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General problem solving in vision-language models (VLM) is often measured
through visual question answering (VQA) benchmarks, which largely address a
logical and rule-based mode of thinking known as vertical thinking [1,14,13,12,
9,3,10,11,2,6]. Meanwhile, human problem solving seamlessly combines vertical
with lateral thinking [5,4]. Lateral thinking, which focuses on creative solutions,
remains understudied for VLMs. The few existing lateral thinking benchmarks
focus on the textual modality [8, 7], thus, a multimodal lateral thinking bench-
mark that combines both text and vision is lacking. Towards addressing this, we
investigate the question: how well do VLMs exhibit lateral thinking?

To this end, we propose COLUMBUS: a multiple-choice VQA benchmark
of over 1000 rebuses, which are visual puzzles that explicitly require out-of-the-
box, lateral thinking to solve. COLUMBUS follows a rule-driven methodology
to produce synthetic puzzle instances based on public collections of phrases (e.g.,
idioms) and compound words. The puzzle generation is underpinned by a taxon-
omy of rules organized into three categories: Individual, Relational, and Modifier
(see Figure 1). These rules govern how visual attributes or spatial relationships
of text and icons are manipulated to form puzzles. Each puzzle is generated in
two phases: first each input word /phrase is translated into a graph that encodes
the visual attributes or spatial relationships of text and icons present in a puzzle.
This is then subsequently rendered through an image generation module. As a
multiple-choice question accompanies each puzzle, we also create three distractor
answers (similar, yet incorrect, idioms or compounds) by measuring the correct
answer’s semantic and orthographic similarity to a large pool of candidate an-
swers. In the final step, we partition all puzzles into ones that contain only text
and ones that contain at least one icon.

In our experiments, we compare open- and closed-source VLMs trained for
VQA, including both instruction and non-instruction tuned variants. We also
perform auxiliary experiments involving model prompts injected with ground-
truth puzzle descriptions, models that have been altered with forward and back-
ward chaining, and investigate whether generative diffusion models can produce
rebus puzzles directly. To gauge human performance, we ask five participants to
answer a subset of 103 randomly selected puzzles.
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Fig. 1. Three taxonomies that classify and organize the individual (top), relational
(bottom left), and modifier (bottom right) rules used to manipulate the appearance
and position of elements in a rebus puzzle. For each rule, we present an example puzzle
and its answer, both taken directly from COLUMBUS.

Overall, the results reveal that human performance surpasses the best per-
forming model (GPT-40) by approximately 13.49%, averaged across both the
text and icon partitions. Across all models, this gap becomes 34.41%. With
regards to structured prompting, it helps unevenly as forward chaining has a
negligible effect, while backward chaining hurts performance. Additionally, giv-
ing ground-truth descriptions boosts accuracy the most (approximately 13.41%
across both partitions) and allows GPT-4o to surpass 90%. Lastly, comparing
our taxonomy-driven puzzles vs. diffusion-driven puzzles, we see that humans
preferred the former by 84%, which highlights the necessity for carefully crafted
lateral thinking benchmarks like COLUMBUS.

Our framework and benchmark provide a first attempt to measure lateral
thinking in VLMs. While current models achieve a respectable level of accuracy,
our results reveal a performance gap compared to humans. In particular, models
struggle to abstract the correct type of information. At the same time, COLUM-
BUS remains limited in scale, difficulty, and balance across puzzle types. Future
work should therefore extend the taxonomy further (e.g., introducing modalities,
reducing category variance) and refine the generation process (e.g., exploiting the
graph structure to introduce difficulty or more visual attributes, such as layout
and scale), focusing on puzzles that require abstraction and creative thinking.
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Abstract

While visual question-answering (VQA) benchmarks have
catalyzed the development of reasoning techniques, they have
focused on vertical thinking. Effective problem-solving also
necessitates lateral thinking, which remains understudied in
Al and has not been used to test visual perception sys-
tems. To bridge this gap, we formulate visual lateral thinking
as a multiple-choice question-answering task and describe
a three-step taxonomy-driven methodology for instantiating
task examples. Then, we develop COLUMBUS, a synthetic
benchmark that applies the task pipeline to create QA sets
with text and icon rebus puzzles based on publicly available
collections of compounds and common phrases. COLUM-
BUS comprises over 1,000 puzzles, each with four answer
candidates. While the SotA vision-language models (VLMs)
achieve decent performance, our evaluation demonstrates a
substantial gap between humans and models. VLMs benefit
from human-curated descriptions but struggle to self-generate
such representations at the right level of abstraction.

Code — https://github.com/koen-47/COLUMBUS

1 Introduction

Human problem-solving seamlessly combines vertical and
lateral thinking (De Bono 2016). Vertical thinking is an an-
alytical search process that rewards logic, rules, and ratio-
nality. It optimizes correctness by narrowing down on qual-
ity solutions and rejecting suboptimal ones (Hernandez and
Varkey 2008). For example, resolving the question mark in
Figure 1 (left) requires systematically identifying that all ex-
amples adhere to the formula: (left - top) x right + bot-
tom = 77. Meanwhile, lateral thinking (De Bono 1971) is
explorative, divergent, and creative (Hernandez and Varkey
2008). It expands the solution space by diverging into novel
directions. As illustrated in the right part of Figure 1, vi-
sual, spatial, verbal, and numerical cues must be interpreted
unconventionally (defying common sense; Jiang, Ilievski,
and Ma 2024), a process that lends itself to lateral think-
ing. In this example of a rebus puzzle, the numbers “1111”
phonetically represent the word “ONCE”, while the visual-
spatial relationship between the blue letters “MO” and “ON”
spell “BLUE MOON”. As “ONCE” is placed inside “BLUE
MOON?” this leads to the solution B) Once in a blue moon.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Vertical Thinking Lateral Thinking
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(A) Over the moon

(B) Once in a blue moon

(C) Once in a purple moon

(D) Blue moon

Figure 1: Left: vertical thinking puzzle from Machine Num-
ber Sense (Zhang et al. 2020). Right: lateral thinking rebus
puzzle from our COLUMBUS benchmark.

Existing benchmarks for visual question answering
(VQA) (Agrawal et al. 2016) have been instrumental in ex-
ploring and enhancing the vertical thinking skills of vision-
language models (VLMs). Popular subtasks are visual rea-
soning (Johnson et al. 2017; Li and Sggaard 2022; Li et al.
2023b), abstract visual reasoning (AVR) (Chollet 2019; Ma-
linowski and Fritz 2015; Matkinski and Mandziuk 2023;
Zhang et al. 2019), and visual commonsense reasoning
(VCR) (Bitton-Guetta et al. 2023), all requiring both pro-
cessing of visual as well as linguistic information. Mean-
while, lateral thinking benchmarks have recently been pro-
posed as word and sentence puzzles but are limited only to
the textual modality (Jiang et al. 2023b; Huang et al. 2024).
Hence, there is a lack of lateral thinking benchmarks for
multimodal settings combining text and vision.

To this end, we study how well VLMs exhibit multimodal
lateral thinking. Our contributions are as follows:

1. A taxonomy-driven three-step methodology for creat-
ing lateral thinking tasks in a multiple-choice VQA for-
mat. Our taxonomy definition yields 18 rules that manip-
ulate the visual attributes and relationships of the puz-
zle’s elements (text or icons). The puzzle rendering step
leverages this taxonomy to create a graph representation
for a puzzle answer and generate an image for the graph.
The distractor sampling step is based on a weighted av-
erage of orthographic and semantic similarity between a
puzzle’s correct answer and its visible elements.



2. A synthetic benchmark called COLUMBUS that ap-
plies the lateral thinking methodology to create QA
sets with rebus puzzles based on public collections of
phrases (e.g., idioms) and compound words.! COLUM-
BUS comprises over 1,000 puzzles consisting of textual
and icon elements, each with four answer candidates.

3. An experimental analysis with COLUMBUS with
human participants and representative state-of-the-art
(SotA) vision-language models evaluated in a zero-shot
setting, revealing that models perform decently but lag
behind humans. Moreover, models benefit from human-
curated descriptions, but even the SotA ones struggle to
generate representations at the right level of abstraction.

2 Related Work

Rebus Puzzles. In psychology, rebus puzzles have been
known to demand lateral thinking (Salvi et al. 2016; Thread-
gold, Marsh, and Ball 2018; MacGregor and Cunningham
2008). Prior work (Salvi et al. 2016; Threadgold, Marsh, and
Ball 2018) reports human accuracies of 74.5% and 53.31%,
respectively, and compares the impact of vertical and lat-
eral thinking, concluding that using lateral thinking led to a
significant improvement in the number of puzzles solved.
To our knowledge, the only existing benchmark of rebus
puzzles that assesses VLMs is REBUS (Gritsevskiy et al.
2024). This benchmark contains 333 human-annotated puz-
zles separated into 13 categories with three difficulty levels.
Half of the models tested in this work achieve less than 5%
accuracy. The authors ascribe this difficulty to the bench-
mark’s reliance on world knowledge (e.g., cities, towns, pub-
lic transport stations) and vertical thinking skills like string
manipulation. Instead, we devise a methodology for auto-
matic and scalable generation of rebus puzzles based on pub-
licly available resources. The sources to create COLUM-
BUS (phrases and compounds) are deliberately selected to
focus on lateral thinking only and minimize the need for
world knowledge and vertical thinking.

Vertical Thinking in VQA. AVR puzzles, illustrated in Fig-
ure 1 (left), are commonly used to assess multimodal reason-
ing. Discriminative tasks such as Raven’s Progressive Matri-
ces (Raven 1941; Barrett et al. 2018; Zhang et al. 2019) and
Visual Analogy Problems (Webb et al. 2020) involve com-
pleting sequences of panels with abstract shapes selected
from a predefined set of options. Bongard problems (Bon-
gard 1968; Nie et al. 2020) require discovering the rules that
separate and govern shapes across two sets of panels, though
these rules must be described in natural language. MAR-
VEL (Jiang et al. 2024) encompasses these benchmarks with
a more comprehensive set of patterns, input shapes, and
configurations, along with rigorous checks to assess that
model answers are grounded in perception and reasoning.
Alternatively, generative approaches, like the Abstraction
and Reasoning Corpus (Chollet 2019), test the ability to
recreate missing panels without choosing from predefined
options. A comprehensive review of AVR puzzles is pro-
vided by Malkinski and Mandziuk (2023). Rather than us-

!The name refers to the demonstration of lateral thinking in the
story of Columbus’ Egg (Benzoni 2017).
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ing puzzles, CLEVR (Johnson et al. 2017), QLEVR (Li and
S¢gaard 2022), and Super-CLEVR (Li et al. 2023b) are syn-
thetic benchmarks that test logical reasoning by analyzing
3D rendered scenes of objects. WHOOPS! (Bitton-Guetta
et al. 2023) is a visual commonsense reasoning benchmark
of images generated through diffusion models that consist
of illogical scenarios (e.g., Albert Einstein holding a smart-
phone). Crucially, these benchmarks rely on vertical think-
ing and do not test out-of-the-box thinking. Thus, our lateral
task methodology and the COLUMBUS benchmark enable
a complementary assessment of the models’ abilities.
Text-based Lateral Evaluation. Recent work has recog-
nized an analogous omission of lateral thinking for the text
domain. Jiang et al. (2023b) introduce BRAINTEASER, a
multiple-choice lateral thinking benchmark with 1,100 puz-
zles adapted from online sources. BRAINTEASER requires
models to bypass commonsense associations to arrive at the
correct answer. Similarly, Huang et al. (2024) present Lat-
Eval, a benchmark consisting of 300 lateral puzzles. Each
puzzle in LatEval is an interactive game between two large
language models (LLMs) in which the LLM under evalua-
tion must solve the puzzle presented by the host LLM. While
we share the goal of testing models’ lateral thinking abil-
ity, we broaden the evaluation scope to a multimodal setting
covering text and vision.

3 Methodology for Visual Lateral Tasks

To ensure a straightforward automatic evaluation and mini-
mize answer ambiguity, we frame each puzzle as a multiple-
choice VQA pair. A puzzle p = (I, (g,0,c)) consists of a
rebus image I C 7 and question ¢ € S with correct answer
¢ € S chosen from options O = {01,09,03,¢}; O C S. T
and S denote the space of images and strings, respectively.
Each I can be decomposed into a set of elements £ C ZTUS,
where Ve € E (e € T ® e € S). The latent rules that gov-
ern the appearance and visual-spatial relationships of each
e € E are determined by R : S — Z. The goal in solving p
is to select a response r € O such that R(r) = R(c).
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Figure 2: Methodology for visual lateral thinking tasks.
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Figure 3: Three taxonomies that classify and organize the individual (top), relational (bottom left), and modifier (bottom right)
rules used to manipulate the appearance and position of elements in a rebus puzzle. For each rule, we present an example puzzle

and its answer, both taken directly from COLUMBUS.

Figure 2 depicts our method. As rebus puzzles are typi-
cally built around idiomatic expressions, compound words,
or common phrases (e.g., “according to”, “a bit too much”)
(Salvi et al. 2016; Threadgold, Marsh, and Ball 2018), we
assume phrases and compounds as inputs for our method.
We start by designing a taxonomy of latent rules. Using this
taxonomy, each compound or phrase is converted into an
attributed, directed graph, which is subsequently converted
into the puzzle image. Finally, distractors are sampled by
identifying other compounds or phrases that overlap with,
or are semantically similar to, the method input.

3.1 Taxonomy of Latent Rules

We derive a novel taxonomy of latent rules to support the
development of lateral thinking puzzles. The taxonomy con-
solidates online guides and databases of rebus puzzles and a
rebus categorization scheme outlined by Salvi et al. (2016).
We manually select and organize the categories in these
sources such that each rule uniquely manipulates an element
through visual, spatial, verbal, and numerical properties. We
ensure that each rule can be automatically operationalized
and mixed with others in the same puzzle.

The resulting taxonomy (Figure 3) consists of 18 rules,
grouped into three categories according to how they manip-
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ulate elements in a puzzle: 1. Individual rules define the
unary characteristics of an element in a rebus. Example rules
include reversing character order (direction), the text color
(style), and adding arrows before the element (highlight).
2. Relational rules define the positioning between a pair
of elements. We define four relational rules, placing an ele-
ment beside/inside/above/outside another. 3. Modifier rules
are designed to be mutually inclusive with other individual
rules. Examples include repeating an element multiple times
or substituting it with a phonetically similar element.

3.2 Puzzle Rendering

Rebus puzzles include elements (i.e., text or icons) whose
appearance and position are determined by latent rules trig-
gered by specific keywords in the puzzle’s answer. This is
illustrated in Figure 1 (right), where the words “ONCE”,
“IN”, “BLUE”, and “MOON” determine the puzzle’s ele-
ments and their arrangement. We expect that SotA genera-
tive models cannot be reliably applied to generate rebus puz-
zles, a hypothesis we validate in Section 6.5. Instead, we ren-
der a puzzle by a taxonomy-driven transformation of its in-
put elements, which first produces a graph and subsequently
an image (green part in Figure 2).
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Figure 4: Two examples of directed attributed graphs (left)
representing rebus puzzles (right).

Graph Generation Algorithm. We generate a directed, at-
tributed graph whose nodes are elements that will be ren-
dered into a puzzle image. The node attributes specify the
rendering of that element, i.e., the individual or modifier
rules that will apply to it. The edges between two nodes
are annotated with an attribute that specifies their relational
rule. We parse a puzzle answer into a graph by following
a separate procedure for compounds and phrases. Figure 4
shows the rebus graphs for two puzzle images based on a
compound and a phrase, respectively.

For compounds (Figure 4 top), we create a graph with
a single node using the following steps. First, we split a
compound into its constituent words, e.g., “blueprints” con-
sists of “blue” and “prints”. For each word, we check if it
matches against any of the keywords of an individual rule,
e.g., “blue” triggers the color rule. Then, we create a graph
with a single node consisting of the other constituent word
(“prints™) and set this node’s color attribute to blue. Since
we detect that “prints” is plural, we set its repetition modi-
fier attribute to 2. For the final step, we check if the word in
the node corresponds to any available homophones or icons,
which does not occur in this case. In cases where both con-
stituent words of a compound trigger a rule, we generate
both graph interpretations of the input.

For phrases (Figure 4 bottom), we first identify keywords
belonging to a relational rule, e.g., “over” triggers the above
rule. At this word, we split the phrase into two substrings:
“pull the wool over eyes” yields “pull the wool” and “eyes”.
On each substring, we run the compound parser over each
pair of words from left to right, e.g., the first and only pair
of the first substring is (“pull”, “wool”). This process results
in a set of nodes, which are then connected using the next
to rule, yielding two path subgraphs. The final step involves
connecting these two subgraphs with an edge with the rela-
tional rule identified in the first step (above in our example).
Image Generation. We select one of four templates using
only the graph as input. Templates include x, y coordinates
and a font-size multiplier. Three templates position up to
three points equally along the z-axis in the image center,
mapping graph nodes (left to right) to template points. The
fourth handles graphs with the above rule. We change the
appearance of the elements in an image according to the at-
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tributes of that element’s respective node.

3.3 Distractor Sampling

Distractor sampling (blue part in Figure 2) selects the three
most similar compounds or phrases to the input semi-
automatically. We opt for sampling rather than data aug-
mentation approaches like rephrasing because compounds
and proverbial phrases are challenging to generate automat-
ically. To select a distractor for a puzzle, we obtain its visi-
ble elements (text and icons) from the graph representation
and compute similarity to all other phrases/compounds. The
similarity uses a A-weighted combination of Jaccard word
overlap (Leskovec, Rajaraman, and Ullman 2014) and co-
sine similarity using Sentence-BERT embeddings (Reimers
and Gurevych 2019). We expect that distractors with word
overlaps make the task more challenging because the test-
taker works with the visible words. Since word overlap may
fail to select relevant distractors when the visible words only
occur once or too many times across the entire dataset of
phrases and compounds, we also leverage semantic cosine
similarity to include distractors that contain synonyms of the
words in the original input.

4 The COLUMBUS Benchmark

We apply our proposed pipeline to instantiate the first visual
lateral thinking benchmark, COLUMBUS.

Puzzle Answer Collection. We start by scraping common
English phrases from publicly available sources, namely
Wiktionary and www.theidioms.com, yielding 9,745 in-
stances. We use the Large Database of English Compounds
(LaDEC) (Gagn, Spalding, and Schmidtke 2019) for com-
pound words. This dataset has been feature-engineered and
curated by humans, consisting of 8,957 compounds. We fill
rules that appear less than ten times across the benchmark
by semi-automatically adding compounds and phrases that
trigger them, with the assistance of prompting the OpenAI’s
ChatGPT-3.5 model (Brown et al. 2020). All combined, we
collect 18,836 candidate answers from which to generate
puzzles. Additionally, we collected homophones (25 sam-
ples) and icons (480 samples). Homophones were added
manually by recognizing common ones found in rebus puz-
zle databases. The icon collection combines icons scraped
from an online source and manually added ones.?

Quality Control. The graph parsing for all phrases and com-
pounds includes a preprocessing step to remove stopwords
that do not belong to the set of rule-triggering keywords.?
Multiple elements with individual rules can still be present
in the same puzzle, and more than one modifier rule can be
applied to an element. However, we apply at most one in-
dividual rule to a single element. In cases where multiple
individual rules can be applied to a single element, we gen-
erate these individually for each rule as separate puzzles. To
further improve readability and limit the risk of overlapping
elements, we restrict the image’s rendered elements using
heuristics based on the number of elements and their rules.

2Source: https://unicode.org/Public/emoji/11.0/emoji-test.txt
3E.g., “to” is a stopword, but triggers the repetition: two rule
phonetically.



Category  Statistic TEXT ICON  All
General Number of puzzles 634 371 1,005
Mean answer length (# words)  4.12 5.35 4.58
Freq. of individual rules 253 76 329
Rules Freq. of relational rules 540 425 965
Freq. of modifier rules 503 255 758
Freq. of single node graphs 197 35 232
Graphs Freq. of double node graphs 332 246 578
Freq. of triple node graphs 105 90 195
Distractors ¢ Of questions with distractors — o 5 o7 57 g5 34

containing visible puzzle words

Table 1: Key statistics of the COLUMBUS benchmark.

These exclude images generated on graphs that (1) have
more than three nodes connected by the next to rule, (2) have
an above rule where the top/bottom exceeds two nodes, (3)
have an above rule where either the top/bottom exceeds two
nodes, (4) have an outside rule where either the inside/out-
side portion has more than one node. We take the top 1,000
from the remaining puzzles with the most edges and rules
per node to ensure the benchmark is challenging. To pro-
vide a fairer comparison between textual and icon puzzles,
each puzzle containing an icon is duplicated, and all its icons
are converted to their textual counterparts. Finally, we filter
out low-quality puzzles with overlapping or overflowing text
from this remaining set.

Benchmark Composition. We split the benchmark into two
partitions: COLUMBUS-TEXT that only contain text and
COLUMBUS-ICON that contain at least one icon. Between
these two partitions, COLUMBUS features an overlap sub-
set of 338 puzzle pairs. Each pair consists of two versions
of the same puzzle: one version uses icons, and the other
uses text instead of those icons. Table 1 shows key statis-
tics about COLUMBUS. While non-icon puzzles are more
numerous, icon puzzles feature more elements. This can be
attributed to the difference in the answer length, as longer
answers feature more chances that a word can be replaced
with an icon.

5 Experimental Design

Model Families. We include open- and closed-source
instruction-tuned and non-instruction-tuned VLMs. We also
test closed-source models enriched with forward and back-
ward chaining. We evaluate all models in a zero-shot setting
using standard hyperparameter values.

For non-instruction-tuned models, we test 1) BLIP-2 (Li
et al. 2023a) with the OPT-2.7b and the OPT-6.7b LLMs
(Zhang et al. 2022); 2) Fuyu-8b (Bavishi et al. 2023), a
multimodal text and image transformer that achieves com-
petitive performance on VQA tasks. We also evaluate CLIP
(Radford et al. 2021), a seminal VLM and a foundation for
many other models used in our experiments. As CLIP is not
a VQA model, we switch its task to image classification,
which must match the image of a puzzle to the correct an-
swer from the four available choices.
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As instruction-tuned models, we include 1) BLIP-2 cou-
pled with Flan-T5-11b (Chung et al. 2022), which achieves
SotA performance on zero-shot VQA tasks; 2) InstructBLIP
(Dai et al. 2023), an instruction tuned version of BLIP-2
model that uses Vicuna-7b (Zheng et al. 2023); 3) QwenVL
(Bai et al. 2023b), a 7 billion parameter visual multimodal
version of the Qwen LLM (Bai et al. 2023a) from which
we use the chat variant; 4) CogVLM (Wang et al. 2023), a
17 billion parameter VLM that achieves SotA performance
on several VQA benchmarks; 5) Llava (Liu et al. 2023a), a
large VLM that achieves SotA performance on several vi-
sion benchmarks despite its lack of billion-scale data. For
Llava, we use the 13b (v1.5) and 34b (v1.6) variants; 6)
Mistral-7b (v2) (Jiang et al. 2023a) to use in text-only,
question-answering (QA) auxiliary experiments.

For closed-source models, we select four models from
two representative families based on their promising per-
formance in public visual reasoning benchmarks (Lu
et al. 2023; Liu et al. 2023b): 1) GPT-40 and GPT-4o-
mini (OpenAl 2024) and 2) Gemini 1.5 (Pro) and Gemini
1.5 (Flash) (DeepMind 2023).

We experiment with two structural variants of closed-
source models: forward and backward chaining (Jurafsky
and Martin 2009). In forward chaining (FC), the model con-
structs evidence from an image and connects this evidence
with the optimal candidate answer (Wang et al. 2024). The
forward chaining approach first prompts models to generate
JSON files with attributes (e.g., name, relation, description)
for each visible puzzle element, which can later be used as a
reference in the final prompting. As a representative of back-
ward chaining (BC) from question and image towards the
answer, we test belief graphs (Kassner et al. 2023) where
a model derives and evaluates explanations for each candi-
date answer. Belief graphs excavate additional information
by recursively evaluating the truth assignments of premises
generated for each answer candidate. The truth assignments
are then optimized with an SAT solver, yielding the most
probable answer. This approach is evaluated on a random
subset of 50 puzzles.

Human Evaluation. To estimate human performance on
COLUMBUS, we ask five participants to answer a subset
of 103 randomly selected puzzles, consisting of 37 text, 40
icon puzzles, and 13 overlap puzzles with both a textual and
icon variant.

Model Inputs. We explore four human-curated input levels,
each providing the model with increasing information about
the puzzle, i.e., its description and details on the nodes or
edges of a puzzle’s graph. Specifically: 1. no description of
the nature of the puzzle, nor the graph; 2. only a description
of the nature of the puzzle; 3. description of the nature of the
puzzle and the graph nodes; 4. description of the nature of
the puzzle and the full graph (both nodes and edges).
Evaluation Protocol. Following other multiple-choice
benchmarks (Jiang et al. 2023b; Zhu et al. 2016; de Faria
et al. 2023), we use accuracy as the evaluation metric, de-
fined as the percentage of puzzles solved correctly. To ex-
tract answers from a model’s output, we use regex to check
for choice symbols (e.g., “A”) if they are present and then
perform exact string matching to the correct answer/symbol.



Model TEXT ICON
Mean SD Mean SD

CLIP 56.15 0.00 52.56 0.00
BLIP-2 OPT (2.7b) 2474 021 24.08 0.13
BLIP-2 OPT (6.7b) 2395 0.16 2561 0.00
Fuyu (8b) 32.02 0.00 31.00 0.00
InstructBLIP Vicuna (7b) 5147 0.13 51.75 0.38
Qwen-VL (7b) 58.02 035 63.16 0.55
BLIP-2 Flan-T5-XXL (11b) 68.24 0.07 71.97 0.00
Llava (13b) 58.02 0.09 58.76 0.00
CogVLM (17b) 59.28 0.09 60.11 0.00
Llava (34b) 66.82 0.73 73.13 141
GPT-40 80.89 0.97 8334 1.11
GPT-40-mini 7396 0.71 77.69 0.49
Gemini 1.5 (Pro) 7156 371 77.52 5.08
Gemini 1.5 (Flash) 6442 2.00 6744 293
GPT-40 (FC) 81.28 1.15 79.20 0.78
GPT-40-mini (FC) 7353 079 7436 129
Gemini 1.5 (Pro) (FC) 6998 3.00 72.10 3.17
Gemini 1.5 (Flash) (FC) 72.00 142 75.88 3.55
GPT-40 (BC) 6437 1.63 71.67 471
GPT-40-mini (BC) 4593 8.65 60.00 4.08
Human 98.00 N/A 9321 N/A

Table 2: Results for each model on COLUMBUS-TEXT
and COLUMBUS-1cON. The accuracy’s mean and stan-
dard deviation (SD) are reported across three runs. The high-
est and second highest model results are highlighted in bold
and underlined, respectively. The prompt includes a descrip-
tion of the nature of the puzzle (i.e., prompt 2). We did not
test backward chaining for the Gemini models, as they do
not output probabilities.

For the larger, more flexible models that produce long expla-
nations for their answers, we use GPT-4o to extract their an-
swers automatically. For model outputs that answer a given
puzzle with multiple options, we pick one of them randomly.
All models are run three times, and their performance is av-
eraged to account for randomness.

6 Results

We investigate five questions: 1) How well can VLMs solve
rebus puzzles that require lateral thinking? 2) Can for-
ward and backward chaining enhance lateral thinking per-
formance? 3) Do VLMs benefit from prompts that supply
more information about the puzzle? 4) How does the perfor-
mance of VLMs vary across different puzzle rules? 5) Can
VLMs generate task puzzles directly?

6.1 Overall Performance

Table 2 shows the performance of each model on
COLUMBUS-TEXT and COLUMBUS-ICON. The
closed-source and larger open-source models perform best
on both partitions, while the small, non-instruction-tuned
models perform near-randomly. Comparing the mean model
performance with text and icons, we see no significant
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Figure 5: Results for four prompts that supply the model
with increasing information for COLUMBUS-TEXT (left)
and COLUMBUS-ICON (right) (averaged across three
runs). The best-performing model from the following
types is shown: open-source non-instruction VLM (Fuyu-
8b), open-source instruction VLM (BLIP-2 Flan-T5-XXL),
closed-source VLM (GPT-40), and text-only LLM (Mistral-
7b), as well as human accuracy.

difference. Namely, the accuracy is slightly higher on
COLUMBUS-ICON, whereas on the overlapping set of
338 puzzles, we observe a slightly higher accuracy on
the textual puzzles. As expected, the best model for each
partition is consistently GPT-40. Yet, none of the models
surpass human accuracy, with average gaps of 38.17% on
COLUMBUS-TEXT and 30.64% on COLUMBUS-ICON.

6.2 Impact of Structural Reasoning

The two structured variants show opposing results (Table
2). Forward chaining, leading the model to generate graph
descriptions in JSON format, yields little effect on the per-
formance of GPT-40 (-1.88%) and Gemini (+2.26%), aver-
aged across both models and partitions. Both models suf-
fer from a gap against human performance. On the contrary,
backward chaining yields a 14.1% and 22.86% drop in accu-
racy for GPT-40 and GPT-40-mini averaged across the two
partitions. We ascribe this to the models lacking a global
overview of the image, as each evaluated premise focuses on
local parts of a puzzle without cohesively pointing towards
a candidate answer.

6.3 Model Sensitivity to Input Information

Can models benefit from a ground-truth structured descrip-
tion of the puzzle provided in their input? Figure 5 shows
that adding information about the nature of the puzzle
(prompt 2) has little effect (+2.68% and +3.39% for textual
and icon puzzles, respectively). Adding a description of the
graph nodes (prompt 3) increases the model performance by
11.91% and 14.9% for non-icon and icon puzzles, respec-
tively, reaching over 90% for GPT-40. However, adding in-
formation on the relational rules only increases performance
1.47% and 0.56% for COLUMBUS-TEXT and -ICON, re-
spectively. Considering the example in Figure 1, the models
extract the text as is (e.g., extract “MO11110N”) and cannot
make the lateral connection that words/letters need rearrang-
ing. Even GPT-40 struggles consistently with this, such as
with certain direction rules, as discussed in the next Section.



I COLUMBUS-TEXT

[ COLUMBUS-ICON

100 +
e
=
-’
5 50 4
o]
B
=
&
g 0 Néxt '
< Before | Middle | After Up Down [Reverse| Big | Small | Color | Cross X Inside [Outside | Above | Sound | Two Four
Highlight Direction Size Repetition
Individual Relational Modifier

Figure 6: Percentage of puzzles solved by GPT-40 for a single run in COLUMBUS-TEXT and COLUMBUS-ICON for each rule.
The prompt used only describes the nature of the puzzle (prompt 2). For COLUMBUS-ICON, the direction rules are omitted
because these either do not function with icons or become functionally identical to other rules when combined with icons.

6.4 Rule-based Analysis

Figure 6 shows results for how often a puzzle containing
a specific rule is solved correctly by the best-performing
model (GPT-40). On COLUMBUS-TEXT, GPT-40 per-
forms the best on the relational rules and the worst on indi-
vidual rules (difference of 17.98%). When individual rules
appear together with modifier rules, the model performance
is slightly higher (by 3.02%). We see a similar trend for
COLUMBUS-ICON, with a gap from individual to rela-
tional and modifier rules being 10.96% and 8.21%, respec-
tively. We note that, while the GPT-40’s performance is sim-
ilar on the two partitions, specific rules are more difficult for
this model when represented as text (e.g., repetition rules).
In contrast, others are more challenging when presented as
icons (e.g., size). Such biases align with recent work that
shows the perceptual sensitivity of VLMs to object visual
attributes (Zhang et al. 2024). As for relational rules, the
model performance on text and icon puzzles is on par.

6.5 VLM Generation of Puzzles

Given the strong generative abilities of VLMs, a natu-
ral question arises: can they generate puzzles without the
methodology we define in Section 3? To investigate whether
the taxonomy-based generation pipeline is necessary, we
sample 100 puzzle answers and use DALLE-3 (Betker et al.
2023) to generate corresponding puzzles with the prompt
“Try to generate an image for a rebus puzzle on {answer}”.
Three human annotators are asked first to label whether the
puzzles contain sufficient visible elements to support solv-
ing the puzzle and then select the better one between the
two puzzles (the one generated by our method and the one
by DALLE-3). Our results show that 98% of the rebuses
generated by our pipeline contain a sound and complete list
of elements, compared to only 44% for DALLE-3. Addi-
tionally, the puzzles from our pipeline were preferred over
those from DALLE-3 84% of the time, with an 11% tie rate.
DALLE-3 struggles as a rebus generator for two main rea-
sons Figure 7 (Betker et al. 2023): 1) Noisy details: unlike
the concise rebuses our pipeline produces, DALLE-3 often
creates very complex puzzles that include irrelevant infor-
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Figure 7: Rebus images for end of the rainbow, generated by
our automated pipeline (left) and by DALLE-3 (right).

mation (e.g., the click icon in the right of Figure 7). 2) Ab-
stract representation: DALLE-3 struggles to represent ab-
stract ideas, such as “after”’, whereas our carefully designed
rule-based taxonomy can handle these concepts precisely.

7 Conclusions

This paper introduces COLUMBUS, a synthetic multiple-
choice benchmark comprising 1005 rebus puzzles designed
to assess visual lateral thinking. Experiments revealed a
substantial gap between human and vision language model
performance, which narrowed when models received graph
descriptions, suggesting they primarily rely on puzzle ele-
ments rather than the spatial relationships between them.
The models particularly struggled with text-rearrangement
rules requiring flexible, puzzle-specific abstractions. Mean-
while, the scale, difficulty, and balance across puzzle types
of COLUMBUS is still limited. Future work should ex-
tend its methodology to create more comprehensive versions
by incorporating diverse multimodal formats, refining graph
structures to control difficulty, and varying perceptual di-
mensions like color, positioning, and size. Special empha-
sis should be placed on puzzles demanding abstraction and
creative thinking, with additional mechanisms such as syn-
onyms and related concepts to counteract reliance on direct
word matching.
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