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Abstract001

In recent years, large language models (LLMs)002
have significantly advanced document-level003
translation quality, leveraging their powerful004
text-generation and context-understanding ca-005
pabilities. However, since document-level006
translation generates outputs holistically rather007
than sentence-by-sentence, it often suffers008
from over-translation, under-translation, and009
the lack of sentence-level alignment informa-010
tion, posing substantial challenges for quality011
assessment. Existing evaluation methods (e.g.,012
BERTScore, COMET) struggle with long-input013
constraints, making them impractical for di-014
rect application to document-level translation.015
To address these issues, we propose an auto-016
matic evaluation framework based on align-017
ment algorithms. Our approach integrates sen-018
tence segmentation tools and dynamic program-019
ming to construct sentence-level alignments be-020
tween source and translated texts, then adapts021
sentence-level evaluation models to document-022
level assessment via sliding-window aggrega-023
tion. Experiments show that our method ef-024
ficiently and accurately evaluates document-025
level translation quality, offering a reliable tool026
for future research.027

1 Introduction028

Recent advances in large language models (LLMs)029

(OpenAI, 2023; Touvron et al., 2023; Yang et al.,030

2024) have opened new possibilities for document-031

level machine translation (doc-mt) (Kim et al.,032

2019; Maruf et al., 2022; Fernandes et al., 2021).033

Leveraging their robust language generation ca-034

pabilities and profound contextual understanding,035

LLMs can produce translations that are more natu-036

ral, fluent, and semantically coherent. These mod-037

els have demonstrated remarkable proficiency in038

processing long-form texts, thereby significantly039

enhancing the quality of document-level transla-040

tion.041

However, this approach also introduces several042

Figure 1: src3 and src7 lack corresponding translations
in T , while src5 aligns with a combined tgt4 + tgt5
segment.

challenges. Since LLMs translate entire docu- 043

ments holistically rather than processing sentences 044

sequentially, the output may suffer from issues 045

such as over-translation (excessive paraphrasing) 046

or under-translation (omissions). Furthermore, 047

the absence of sentence-level alignment between 048

source and target texts—combined with the inher- 049

ent length of both—makes it difficult to assess 050

translation quality accurately. Robust evaluation 051

methods for document-level machine translation 052

(MT) remain an unresolved critical problem. 053

While human evaluation remains the gold stan- 054

dard for assessing translation quality due to its 055

nuanced understanding of language and context, 056

it faces inherent limitations in scalability, subjec- 057

tivity, and cost-efficiency, particularly for large- 058

scale document-level translation tasks. Automated 059

metrics like BERTScore (Zhang et al., 2019) and 060

COMET (Rei et al., 2020), though capable of cap- 061

turing semantic nuances and demonstrating strong 062

correlation with human judgments, are constrained 063

by input length restrictions and their reliance on 064

sentence-level alignment between source and refer- 065

ence texts. While (Vernikos et al., 2022) pioneered 066

the adaptation of these metrics to document-level 067

translation evaluation, its applicability remains 068
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Figure 2: For the segmented text pair (8 source fragments and 7 target fragments), we first compute a full 8× 7
score matrix using COMET KIWI to evaluate all possible pairwise alignments(subfigure a). We then apply dynamic
programming to identify the optimal alignment path (visualized as the red trajectory in Figure). This optimization
yields final sentence-level alignments, resulting in 8 properly aligned source-target pairs as demonstrated in subfigure
(b).

severely constrained by its fundamental require-069

ment for perfect sentence-level alignment among070

source texts, translations, and reference transla-071

tions. This strict one-to-one correspondence prereq-072

uisite significantly limits its practical utility in real-073

world scenarios where such ideal alignments rarely074

exist. Recent attempts to leverage large language075

models (LLMs) as evaluators through carefully de-076

signed prompts show promising alignment with077

professional human assessments across multiple078

dimensions including accuracy, fluency, and stylis-079

tic consistency (Gu et al., 2025). However, these080

methods suffer from high computational costs, sen-081

sitivity to training data biases, and instability across082

different prompts or model runs, raising concerns083

about their reliability and reproducibility for practi-084

cal applications.085

In this work, we employ an innovative alignment086

algorithm to automatically construct sentence-level087

alignment between source and translated texts. Our088

approach involves: (1) sentence segmentation of089

source and target texts, (2) alignment metric com-090

putation, (3) anchoring of source text segmenta-091

tion information, and (4) reconstructed target text092

segmentation (including merging and gap filling).093

By subsequently applying sliding-window-based094

sentence-level evaluation, we achieve document-095

level assessment effectiveness, thereby successfully096

adapting sentence-level pretrained model evalua-097

tion methods to document translation.098

2 Approach 099

2.1 Alignment 100

Since our source text, translation, and reference 101

translation are all document data, the sentence-level 102

alignment between the source text and translation 103

that we automatically construct can be divided into 104

the following three parts: 105

• Sentence segmentation: Segment both orig- 106

inal and translated texts into sentence se- 107

quences. 108

• Calculate alignment metrics: Measure align- 109

ment similarity between original and trans- 110

lated sentences using metrics like COMET 111

KIWI (Rei et al., 2020) or LABSE (Feng et al., 112

2022). 113

• Reconstruct translated text segmentation: 114

Based on the original text’s segmentation, re- 115

construct the translated text’s segmentation, 116

involving possible merging or filling gaps. 117

This is done using a dynamic programming 118

algorithm. 119

As shown in Figure 2, for a source text S and its 120

target translation T , we first perform sentence seg- 121

mentation using spaCy 1, yielding m source sen- 122

tences S = (s1, s2, ..., sm) and n target sentences 123

T = (t1, t2, ..., tn). For these m × n sentence 124

1https://spacy.io/
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Figure 3: For the reconstructed source-target pairs, Compute Score Slide 1 on 5 original aligned pairs. Generate 4
concatenated pairs using window size 2 to calculate Score Slide 2 Generate 3 concatenated pairs using window size
3 to calculate Score Slide 3 Generate 2 concatenated pairs using window size 4 to calculate Score Slide 4. The final
document-level metric is derived by averaging these four window-level scores, providing comprehensive coverage
of local and contextual translation quality.

pairs, we compute a KIWI matrix KIWIm×n us-125

ing COMET KIWI. When m = n with one-to-one126

correspondence, the diagonal path of this matrix127

should yield the maximum values. In document-128

level translation scenarios, the number of source129

segments and target segments typically differs130

(m ̸= n). Nevertheless, we can identify an op-131

timal alignment mapping T = (t1, t2, ..., tm) =132

F (s1, s2, ..., sn) - represented as the optimal path133

in our framework - that maximizes the COMET134

KIWI score. This alignment task can be abstracted135

as a path optimization problem: Given an [mn] ma-136

trix where each cell (i, j) contains a score value, we137

seek the optimal path from (0, 0) to (m− 1, n− 1)138

under the following constraints:139

• Monotonicity Constraint: y-coordinate must140

increase by exactly 1 at each step (∀t, yt+1 =141

yt + 1). x-coordinate must increase by a non-142

negative integer (∀t, xt+1 ≥ xt)143

• Boundary Conditions: Path originates at the144

top-left corner (0, 0) and terminates at the145

bottom-right corner (m− 1, n− 1)146

• Optimization Objective: Maximize the cu-
mulative score:

argmaxp
∑

(x,y)∈p
matrix[x][y]

Using the dynamic programming algorithm, we147

can obtain a translation whose segmentation aligns148

one-to-one with the source text, as well as the seg-149

mentation information of the reference translation.150

2.2 Sliding Evaluation 151

After obtaining the alignment information in the
previous step, we follow a procedure similar to
Paper A, calculating sentence-level scores using
a sliding window approach. As illustrated in Fig-
ure 3, for m source sentences S = (s1, s2, ..., sm)
and their aligned translations T

′
= (t

′
1, t

′
2, ..., t

′
m),

given a window size n, we compute m groups of
sentence-level evaluation metrics, each incorporat-
ing n − 1 preceding sentences as contextual in-
formation. The mean of these scores serves as
the document-level evaluation result, expressed for-
mally as follows:

1

n

n∑
i=1

fi(S, T
′
)

Where fi corresponds to the Slide Score measured 152

when the window is i, corresponding to Score Slide 153

i in Figure 3 154

3 Experiments 155

We conducted experiments on the test set from 156

the IWSLT2017 translation task 62, comprising 157

parallel documents from TED talks. Our experi- 158

ments encompassed eight language pairs: English- 159

German, English-French, English-Japanese, and 160

English-Chinese in both directions. 161

we employed a suite of Qwen models3 (ranging 162

from 7B to 72B parameters) for translation genera- 163

tion Given our direct utilization of these large lan- 164

guage models for document-level translation, we 165

set the maximum number of new tokens to 16,384 166

2https://wit3.fbk.eu/2017-01-d/
3https://huggingface.co/Qwen
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model ASD-20 ASD-22 ASD-KIWI

xx2en

Qwen2.5-7B-Instruct 0.4939 0.8293 0.8184
Qwen2.5-14B-Instruct 0.4906 0.8304 0.8187
Qwen2.5-32B-Instruct 0.5041 0.8345 0.8192
Qwen2.5-72B-Instruct 0.5181 0.8385 0.8207

en2xx

Qwen2.5-7B-Instruct 0.0207 0.691 0.7325
Qwen2.5-14B-Instruc 0.3361 0.7018 0.8138
Qwen2.5-32B-Instruct 0.3502 0.7125 0.8189
Qwen2.5-72B-Instruct 0.3746 0.7255 0.8287

Table 1: Results for different model sizes in the test set

to accommodate lengthy document inputs while167

maintaining computational feasibility.168

In our evaluation framework, we compute169

COMET scores for each aligned sliding window170

segment and average them to derive document-171

level metrics - specifically ASD-20, ASD-22, and172

ASD-KIWI. These systematically designed metrics173

enable rigorous validation of our alignment-based174

assessment approach.175

4 Results176

Table 1 reveals that for the xx2en translation di-177

rection, the Qwen model series exhibit relatively178

minor variations across all three ASD − 20 met-179

rics regardless of parameter size. However, a con-180

sistent (though modest) positive correlation be-181

tween model scale and metric scores can be ob-182

served. For instance, the Qwen2.5-72B-Instruct183

model achieves an ASD− 20 score of 0.5181, out-184

performing its 7B counterpart (0.4939) by a mar-185

gin of 0.0242 - demonstrating the expected scaling186

trend despite the generally small performance gaps.187

In the en2xx translation direction, we observe188

significantly larger performance gaps among Qwen189

models of different scales. The Qwen2.5-7B-190

Instruct model achieves only a 0.0207 ASD-20191

score, with manual inspection revealing frequent192

hallucinations and severe under-translation in its193

outputs. This deficiency progressively diminishes194

with increased model size: the 14B variant shows195

a substantial 0.3154 point improvement (0.3361196

vs 0.0207), while the gap between 14B and 72B197

models narrows to just 0.0385 (0.3361 vs 0.3746).198

These results suggest that for en2xx document199

translation, Qwen models require at least 14B pa-200

rameters to produce adequate quality - a finding201

consistent with practical deployment experience.202

In summary, our proposed evaluation method203

consistently captures the expected scaling law -204

larger models achieve better performance - across 205

both translation directions. The particularly pro- 206

nounced quality gap in en2xx translation pro- 207

vides strong empirical validation of our frame- 208

work’s sensitivity to model capability differences 209

in document-level translation assessment. 210

5 Conclusion 211

In this paper, We propose a novel solution combin- 212

ing sentence segmentation tools and dynamic pro- 213

gramming algorithms to address the sentence-level 214

misalignment problem among source texts, trans- 215

lations, and reference translations in document- 216

level translation. Enable effective migration of 217

document-level translation evaluation to sentence- 218

level assessment through our aligned sentence pairs, 219

with our sliding-window-based approach being par- 220

ticularly suitable for document translation evalu- 221

ation. In a multi-language text test set, the effec- 222

tiveness of our method is verified against large lan- 223

guage models with different parameter sizes. 224

Limitations 225

While our proposed method successfully bridges 226

sentence-level evaluation metrics to document- 227

level translation assessment, its performance crit- 228

ically depends on the initial alignment step. This 229

process requires computing an m×n score matrix, 230

where m and n represent the numbers of source and 231

target segments respectively. As document length 232

increases, the computational resources needed for 233

this matrix grow quadratically (O(m × n)). We 234

identify this scalability challenge as a key limita- 235

tion to be addressed in future work. 236
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