0.06 40.08±0.03 27.48±0.27 51.13±0.07 52.55±0.00 43.72±0.11

Ours Head/MLP Level 29.19±0.83 50.07±1.98 37.53±0.33 38.93±1.05 15.05±12.09 39.77±12.24 50.57±0.61 35.13±8.31

Method
Qwen-2-0.5B

Merging Three Models
gsm8k winogrande ropes Avg winogrande cosmos qa ropes Avg

Fine-tuned Model 31.61 56.59 45.65 44.62 56.59 65.01 45.65 55.75

Weight Avg 10.84 50.93 49.09 36.96 51.42 44.36 45.23 47.00
DARE 33.97 52.39 48.85 45.07 51.82 42.91 46.20 46.97

Task Arithmetic 15.54 52.06 48.67 38.76 51.90 44.84 45.35 47.36

Ours Model Level 7.77±0.11 53.68±0.00 31.34±0.06 30.93±0.02 52.39±0.00 48.00±0.05 30.95±0.45 43.78±0.13

Ours Layer Level 24.30±0.19 51.46±0.04 48.79±0.06 41.52±0.03 51.78±0.04 50.10±0.02 43.21±0.27 48.36±0.08

Ours Attn/MLP Level 24.18±0.45 51.94±0.04 48.25±0.00 41.46±0.17 51.62±0.04 50.64±0.08 42.48±0.03 48.25±0.05

Ours Head/MLP Level 24.00±0.27 51.58±0.08 47.98±0.21 41.18±0.04 50.93±0.16 50.22±0.20 43.21±0.03 48.12±0.02

Table 7: Experimental results on LLaMA-2-7B with More Dataset: Winogrande, Cosmos qa and
Ropes

Method Merging Two Models

Llama-2-7b Winogrande Cosmos qa Avg Winogrande Ropes Avg Cosmos qa Ropes Avg

Fine-tuned Model 82.26 84.72 83.49 82.26 75.42 78.84 84.72 75.42 80.07
Task Arithmetic 72.22 71.85 72.03 72.14 54.28 63.21 73.48 58.75 66.11

Ours Attn/MLP Level 68.42 84.18 76.3 69.47 69.98 69.72 73.07 68.59 70.83

Method Merging Three Models

Llama-2-7b Winogrande Cosmos qa Ropes Avg

Fine-tuned Model 82.26 84.72 75.42 80.8
Task Arithmetic 71.25 64.13 55.85 63.7433

Ours Attn/MLP Level 71.49 68.70 56.70 65.63

In the table 10, we can observe that as the number of models increases, our method gradually sur-
passes Task Arithmetic and the performance gap becomes larger, which demonstrates the efficiency
of our method particularly when more models are merged simultaneously.

A.1.4 ABLATION ON THE NUMBER OF DATA

From the table 11, we can see that our method shows consistent performance across different data
quantities, sometimes achieving good results with as few as 3 data per task. As a result, if one wishes
to use our method in a situation of absolutely no data, we believe that simply synthesizing a few data
for the corresponding task through manual methods or with the help of LLMs is feasible.

A.2 MORE DETAILS ABOUT NON-LINEARITY SCORE

Overall, we achieve the practical implementation of the Non-linearity Score through discretization
and using the Euclidean distance as distance metric D in the feature space.

Given a fine-tuned model θ, we interpolate between this model and its corresponding pre-trained
model θ0 using k ∈ {0, 1, 2, . . . , N − 1, N}. This results in N + 1 models θk = k

N θ + 1−k
N θ0 =

θ0+
k
N (θ− θ0). If θ satisfies linearity in Definition 1 under a distance metricD in the feature space,

then for any i, j ∈ {0, 1, 2, . . . , N − 1, N}, the following approximation holds:

D(f(x; θi), f(x; θj)) ≈
(i− j)

N
D(f(x; θ), f(x; θ0)) (18)
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Table 8: Experimental results on Qwen-2.5-7B
Method Merging Two Models Merging Three Models

Qwen-2.5-7B Math Coding Avg Math Translate Avg Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 71.49 60.36 65.92 71.49 85.83 78.66 60.36 85.83 73.09 71.49 60.36 85.83 72.56

Task Arithmetic 75.13 67.68 71.40 78.69 86.43 82.56 64.02 86.30 75.16 78.92 65.24 86.56 76.90

Ours Layer Level 78.01 64.02 71.01 77.93 86.55 82.24 64.63 86.59 75.61 81.04 64.02 86.65 77.23

Ours Attn/MLP Level 77.86 64.63 71.24 78.01 86.58 82.29 64.02 86.62 75.32 80.66 65.24 86.64 77.51

Table 9: Experimental results with more baseline
Method Merging Two Models Merging Three Models

Llama-2-7B Math Coding Avg Math Translate Avg Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 43.97 20.73 32.35 43.97 81.26 62.62 20.73 81.26 50.99 43.97 20.73 81.26 48.65

Weight Avg 31.99 18.29 25.14 25.02 82.38 53.7 15.85 82.64 49.25 17.66 15.24 81.99 38.3

DARE 21.15 17.07 19.11 19.41 82.14 50.77 17.68 82.62 50.15 19.64 15.24 82.13 39

Task Arithmetic 37.83 17.07 27.45 27.07 82.24 54.65 19.51 82.7 51.11 22.29 14.63 81.86 39.59

Breadcrumbs 18.11 18.90 18.51 16.22 82.24 49.23 19.51 82.26 50.89 7.96 18.90 82.78 36.55

TIES 34.49 18.90 26.69 32.97 82.11 57.54 19.51 82.75 51.13 29.03 15.85 81.49 42.12

Consensus TA 27.21 17.68 22.44 25.39 82.47 53.93 18.29 82.51 50.40 26.38 17.68 82.36 42.14

Ours Layer Level 35.25 19.11 27.18 17.77 81.82 49.79 18.90 82.38 50.64 30.5 15.85 81.68 42.68

Ours Attn/MLP Level 35.96 18.70 27.33 30.00 81.73 55.86 17.28 82.33 49.8 32.02 14.84 81.79 42.88

Since f(x; θ) is a vector, we utilize the Euclidean distance as distance metric D, to measure the
distance between features. To assess the discrepancy between the actual situation regarding θ and
the Eq.18, the Non-linearity Score is defined as follows:

Non-linearity Score =
∑

i∈{0,..,N}

∑
j∈{0,..,N}

(
D(f(x; θi), f(x; θj))
D(f(x; θ), f(x; θ0))

− |i− j|
N

)2

(19)

We set N = 10 in this paper. Some visualization of D(f(x;θi),f(x;θj))
D(f(x;θ),f(x;θ0))

is shown in Figure 6.

We can also extend the Non-linearity Score for analyzing the linearity of merging multiple fine-tuned
models, maintaining the same functionality as the Projection Distance metric discussed in Section
2.3. Due to the limitations of our compact computational and storage budget, we employ Projection
Distance in Section 2.3 for its higher efficiency.

A.3 MORE DETAILS ABOUT OUR PROPOSED METHOD

A.3.1 THE DERIVATION OF THE CLOSED-FORM SOLUTION

Objectives Function. For a module located at position i (which could be a layer/attention/MLP), let
θit represent the weights of this module from model t, and f(x; θit) denote the output of this module
given input x. The merging parameters αi

1, α
i
2, . . . , α

i
T for θi1, θ

i
2, . . . , θ

i
T can be obtained by

αi
1, α

i
2, . . . , α

i
T = argmin

T∑
t=1

Ex∈Hi
t

∥∥∥∥∥f
(
x; θi0 +

T∑
t′=1

αi
t′τ

i
t′

)
− f(x; θit)

∥∥∥∥∥
2

(20)

where τ it = θit − θi0, Hi
t represent the set of input features of module i corresponding to Dt. In this

paper, Hi
t is obtained by inputting all x ∈ Dt into the model θ0 and collecting the input features

corresponding to module i.

If module i satisfies linearity, by applying Property 2, we have

19



Published as a conference paper at ICLR 2025

Table 10: Ablation study on Number of Model to be Merged
Avg. Acc Coding & Translate Coding & Translate & Cosmos qa Coding & Translate & Cosmos qa & Ropes Coding & Translate & Cosmos qa & Ropes & Winogrande

Task Arithmetic 0.5111 0.5643 0.5257 0.4666
Ours 0.4980 0.5581 0.5382 0.5489

Gap ∆ -2.6% -1.1% +2.3% +14.9%

Table 11: Ablation on the Number of Data
Data Num per Task 1 3 10 30 50

Layer Level Merge Three Models
Math 29.92 ± 1.53 31.19 ± 0.36 30.83 ± 0.28 30.50 ± 0.54 30.81 ± 0.48

Coding 16.87 ± 1.75 15.24 ± 0.50 15.65 ± 0.57 15.85 ± 0.50 15.65 ± 0.29
Translate 81.78 ± 0.09 81.67 ± 0.02 81.72 ± 0.02 81.68 ± 0.05 81.80 ± 0.03

Attn/MLP Level Merge Three Models
Math 32.17 ± 0.73 32.78 ± 0.68 32.85 ± 0.60 32.02 ± 0.31 32.68 ± 0.06

Coding 15.24 ± 0.86 14.63 ± 0.01 14.63 ± 0.50 14.84 ± 0.57 14.43 ± 0.29
Translate 81.84 ± 0.05 81.74 ± 0.04 81.72 ± 0.06 81.79 ± 0.03 81.79 ± 0.05

f
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(
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(21)

where ∆f
(
x; θit

)
= f

(
x; θit

)
− f(x; θi0)

Consider f(x; θ) as a d-dimensional vector. We have
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Taking the derivative of αi
j and setting the derivative equal to zero, we have
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Let

Babc = Ex∈Da

d∑
k=1

∆f
(
x; θib

)
k
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(
x; θic

)
k

(24)

We have
T∑

t=1,t̸=j
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(25)

Then we have
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We have
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Then
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Therefore, by differentiating with respect to each αi
j , where j ∈ [1, . . . , T ], and setting the derivative

equal to zero, we obtain:
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We have
A[αi

1, α
i
2, ..., α

i
T ]

⊤ = b (30)

where

Aj,k =

T∑
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Btjk,A ⊆ RT×T
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(31)

Finally we have
[αi

1, α
i
2, ..., α

i
T ]

⊤ = A−1b (32)

In the practical implementation, we utilize np.linalg.solve to solve Eq.32.

A.3.2 BALANCE THE INFLUENCE OF EACH SAMPLE

In practical applications of the formula for calculating merging parameters, we observed discrep-
ancies in biases present in data from different tasks. For instance, the average token length varies
across tasks (e.g., code data exhibits a greater average length than translation data), and there are dif-
fering token distributions (e.g., common token distributions differ between mathematical and code
datasets). Consequently, this leads to varying norms of the output feature differences (∥∆f(x; θ)∥2)
of the models and modules.
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To balance the influence of each sample within the formula, we introduce a denominator for each
data-related term:

αi
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i
2, . . . , α

i
T = argmin
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1
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(33)

Finally, we obtain that
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)
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1
T
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(34)

The remaining content is identical to that of the previous section.

A.3.3 GATHER INPUT FEATURE SET FOR SUBMODULE LEVEL ANALYZING AND MERGING

When analyzing the linearity of modules and calculating the merging parameters for module level
merging (including layer level, attn/mlp level and head/mlp leve), We should collect the feature set
Hi

t corresponding to the input position of each module i first.

In practice, we input the data from dataset Dt into the pre-trained model θ0 all at once, performing
a single forward inference to collect all intermediate features, which serve as the input for each
module at the corresponding position.

Especially, in layer level’s calculation, the input of ith layer should be the output of the (i − 1)th

layer in θ0. In attn/mlp level’s calculation, the input of ith attn should be the output of the (i− 1)th

layer in θ0, and the input of ith mlp should be the output of the (i)th attn together with output of
(i− 1)th layer in θ0. In head level’s calculation, the input of head in layer ith should be the output
of the (i− 1)th layer in θ0.

A.3.4 MORE DETAILS ABOUT THE BASELINE

For Task arithmetic, We explored the hyperparameter merging weights α ∈ [0.1, 0.2, . . . , 0.9, 1.0]
and selected the best results for reporting in the table.

For DARE, following the recommendations in the paper, we examined various combinations of
the hyperparameter dropout probability drop ratio ∈ [0.6, . . . , 0.9] and merging weights α ∈
[0.6, 0.8, 1.0], reporting the best results in the table.

The optimal hyperparameters corresponding to the best results in Table 1 and 2 obtained in practice
are reported in Table 12.

Table 12: The optimal hyperparameters corresponding to the best results obtained in practice for
baslines.

Hyper-parameters Math
& Code

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Llama-2-7B
DARE 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0

Task Arithmetic 0.6 0.5 0.4 0.5
Llama-2-13B

DARE 0.7 1.0 0.7 1.0 0.8 1.0 0.7 1.0
Task Arithmetic 0.6 0.6 0.4 0.5

A.3.5 MORE DETAILS AT THE HEAD/MLP LEVEL

For the Head/MLP level, due to the architecture of the transformer, the output features corresponding
to a single head cannot be directly obtained: The o proj module will gather the intermediate
features of each head and map them into a comprehensive attention module output, which can not
be directly divided by the arrangement of the heads.
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Therefore, we employed certain techniques to achieve this in practice: For each layer, we first collect
the input of o proj. Subsequently, we divid o proj into n head linear layers according to the pa-
rameter relationships associated with each head. The corresponding segments of the collected input
are then fed into these corresponding linear layers, producing outputs that serve as the final output
features for each head, which will be used for subsequent calculations of the merging parameters.

A.4 VISUALIZATION RESULTS

Table 13: The actual parameters obtained at the model level. This is one of the results from three
random trials.

Method Math
& Code

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Llama-2-7B
Ours Model Level [0.851 0.259] [3.431 -1.537] [0.237 0.882] [0.758 0.480 -0.180]

Llama-2-13B
Ours Model Level [1.039 0.132] [-1.083 1.652] [-0.463 1.923] [0.562 0.422 0.062 ]

A.5 MORE DISCUSSIONS

A.5.1 DIFFERENCES BETWEEN THE LINEARLY PROPERTIES STUDIED IN THIS PAPER AND
TRADITIONAL LINEAR PROPERTIES

The linearity properties we studied in this paper differ from the Traditional Linear Properties, as
illustrated in the following table:

Table 14: Differences between the Linearly Properties Studied in this Paper and Traditional Linear
Properties

Traditional Linear Properties Linearity Properties Studied in This Paper

Definition

Linear relationship between the
difference in output features of

different input fθ(x)− fθ(x0) and
the difference in input x− x0. fθ()

denotes model(module) with
parameter θ

Linear relationship between the
difference in output features of the
model (module) before and after

fine-tuning fθ(x)− fθ0(x) and the
difference in parameters before and

after fine-tuning θ − θ0.

Formula Form
fθ(x)− fθ(x0) ≈ C(x− x0)

where C is a constant determined
by θ.

fθ(x)− fθ0(x) ≈ C(θ − θ0)
where C is a constant determined

by θ0 and x.

Determinants Determined by the model (module)
architecture of θ.

Determined by both the alteration
introduced by fine-tuning process

and the model (module)
architecture of θ0.

We also present an example to futher illustrate that there is no particularly intuitive connection
between the linearity of the module and the linearity of its submodules:

Consider two contiguous submodules, θ1 and θ2. Let {θ1; θ2} denote the composed module.

If θ1 and θ2 both satisfy the Traditional Linear Properties, it is obvious that the module {θ1; θ2}
which formed by these submodules will also adhere to the Traditional Linear Properties.

However, if θ1 and θ2 both satisfy the linearity property studied in this paper, for an arbitrary x, the
final output results after applying perturbations ∆θ1 and ∆θ2 to the two modules is:

Input x
Output of the first submodule θ1 +∆θ1 fθ1(x) + Cθ1,x∆θ1

Output of the second submodule θ2 +∆θ2 fθ2(fθ1(x) + Cθ1,x∆θ1) + Cθ2,fθ1 (x)+Cθ1,x∆θ1∆θ2 . . . (1)
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Figure 5: A visual representation of the merging parameters obtained at different levels during the
actual merging process is presented. Here, we showcase a result from the merging of three fine-
tuned models. Additionally, only a portion of the head’s merging parameters is displayed, while the
distribution of the merging parameters for the other heads is similar to those presented.

Cθ,x denote a constant determined by θ and x. Now, if {θ1; θ2} as a whole satisfies linearity property
studied in this paper, then its output should be fθ2(fθ1(x))+C{θ1;θ2},x{∆θ1; ∆θ2} ....(2) when input
x.

We can observe a significant difference between formulas (1) and (2) , indicating that there is no
particularly intuitive connection between the linearity of the module and the linearity of its submod-
ules, which also necessitates further experimental and observational analysis, as what we do in this
paper.
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Figure 6: A sample of Visualization of the D(f(x;θi),f(x;θj))
D(f(x;θ),f(x;θ0))

. The image is sourced from the linearity
validation of the Llama-2-13B model after fine-tuning for mathematical tasks. From left to right, it
displays the model-level linearity validation, the layer-level validation at the 9th layer, and the MLP-
level validation at the 9th layer. The latter two validations are already very close to ideal linearity.

A.5.2 COMPARISON WITH WEMOE AND CAT

Table 15: Comparison with WEMoE and CAT.
Categories Ours BTX(Sukhbaatar et al., 2024)(std MoE) WEMoE(Tang et al.) CAT (Prabhakar et al., 2024)

Requirements for the Model to be Merged

Same pretrain
model,

conventional
fine-tuning with
different task.

Same pretrain
model,

conventional
fine-tuning with
different task.

Same pretrain
model,

conventional
fine-tuning with
different task.

Same pretrain
model, LoRA

fine-tuning with
different task.

Which Part to be Merged All modules
All modules
except MLP

All modules
except MLP, The

MLP will be
merged during

inference.

All LoRA’s
Parameter

Hyperparameters or Additional Parameters Required for Merging

Weights for each
submodules

(such as
Layer/Attn/MLP)

Router Network
for each MLP

Router Network
for each MLP

Weights for each
Lora Martix

Optimization Methods
Closed-form

Solution
(Training-free)

Training Training Training

The Architecture of the Merged Model Same as Model
to be Merged

MoE
Architecture

(Router for mlp’s
output Merging

Weights)

MoE
Architecture
(Router for
Parameter
Merging
Weights)

Same as Model
to be Merged

In our approach, merging is performed directly, which may result in different merging outcomes due
to the selection of varying data. Our method requires only minimal data and does not necessitate
training, yielding a model with a standard architecture. In comparison to our method, WEMoE con-
structs a MoE architecture model and employs a Router during inference to determine the merging
weights for each MLP based on the current input, which also utilizes a linear merging form. As
a result, WEMoE may get better merging weights and achieve better results but incurs additional
training and inference costs.

A.5.3 DISCUSSION ON SECOND-ORDER INFORMATION

In our initial setup, considering that the original form of Task Arithmetic is first-order linear, we
did not give much consideration to the involvement of second-order information for consistency.
As mentioned in the comments, we recognize that further considering the incorporation of second-
order information is a very meaningful direction. If we can find methods to utilize second-order
information, we may be able to further refine our definitions of linearity and formula expressions,
and estimate the linearity of each module with lower error.

Additionally, we might consider iteratively calculating the weight of each module; for example, first
calculate the weight of the first layer, then use the fused output features of the first layer to guide the
weight calculation of the second layer. This might further exploit the potential connections between
modules in different positions. By utilizing second-order information, we might be able to design
a new loss function that merges all the weights to be optimized into a simultaneous optimization
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process. In future work, we will explore more applications of second-order information in our
method.

A.5.4 COMPARISON WITH GIT RE BASIN, ZIPIT AND MUDSC

Table 16: Comparison with Git Re Basin, Zipit and MuDSC
Comparison Table Applicable Module The Type of Linearity Relied upon during the Merging Key method for merging

Git Re Basin (Ainsworth et al.)
Linear Layer (full
connected layer) in

Network

Traditional Linearity
Properties

Combinatorial
optimization

Zipit! (Stoica et al., 2023)
Linear Layer (full
connected layer) in

Network

Traditional Linearity
Properties

Align features by
similarity in the
activation space

MuDSC (Xu et al., 2024b)
Linear Layer (full
connected layer) in

Network

Traditional Linearity
Properties

Align units by
similarity in both the
parameter space and
the activation space

Ours

Each submodule
level (including

layer, attn and MLP)
that exhibit Linearity

introduced in this
paper

Linearity Properties
Studied in This

Paper

Closed-form solution
of optimal merging

weights

As shown in the table, all these methods relies on the Traditional Linearity Property, and can only
apply to linear layers. In summary, we believe that our method has several novel contributions that
make it distinct from Git Re Basin (Ainsworth et al.), Zipit!(Stoica et al., 2023) and MuDSC(Xu
et al., 2024b).

A.5.5 DISCUSSION ON FINELY-GRAINED COMPONENTS

Further decomposing the model into more finely-grained components is indeed an intuitive and
promising direction for exploration. In the paper, we conducted some related experiments. Based
on the structure of the LLM model, we further divided the attention layer into individual heads, inde-
pendently estimating their linearity and ultimately testing their performance, but revealing unstable
outcomes at this level (as shown in Table 3).

Here we propose a potential explanation for the occurrence of this situation. Numerous studies
(Wang et al., 2023; Chen et al., 2024; Zhang et al., 2024) suggest that each head in the model
performs different roles during inference. Following fine-tuning across various tasks, certain heads
may adopt distinct functions. However, our objective function may necessitate a single head to
simultaneously average among multiple heads with diverse functionalities. This requirement can be
quite challenging for an individual head and may ultimately result in a collapse of functionality in
the merged head.

However, this may not imply that the linearity of the head or more finely-grained components is
unhelpful for the merging process. As we mentioned above, the relationship between the linearity
of the module and the linearity of its submodules is not straightforward; therefore, further experi-
ments and analyses are required. We will further explore whether there are better ways to address
the aforementioned issues in future work. For instance, based on the architecture of the LLM, we
could further decompose each module into individual linear layers (decompose attention into qkvo
projection linear layers, and MLP into two linear layers). Alternatively, we could incorporate inter-
pretability methods(Wang et al., 2023) to improve understanding and identify which head is most
relevant to a specific task.

A.5.6 DISCUSSION ABOUT ACTIVATION FUNCTIONS

In this paper, we did not make any changes to the architecture of any part of the model, and all
nonlinear activation functions remained unaltered. Regarding the achievement of such linearity
without modifying the activation functions, we believe this is due to the many differences between
the Traditional Linear Properties and the Linearity Properties Studied in This Paper discussed above.

The connection between nonlinear activation functions and Traditional Linear Properties has been
widely studied, but the connection between nonlinear activation functions and the Linearity Proper-
ties Studied in This Paper still awaits exploration. We believe that activation functions are likely to
play a crucial role in the emergence of linearity.
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Currently, the vast majority of LLMs (including Qwen and Llama-2) use the SwiGLU activation
function. Compared to other activation functions such as ReLU and GELU, SwiGLU is more com-
plex and nonlinear, yet it also enhances performance. We hypothesize that replacing SwiGLU with
more linear activation functions could improve overall linearity, which would be beneficial for our
method. However, we must carefully consider the balance between the immediate performance drop
caused by the replacement and the performance gains achieved through the merging, which requires
further experiments and analysis.

However,it is difficult to find other identical LLMs, differing only in their activation function, for
fair comparison due to the enormous cost of training a LLM. We plan to conduct experiments related
to activation functions in a controlled environment as described in Allen-Zhu & Li (2023) in future
work.

A.5.7 DISCUSSION ABOUT HOW TO LEVERAGE LINEARITY AT THE HEAD LEVEL

1. Our initial proposal involves collaborating with interpretability methods Wang et al. (2023).
Initially, we can use interpretability methods to determine which head is actually more relevant
to a particular task. By obtaining weights through relevance, we can further adjust the originally
explored weights to make full use of the capability of each head.

2. The second proposal involves modifying our loss function: our original loss is quite simple and
only explores the output feature level. We can refer to other approaches (Stoica et al., 2023; Xu
et al., 2024b) to also explore parameter space, making the explored weights more reasonable and
enhancing the use of linearity.

3. The third proposal is to use our linearity to analyze which task a given head is actually more
related to (since our linearity is introduced by fine-tuning). This might potentially become a new
method of interpretability.

A.5.8 DISCUSSION ABOUT THE EFFECTS OF MODEL DEPTH

For a fair and convincing comparison, we utilized existing backbones like Qwen and Llama to
examine how different depths impact linearity, using the Non-linearity Score as an indicator, which
is introduced in our paper and with smaller score indicating closer adherence to ideal linearity.

Table 17: Non-linearity Score for Different Models
Level Qwen-2-0.5B Qwen-2.5-7B Llama-2-7B Llama-2-13B
Model 2.1130 ± 0.5250 4.2559 ± 0.7037 2.7637 ± 0.3442 2.1929 ± 0.2271
Layer 0.4430 ± 0.7331 0.1412 ± 0.3019 0.1645 ± 0.4329 0.1675 ± 0.3760
Attn 0.2439 ± 0.1631 0.0649 ± 0.0592 0.0229 ± 0.0107 0.0250 ± 0.0115
MLP 0.3112 ± 0.8353 0.0810 ± 0.2068 0.2030 ± 0.5655 0.1622 ± 0.4295

From the table, we can observe:

1. At the model level, linearity does not seem to have a clear relationship with model depth. For the
Qwen model, the linearity of the 0.5B model is better than the deeper 7B model, while for Llama,
linearity is greater in the 7B model compared to the deeper 13B.

2. At the Layer/Attn/MLP level, within the transformer architecture of decoder language models,
the depth of each Layer/Attn/MLP across different model sizes can be regarded as the same, with
variations occurring in the width. Overall, wider modules tend to exhibit slightly better linearity,
which aligns with conclusions in NTK-related works such as Jacot et al. (2018) and Chizat et al.
(2019).

A.5.9 DISCUSSION ABOUT THE PHENOMENON THAT QWEN-2.5-7B HAS MUCH HIGHER
NON-LINEARITY SCORE THAN OTHERS

In order to provide a possible explanation for the phenomenon that the non-linearity score for Qwen-
2.5-7B is much higher than others, we conducted further experiments based on Property 1 from the
paper.
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Specifically, we first computed the parameter difference before and after fine-tuning for each model,
denoted as τ = θ− θ0. We then used a parameter α to weight this parameter difference and added it
back to the pre-trained model θ0 to obtain the interpolated model θ0+ατ . The L2 distance between
the features output by this model θ0 + ατ and the features output by the fine-tuned model θ was
computed and is presented in the table below. (When α = 0, the interpolated model becomes the
pre-trained model θ0. When α = 1, the interpolated model becomes the fine-tuned model θ, the
distance will be 0. All distances are normalized. The Non-linearity Score is directly proportional to
the difference between the value for the specific model and the value for ideal linearity in the table.)

Table 18: Model Linearity and Corresponding Non-linearity Score
Model α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0 Non-linearity Score

Ideal Linearity 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 0
Qwen-2.5-7B 1.000 0.911 0.879 0.841 0.805 0.731 0.429 0.277 0.169 0.085 0.000 4.2559
Qwen-2-0.5B 1.000 0.923 0.828 0.763 0.719 0.655 0.570 0.427 0.262 0.125 0.000 2.1130
Llama-2-7B 1.000 0.871 0.726 0.637 0.545 0.483 0.370 0.263 0.169 0.080 0.000 2.7637

Llama-2-13B 1.000 0.805 0.760 0.635 0.531 0.435 0.339 0.247 0.150 0.073 0.000 2.1929

For a model that satisfies linearity, the distance between the interpolated model’s output features and
the fine-tuned model’s output features should decrease linearly as α increases (as shown in the first
row of the table). However, we observe from the table that the Qwen-2.5-7B model experiences a
very steep decline between α = 0.5 and α = 0.6, which does not occur with other backbones. Such
a steep decline does not satisfy linearity well, resulting in the non-linearity score for Qwen-2.5-7B
in model level being much higher than others.

This is a very interesting phenomenon. We find that the performance of Qwen-2.5-7B is very similar
to a sigmoid function: when the parameter difference (or α) is far from the threshold, the change in
its output features is relatively slow, whereas the change is rapid when the parameter difference (or
α) approaches the threshold.

We suspect that this phenomenon is related to the model’s foundational capabilities, as Qwen-2.5-
7B is a model with significantly stronger performance in various aspects compared to other models
(according to official website data). To explore the specific reasons for this intriguing phenomenon,
we will conduct more experiments and analyses in our future work.
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