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Abstract AutoGluon-Multimodal (AutoMM) is introduced as an open-source AutoML library designed

specifically for multimodal learning.
1
Distinguished by its exceptional ease of use, AutoMM

enables fine-tuning of foundation models with just three lines of code. Supporting various

modalities including image, text, and tabular data, both independently and in combination,

the library offers a comprehensive suite of functionalities spanning classification, regression,

object detection, semantic matching, and image segmentation. Experiments across diverse

datasets and tasks showcases AutoMM’s superior performance in basic classification and

regression tasks compared to existing AutoML tools, while also demonstrating competitive

results in advanced tasks, aligning with specialized toolboxes designed for such purposes.

1 Introduction

Automated machine learning (AutoML) [Yao et al., 2018, Zöller and Huber, 2021, He et al., 2021b]

promises to streamline the process of translating raw data into accurate predictions, minimizing the

need for extensive human intervention and expertise, though a noticeable gap still exists in some

domains [Schmarje et al., 2021, Parisi et al., 2019, Chan et al., 2020]. By encapsulating best practices

in machine learning—from data preprocessing [Gada et al., 2021] to model selection [Arango et al.,

2023a], training [Falcon, 2019], and deployment [Paleyes et al., 2022]—AutoML frameworks aim

to democratize machine learning capabilities, enabling both technical and non-technical users to

develop high-performing models efficiently. This scalability of expertise empowers practitioners to

tackle a wide array of tasks without requiring deep knowledge of machine learning techniques.

The continual evolution of machine learning techniques, particularly the advent of foundation

models [Bommasani et al., 2021] that are pre-trained on large-scale datasets and are applicable to a

wide array of downstream tasks have revolutionized fields such as computer vision [Dosovitskiy

et al., 2020, Liu et al., 2021] and natural language processing [Devlin et al., 2018, Liu et al., 2019].

Fine-tuning these models for specific domains is crucial for extending their utility to end-users, yet

dedicated open-source AutoML toolboxes for this purpose remain scarce. In addition, existing well-

known open-source AutoML toolboxes predominantly focus on basic classification and regression

tasks with tabular data [Thornton et al., 2013, Feurer et al., 2015, Olson and Moore, 2016, Erickson

et al., 2020, LeDell and Poirier, 2020, Zimmer et al., 2021], overlooking the complexities of real-world

problems that often entail multiple modalities [Baltrušaitis et al., 2018]. For instance, tasks like

webpage analysis typically involve processing image, text, and tabular data concurrently, with

objectives ranging from object detection [Zou et al., 2023] to semantic matching [Reimers and

Gurevych, 2019]. Despite the availability of specialized tools for individual tasks, there is a notable

gap in the AutoML community regarding unified frameworks capable of handling diverse modalities

and tasks seamlessly.

1https://github.com/autogluon/autogluon
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Figure 1: AutoMM introduction: Supporting both unimodal and multimodal data (Left), AutoMM

enables seamless fine-tuning of foundation models (Middle) for basic classification/regression
as well as advanced tasks (Right).

To address these dual challenges, we introduce AutoGluon-Multimodal (AutoMM)—a Python-

based open-source AutoML framework tailored for multimodal learning with foundation models.

Embedded within the AutoGluon ecosystem [Erickson et al., 2020, Shchur et al., 2023], AutoMM

enables users to fine-tune foundation models effortlessly on domain-specific data with just three

lines of code. Leveraging popular model repositories such as Huggingface/transformers [Wolf et al.,

2020], TIMM [Wightman, 2019], and MMDetection [Chen et al., 2019], AutoMM supports a wide

range of modalities including text, image, and tabular data, facilitating tasks such as classification,

regression, object detection [Zou et al., 2023], semantic matching [Reimers and Gurevych, 2019],

and image segmentation [Minaee et al., 2021]. Figure 1 outlines the AutoMM framework, illustrating

its key functionalities.

The evaluation of AutoMM presents two primary challenges: the absence of established bench-

mark datasets covering multiple modalities and tasks, and the scarcity of competing AutoML

libraries with comparable functionalities. To address the former, we curated a benchmark compris-

ing 55 publicly available datasets spanning diverse modalities and tasks, prioritizing real-world

applications over academic datasets for a more robust evaluation of AutoML toolboxes. Mitigating

the latter challenge, we conducted a comprehensive evaluation encompassing basic and advanced

tasks. In basic classification and regression tasks across 24 unimodal and multimodal datasets,

AutoMM outperformed AutoKeras [Jin et al., 2023] significantly. For advanced tasks of seman-

tic matching and semantic segmentation, comparisons with task-specific open-source libraries

demonstrated comparable performance. These findings underscore the potential of AutoMM as a

comprehensive solution for practitioners seeking automated solutions across various modalities

and tasks.

2 Related Work

AutoML [Yao et al., 2018, Zöller and Huber, 2021, He et al., 2021b] has emerged as a pivotal area of

research and development, aiming to democratize machine learning by automating the complex

processes of model selection [Arango et al., 2023a], hyperparameter tuning [Bischl et al., 2023],

and feature engineering [Zheng and Casari, 2018]. Traditional AutoML methods primarily focus on

basic classification and regression tasks for tabular data. For example, Auto-Sklearn [Feurer et al.,

2015] is built on the scikit-learn library, and leverages bayesian optimization, meta-learning and

ensemble construction to provide a robust solution for classification and regression tasks. TPOT

[Olson and Moore, 2016] also uses scikit-learn as its ML library and employs genetic algorithms to

optimize entire ML pipelines, including preprocessing and modeling steps. H2O AutoML [LeDell

2



and Poirier, 2020] provides an end-to-end platform for automating the machine learning process,

including automatic training and ensemble of a diverse set of algorithms such as GBMs, Rnadom

Forests, Deep Neural Network, GLMs. FLAML [Wang et al., 2021a] optimizes for low computational

cost in the hyperparameter search.

Despite the significant strides made in traditional AutoML domains, the exploration of AutoML

capabilities for handling multimodal inputs and tackling advanced tasks remains relatively nascent.

While several conventional AutoML frameworks [Vakhrushev et al., 2021, Feurer et al., 2015] are

equipped to process multimodal data, their methodologies predominantly hinge on traditional

machine learning algorithms. AutoKeras, an AutoML framework leveraging deep learning [Jin

et al., 2023], broadens its applicability to multimodal inputs. However, this functionality requires

users to manually specify and preprocess for each modality, which increases the likelihood of

errors. Additionally, AutoKeras falls short in addressing more complex downstream tasks, such

as object detection [Zou et al., 2023] and image segmentation [Minaee et al., 2021], limiting its

utility in advanced applications. LightAutoML [Vakhrushev et al., 2021] is a lightweight framework

which provides fast hyperparameter search and focuses on limited models such as gradient boosted

decision trees and linear models for multimodal data. However, its support for multimodal input is

restricted to tabular-image and tabular-text only, which limits its usage in real-world applications.

There are also AutoMLmethods based on foundation models. For example, Quick-Tune [Arango

et al., 2023b] proposes how and which models to fine-tune from a pre-trained zoo. TabPFN

[Hollmann et al., 2022] proposes to use transformers to solve small tabular classification problems

without hyperparameter tuning. OptFormer [Chen et al., 2022] leverages transformers to learn

universal hyperparameter optimizers. However, these methods all focused on unimodal data. In

contrast, AutoMM is designed to proficiently manage multimodal inputs, including image, text,

and tabular, in a unified framework with three lines of codes. Beyond the basic classification and

regression tasks, AutoMM also supports real-world application tasks such as object detection, image

segmentation, semantic matching [Reimers and Gurevych, 2019], etc. At its core, AutoMM leverages

the transformative power of recent foundation models [Bommasani et al., 2021], capitalizing on

their exceptional transfer learning capabilities to achieve state-of-the-art results across a diverse

array of tasks.

3 AutoMM
Supporting diverse data modalities and task types, while staying true to the AutoML philosophy,

presents significant challenges. The primary obstacle lies in automating these processes through

unified data format/processing, APIs, model design, and training workflow. In this section, we

delineate the design and functionalities of AutoMM.

3.1 Data Format and Processing

AutoMM employs Pandas DataFrame [pandas development team, 2020] to consolidate various data

modalities, including images, text, and tabular (numeric and categorical) data. DataFrames are

ubiquitous in modern data analytics due to their flexibility and user-friendly nature. Essentially, a

Pandas DataFrame organizes data into a 2-dimensional table, with rows representing individual

samples and columns representing features. Each field within the DataFrame can accommodate

different data types, such as numeric, categorical, text, image paths, bytearray images, or base64-

encoded images. This versatility allows users to provide AutoMM with multimodal DataFrames

containing any combination of modalities. Moreover, each modality can comprise multiple columns,

facilitating complex data representations. As an AutoML toolbox, AutoMM adeptly handles raw

and noisy data, alleviating users from the preprocessing burden.

Traditionally, addressing different modalities entails constructing independent data processing

pipelines for each. However, such an approach leads to code redundancy and increased main-

tenance overhead. To mitigate this, we systematically analyzed these pipelines and abstracted
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Figure 2: Interdependency among data modules: Each module from left to right serves as a prerequisite

for the subsequent one.

their commonalities, resulting in a generalized pipeline. Our unified data pipeline comprises Light-

ningDataModule [Falcon, 2019], torch [Paszke et al., 2019] DataLoader, torch Dataset, a modality

detector, a data preprocessor, and arbitrary data processors. At a high level, the LightningData-

Module invokes torch DataLoader to generate distinct data loaders for training, validation, and

prediction stages. The creation of torch DataLoader necessitates a torch Dataset object, which,

in turn, relies on the data preprocessor and data processors. These components are instantiated

based on the detected modalities by the modality detector. The interdependence among these data

modules is illustrated in Figure 2.

The data preprocessor handles model-agnostic data processing tasks, such as filtering non-

informative features, converting data types, handling null values, and normalizing numeric data. In

contrast, data processors cater to model-specific processing requirements. Since multiple models

may operate concurrently, with each potentially accepting multiple modalities as inputs, we create

a dedicated data processor for each modality of every model. The data preprocessor conducts

DataFrame-level preprocessing during torch Dataset initialization, while data processors perform

online transformation of individual samples during data loading. Additionally, we define data

collator functions to aggregate processed samples into mini-batches for model consumption.

Data processors are responsible for per-sample processing, encompassing data augmentation

[Shorten and Khoshgoftaar, 2019, Shorten et al., 2021] and multi-field processing. Numeric fields

are concatenated into a single vector, while categorical fields are encoded separately using torch

nn.Embedding. Image processing involves augmentation (e.g., TrivialAugment [Müller and Hutter,

2021]), tensor conversion, and normalization. In cases where multiple images per sample are present,

AutoMM processes each image individually before stacking them. Text data undergoes tokenization,

with each text field tokenized separately and concatenated into a unified token sequence. To address

sequence length constraints imposed by models, we truncate the sequence by iteratively removing

tokens from the longest text field until compliance is achieved.

3.2 APIs

AutoMM streamlines the fine-tuning of foundation models on unimodal or multimodal data through

a concise API interface. To illustrate, let’s focus on basic classification/regression tasks using a

DataFrame stored in "train.csv" with the label column "label". With just three lines of code, users

can import MultiModalPredictor, initialize an object, and begin training:

1 from autogluon.multimodal import MultiModalPredictor

2 predictor = MultiModalPredictor(label="label")

3 predictor.fit("train.csv")

During training, AutoMM automatically infers the problem type (e.g., binary classification, multi-

class classification, or regression), partitions the data into training and validation sets, identifies

data modalities, selects appropriate foundation models, and performs fine-tuning. The fit()
method also offers additional customization options, such as controlling training time, customizing

hyperparameters , or conducting hyperparameter optimization. Continuous training is supported,

enabling sequential calls of fit() on incoming training data.

Upon completion of training, users can leverage various APIs for evaluation or inference:

1 score = predictor.evaluate("test.csv")
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2 predictions = predictor.predict("new.csv")

3 probabilities = predictor.predict_proba("new.csv")

4 embeddings = predictor.extract_embedding("new.csv")

These APIs facilitate model evaluation, prediction, probability estimation (for classification tasks),

and feature embedding extraction. Notably, prediction-related APIs (predict(), predict_proba(),
and extract_embedding()) do not necessitate labels, enhancing their utility for deployment pur-

poses. Predictors can be saved and loaded for future use via the save() and load() methods:

1 predictor.save("save_path")

2 predictor = MultiModalPredictor.load("save_path")

The load()method also supports training resumption in case of training interruptions by specifying

resume=True and providing the path to the interrupted predictor. Calling fit() afterwards can
resume training from the last saved checkpoint. Furthermore, we provide various additional

resources on the official website auto.gluon.ai, including installation instructions, hands-on tutorials,

and a cheatsheet summarizing the main features.

3.3 Models

AutoMM aims to apply foundation models across diverse real-world scenarios. Foundation models

undergo pretraining on extensive datasets before fine-tuning on smaller downstream labeled

datasets. However, this fine-tuning necessitates alignment between downstream data modalities

and those encountered during pretraining. For instance, while BERT [Devlin et al., 2018] can

fine-tune on text-only tasks, it cannot handle text+tabular data directly. Despite the proliferation of

foundation models, their pretraining modalities typically span image-only [Dosovitskiy et al., 2020],

text-only [He et al., 2021a], or image+text domains [Radford et al., 2021]. Yet, practical applications

frequently involve more combinations such as image+text+tabular. To bridge this gap, AutoMM

adopts a late-fusion architecture, scalable to accommodate arbitrary modality combinations. The

late-fusion framework, shown in Figure 3, integrates independent backbones for images, text, and

tabular data, followed by a fusion module (e.g., MLP or transformer [Vaswani et al., 2017] layers)

for feature fusion. In scenarios involving a single modality, the fusion module is bypassed. Notably,

adding support for a new modality seamlessly enables integration with existing ones.

AutoMM offers extensive model zoo compatibility, including Huggingface/transformers [Wolf

et al., 2020], TIMM [Wightman, 2019], and MMDetection [Chen et al., 2019]. These repositories

contain lots of pretrained models with >25000, >700, and >300 respectively, as documented. Text

models (e.g., Electra [Clark et al., 2020], Deberta [He et al., 2021a]) from Huggingface and image

models (e.g., Swin Transformer [Liu et al., 2021], ViT [Dosovitskiy et al., 2020]) from TIMM are

predominantly utilized. MMDetection supplies pretrained models for object detection tasks, such

as YOLOX [Ge et al., 2021] and DINO [Zhang et al., 2022]. Pretrained models generally span a

spectrum of sizes (e.g., ViT-large, ViT-base, ViT-small), each associated with distinct performance

and resource considerations. AutoMM defines three preset levels (best_quality, high_quality,
medium_quality) to accommodate varying performance-latency trade-offs. The selection of preset

models is based on our internal benchmarking results, streamlining model selection for end-users.
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For the basic classification/regression, we employ a two-stage selection process. Initially, we

individually select the top 5 models for image, text, and tabular data based on their unimodal

benchmarking performance. Subsequently, we conduct a random search of their combinations,

along with other hyperparameters like learning rate and epochs, on multimodal benchmarks. The

resulting best combination serves as the default models.

3.4 Training

By default, AutoMM trains only one late-fusion model with fixed hyperparameters (without

optimization). These default hyperparameters, e.g., learning rate and weight decay, have been

pre-determined through offline search across diverse benchmark datasets, assuming they are likely

to yield reasonable performance on new (similar) datasets. While some AutoML toolboxes like

Autosklearn 2.0 [Feurer et al., 2022] also use the pre-determined hyperparameters, our method

differs in that it emphasizes offline tuning, rather than further hyperparameter optimization or

model ensembling [Erickson et al., 2020]. Such methods often require training and evaluating

numerous models, assuming each trial has relatively low cost. However, fine-tuning foundation

models on multimodal data is generally resource-intensive and may not align with this assumption.

To address practical concerns, we opt for offline hyperparameter search across our benchmark

datasets, enabling end-users to experience efficiency and effectiveness. Detailed hyperparameters

are provided in Section C for reference.

AutoMM leverages the Lightning framework [Falcon, 2019], built on top of PyTorch [Paszke

et al., 2019], to streamline the training workflow. Lightning abstracts key training components

into LightningDataModule, LightningModule, Trainer, and Callbacks, enhancing maintainability

and scalability. LightningDataModule oversees data loading and processing, employing our data

preprocessor and processors. LightningModule defines the model’s forward pass and optimizer

configuration. Encouraging modular design, our model is created outside LightningModule, being

passed into it as needed. Trainer orchestrates the training process, offering extensive configuration

options (e.g., gradient accumulation, training precision) and driving training through interaction

with LightningDataModule and LightningModule objects. We also utilize Lightning’s build-in

Callbacks that can provide additional functionalities during the training loop, including logging,

checkpointing, and early stopping.

Given the rapid expansion of foundation model sizes, fine-tuning these models poses challenges,

particularly for users with limited computational resources. To mitigate this, AutoMM embraces

parameter-efficient fine-tuning techniques (PEFT) [Houlsby et al., 2019]. These techniques, such as

BitFit [Zaken et al., 2021] and LoRA [Hu et al., 2021], either optimize a tiny fraction of pretrained

weights or introduce lightweight structures on top of fixed pretrained models to reduce memory

footprint and training time while preserving performance. For instance, IA3 [Liu et al., 2022]

facilitates fine-tuning of the Flan-T5-XL [Chung et al., 2022] model’s encoder (1.2 billion parameters)

on a single NVIDIA T4 GPU with 15 GB memory. Additionally, AutoMM supports distributed

training (multi-GPU or multi-node) and low-precision (default 16-mixed) training [Micikevicius

et al., 2017], further easing the burden posed by large models.

3.5 Deployment

Efficient deployment of trained models into production environments is crucial for real-world

applications. To ensure seamless predictor loading in an offline environment, AutoMM pre-saves

requisite artifacts—e.g., Huggingface model configuration—forestalling Internet access errors upon

predictor invocation. Notably, in production settings, low inference latency, particularly for online

inference, is paramount. Although our training hinges on Lightning modules adept at handling

large sample sizes, these modules may impede inference when processing few samples. To address

this, we furnish a realtime option, eschewing Lightning modules in favor of plain PyTorch models

and data processing to expedite inference. Moreover, AutoMM integrates with NVIDIA TensorRT
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[Vanholder, 2016], encompassing a deep learning inference optimizer and runtime renowned for low

latency and high throughput. Additionally, accommodating varying image formats between training

and deployment—e.g., image path in training versus image bytearray in deployment—AutoMM

dynamically infers image sub-types during inference, ensuring seamless model deployment.

3.6 Advanced Tasks

AutoMM expands traditional AutoML beyond basic classification and regression tasks to encompass

advanced functionalities. As of the time of writing, AutoMM supports tasks such as semantic

matching, object detection, and semantic segmentation. Semantic matching involves assessing the

similarity between two items, which can be two images, two texts, or an image-text pair. We utilize a

bi-encoder design, illustrated in Figure 4, that independently encodes the two items in the embedding

space before computing their semantic similarity. Object detection and semantic segmentation

are both computer vision tasks. Object detection locates object instances within an image, while

semantic segmentation categorizes each pixel in an image into a class or object. In terms of output,

object detection provides object class labels and bounding boxes, whereas segmentation generates

segmentation masks. Despite the complexity of these tasks, users can implement solutions with just

three lines of code, albeit with the necessity to specify the problem_type argument when initializing

the predictor object. AutoMM achieves these advanced functionalities by fine-tuning foundation

models from Huggingface and MMDetection. For instance, it can employ CLIP [Radford et al.,

2021] for image-text matching, DINO [Zhang et al., 2022] for object detection, and the Segment

Anything Model [Kirillov et al., 2023] for semantic segmentation.

4 Experiments
In this experimental study, we aim to assess the efficacy of AutoMM compared to other leading

AutoML solutions or task-specific toolboxes across a diverse range of tasks, including classification

or regression, semantic matching, object detection, and semantic segmentation.

4.1 Classification and Regression

We start by experimenting how AutoMM performs on classification and regression tasks. We apply

AutoMM to 24 real-life datasets with an assortment of tasks. The input in each task may involve

any combinations of {Tabular, Image, Text}. The performance metrics we reported are R-squared
(𝑅2

), F1_weighted and F1 for regression, multi-class and binary classification tasks respectively.

To the best of our knowledge, the only other AutoML framework that supports multimodal

input is Auto-Keras, serving as the main baseline here. The results, which were run over 5

independent random seeds (22, 41, 54, 86, 92) shown in Table 1, indicate that AutoMM works

out-of-the-box on all datasets with no prior knowledge or dataset-specific configuration. Compared

to Auto-Keras, AutoMM performs better in all 24 datasets across different problem types and

data modalities, with statistical significance. We also observe that the performance of Auto-Keras

often vary drastically over different runs, while AutoMM provides substantially more consistency

and reliability. Furthermore, AutoMM excels in ease of use: datasets can simply be loaded into a

Pandas DataFrame, and modalities are automatically detected by AutoMM. For image modalities,

AutoMM accepts both image paths and image bytearrays, without the need for further processing. In

contrast, Auto-Keras requires that data be reformatted into numpy arrays by the user, and modalities

must be explicitly specified, such as autokeras.ImageInput(), autokeras.StructuredDataInput(), and
autokeras.TextInput(), which can introduce inconsistency and human errors. For further details on

datasets, baseline methods, metrics, and additional setup information, please refer to the appendix.

4.2 Semantic Matching

For semantic matching, we compare with Sentence-Transformer [Reimers and Gurevych, 2019],

which is a toolbox designed specifically for semantic matching tasks. We show the comparisons
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Dataset Text Image Tabular Problem Type Metric Auto-Keras AutoMM

fashion_mnist ✗ ✓ ✗ Multiclass F1_weighted↑ 0.876(0.020) 0.953(0.002)
food101 ✗ ✓ ✗ Multiclass F1_weighted↑ 0.024(0.045) 0.937(0.001)
Stanford_cars ✗ ✓ ✗ Multiclass F1_weighted↑ 0.055(0.079) 0.892(0.002)
magnetic_tile_defects ✗ ✓ ✗ Multiclass F1_weighted↑ 0.627(0.171) 0.956(0.014)
European_flood_depth ✗ ✓ ✗ Binary F1↑ 0.750(0.017) 0.790(0.008)
Oxford_flowers ✗ ✓ ✗ Multiclass F1_weighted↑ 0.123(0.155) 0.989(0.003)
OxfordIIITPet ✗ ✓ ✗ Multiclass F1_weighted↑ 0.157(0.283) 0.958(0.003)
CD18_cellphone ✗ ✓ ✗ Regression R

2 ↑ -18.390(35.120) -1.843(4.477)
HAM10000 ✗ ✓ ✗ Multiclass F1_weighted↑ 0.276(0.211) 0.608(0.014)
hateful_meme ✓ ✓ ✗ Binary F1↑ 0.572(0.099) 0.596(0.013)
petfinder ✓ ✓ ✓ Multiclass F1_weighted↑ 0.243 (0.040) 0.408(0.006)
memotion ✓ ✓ ✓ Multiclass F1_weighted↑ 0.297 (0.026) 0.467(0.013)
financial_news ✓ ✗ ✗ Multiclass F1_weighted↑ 0.678(0.027) 0.874(0.010)
MLDoc-11000 ✓ ✗ ✗ Multiclass F1_weighted↑ 0.916(0.006) 0.978(0.002)
gnad10 ✓ ✗ ✗ Multiclass F1_weighted↑ 0.521(0.029) 0.899(0.006)
MultiATIS-5000 ✓ ✗ ✗ Multiclass F1_weighted↑ 0.864(0.010) 0.990(0.003)
fb_dialog ✓ ✗ ✗ Multiclass F1_weighted↑ 0.982(0.003) 0.992(0.001)
SNIPS ✓ ✗ ✗ Multiclass F1_weighted↑ 0.049(0.018) 0.990(0.002)
ag_news ✓ ✗ ✗ Multiclass F1_weighted↑ 0.887(0.004) 0.944(0.001)
airbnb_melbourn ✓ ✗ ✓ Multiclass F1_weighted↑ 0.198(0.071) 0.397(0.011)
kick_start_funding ✓ ✗ ✓ Binary F1↑ 0.401 (0.151) 0.609(0.005)
cloth_review ✓ ✗ ✓ Regression R

2 ↑ 0.542(0.053) 0.735(0.004)
news_popularity ✓ ✗ ✓ Regression R

2 ↑ -1.306(1.863) 0.014(0.003)
California_house ✓ ✗ ✓ Regression R

2 ↑ -53757156.425 (55682587.109) 0.944(0.001)

Table 1: Results for unimodal/multimodal classification and regression. The mean performance metrics

and error bars (in parentheses) with 0.95 coverage are reported for both AutoMM and Auto-

Keras. These numbers are estimated using 5 independent repeats with different random seeds

using 1.96 × std/
√︁

# of repeats. Boldface indicates results that are better than the competing

framework with statistical significance at the level 0.05 using Wald test [Wald, 1943].

Figure 5: Comparison of AutoMM and Sentence-Transformer on Text to Text Matching (TTM), Image

to Image Matching (IIM), Text to Image Matching (TIM), and Image to Text Matching (ITM).

on Text to Text Matching (TTM), Image to Image Matching (IIM), Text to Image Matching (TIM),

and Image to Text Matching (ITM) tasks in Figure 5. AutoMM achieves competitive performance

with Sentence Transformer, while being more user-friendly and straightforward to utilize. For

Sentence Transformer, users have to manually select the optimal loss function for different tasks

to achieve the best performance, which requires the user to have extensive domain expertise and

a large amount of trial and error. However, AutoMM automates the entire pipeline while being

competitive in different tasks. For further details on datasets, baseline methods, metrics, and raw

results, please refer to the appendix.
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Vertex AI Nvidia Tao AutoMM

training

time (hrs)

mAP AP50

training

time (hrs)

mAP AP50

training

time (hrs)

mAP AP50

plantdoc 2.8 / 49.1 3.5 55.5 70.8 2.1(0.23) 58.7(0.38) 73.3(0.54)
Agriculture

deepfruits / / / 0.6 51.4 75.2 0.6(0.07) 71.3(0.56) 95.0(0.19)
chest10 3.8 / 36.8 2.5 19.5 41.4 2.1(0.11) 18.3(0.28) 37.2(1.2)

Medical

deeplesion / / / 23.5 39.4 67.5 18.7(0.40) 40.4(0.24) 70.5(0.49)
Domain Transfer comic 2.8 / 57.6 1.1 22.7 42.6 0.9(0.09) 42.3(0.72) 67.7(0.62)
Remote Sencing dota 11.8 / 60.7 10.0 47.9 74.1 9.0(0.75) 51.3(0.14) 76.9(0.18)
Autonomous Driving kitti / / / 7.9 78.7 96.4 5.9(0.44) 71.5(0.76) 95.4(0.14)

Infrared thermal / / / 0.3 66.8 82.2 0.3(0.05) 82.9(0.88) 95.3(1.08)

Table 2: Comparison of AutoMM and baseline methods on object detection tasks in various domains.

The mean performance metrics and error bars (in parentheses) with 0.95 coverage are reported

for AutoMM. These numbers are estimated using 3 independent repeats with different random

seeds using 1.96 × std/
√︁

# of repeats.

4.3 Object Detection

In Table 2, we select several downstream tasks from various domains and compare AutoMM

with baseline frameworks from both Vertex AI
2
and NVIDIA TAO

3
. Throughout the comparison,

we demonstrate that AutoMM surpasses other AutoML object detection solutions in terms of
performance and speedwhile offering greater ease of use. While Vertex AI provides efficient model

development and deployment tools, it may have limitations in pricing flexibility and customization

options compared to other solutions. In our experiments, due to the high cost of Vertex AI, we

focused on evaluating it using the "Higher accuracy (new)" option on only four datasets. In

contrast, we conducted a thorough comparison with NVIDIA TAO using a pretrained FAN-L-

Hybrid backbone [Zhou et al., 2022]. It is important to note that both Vertex AI and NVIDIA

TAO have specific data requirements, necessitating additional preprocessing beyond the common

COCO [Lin et al., 2014] format. Furthermore, NVIDIA TAO requires configuration for each dataset.

In contrast, AutoMM can be used with just a few lines of code without additional data processing or

configuration. For further details on the datasets, baseline methods, metrics, and additional setup

information, please refer to the appendix.

4.4 Semantic Segmentation

In Table 3, we compare AutoMM with other open-source semantic segmentation toolboxes across

datasets from diverse domains. AutoMM demonstrates superior or comparable performance with
minimal trainable model parameters. This is achieved through SAM’s parameter-efficient fine-

tuning, enabling effective segmentation results within a low parameter budget. Additionally,

compared to these toolboxes, AutoMM offers a more streamlined approach to training setup as

outlined in Section 3.2, eliminating the need of rewriting dataloaders or configuration files for

new datasets. For further details on datasets, baseline methods, metrics, and additional setup

information, please refer to the appendix.

5 Conclusion and Future Work

This paper introduces AutoMM, an AutoML toolbox with a focus on foundation models and

multimodal learning. Key of AutoMM lies in its support for multiple modalities, tasks, and model

zoos, achieved through a unified internal pipeline and user-friendly APIs. To evaluate AutoMM’s

unique capacities, we also build comprehensive benchmarks covering unimodal and multimodal

data, as well as basic and advanced tasks. Experimental results demonstrate AutoMM’s superior

performance and ease of use. While AutoMM represents an initial step towards bridging practical

2
Vertex AI, Google Cloud, https://cloud.google.com/vertex-ai.
3
NVIDIA TAO Toolkit, NVIDIA Developer, https://developer.nvidia.com/tao-toolkit.
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Method #Params (M)

Medical Natural Images Agriculture Remote Sensing

Kvasir CVC-612 ISIC 2017 CAMO SBU Trans10K-v2 Leaf Road

𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝑆𝛼 ↑ 𝐸𝜙 ↑ Jac ↑ 𝑆𝛼 ↑ 𝐸𝜙 ↑ BER ↓ mIoU ↑ IoU ↑ IoU ↑

Detectron2 47.56 90.4 94.5 89.6 91.8 76.1 73.4 81.7 7.11 70.8 66.6 54.9

OpenSeg 74.50 92.2 95.4 93.3 95.3 78.2 76.3 81.1 7.92 66.1 78.9 35.3

AutoMM 8.80 92.1 94.7 90.5 92.5 77.9 89.3 92.9 3.90 69.2 72.9 62.0

Table 3: Comparison of AutoMM and baselines on semantic segmentation tasks in various domains.

AutoML development with cutting-edge AI research, closing the remaining gap requires significant

effort. AutoMM is in active development, and several potential directions are being considered:

Multimodal Foundation Models. The current late-fusion model can accommodate various

modality combinations, but its performance may be suboptimal because unimodal foundation

models are pretrained independently. Using multimodal foundation models that capture modality

interactions during pretraining could enhance performance on some downstream tasks.

Generative Tasks. While AutoMM supports discriminative tasks, e.g., classification and regres-

sion, there is a need to include generative tasks like image generation and question answering. Given

the growing interest in generative AI and the availability of open-source generative foundation

models, incorporating support for generative tasks could expand AutoML capabilities significantly.

More Modalities. Many real-world applications involve data modalities beyond images, text,

and tabular data. AI research has seen rapid progress in modalities such as documents, audio, and

video. Expanding AutoMM to support these modalities and integrating relevant research outcomes

can further broaden the scope of AutoML.

6 Broader Impact Statement

AutoMM presents a notable advancement in AutoML by providing a unified framework capable of

processing multimodal data for complex tasks with minimal input required. It democratizes machine

learning, enabling non-experts to utilize advanced capabilities for tasks like object detection and

image segmentation. This can spur innovation and enhance productivity across multiple domains.

The potential negative impacts of the proposed approach are similar to those of other methods

reliant on foundation models, encompassing issues such as data privacy, security concerns, and

the perpetuation of bias in machine learning models. Like these methods, AutoMM’s effectiveness

and ethical implications are tightly coupled with the characteristics of the underlying data and the

design of the foundation models it employs. It is recommended that users must scrutinize their

data to prevent the reinforcement of existing biases through the models trained on them.
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1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All claims are supported by the experimental evaluation in

Section 4.

(b) Did you describe the limitations of your work? [Yes] See Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] The paper conforms to the guide-

lines.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] All methods of one task use an

identical evaluation protocol.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] See the appendix for details.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] We ran experiments with

multiple random seeds on basic tasks and semantic matching. We used a fixed seed for

object detection and semantic segmentation experiments due to the high cost and limited

budget. Given that AutoMM significantly outperforms the comparative methods on the

detection datasets, we don’t expect a different seeds can close the gap.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] We include the uncertainty measurements in Tables 1, 12, 11, 14, and 13.

(e) Did you report the statistical significance of your results? [Yes] See results in Section 4.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] Tabular-only

tasks are out of the scope of this work.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [No] We fixed the epoch number for each task.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See the appendix for details.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See Section D.5 for details.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] See Section A for details.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] See Section A for details.
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(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] The code is properly documented and we made sure that

it can be executed in a fresh environment.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] See Section A for details.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [No] We provide the raw data and
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using/curating if the license requires it? [N/A] The evaluation was performed using public

benchmark datasets.

(c) Did you discuss whether the data you are using/curating contains personally identifiable
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under the Apache 2.0 License.
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A Reproducibility
We provide comprehensive instructions and scripts to reproduce this paper’s results in the fol-

lowing Github repository: https://github.com/tonyhoo/automm-benchmark-paper. Within this

repository, you can find the raw data results as well. Moreover, AutoMM offers a tutorial website

(https://auto.gluon.ai/stable/tutorials/multimodal/index.html) hosting many hands-on

tutorials such as:

• Image prediction (https://auto.gluon.ai/stable/tutorials/multimodal/image_
prediction/beginner_image_cls.html)

• Text prediction (https://auto.gluon.ai/stable/tutorials/multimodal/text_prediction/
beginner_text.html)

• Multimodal prediction (https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_
prediction/beginner_multimodal.html)

• Image-to-image semantic matching (https://auto.gluon.ai/stable/tutorials/multimodal/
semantic_matching/image2image_matching.html)

• Text-to-text semantic matching (https://auto.gluon.ai/stable/tutorials/multimodal/
semantic_matching/text2text_matching.html)

• Image–text semantic matching (https://auto.gluon.ai/stable/tutorials/multimodal/
semantic_matching/image_text_matching.html)

• Object detection (https://auto.gluon.ai/stable/tutorials/multimodal/object_
detection/quick_start/quick_start_coco.html)

• Semantic segmentation (https://auto.gluon.ai/stable/tutorials/multimodal/image_
segmentation/beginner_semantic_seg.html)

Each tutorial includes both toy data and explanatory code. Additionally, a Colab link is pro-

vided at the beginning of each tutorial, enabling users to execute the tutorial while following

along. When running AutoMM tutorials in Colab, it’s important to select the GPU accelera-

tor. Note that achieving complete reproducibility across different environments can be challeng-

ing due to the numerous dependencies AutoMM relies on. As highlighted in our setup.py file

(https://github.com/autogluon/autogluon/blob/master/multimodal/setup.py#L23-L56), ensuring

the reproducibility of each dependency is not always feasible. For instance, PyTorch, one of our

crucial dependencies, acknowledges the difficulty in guaranteeing reproducibility across various

releases, commits, or platforms. More information on this can be found in their documentation

(https://pytorch.org/docs/stable/notes/randomness.html#reproducibility).

B Tutorials
This section presents an exhaustive list of our hands-on tutorials, with links directing to our official

documentation website. Each tutorial comes with a short introduction for better readability.

B.1 Text Data - Classification/Regression/NER
• AutoMM for Text Prediction - Quick Start. How to quickly train text prediction models with

AutoMM.

• AutoMM for Text Prediction - Multilingual Problems. How to use AutoMM to build models for

non-English languages.

• AutoMM for Named Entity Recognition - Quick Start. How to use AutoMM for entity extraction

from text data.
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B.2 Image Data – Classification / Regression

• AutoMM for Image Classification - Quick Start. How to quickly train image classification models

with AutoMM.

• AutoMM for Zero-shot Image Classification. How to enable zero-shot image classification in

AutoMM via pretrained CLIP.

B.3 Multimodal Data – Classification / Regression / NER

• AutoMM for Image+Text+Tabular - Quick Start. How to use AutoMM to train a model on image,

text, categorical, and numeric data.

• AutoMM for Text+Tabular - Quick Start. How to apply AutoMM to multimodal data tables with

a mix of text, categorical, and numeric columns.

• AutoMM for Entity Extraction with Text and Image - Quick Start. How to use AutoMM to train a

model for multimodal named entity recognition.

B.4 Image/Text Data – Semantic Matching

• Text-to-text Semantic Matching with AutoMM - Quick Start. How to use AutoMM to train models

for measuring the similarity of two text items.

• Image-to-image Semantic Matching with AutoMM - Quick Start. How to use AutoMM to train

models for measuring the similarity of two images.

• Image-Text Semantic Matching with AutoMM - Quick Start. How to use AutoMM to train models

for matching image and text data.

• Image-Text Semantic Matching with AutoMM - Zero-shot. How to use AutoMM for zero-shot

matching of image and text data.

• Text Semantic Search with AutoMM. How to use semantic embeddings to improve search ranking

performance.

B.5 Image Data – Object Detection

• AutoMM for Object Detection - COCO Format. How to use AutoMM to quickly train a object

detector on a dataset with the COCO format.

• AutoMM for Object Detection - DataFrame Format. How to use AutoMM to quickly train a

detector with the data in the DataFrame format.

• Prepare COCO2017 Dataset. How to prepare COCO2017 dataset for object detection.

• Prepare Pascal VOC Dataset. How to prepare Pascal VOC dataset for object detection.

• Prepare Watercolor Dataset. How to prepare Watercolor dataset for object detection.

• Prepare Pathhole Dataset. How to prepare Pathhole dataset for object detection.

• Convert VOC Format Dataset to COCO Format. How to convert a dataset from the VOC format

to the COCO format.

• Finetune on COCO Format Dataset with Customized Settings. How to quickly customize high

quality object detection model with AutoMM on COCO format datasets.
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B.6 Image Data – Segmentation

• AutoMM for Semantic Segmentation - Quick Start. How quickly train semantic segmentation

models with AutoMM.

B.7 Advanced Topics

• Single GPU Billion-scale Model Training via Parameter-Efficient Finetuning. How to take advan-

tage of large foundation models with the help of parameter-efficient finetuning.

• Hyperparameter Optimization in AutoMM. How to do hyperparameter optimization in AutoMM.

• Knowledge Distillation in AutoMM How to do knowledge distillation in AutoMM.

• Customize AutoMM. How to customize AutoMM configurations.

• AutoMM Presets. How to use AutoMM presets.

• Few Shot Learning with AutoMM. How to use foundation models + SVM for few shot learning.

• Handling Class Imbalance with AutoMM - Focal Loss. How to use AutoMM to handle class

imbalance.

• Faster Prediction with TensorRT. How to use TensorRT in accelerating AutoMM model inference.

• Continuous Training with AutoMM. Different use cases for continuous training with AutoMM.

C Presets

In the experiments, AutoMM used the best_quality preset. Given a problem type, the hyper-

parameters are fixed, which means different datasets of the same problem type use the same

hyperparamters without tuning. The detailed hyperparameters of each problem type are provided

in Table 4.

The presets hyperparameters were determined through an offline search on our internal bench-

mark datasets. During this searching, we conducted random search for each task on the combi-

nations of model backbone (task-specific model pools), feature pooling mode (CLS, mean), batch

size (4, 8, 16, 32, 64, 128, 256), learning rate (1e-5, 1e-4, 1e-3), learning rate choice (layerwise

decay, two-stage, single-stage), weight decay (1e-2, 1e-3, 1e-4), learning rate schedule (cosine decay,

multi-step, polynomial decay, no decay), warmup steps (0.1, 0.2, 0.3), patience (5, 10, 20), validation

check internal (0.5, 1), and epochs (10, 20, 30, 40, 50, 60). We used the budget of running 2000 jobs

per task.

Based on the searched presets, we find that different tasks generally favor different foundation

models. For example, the basic task uses deberta-v3 as the text backbone, but the text-text matching

uses all-mpnet-base-v2. Most preset hyperparameters of object detection and semantic segmentation

are different from those the basic classfication/regression. For instance, the basic task uses layerwise

leaning rate decay, object detection uses two-stage learning rate, and semantic segmentation utilizes

a single-stage learning rate. While the presets of semantic matching are similar to the basic task,

the learning rate of image-text matching is different from the basic task’s (1e-5 vs. 1e-4).

D Classification and Regression

D.1 Dataset Details

We have included datasets of a wide range of domains to evaluate on the classification and regression

tasks, and summarized in Table 5.

Text Classification and Natural Language Understanding. We include datasets like

MLDoc-11000[Schwenk and Li, 2018] and ag_news[Zhang et al., 2015] for document and news
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Multimodal

Classification/Regression

(best_quality)

Semantic Matching

TTM

(best_quality)

Semantic Matching

IIM

(best_quality)

Semantic Matching

ITM

(best_quality)

Object Detection

(best_quality)

Semantic Segmentation

(best_quality)

text model deberta-v3-base \ \ \ \ \

image model swin_large all-mpnet-base-v2 swin_large \ \ \

tabular model ft_transformer \ \ \ \ \

task specific model \ \ \ clip-vit-L14-336 dino-5scale_swin-l sam-vit-huge

pooling_mode cls mean \ \ \ \

batch_size 128 128 128 128 32 4

precision 16-mixed 16-mixed 16-mixed 16-mixed 16-mixed 16-mixed

learning_rate 1e-4 1e-4 1e-4 1e-5 1e-4 1e-4

lr_choice layerwise_decay layerwise_decay layerwise_decay layerwise_decay two-stage single_stage

layerwise_lr_decay 0.9 0.9 0.9 0.9 \ \

low_lr_layers \ \ \ \ ["backbone"] \

lr_multiplier \ \ \ \ 0.1 \

weight_decay 0.001 0.001 0.001 0.001 0.0001 0.0001

gradient_clip_val 1 1 1 1 0.1 1

lr_schedule cosine_decay cosine_decay cosine_decay cosine_decay multi-step polynomial_decay

lr_steps \ \ \ \ [30, 55] \

warmup_steps 0.1 0.1 0.1 0.1 0. 0.

patience 10 10 10 10 20 10

val_check_interval 0.5 0.5 0.5 0.5 1.0 1.0

check_val_every_n_epoch 1 1 1 1 1 1

max_epochs 10 10 10 10 60 30

efficient_finetune \ \ \ \ \ lora (r=32,a=32)

Table 4: Preset configuration of AutoMM for each problem type.

Dataset Domain Problem Type #Train #Val #Test #Category Task Description

fashion_moist Fashion Multiclass 60000 0 10000 10 Identify fashion product categories

food101 Food Multiclass 75750 0 25250 101 Identify food categories

Stanford_cars Automotive Multiclass 8144 0 8041 196 Identify car models

magnetic_tile_defects Industrial Multiclass 1008 0 336 6 Identify defects in tiles

European_flood_depth Environmental Science Binary 3153 0 557 2 Identify flood types

Oxford_flowers Botany Multiclass 1020 0 6149 102 Identify flower types

OxfordIIITPet Veterinary Multiclass 4436 1478 1479 37 Identify pet breeds

CD18_cellphone Consumer Product Regression 2532 0 633 NA Predict cellphone price

HAM10000 Medical Multiclass 10015 0 1512 7 Identify dermatological disease types

hateful_meme Social Media Binary 6800 0 1700 2 Detect harmful content

petfinder Animal Welfare Multiclass 11994 0 2999 5 Predict adoption speed

memotion Social Media Multiclass 5593 0 1399 5 Categorize sentiment

financial_news Media Multiclass 3876 0 969 3 Categorize sentiment

MLDoc-11000 Information Retrieval Multiclass 9777 1223 4000 4 Document classification

gnad10 Social Media Multiclass 8228 1017 1028 9 German news articles categorization

MultiATIS-5000 Travel Multiclass 4424 554 891 17 Intent recognition

fb_dialog Social Media Multiclass 25288 3162 7799 12 Intent recognition

SNIPS Technology Multiclass 13084 700 700 7 Intent recognition

ag_news Media Multiclass 106666 13334 7600 4 Identify news topic

airbnb_melbourn Real Estate Multiclass 18316 0 4579 10 Predict price label

kick_start_funding Business Binary 86502 0 21626 2 Predict crowdfunding campaign’s success

cloth_review Fashion Multiclass 18788 0 4698 5 Categorize sentiment

news_popularity Media Regression 24007 0 6002 NA Predict the number of shares of news articles

California_house Real Estate Regression 37951 0 9488 NA Predict house prices

Table 5: Basic Task Datasets
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classification tasks. MLDoc-11000 is geared towards multilingual document classification, whereas

ag_news focuses on categorizing news articles. The MultiATIS-5000[Xu et al., 2020] dataset is used

for understanding user input in the context of the Air Travel Information System. SNIPS[Coucke
et al., 2018] is another dataset aimed at natural language understanding, tailored for an AI assis-

tant’s conversational understanding. The cloth_review[Agarap, 2018] dataset provides a basis for
sentiment analysis in customer reviews for clothing items, and the financial_news[Malo et al.,

2014] dataset is used for sentiment analysis within the financial domain.

Image Classification. For visual recognition tasks, we employ datasets like OxfordIIITPet[Parkhi
et al., 2012], fashion_mnist[Xiao et al., 2017], food101[Bossard et al., 2014], and

stanfordcars[Krause et al., 2013]. OxfordIIITPet[Parkhi et al., 2012] contains images for

pet breed identification, fashion_mnist for clothing articles, food101 for various food categories,

and stanfordcars for automobile models. These datasets vary in complexity and are standard

benchmarks in the field of computer vision.

E-Commerce and Housing. The airbnb[air] dataset is included for predicting housing prices

and could be used for recommendation systems within the housing rental market. Similarly, the

cal_house[Pace and Barry, 1997] dataset provides data for California housing price prediction,

which is a classic regression problem.

Medical Imagery. The ham10000[Tschandl et al., 2018] dataset is integral for medical image analysis,

focusing on skin lesion classification for disease detection.

Defect Detection. We utilize magnetictiledefects[Huang et al., 2020] dataset for defect detection
in manufacturing processes. This dataset is used for automating quality control in an industrial

setting.

Sentiment Analysis and Memetics. The hateful_meme[Kiela et al., 2021] and memotion[Mishra

et al., 2023] datasets are curated for detecting sentiment and emotion in memes, which is an

emerging field in natural language processing and computer vision.

Others. Additional datasets such as petfinder[pet] are used for pet adoption services, and

news_popularity[Fernandes et al., 2015] for predicting the popularity of news articles, demonstrat-

ing the varied applications of machine learning across different sectors.

D.2 Baseline Methods

We considered several other AutoML frameworks as baselines, e.g. Auto-Sklearn, Auto-Keras, and

H2O AutoML. However, among these, only Auto-Keras supports multimodal input.

D.3 Metrics

The metrics being used depend on the specific tasks.

For regression problems with continuous labels, we use the coefficient of determination, com-

monly known as R-squared (R2):

𝑅2 = 1 −
∑𝑛

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2∑𝑛

𝑖=1
(𝑦𝑖 − 𝑦)2

,

where 𝑦𝑖 is the value of the label, 𝑦𝑖 is the predicted value from the regression model, and 𝑦 is the

mean of the actual values 𝑦𝑖 over all 𝑛 observations.

For binary classification tasks, we use the F1 score (𝑓 1), which is the harmonic mean of precision

and recall:

F1 = 2 × precision × recall

precision + recall

,

where

precision =
True Positive

True Positive + False Positive

and recall =
True Positive

True Positive + False Positive
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.

For multiclass classification tasks, we use the weighted F1 score (𝑓 1weighted), which is a weighted

average of the F1 score for each class, taking into account label imbalance:

𝐹1weighted =

𝐶∑︁
𝑖=1

𝑤𝑖 · 𝑓 1𝑖

where𝐶 is the number of classes, F1𝑖 is the F1 score for class 𝑖 ,𝑤𝑖 is the proportion of true instances

for class 𝑖 in the dataset.

All reported metrics are computed on a holdout test set not used for training or hyperparameter

selection. Some of the datasets include a test set while others do not. In the cases where they do

not, we randomly select 20% of the training data as the test set.

D.4 Setup

We used AutoMM’s best_quality presets for all datasets. Since there is no presets provided in

Auto-Keras, we adopted the default configuration as suggested by their tutorial.

We used AWS EC2 g4dn.12xlarge instances equipped with 4 NVIDIA T4 GPUs for all experiment

runs. The total GPU time used for training is about 852 hours, which includes 5 repeats with ablation

studies on 24 datasets.

D.5 Ablation Studies

Given one pre-trained model, different fine-tuning techniques may result in performance variance.

To tease apart the effects of various tricks used in fine-tuning, we conducted extensive ablation stud-

ies. AutoMM best_quality preset have 5 tricks applied (cosine_decay, gradient_clip, greedy_soup,
layerwise_lr_decay and weight_decay). We conducted the experiment by adding each of the 5 tricks

to the baseline separately with results presented in columns "+ trick_name", and also by applying

all tricks to the baseline ("+ all"). The results are shown in Table 6. Our findings indicate significant

performance improvements when employing greedy soup ("+ greedy_soup") or incorporating all

fine-tuning enhancements ("+ all") compared to the baseline model without any modifications

("AutoMM_base"). Notably, the highest win-rate observed compared across all configurations in

our study was achieved with the "+ all" configuration, recording a win-rate of 0.625 (15/24), which

forms the basis for our "best_quality" preset.

E Object Detection

E.1 Dataset Details

Following [Fang et al., 2024], we choose to evaluate the performance on several downstream object

detection datasets spanning diverse domains such as agriculture, medical, comic domain transfer,

remote sensing, autonomous driving, and infrared imagery. We have excluded simpler datasets

while incorporating larger and more intricate ones to ensure a comprehensive evaluation. These

datasets are summarized in Table 7.

Agriculture. We choose plantdoc [Singh et al., 2020] dataset for plant disease detection and

deepfruits [Sa et al., 2016] dataset for fruits detection. Plantdoc has 31 categories, containing 2328

images with 8353 bounding boxes for training and validation, and 239 images with 454 bounding

boxes for testing. Deepfruits has 7 categories, containing 457 images with 2552 bounding boxes for

training and validation, and 114 images with 589 bounding boxes for testing.

Medical Images. We choose ChestX-Det10 [Liu et al., 2020] dataset for detection of Thoracic

Abnormalities in chest X-ray and deeplesion [Yan et al., 2018] dataset for lesions detection in CT

images. ChestX-Det10 has 10 categories, containing 2320 images with 6863 bounding boxes for

training and validation, and 459 images with 1476 bounding boxes for testing. Deeplesion has 1
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Task AutoMM_base + cosine_decay + grad_clip + greedy_soup + layerwise_lr_decay + weight_decay + all

fashion_mnist ↑ 0.947(0.002) 0.947(0.002) 0.947(0.002) 0.955(0.001) 0.948(0.001) 0.946(0.003) 0.953(0.002)

food101 ↑ 0.920(0.003) 0.921(0.001) 0.917(0.002) 0.935(0.002) 0.923(0.003) 0.917(0.003) 0.937(0.001)
stanfordcars ↑ 0.877(0.003) 0.879(0.003) 0.871(0.007) 0.890(0.004) 0.881(0.003) 0.879(0.003) 0.892(0.002)
magnetictiledefects ↑ 0.955(0.010) 0.964(0.008) 0.956(0.016) 0.961(0.007) 0.959(0.010) 0.961(0.008) 0.956(0.014)

europeanflooddepth ↑ 0.785(0.017) 0.789(0.014) 0.786(0.014) 0.796(0.005) 0.786(0.010) 0.788(0.007) 0.790(0.008)

oxfordflowers ↑ 0.991(0.002) 0.990(0.002) 0.991(0.003) 0.989(0.004) 0.991(0.001) 0.992(0.002) 0.989(0.003)

OxfordIIITPet ↑ 0.955(0.005) 0.956(0.003) 0.952(0.003) 0.960(0.002) 0.958(0.006) 0.956(0.002) 0.958(0.003)

cd18 ↑ -0.037(0.506) -2.209(4.705) -1.368(3.740) -0.033(0.507) -1.649(3.426) -1.827(4.392) -1.843(4.477)

ham10000 ↑ 0.532(0.042) 0.563(0.023) 0.594(0.024) 0.538(0.027) 0.588(0.017) 0.569(0.020) 0.608(0.014)
hateful_meme ↑ 0.577(0.018) 0.589(0.027) 0.612(0.023) 0.590(0.020) 0.586(0.013) 0.599(0.012) 0.596(0.013)

petfinder ↑ 0.398(0.008) 0.398(0.006) 0.402(0.007) 0.397(0.008) 0.403(0.006) 0.389(0.011) 0.408(0.006)
memotion ↑ 0.446(0.014) 0.455(0.014) 0.458(0.021) 0.449(0.018) 0.457(0.014) 0.457(0.020) 0.467(0.013)
financial_news ↑ 0.868(0.011) 0.866(0.013) 0.863(0.004) 0.870(0.012) 0.868(0.011) 0.868(0.006) 0.874(0.010)
MLDoc-11000 ↑ 0.974(0.002) 0.973(0.003) 0.973(0.002) 0.977(0.001) 0.975(0.002) 0.973(0.002) 0.978(0.002)
gnad10 ↑ 0.881(0.006) 0.874(0.007) 0.880(0.004) 0.889(0.006) 0.891(0.004) 0.880(0.008) 0.899(0.006)
MultiATIS-5000 ↑ 0.989(0.001) 0.989(0.002) 0.990(0.001) 0.990(0.001) 0.987(0.004) 0.987(0.005) 0.990(0.003)

fb_dialog ↑ 0.992(0.001) 0.992(0.001) 0.991(0.001) 0.993(0.000) 0.992(0.001) 0.991(0.001) 0.992(0.001)

SNIPS ↑ 0.989(0.003) 0.986(0.003) 0.985(0.001) 0.988(0.003) 0.987(0.005) 0.989(0.002) 0.990(0.002)
ag_news ↑ 0.935(0.002) 0.938(0.002) 0.938(0.001) 0.941(0.002) 0.941(0.002) 0.937(0.001) 0.944(0.001)
airbnb ↑ 0.313(0.008) 0.309(0.007) 0.323(0.020) 0.314(0.009) 0.342(0.016) 0.305(0.012) 0.397(0.011)
kick_start ↑ 0.331(0.166) 0.383(0.199) 0.296(0.255) 0.415(0.213) 0.590(0.009) 0.279(0.243) 0.609(0.005)
cloth_review ↑ 0.719(0.010) 0.717(0.007) 0.722(0.002) 0.725(0.012) 0.730(0.005) 0.716(0.008) 0.735(0.004)
news_popularity ↑ 0.008(0.001) 0.009(0.003) 0.008(0.001) 0.009(0.002) 0.012(0.001) 0.009(0.003) 0.014(0.003)
cal_house ↑ 0.929(0.008) 0.931(0.002) 0.937(0.002) 0.929(0.003) 0.938(0.001) 0.929(0.004) 0.944(0.001)

Table 6: Ablation studies for the classification and regression experiments. The numbers indicate the

average performance metric (and error bars) for each dataset as we introduce each option.

The error bars are estimated using 5 independent repeats with different random seeds using

1.96 × std/
√︁

# of repeats.

Dataset Domain #Train #Val #Test #Category Task Description

plantdoc

Agriculture

8353 454 457 31 Detection of plant desease detection.

deepfruits 2552 0 589 7 Detection of fruits detection.

chest10

Medical

6863 0 1476 10 Detection of Thoracic Abnormalities in chest X-ray.

deeplesion 23785 5085 5121 1 Detection of lesions in CT images.

comic Domain Transfer 3213 0 3175 6 Detection of common objects in comic domain.

dota Remote Sencing 181746 54426 236172 15 Detection of objects in aerial images.

kitti Autonomous Driving 38076 0 52457 3 Detection in self driving scenario.

thermal Infrared 181 49 27 3 Detection for infrared images.

Table 7: Object Detection Datasets

categories, containing 22919 images with 23785 bounding boxes for training, 4889 images with

5085 bounding boxes for validation, and 4927 images with 5121 bounding boxes for testing.

Comic Domain Transfer. We choose comic [Inoue et al., 2018] dataset for detection of common

objects in comic domain. Comic has 6 categories, containing 1000 images with 3213 bounding

boxes for training and validation, and 1000 images with 3175 bounding boxes for testing.

Remote Sensing. We choose dota [Xia et al., 2018] dataset for for object detection in aerial

images. Dota has 15 categories, containing 9305 images with 181746 bounding boxes for training

and validation, and 2955 images with 54426 bounding boxes for testing.

Autonomous Driving. We choose KITTI [Geiger et al., 2012] dataset for for object detection

in the self driving scenario. KITTI has 3 categories, containing 5481 images with 38076 bounding

boxes for training and validation, and 7481 images with 52457 bounding boxes for testing.

Infrared Imagery. We choose Thermal Dogs and People [Ciaglia et al., 2022] dataset for for

object detection for infrared images. Thermal Dogs and People dataset has 3 categories, containing

142 images with 181 bounding boxes for training, 41 images with 49 bounding boxes for validation,

and 20 images with 27 bounding boxes for testing.
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Dataset Domain #Train #Val #Test Task Description

Kvasir Medical 720 180 100 segment abnormal growths within gastrointestinal endoscopic images.

CVC-612 Medical 440 110 62 segment abnormal growths within gastrointestinal endoscopic images.

ISIC2017 Medical 200 600 150 segment various types of skin lesions.

CAMO Natural Images 3636 404 250 segment objects that are concealed within complex backgrounds.

SBU Natural Images 3677 408 638 recognize shadow regions within a scene.

Trans10K-v2 Natural Images 5000 1000 4428 multi-class transparent object segmentation.

Leaf Agriculture 399 99 90 segment individual plant leaf diseases within agricultural images.

Road Remote Sensing 1107 13 48 segment road or street regions within images or video frames.

Table 8: Semantic Segmentation Datasets

E.2 Baseline Methods

We compare AutoMMwith baseline frameworks from both Vertex AI and Nvidia TAO. While Vertex

AI offers efficient model development and deployment tools, it may have limitations in pricing

flexibility and customization options compared to other solutions. In our experiment, we focused

on evaluating Vertex AI only on four datasets using its "Higher accuracy (new)" option due to its

high cost, while conducting a thorough comparison with Nvidia TAO using DINO [Zhang et al.,

2022] with a pretrained FAN-L-Hybrid backbone [Zhou et al., 2022] for 60 epochs training. It’s

important to note that both Vertex AI and Nvidia TAO have specific data requirements, requiring

additional preprocessing beyond the common COCO[Lin et al., 2014] format, while Nvidia TAO

additionally requires configuration per dataset.

E.3 Metrics

For object detection evaluation, mAP [Lin et al., 2014] and AP50 [Lin et al., 2014] are the key metrics

used for assessing both Nvidia Tao and AutoMM models. However, in the case of Vertex AI, only

AP50 is reported as the evaluation metric in their service.

E.4 Raw Results

We provide the model performance in Table 2. However, due to the considerable time and computa-

tional resources required, we were unable to conduct multiple rounds of experiments for object

detection tasks.

E.5 Setup

We use a AWS EC2 P4d.24xlarge server with 8x A100 40G GPUs for training and evaluating Nvidia

TAO and AutoMM. For Vertex AI, we use their online service API.

F Semantic Segmentation

F.1 Dataset Details

Following [Zhong et al., 2024], we choose several datasets from real-world semantic segmentation

scenarios including medical, natural images, agriculture and remote sensing. These datasets are

summarized in Table 8.

Medical Images. We choose two polyp segmentation datasets Kvasir [Jha et al., 2020] and

CVC-612 [Bernal et al., 2015], and one skin lesion segmentation dataset ISIC 2017 [Codella et al.,

2018]. Kvasir contains 1000 images and CVC-612 includes 612 open-access images. We randomly

divide a validation set comprising 20% of the images from the training set, for validation during

training. ISIC 2017 provides 2000 images for training, 150 images for 643 validation and 600 images

for testing.

Natural Images. We choose CAMO [Le et al., 2019] for camouflaged object segmentation,

SBU [Vicente et al., 2016] for shadow detection, and Trans10K-v2 [Xie et al., 2021] dataset for
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Method
Medical Natural Images Agriculture Remote Sensing

Kvasir CVC-612 ISIC 2017 CAMO SBU Trans10K-v2 Leaf Road

Detectron2 3.3 3.3 10.8 13.7 11.3 15.6 1.1 4.4

OpenSeg 3.2 3.2 6.6 9.4 9.1 15.0 1.3 2.7

AutoMM 5.2 5.2 8.3 15.3 15.7 22.2 1.5 5.1

Table 9: Training time (hours) of semantic segmentation experiments.

multi-class transparent object segmentation. CAMO provides 1000 images for training and 250 for

testing. We train on the combined dataset consists of the training images from COD10K [Fan et al.,

2020] and CAMO for 20 epochs, and test on the three datasets. Additionally, we randomly split 10%

of the images from the training set for validation. SBU contains 4085 and 638 images for training

and testing. We randomly split 10% of the images from the training set for validation. Trans10K-v2

contains background plus two main categories divided into 11 fine-grained categories, using 5000,

1000 and 4428 images for training, validation and testing, respectively.

Agriculture. We use Leaf [Rath, 2023] dataset for leaf disease segmentation. It contains 498

images for training and 90 images for testing. We randomly split the training images into 80% for

training, 20% for validation.

Remote Sensing. We choose Massachusetts Roads Dataset [Mnih, 2013] for road segmentation,

which contains 1107 images for training, 13 images for validation and 48 images for testing.

F.2 Baseline Methods

Detectron2 [Wu et al., 2019], developed by Facebook AI Research, is a cutting-edge library of-

fering state-of-the-art detection and segmentation algorithms. We use its supported ‘Seman-

ticFPN+PointTrend’ method as our baseline. PointRend [Kirillov et al., 2019] can be seamlessly

integrated into instance and semantic segmentation tasks atop existing state-of-the-art models.

And ‘SemanticFPN+PointTrend’ demonstrates superior performance on the Cityscapes [Cordts

et al., 2016] semantic segmentation dataset.

OpenSeg [Contributors, 2019] is the official PyTorch implementation of the OCNet [Yuan and

Wang, 2018] series and SegFix [Yuan et al., 2020]. We choose its supported ‘OCR+RMI’ method,

recognized as the state-of-the-art in their benchmark study. This method employs HRNet [Sun et al.,

2019] as its backbone, ensuring the preservation of high-resolution representations throughout

both the image encoding and decoding stages. Moreover, the training loss RMI loss [Zhao et al.,

2019], effectively utilizes region mutual information (RMI) to model dependencies among pixels.

F.3 Metrics

We use 𝑆𝛼 [Fan et al., 2017] and 𝐸𝜙 [Fan et al., 2018] as our metrics for polyp segmentation and

camouflaged object segmentation. These metrics are widely acknowledged within these domains.

𝑆𝛼 quantifies the similarity between predictions and ground-truths, while 𝐸𝜙 provides assessments

at both pixel and global levels of similarity. We use Jaccard Index [Codella et al., 2018] for skin

lesion segmentation as the ISBI 2017 challenge ranked methods according to it. We use Balanced

Error Rate (BER) [Vicente et al., 2016] for shadow detection, which is a common metric in this area

where shadow pixels are considerably less than non-shadow pixels. For leaf segmentation, road

segmentation and transparent object detection, we use IoU metric.
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Dataset #Train #Val #Test Pos Ratio Task Metric Task Description

MRPC 3,261 815 1,725 0.67 TTM ROC_AUC identify if a sentence from a newswire artile is a paraphrase of another

MultiNLI 160,000 40,000 9,834 0.33 TTM ROC_AUC identify if a sentence entails another sentence from different genres

Quora 323,442 40,430 40,429 0.37 TTM ROC_AUC identify if a Quora questions is duplicate of another question

SciTail 18,870 4,717 2,126 0.37 TTM ROC_AUC identify if a sentence entails another sentence in the science domain

SNLI 293,282 73,321 6,605 0.50 TTM ROC_AUC identify if a human-written sentence entails another sentence

SOP 3,622 905 2,263 0.74 IIM ROC_AUC identify if two images are from the same online product

Airbnb 1,970 493 633 0.40 IIM ROC_AUC identify if two images are from the same room in Airbnb

CUB200 16,151 2,020 16,515 0.27 IIM ROC_AUC identify if two images are from the same subcategory of birds

iPanda50 4,000 1,000 2,000 0.30 IIM ROC_AUC identify if two images are from the same panda individual

SeaTurtleID 4,000 1,000 2,000 0.30 IIM ROC_ACU identify if two images are from the same turtle individual

CUB200-text 47,961 11,990 57,930 N/A ITM, TIM Recall@K retrieve the most related image/text given the query text/image

Flower102-text 45,850 11,462 24,570 N/A ITM, TIM Recall@K retrieve the most related image/text given the query text/image

MSCOCO 14,055 3,515 7,507 N/A ITM, TIM Recall@K retrieve the most related image/text given the query text/image

Flickr30K 145,000 5,070 5,000 N/A ITM, TIM Recall@K retrieve the most related image/text given the query text/image

IPC 14,579 2,490 2,492 N/A ITM, TIM Recall@K retrieve the most related image/text given the query text/image

Table 10: Datasets used in Semantic Matching tasks, Text to Text Matching (TTM), Image to Image

Matching (IIM), Text to Image Matching (TIM), Image to Text Matching (ITM). For ITM and

TIM, the data only contains positive image-text pairs. For the metric Recall@K, we use K=1,

5, 10, and take the average as the final metric.

F.4 Raw Results

We provide the model performance in Table 3. By leveraging SAM’s parameter-efficient fine-tuning,

our solution requires only the storage of trainable parameters for each task, unlike other toolboxes

that necessitate the storage of entire trainable models for each task during fine-tuning. This

enables us to alleviate storage burdens when dealing with multiple segmentation tasks in real-world

scenarios, without significantly compromising performance.

Furthermore, our solution demonstrates the capacity to uphold relatively stable performance

across datasets from various domains. While Detectron2 and OpenSeg outperform our method

on certain datasets (e.g., Trans10K-v2) owing to their larger number of trainable parameters, our

approach remains comparable within a performance margin of 6%. Notably, our method surpasses

them by more than 10% on several other datasets, such as CAMO and Road.

Due to the considerable time and computational resources required, we were unable to conduct

multiple rounds of experiments for semantic segmentation tasks. We run all the semantic segmen-

tation experiments on a single NVIDIA V100 32G GPU. The total training time for each experiment

is listed in Table 9.

G Semantic Matching

G.1 Dataset Details

Table 10 summarizes all the used semantic matching datasets. Below gives detailed descriptions of

each dataset.

MRPC (Microsoft Research Paraphrase Corpus) [Dolan and Brockett, 2005] is a corpus consists

of 5,801 sentence pairs collected from newswire articles. Each pair is labelled if it is a paraphrase or

not by human annotators, which corresponds to matching or not matching in our experiments. We

randomly select 20% of training data as validation data.

MultiNLI (Multi-Genre Natural Language Inference) [Williams et al., 2018] has 433K sentence

pairs. It offers ten distinct genres (Face-to-face, Telephone, 9/11, Travel, Letters, Oxford University

Press, Slate, Verbatim, Goverment and Fiction) of written and spoken English data. Each sentence

pair is labelled as entailment, contradiction, or neutral. In our experiments, we label entailment as

matching and contradiction and neutral as not matching. We randomly select 20% of training data

as validation data.

Quora Duplicate Questions [Shankar et al., 2017] contains over 400,000 lines of potential

question duplicate pairs. We label duplicate question pairs as matching and non-duplicate pairs as

not matching.
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MRPC MultiNLI Quora SciTail SNLI

AutoMM 87.37 (0.06) 91.27 (0.04) 95.77 (0.01) 97.77 (0.01) 96.71 (0.01)

Sentence Transformer 88.89 (0.21) 91.76 (0.01) 96.33 (0.01) 96.93 (0.04) 96.78 (0.01)

Table 11: Comparisons on Text to Text Matching datasets. Mean and (Vairiance) are reported.

SOP Airbnb CUB200 iPanda SeaTurtle

AutoMM 97.08 (0.01) 99.56 (0.00) 97.83 (0.01) 82.43 (0.08) 88.40 (0.33)

Sentence Transformer 95.97 (0.03) 98.57 (0.02) 93.35 (0.01) 90.40 (0.31) 89.06 (0.06)

Table 12: Comparisons on Image to Image Matching datasets. Mean and (Variance) are reported.

SciTail [Khot et al., 2018] dataset is an entailment dataset created from multiple-choice science

exams and web sentences. Each question and the correct answer choice are converted into an

assertive statement to form the hypothesis. The premise is obtained from a large text corpus of

web sentences. The premise-hypothesis pairs are labelled as entails and neutral, which corresponds

to matching and not matching in our experiments. The dataset contains 27,026 examples and we

randomly select 20% of training data as validation data.

SNLI (Stanford Natural Language Inference) consists of 570K sentence-pairs manually labeled

as entailment, contradiction, and neutral. In our experiments, we label entailment as matching and

contradiction as not matching and discard neutral labels.

SOP (Stanford Online Products) [Song et al., 2016] contains 12 categories of products. Each
category has some products, and each product has several images captured from different views. In

the experiments, we consider different views of the same product as matching and images from

different products as not matching.

Airbnb Duplicate Image [Airbnb, 2020] contains interior and exterior house pictures scraped

from Airbnb over three cities. Each image in this dataset has at least another image which is a

duplicate of the same room. We regard the images of the same room as matching samples and

images of different room as not matching.

CUB200 (Caltech-UCSD Birds-200) [Wah et al., 2022] is the most widely-used dataset for

fine-grained visual categorization task. It contains 11,788 images of 200 subcategories belonging

to birds. Reed et al. [2016] further provided 10 single-sentence descriptions for each image in the

dataset, which we name as CUB200-text. In our experiments, we use this dataset for Image to

Image Matching, Text to Image Matching and Image to Text Matching tasks. For Image to Image

Matching, we randomly select a pair of images and label them as matching pairs if they are from

the same category. For Text to Image Matching and Image to Text Matching, we use the image-text

pairs from Reed et al. [2016].

iPanda-50 [Wang et al., 2021b] consists of 6,874 images of 50 giant panda individuals with 49

to 292 images per panda. The iPanda-50 dataset is used for fine-grained panda identification. In

our experiments, we use it for Image to Image Matching. Similar to CUB200, we randomly select a

pair of images and label them as matching pairs if they are from the same panda.

SeaTurtleID [Papafitsoros et al., 2022] is a public large-scale, long-span dataset with sea turtle

photographs captured in the wild. It consists of 7774 images of 400 unique individuals collected

within 12 years in 1081 encounters. Similar to iPanda-50, we use this dataset for Image to Image

Matching, and we randomly select a pair of images and label them as matching pairs if they are

from the same turtle.

Flower102 [Nilsback and Zisserman, 2008] is a fine-grained image classification dataset consist-

ing of 102 flower categories. Each class consists of between 40 and 258 images. Reed et al. [2016]

further provided 10 single-sentence descriptions for each image in the dataset, which we name as
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MSCOCO Flickr30K CUB200-text Flower102-text IPC

AutoMM 82.44 (0.13) 92.89 (0.46) 12.75 (0.12) 21.31 (0.01) 91.41 (0.11)

Sentence Transformer 76.58 (0.04) 88.31 (0.24) 15.72 (0.01) 24.34 (0.02) 90.12 (0.24)

Table 13: Comparisons on Text to Image Matching datasets. Mean and (Vairiance) are reported.

MSCOCO Flickr30K CUB200-text Flower102-text IPC

AutoMM 90.29 (0.01) 98.26 (0.01) 21.67 (0.24) 31.44 (0.01) 91.45 (0.06)

Sentence Transformer 83.13 (0.58) 94.90 (0.12) 25.97 (0.03) 34.47 (0.11) 89.73 (0.22)

Table 14: Comparisons on Image to Text Matching datasets. Mean and (Vairiance) are reported.

Flower102-text. Similar to CUB200, we use this dataset for Image to Image Matching, Text to Image

Matching and Image to Text Matching tasks. For Image to Image Matching, we randomly select a

pair of images and label them as matching pairs if they are from the same category. For Text to

Image Matching and Image to Text Matching, we use the image-text pairs from Reed et al. [2016]

MSCOCO [Lin et al., 2014] is a large-scale dataset for object detection, point detection and

captioning. It contains 118K training images and 5K validation images. Each image has 5 text

descriptions. We used the 5K validation images to build the Image to Text Matching dataset. The

train/val/test ratio is roughly 6/1/3.

Flickr30K [Young et al., 2014] is a popular benchmark for sentence-based picture portrayal. The

dataset is comprised of 31,783 images that capture people engaged in everyday activities and events.

Each image has 5 descriptive captions. This dataset is commonly used as a standard benchmark for

Image to Text and Text to Image Matching.

IPC (Image Paragraph Captioning) contains 19,561 images from the Visual Genome dataset

[Krishna et al., 2017]. Each image contains one paragraph describing the image. The training/val/test

sets contains 14,575/2,487/2,489 images.

G.2 Baseline Methods

We compare AutoMM with Sentence Transformer [Reimers and Gurevych, 2019] on semantic

matching tasks. Sentence Transformer could compute embeddings for sentences, paragraphs, and

images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa /

CLIP, etc. Text and image are embedded in vector space such that similar text and image are closer

and can efficiently be found using cosine similarity. It also allows finetuning these embedding

models on the target datasets to achieve maximal performance. For Text to Text Matching, we use

its best text embedding model ’all-mpnet-base-v2’. For Image to Image, Image to Text and Text to

Image Matching tasks, we use its best image-text embedding model ’CLIP-ViT-L-14’. We use its

default hyperparameters for training. We run all the semantic matching experiments on a single

NVIDIA A100 40G GPU.

G.3 Metrics

For Text to Text and Image to Image Matching tasks, we use Area Under the Receiver Operating

Characteristic Curve (ROC_AUC) as the evaluation metric. For Image to Text and Text to Image

Matching tasks, we follow the literature [Sarafianos et al., 2019] to use Recall@K (R@K), which is

defined as the portion of queries whose ground truth is within the top-K responses. Specifically,

we use the average of R@K, where K=1, 5, 10, as the evaluation metric.
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Problem

Type

#params (M) #Trainable

Params (M)

Peak

Memory

(MB)

Data Prepro-

cessing

Throughput

(samples/s)

Training

Throughput

(samples/s)

classification/regression

(Image + Text + Tabular)

183 183 6032 111240.6 142.7

semantic matching (TTM) 109 109 8346 150947.2 362.3

semantic matching (IIM) 194 194 9460 110602.5 75.8

semantic matching (ITM) 427 427 20042 440922.1 489.3

object detection 218 218 22398 3480.7 14.1

semantic segmentation 645 9 25916 16224.8 22.2

Table 15: Computational Complexity Analysis of AutoMM (Part 1)

G.4 Raw Results

We provide the detailed mean and variance of the model performance in Table 11-14. We repeat

each experiment three times.

H Computational Complexity Analysis of AutoMM

To analyze the computational complexity and performance of AutoMM, we present two tables

(Table 15 and Table 16) that showcase various computational metrics for each problem type in an

AWS EC2 P4d.24xlarge instance with 8x A100 40G GPUs. The datasets selected for this analysis

are Memotion Mishra et al. [2023], MRPC [Dolan and Brockett, 2005], Airbnb [Airbnb, 2020],

CUB200 [Wah et al., 2022], Comic [Inoue et al., 2018], and Leaf [Rath, 2023], with per gpu batch size of

1, 8, 8, 8, 1, and 1 respectively for problem types classification/regression, semantic matching (TTM),

semantic matching (IIM), semantic matching (ITM), object detection, and semantic segmentation.

The number of parameters and peak memory usage vary significantly across problem types,

indicating the diverse computational requirements of AutoMM. Data preprocessing throughput is

generally high, ranging from 3480.7 to 440922.1 samples/s, demonstrating AutoMM’s efficiency in

handling data preprocessing tasks.

Training and validation throughput values provide insights into the model’s efficiency during

the learning process, with the highest training throughput observed for semantic matching (ITM)

at 489.3 samples/s and the lowest for object detection at 14.1 samples/s. Inference throughput

showcases the model’s performance during the inference stage, with semantic matching (ITM)

having the highest throughput at 9592 samples/s, and semantic segmentation having the lowest at

44.3 samples/s.

Result postprocessing throughput is generally high, ranging from 6523.2 to 183291085 samples/s,

indicating AutoMM’s efficiency in processing and outputting results across various problem types.

The computational complexity analysis demonstrates the efficiency and scalability of AutoMM

across different problem types, highlighting its potential for real-world applications. The tables

aim to offer insights into the computational requirements and performance of AutoMM, enabling

informed decision-making when applying this approach to specific use cases.
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Problem

Type

Validation

Throughput

(samples/s)

Inference

Throughput

(samples/s)

Inference

FPS (single

GPU single

batch size)

Result Post-

processing

Throughput

(samples/s)

classification/regression

(Image + Text + Tabular)

303.9 1165.3 35.6 183291085

semantic matching (TTM) 1716.3 4072.5 41.3 229010.1

semantic matching (IIM) 164.2 131.7 16.0 79449796.9

semantic matching (ITM) 1998.3 9592 41.5 102204.8

object detection 66.7 62.5 8.9 6523.2

semantic segmentation 57 44.3 6.9 15640442

Table 16: Computational Complexity Analysis of AutoMM (Part 2)
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