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Abstract

Graph contrastive learning has attracted great
interest as a dominant and promising self-
supervised representation learning approach in
recent years. While existing works follow the ba-
sic principle of pulling positive pairs closer and
pushing negative pairs far away, they still suffer
from several critical problems, such as the under-
lying semantic disturbance brought by augmen-
tation strategies, the failure of GCN in capturing
long-range dependence, rigidness and inefficiency
of node sampling techniques. To address these
issues, we propose Manifold Learning Inspired
Lightweight Graph Contrastive Learning (ML?-
GCL), which inherits the merits of both manifold
learning and GCN. ML2-GCL avoids the poten-
tial risks of semantic disturbance with only one
single view. It achieves global nonlinear struc-
ture recovery from locally linear fits, which can
make up for the defects of GCN. The most amaz-
ing advantage is about the lightweight due to its
closed-form solution of positive pairs weights and
removal of pairwise distances calculation. The-
oretical analysis proves the existence of the op-
timal closed-form solution. Extensive empirical
results on various benchmarks and evaluation pro-
tocols demonstrate effectiveness and lightweight
of ML2-GCL. We release the code at https:
//github.com/a-hou/ML2-GCL.

1. Introduction

Graph representation learning, which aims to learn appro-
priate low-dimensional representations for graph structured
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data to facilitate various downstream tasks (Cai et al., 2018),
has shown wide applications in social network analysis (Pal
et al., 2020), molecular property prediction (Liang et al.,
2024) and point clouds (Du et al., 2024). Unlike traditional
Euclidean data, unstructured features and complex relations
in graphs pose unique challenges to representation learning.
While a tremendous number of works have been developed
(Kipf & Welling, 2017; Velickovic et al., 2018), the require-
ment of task-dependent labels limits their applicability in
practical scenarios. Inspired by the success of contrastive
learning in the visual domain, graph contrastive learning
(GCL) has demonstrated great potential and yielded promis-
ing performance (Velickovic et al., 2019; Peng et al., 2020;
Hassani & Khasahmadi, 2020; Zhu et al., 2020).

GCL pulls positive pairs closer and pushes negative pairs
far away without labels to learn node embeddings for down-
stream tasks. Despite comparable performance to super-
vised learning methods, some critical challenges of augmen-
tation strategies and node sampling approaches still remain
to be solved. The commonly used random augmentation
strategies such as node dropping (You et al., 2020) and edge
perturbation (Qiu et al., 2020; Zhang et al., 2023), may de-
stroy the structural integrity and semantic consistency of
graphs. Current node sampling approaches mainly rely on
the similarity of structure relations and node embeddings
(Lee et al., 2022; Shen et al., 2023; Liang et al., 2025),
or probability models, especially clustering algorithms or
mixed models, to estimate the probability of positive pairs
and negative pairs (Li et al., 2023; Dong et al., 2024; Sun
et al., 2024). Such a simple and straightforward strategy
may lead to high computational cost, and thus is not applica-
ble to large-scale applications. Moreover, they also ignore
the importance of different nodes, among which there exist
significant differences in social networks. We are highly
motivated to develop an efficient and effective GCL method
significantly differs from existing approaches.

Manifold learning, which can capture both the local struc-
ture and global topology through modeling the geometric
characteristics of data in low dimensional manifold space,
provides a new perspective for graph contrastive learning.
However, existing GCL methods have not fully exploited
the potential of manifold learning yet, especially the lack
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Figure 1. The overview of ML2-GCL. With the original node feature X and the adjacency matrix A, we compute the positive pairs weight
matrix WP with a closed-form solution of a manifold learning inspired node representation optimization problem. Then, we calculate the
negative pairs weight matrix W™ and apply GCN as a graph encoder and obtain the node embedding Z. Last, we compute the normalized
loss function with regard to the positive pairs weight matrix WP, negative pairs weight matrix W™ as well as the node embedding Z and

then update the graph encoder.

of theoretical guidance in node sampling. Inspired by LLE
(Roweis & Saul, 2000), coherent structure of graphs leads to
strong correlations between inputs, such as between neigh-
boring nodes, generating observations that lie on or close to
a smooth low-dimensional manifold.

In this paper, we propose Manifold Learning Inspired
Lightweight Graph Contrastive Learning (ML?-GCL). Fig-
ure 1 gives the overview of ML2-GCL. Figure 2 shows the
comparison of GRACE (Zhu et al., 2020), NCLA (Shen
et al., 2023) and ML?-GCL. Different from previous GCL
methods, ML2-GCL eliminates the need to estimate pair-
wise distances between node embeddings. It does not need
to generate augmented views, thereby avoiding the underly-
ing semantic disturbance. In addition, ML2-GCL recovers
global nonlinear structure from locally linear fits, which can
better distinguish the importance of neighboring nodes. Our
contributions are listed as follows.

* To the best of our knowledge, it is the first exploration
to marry manifold learning with graph contrastive
learning, which inherits the merits of both manifold
learning and GCN.

* We propose ML?-GCL solely relying on the original

graph with GCN to maintain semantic consistency and
achieve lightweight.

* We design a novel contrastive loss function with the
closed-form solution of anchor node reconstruction
combination weights, which can better distinguish the
importance of different nodes.

2. Related Work

2.1. Graph Contrastive Learning

Current GCL methods can be categorized into three main-
stream paradigms, i.e., DGI (Velickovic et al., 2019), In-
foNCE (Oord et al., 2018) and BGRL framework (Thakoor
et al., 2022). DGI (Velickovic et al., 2019) aggregates the
features of all nodes in graphs to obtain a global feature, and
then maximizes the mutual information between the global
feature and the node features. Based on this framework,
MVGRL (Hassani & Khasahmadi, 2020) adopts graph dif-
fusion and subgraph sampling strategies to advance the de-
velopment of unsupervised graph contrastive learning. De-
spite the outstanding performance, the global features fail
to preserve node-level embedding information adequately.



ML2-GCL: Manifold Learning Inspired Lightweight Graph Contrastive Learning

> Positive pairs

P
S

=(C.)
(a) Input Graph

(b) ML*-GCL

(c) GRACE

> Negative pairs

(d) NCLA

Figure 2. ML?*-GCL versus GRACE and NCLA. ML?-GCL learns positive and negative pairs weights with the input graphs. GRACE
removes edges and masks features to generate views of graphs. NCLA generates M learnable augmented views with adaptive topology

by multi-head GAT.

GRACE (Zhu et al., 2020) first utilizes the InfoNCE loss
(Oord et al., 2018) to maximize the mutual information be-
tween positive pairs and minimize that of negative pairs
under two augmented views. Subsequently, a series of meth-
ods have been proposed and applied to node classification
(You et al., 2020; 2021; Xia et al., 2022b; Shen et al., 2023;
Liang et al., 2025) and graph classification (Tan et al., 2021;
Yin et al., 2022; Liu et al., 2023) tasks. While these meth-
ods have achieved significant success, generation of mul-
tiple views results in substantial computational overhead.
Inspired by BYOL (Grill et al., 2020), BGRL (Thakoor
et al., 2022) uses the random augmentation strategy to gen-
erate two views and regards the corresponding augmented
nodes as positive pairs. Despite the improvement in graph
representation learning and computational efficiency, ran-
dom augmentation may disrupt the underlying semantics of
graphs. AFGRL (Lee et al., 2022) generates two views with
encoders and employs the k-means algorithm for positive
pair sampling. The random initialization of the k-means
algorithm may influence the performance.

2.2. Graph Augmentation

Graph augmentation strategies include node dropping (You
et al., 2020), edge perturbation (Qiu et al., 2020; Zhang
et al., 2023), attribute masking (Zhu et al., 2021; Zhang
et al., 2022) and subgraph extraction (Hassani & Khasah-
madi, 2020). GRACE (Zhu et al., 2020) uses random topol-
ogy perturbation and node attribute masking to generate two
augmented views. GCA (Zhu et al., 2021) proposes an adap-

tive augmentation strategy that integrates both structural and
attribute information. CI-GCL (Tan et al., 2021) proposes a
community-invariant GCL framework to preserve the com-
munity structure of graphs. Similarly, HomoGCL (Li et al.,
2023) employs community detection algorithms to assess
the importance of edges and node features. GCS (Wei et al.,
2023) leverages both structural and semantic information
to achieve adaptive graph augmentation. Although these
methods have achieved significant success, existing aug-
mentation strategies often exhibit poor adaptability across
diverse graphs, which is due to the potential risks of aug-
mentation strategies to disturb the underlying semantics. To
avoid the above-mentioned issues, some works (Lee et al.,
2022; Mo et al., 2022; Xia et al., 2022a; Liang et al., 2025)
apply graph encoders to generate multiple views.

2.3. Node Sampling

Existing works on node sampling can be divided into two
types, i.e., methods with graph structure relations and proba-
bilistic models. Earlier works with graph structure relations
(Zhu et al., 2020; You et al., 2020; 2021; Zhang et al., 2023)
randomly perturb graphs to generate augmented views. They
regard the corresponding augmented nodes as positive pairs
and all the other nodes of augmented views as negative
pairs. Therefore, each anchor point has only one positive
pair. AFGRL (Lee et al., 2022) constructs multiple positive
pairs from three aspects, including k-means clustering sets,
k-NN sets and neighboring nodes. NCLA (Shen et al., 2023)
directly utilizes the neighbors of anchor points as positive
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pairs. GTCA (Liang et al., 2025) utilizes the node represen-
tation with GNN and Transformer as graph encoders and
topological property, and thus shows excellent performance.
While these methods have made some progress, multiple
views may generate a large number of pairs, inevitably cause
high computational complexity. HomoGCL (Li et al., 2023)
regards k-means as a special case of the Gaussian Mixture
Model to estimate the probability of positive pairs. NF-N2N
(Dong et al., 2024) uses mutual information to measure the
topological similarity between anchor nodes and their neigh-
bors for positive pair sampling. SIGNA (Sun et al., 2024)
randomly selects neighboring nodes as positive pairs. These
methods may suffer from issues related to randomness and
high complexity due to an excessive number of parameters.

3. Method

In this section, we first present the preliminaries and nota-
tions about GCL. Then, we propose ML2-GCL. Finally, we
give the theoretical analysis and complexity analysis.

3.1. Preliminaries and Notations

Let G = (V,€) be an input graph, where V =
{v1,--+,on}, € €V x V are the node set and the edge
set, respectively. We denote the embedding matrix and the
adjacency matrix as X € R¥*F and A € {0,1}V*N,
where x; € RY is the node feature of v;, and A = 1iff
(vi,vj) € €. The goal of GCL is to learn a graph encoder
fo(X,A) € RV*PD and get node embeddings in low di-
mensional space without label information, i.e., D < F,
which can be directly applied to downstream tasks.

Existing GCL methods typically generate positive/negative
pairs with augmentation strategies. Take one of the most
popular GCL methods GRACE (Zhu et al., 2020) as an ex-
ample, it generates 2 augmented views G = (X 1 Al) and
Go = (X 2, Ag) Then, it encodes the 2 views with the same
GNN encoder to get node embeddings Z = f, G(X 1, Al)
and Z' = fe(Xz, Ag). Finally, the loss function defined
by the InfoNCE loss (Oord et al., 2018) is as follows

Z“ 7 +£'Zz7zz)) (1)

HMZ

where

Z(Zir Z;) =
“log , exp (s(z, Z;)/T)
exp (s(z1, 20)/T) + > exp (5(20,2)/7) + 3 exp (s

positive pair JF JF

s(zi, 2;)/7)

inter-view negative pairs intra-view negative pairs

2
where s(-, -) is the similarity function and 7 is a temperature

parameter.

3.2. ML2-GCL

Neighboring Sampling As Figures 1-2 present, ML2-
GCL is based on simple geometric intuitions. Suppose
the anchor point and its k-hop neighboring nodes are sam-
pled from the same underlying manifold. Assume there
are sufficient nodes, i.e., the manifold is well-sampled, we
expect each node and its neighbors to lie on or close to a
locally linear patch of the manifold. We characterize the
local geometry of these nodes by linear coefficients that
reconstruct each anchor point from its positive pairs. Then,
the optimization objective is as follows

N
mmZH:cz Z wfjwjﬂg—i—/\z Z (w?)?

w; 4 =1 7)j€Pi =1 UJ'E'Pi
st.ow; >0,i=1,2,..,N,v; €P; (3)
S owh=1i=12..,N

v; €EP;

where P; is the positive pair set of v;. It consists of k-hop
neighboring nodes of v;. wfj is the reconstruction weight to
be solved, which can also be regarded as the probability that
v; and v; are positive pairs. A is a positive hyperparameter
to balance the reconstruction error and the regularizer.

For simplicity, Equation 3 can be converted to the problem
as following vector form

> whlls + Alwf[[3)

N
miny (||zi —
o=l v; EP;
st.wf.>0i=1.2 .. Nouv P 4
e Wy = M T Sy e 2T Y 7

dowh=1i=12,..,N
v; EP;

Figure 1 shows the equivalent matrix form with w!, =
0,v,, € N;. The optimization problem above is a typical
quadratic programming problem that is easy to solve. Refer
to Sec 3.3 for detailed theoretical analysis.

Then, for a given anchor point v;, we assign all of the nega-
tive pairs the same weight as

v €N (@)

Wi, =

where N is the negative pair set of v;. Similarly, we set
wi =0,v; € P;.

Graph Encoders We apply GCN (Kipf & Welling, 2017)
as graph encoder. GCN uses a number of graph convolution
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layers to aggregate information from neighbors and then
updates each layer with the equation as follows

ZUH) — 4 (A AU W<l>) ©)
where Z( is the feature matrix at layer I, Z =X, A
is the normalized adjacency matrix with self-loops, W (%)
denotes the learnable weight matrix of layer [ and o is a
non-linear activation function, i.e., ReLU.

Overview As a lower bound of the Mutual Information,
InfoNCE (Oord et al., 2018) is the most commonly used and
popular loss function in GCL. In recent years, a large num-
ber of related works have sprung up (Zhu et al., 2020; 2021;
Xia et al., 2022b; Zhang et al., 2023; Guo et al., 2023; Yu
et al., 2024). In spite of some success, the exploited augmen-
tation strategy may bring potential risks of the underlying
semantics disturbance. Moreover, only one positive pair
for an anchor point can inevitably exacerbate the sampling
bias problem. To remedy these deficiencies, we construct
multiple positive pairs for a given anchor point with its k-
hop neighboring nodes and original node embeddings X as
Figures 1-2 show. Then, we use GCN as graph encoder to
get the projected node embeddings Z. In the end, we define
the training objective for each anchor point v; as follows

((Zl):
> wijexp (s(zi,25)/7)
—log 'UJ€731
> wiexp(s(zi,2;)/7) + 3wy exp (s(zi, zk)/7)
v; €P; v ENG

)
where 7 € [0, 1] is a tunable temperature parameter to adjust
the degree of attention to the hard negative samples.

Finally, we can define the following overall loss
L=~ > U(z) ®)
= — Zi
N 4

3.3. Theoretical Analysis

We propose the manifold learning inspired positive sampling
strategy for GCL from the node neighbor sets. To our best
knowledge, this is the first exploration to marry manifold
learning with graph contrastive learning. It is superior to
the similarity/distance-based approaches and probability
models that previous GCL models adopt. The details of the
proofs are provided in the Appendix A.

In the following, we will give the closed form solution of
wP without constraints and with constraints, respectively.

Proposition 1. Equation 4 without constraints has an opti-
mal closed solution w? = (X; X! + A\)~!X,x;, where
w? € RIP is the reconstruction weight vector of v,

X; € RIP{XF is the positive pairs embedding matrix of v;
and x; € R¥ is the embedding vector of v;.

Proposition 2. The optimal closed solution of Equation
4 can be derived with non-negativity and normalization
constraints on solution of Proposition 1. Specifically, we
may input the weights into the ReLU activation function, i.e.,
w? = ReLU(w?) and normalize the weights, i.e., w! =

p N b
w?/ 21 wy;.
‘7:

In fact, the essence of GCL is instance discrimination as a
pretext task for self-supervised learning (Wang et al., 2022;
Liu et al., 2021). However, learning semantics relies heavily
on intra-class data distribution, as shown in (Wang et al.,
2022). It is limited by the one-to-one positive sampling
strategy, and ML2-GCL may improve it to form a new task
that we refer to as personalized graph embedding task,
which has less reliance on the data distribution.

Theorem 1. Suppose for a given anchor point v; in a graph,
other nodes can be divided into its positive pairs or neg-
ative pairs. The training objective is equivalent to graph
embedding as given:

Z’U}ce./\/i w’?ks(zi’ Zk;)

Zq)j cP; w’:injs(ziV Zj)

{ = 9

We present the whole process of our ML?-GCL method in
Algorithm 1.

Algorithm 1 ML?-GCL
Input: Graph G = (V, &)
Output: Node embeddings Z
1: foriin1to N do
2:  Construct positive pair set P; of v; with its k-hop
neighboring nodes;
Construct negative pair set \V; of v; with other nodes;
4: end for
5. Compute positive pairs weight matrix WP as in Propo-
sitions 1-2;
6: Compute negative pairs weight matrix W as in Equa-
tion 5;
7: Initialize GNN encoder parameters { W b};
8: while not converge do
9:  Obtain GNN embeddings Z = f,(G);
10: Do forward pass, compute £ as in Equations 7-8;
11: Do backward propagation with £;
12: end while
13: return Z for downstream tasks;

w

3.4. Complexity Analysis

Consider a graph with N nodes, M edges and simple
encoders which compute embeddings in time and space
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Table 1. Node classification accuracy (%) on 6 datasets. Best results are colored: first, second, third. Models with stars adopt graph

augmentation strategy. Models in italic type use at least 2 views.

Model Cora Citeseer Pubmed Amazon-Photo Amazon-Computers Wiki-CS
GCN (ipf & Welling, 2017) 79.6+18 660+1.2 79.0+25 863+ 1.6 764+ 1.8 673+ 1.5
GAT (Velickovic et al., 2018) 812+1.6 689+18 785+1.8 86.5 £ 2.1 779+ 1.8 68.6 +1.9
CGPN (wan etal., 2021b) 740+1.7 63.7+16 733+25 84.1 £ 1.5 7474+ 1.3 66.1 + 2.1
CG3 (Wanetal, 20212) 806+1.6 709+15 789+26 894 +1.9 77.8 +1.7 68.0+ 1.5
DGI" (velickovic etal., 2019) 82.1+13 71.6+12 783+24 835+£1.2 78.8 £ 1.1 69.1 +1.4
GMI (Peng et al., 2020) 794+12 669+22 768+23 86.7 + 1.5 76.1 £1.2 67.8 £ 1.8
MVGRL* (Hassani & Khasahmadi, 2020) 82.4 IE 1.5 711 :t 14 795 :l: 22 897 :l: 12 787 :l: 17 692 :l: 12
GRACE" (zhueta. 2020) 796+14 67.0+17 746+3.5 879+14 76.8 + 1.7 67.8+ 1.4
GCA™ zhuetal. 2021) 79.0+14 656+24 815425 870+ 1.9 769 + 1.4 67.6 +1.3
SUGRL o etal., 2022) 813+ 12 71.0+1.8 805+1.6 90.5 + 1.9 782+ 1.2 68.7 £ 1.1
AFGRL @ec etal., 2022) 786+13 70821 764+£25 892+ 1.1 777+t 1.1 68.0+ 1.7
NCLA shen et al., 2023) 822+1.6 71.74+09 82.0+14 9024+ 1.3 79.8 + 1.5 70.3 + 1.7
GTCA (Liang et al., 2025) 825+13 697+17 798+1.3 90.5 + 1.2 79.2 + 1.4 69.7 + 1.5
ML?-GCL 83.0+13 71.7+1.0 82.1+18 90.7 £ 1.6 83.0 £ 2.1 733 £ 1.7

O(M + N). This property is satisfied by most popular
GNN architectures, such as GCN (Kipf & Welling, 2017)
and GAT (Velickovic et al., 2018). In each update step,
ML2-GCL performs 1 encoder computation and backpropa-
gates the learning signal once plus a prediction step, while
GRACE performs 2 encoder computations (once for each
augmentation) and backpropagates the learning signal twice
(once for each augmentation), plus a prediction step. We
assume the backward pass to be approximately as costly
as the forward pass. We ignore the cost of augmentation
computation in this analysis. Therefore, the total time
and space complexity per update step for ML?-GCL is
2Cencoder (M + N) + 2Cprediction N + CN?, compared to
4Cencoder (M 4+ N) + 4Cprediciion N + 4CN? for GRACE,
where C are constants dependent on architecture of differ-
ent components. Appendix D gives further details.

4. Experiments

In this section, we conduct a series of experiments to demon-
strate the superiority of ML2-GCL. First, we briefly describe
the datasets. Then, we evaluate the empirical performance
across various graph datasets on node classification and link
prediction tasks. In the end, we present the ablation study,
hyperparameters analysis and embeddings visualization re-
sults. We implement all experiments on the platform with
PyTorch 2.0.1 and PyTorch Geometric 2.6.1 on NVIDIA
3090 GPUs with 24GB memory.

4.1. Datasets

We conduct experiments on 6 widely-used datasets in-
cluding Cora, Citeseer, Pubmed, Amazon-Photo, Amazon-
Computers and Wiki-CS. For node classification task, we
split Cora, Citeseer and Pubmed for the training, validation

and testing following (Yang et al., 2016), and all the other
datasets following (Liu et al., 2020). For link prediction
task, we follow the experimental setup of GCA (Zhu et al.,
2021). For each dataset, we conduct 20 random splits of
training/validation/test, and report the average performance
of all algorithms on the same random splits. The statistics
are summarized in Appendix B.

4.2. Node Classification

Node classification is one of the common tasks in graph
neural networks. The goal is to predict the class of each
node according to its characteristics and context information
in the graph structure. In this task, the graph structure and
node embeddings are jointly used as inputs, and the relations
between nodes and local or global topological information
are captured through graph neural networks.

To evaluate node classification, we compare ML2-GCL with
13 state-of-the-art methods including 2 semi-supervised
GNNg, i.e., GCN (Kipf & Welling, 2017), GAT (Velickovic
et al.,, 2018), 2 semi-supervised GCL methods, i.e., CGPN
(Wan et al., 2021b), CG3 (Wan et al., 2021a), and 9 self-
supervised GCL methods, i.e., DGI (Velickovic et al., 2019),
GMI (Peng et al., 2020), MVGRL (Hassani & Khasahmadi,
2020), GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021),
SUGRL (Mo et al., 2022), AFGRL (Lee et al., 2022), NCLA
(Shen et al., 2023) and GTCA (Liang et al., 2025). For cho-
sen hyper-parameters see Appendix C.

Table 1 lists the node classification accuracy of ML?-GCL
and baselines with a logistic regression model. The results
indicate that ML2-GCL achieves state-of-the-art results with
respect to previous methods, especially when there are rela-
tively more classes. For example, ML2-GCL achieves 83.0%
and 73.3% accuracy on Amazon-Computers and Wiki-CS,
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Table 2. Link prediction results (%) on 6 datasets. Best results are colored: first, second, third. Models with stars adopt graph

augmentation strategy. Models in italic type use at least 2 views.

Model Cora Citeseer Pubmed Amazon-Photo Amazon-Computers Wiki-CS
AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP
Spectral (g etar., 2001) 846 885 805 8 842 878 83.6 84.3 86.7 87.3 81.2 803
DeepWalk (perozzi etal., 2014) 83.1 8 805 83.6 844 841 832 85.1 87.2 87.5 82.1 815
GAE (schulman et al., 2016) 91 92 895 899 964 965 899 89.6 93 93.2 832 82.1
VGAE (kipt & Welling, 2016) 914 92,6 90.8 92 944 947 893 88.8 92.6 92.8 825 834
ARGE pan ctal., 2018) 924 932 919 93 9.8 971 0915 922 92.5 92.7 835 84.2
ARVGA (panctal, 2018) 924 926 924 93 965 96.8 92.1 91.9 93.1 92.8 82.6 83.9
GRACE" zhu etal,, 2020) 909 91 921 922 97 97.1 908 89.3 91.6 91.2 89.5 88.5
GCA" zhuetar, 2021y 914 915 92 926 963 965 923 91.3 92.5 91.5 86.4 86.3
GDCL" zhoetal, 2001y 91.7 909 919 92 965 963 93.1 93.6 93.1 93.2 852 84.6
ProGCL" Xiaetal, 20220) 929 935 931 933 96.1 967 926 93.5 94.5 94.2 83.6 84.1
AUGCL" iuetal, 2004 933 932 925 928 963 965 94.2 93.9 93.7 93.9 88.9 88.5
ML2-GCL 969 959 96 951 98.7 985 95.1 94.2 96.9 96.6 89.8 88.9

Table 3. Ablation study on node classification task for positive/negative pairs weights. The metric is the Accuracy(%).

wpr  WwWn ‘ Cora Citeseer Pubmed Amazon-Photo Amazon-Computers  Wiki-CS
- - ‘ 812+13 71.0+£09 795+2.0 895+ 14 81.1 £24 70.0+ 1.9
- v | 819+13 71.2+09 80.1+1.7 89.6 + 2.0 82.0 2.7 722+ 1.9
v - | 825+12 71.7+1.1 798+138 904+ 1.2 82.9 + 2.1 725422
v v | 80+13 71.7+1.0 82.1+1.8 90.7 + 1.6 83.0 + 2.1 733+ 1.7

a 3.2% and 3.0% relative improvement over previous state-
of-the-art respectively.

4.3. Link Prediction

Link prediction aims to predict whether there is an edge
between two nodes in graphs, or to predict the weights of
edges. The goal of this task is to capture potential relations
between nodes through learning node representations. It can
be widely applied in fields such as social network analysis,
protein-protein interaction prediction in biological networks,
and recommendation systems.

For link prediction, we consider our ML2-GCL with multi-
ple baselines including Spectral (Ng et al., 2001), DeepWalk
(Perozzi et al., 2014), GAE (Schulman et al., 2016), VGAE
(Kipf & Welling, 2016), ARGE (Pan et al., 2018), ARVGA
(Pan et al., 2018), GRACE (Zhu et al., 2020), GCA (Zhu
et al., 2021), GDCL (Zhao et al., 2021), ProGCL (Xia et al.,
2022b) and AUGCL (Niu et al., 2024). We utilize the Area
Under Curve (AUC) and Average Precision (AP) to eval-
uate the performance. For chosen hyper-parameters see
Appendix C.

The results shown in Table 2 suggest that ML2-GCL sig-
nificantly outperforms all the other baselines on 6 datasets
under different evaluation criteria, highlighting its potential
on link prediction task. For example, it achieves 96.9% AUC

on Cora, i.e., a 3.6% relative improvement over previous
state-of-the-art.

It is noteworthy that ML2-GCL achieves the state-of-the-
art results on both node classification and link prediction
benchmarks with a unified approach. Unlike previous unsu-
pervised models, we do not devise a specialized encoder for
each task.

4.4. Ablation Study

In this section, we remove positive/negative pairs weights
of ML2-GCL to study the impact of each component. The
results are shown in Table 3. We notice that the removal of
either positive pairs weights WP or negative pairs weights
W™ leads to poorer performance, which demonstrates the
effectiveness of our proposed ML2-GCL. In addition, it is
obvious that compared with the negative pairs weights W",
the positive pairs weights W? is more crucial for ML2-
GCL, which is mainly due to its role on recovery of global
nonlinear structure.

4.5. Hyperparameters Analysis

Figure 3 illustrates the node classification accuracy of ML2-
GCL with varying values of the temperature parameter 7
and the hidden dim on 6 datasets. It is noteworthy that the
optimal temperature parameter is around 0.5 on most of the
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Figure 3. Sensitivity analysis of the temperature parameter 7 and the hidden dim on node classification task.

(a) NCLA

(b) GTCA

(c) ML’-GCL

Figure 4. Visualization of NCLA, GTCA and ML?-GCL embeddings on Amazon-Computers dataset with t-SNE.

datasets. In general, with the increase of the hidden dim,
the classification performance shows an upward trend on
most of the datasets such as Pubmed, Amazon-Photo and
Amazon-Computers. We notice that ML?-GCL achieves
the best performance on Wiki-CS when the hidden dim is
128. This is mainly due to the fact that the original feature
dimension of Wiki-CS is only 300. Increasing the hidden
dim will introduce irrelevant or redundant information.

4.6. Embeddings Visualization

To provide a more intuitive presentation of the node em-
beddings, we utilize t-SNE (Van der Maaten & Hinton,
2008) to visualize the node embeddings of NCLA (Shen
et al., 2023), GTCA (Liang et al., 2025) and ML2-GCL on
Amazon-Computers dataset. As Figure 4 shows, different
colors represent different classes. It is obvious that ML2-
GCL can distinguish much more different classes of nodes
effectively compared with NCLA and GTCA.

5. Conclusion

In this paper, we marry manifold learning with graph con-
trastive learning and develop ML2-GCL. We achieve global
nonlinear structure recovery from locally linear fits, and
thus inherit the merits of both manifold learning and GCN.
It allows us to develop a new paradigm of contrastive learn-
ing to eliminate extra views generation and pairwise dis-
tances calculation, thus avoiding the semantic disturbance
and high computational complexity completely. In addition,
we conduct positive sampling with the optimal closed-form
solution of a typical quadratic programming problem. Theo-
retical analysis proves its existence. Extensive experiments
verify both effectiveness and lightweight of ML?-GCL. In
future, we will investigate deep integration mechanisms
between manifold learning and dynamic graph structures
to address nonlinear evolution patterns in temporal data or
dynamic networks.



ML2-GCL: Manifold Learning Inspired Lightweight Graph Contrastive Learning

Acknowledgements

This work is supported by National Natural Science Foun-
dation of China (N0.62376142, U21A20473).

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Cai, H., Zheng, V. W., and Chang, K. C.-C. A comprehen-
sive survey of graph embedding: Problems, techniques,
and applications. IEEE Transactions on Knowledge and
Data Engineering, pp. 1616-1637, 2018.

Dong, W., Yan, D., and Wang, P. Self-supervised node repre-
sentation learning via node-to-neighbourhood alignment.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2024.

Du, Z., Liang, J., Liang, J., Yao, K., and Cao, F. Graph
regulation network for point cloud segmentation. /EEE
Transactions on Pattern Analysis and Machine Intelli-

gence, 46(12):7940-7955, 2024.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent-
a new approach to self-supervised learning. Advances
in Neural Information Processing Systems, pp. 21271—
21284, 2020.

Guo, X., Wang, Y., Wei, Z., and Wang, Y. Architecture
matters: Uncovering implicit mechanisms in graph con-
trastive learning. In Advances in Neural Information
Processing Systems, pp. 28585-28610, 2023.

Hassani, K. and Khasahmadi, A. H. Contrastive multi-
view representation learning on graphs. In Proceedings
of International Conference on Machine Learning, pp.

4116-4126, 2020.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proceedings of

International Conference on Learning Representations,
2017.

Lee, N., Lee, J., and Park, C. Augmentation-free self-
supervised learning on graphs. In Proceedings of AAAI
Conference on Artificial Intelligence, pp. 7372-7380,
2022.

Li, W., Wang, C., Xiong, H., and Lai, J. Homogcl: Re-
thinking homophily in graph contrastive learning. In
Proceedings of ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1341-1352, 2023.

Liang, J., Chen, M., and Liang, J. Graph external attention
enhanced transformer. In Proceedings of International
Conference on Machine Learning, 2024.

Liang, J., Wei, X., Chen, M., Wang, Z., and Liang, J.
Gnn-transformer cooperative architecture for trustwor-
thy graph contrastive learning. In Proceedings of AAAI
Conference on Artificial Intelligence, 2025.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
338-348, 2020.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang,
J., and Tang, J. Self-supervised learning: Generative or
contrastive. IEEFE Transactions on Knowledge and Data
Engineering, 35(1):857-876, 2021.

Liu, Y., Zhao, Y., Wang, X., Geng, L., and Xiao, Z. Multi-
scale subgraph contrastive learning. In Proceedings of
International Joint Conference on Artificial Intelligence,
pp. 2215-2223, 2023.

Mernyei, P. and Cangea, C. Wiki-cs: A wikipedia-based
benchmark for graph neural networks. In Proceedings of
International Conference on Machine Learning, 2020.

Mo, Y., Peng, L., Xu, J., Shi, X., and Zhu, X. Simple
unsupervised graph representation learning. In Proceed-
ings of AAAI Conference on Artificial Intelligence, pp.
7797-7805, 2022.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. Advances in Neural Informa-
tion Processing Systems, 14, 2001.

Niu, C., Pang, G., and Chen, L. Affinity uncertainty-based
hard negative mining in graph contrastive learning. /EEE

Transactions on Neural Networks and Learning Systems,
2024.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pal, A., Eksombatchai, C., Zhou, Y., Zhao, B., Rosenberg,
C., and Leskovec, J. Pinnersage: Multi-modal user em-
bedding framework for recommendations at pinterest. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp- 2311-2320, 2020.



ML2-GCL: Manifold Learning Inspired Lightweight Graph Contrastive Learning

Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C.
Adversarially regularized graph autoencoder for graph
embedding. In Proceedings of International Joint Con-
ference on Artiffcial Intelligence, pp. 2609-2615, 2018.

Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu, T,
and Huang, J. Graph representation learning via graphical
mutual information maximization. In Proceedings of Web
Conference, pp. 259-270, 2020.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings of
Conference on Empirical Methods in Natural Language
Processing, pp. 1532-1543, 2014.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 701-710, 2014.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M.,
Wang, K., and Tang, J. Gcece: Graph contrastive coding
for graph neural network pre-training. In Proceedings of
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1150-1160, 2020.

Roweis, S. T. and Saul, L. K. Nonlinear dimensionality
reduction by locally linear embedding. Science, pp. 2323—
2326, 2000.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. In Proceedings of International
Conference on Learning Representations, 2016.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al magazine, 29(3):93-106, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Giinnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Shen, X., Sun, D., Pan, S., Zhou, X., and Yang, L. T. Neigh-
bor contrastive learning on learnable graph augmentation.
In Proceedings of AAAI Conference on Artificial Intelli-
gence, pp. 9782-9791, 2023.

Sun, Q., Chen, C., Qiao, Z., Zheng, X., and Wang, K. Single-
view graph contrastive learning with soft neighborhood
awareness. In Proceedings of AAAI Conference on Artifi-
cial Intelligence, 2024.

Tan, S., Li, D., Jiang, R., Zhang, Y., and Okumura, M.
Community-invariant graph contrastive learning. In Pro-
ceedings of International Conference on Machine Learn-
ing, 2021.

10

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer,
E. L., Munos, R., Velickovié, P., and Valko, M. Large-
scale representation learning on graphs via bootstrapping.
In Proceedings of International Conference on Learning
Representations, 2022.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of Machine Learning Research, 2008.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P, Bengio, Y., et al. Graph attention networks. In
Proceedings of International Conference on Learning
Representations, 2018.

Velickovic, P., Fedus, W., Hamilton, W. L., Lio, P., Bengio,
Y., and Hjelm, R. D. Deep graph infomax. In Proceedings

of International Conference on Learning Representations,
2019.

Wan, S., Pan, S., Yang, J., and Gong, C. Contrastive and
generative graph convolutional networks for graph-based
semi-supervised learning. In Proceedings of AAAI Confer-
ence on Artificial Intelligence, pp. 10049-10057, 2021a.

Wan, S., Zhan, Y., Liu, L., Yu, B., Pan, S., and Gong, C. Con-
trastive graph poisson networks: Semi-supervised learn-
ing with extremely limited labels. Advances in Neural
Information Processing Systems, 34:6316—-6327, 2021b.

Wang, Y., Zhang, Q., Wang, Y., Yang, J., and Lin, Z. Chaos
is a ladder: A new theoretical understanding of con-
trastive learning via augmentation overlap. In Proceed-

ings of International Conference on Learning Represen-
tations, 2022.

Wei, C., Wang, Y., Bai, B., Ni, K., Brady, D., and Fang, L.
Boosting graph contrastive learning via graph contrastive
saliency. In Proceedings of International Conference on
Machine Learning, pp. 36839-36855, 2023.

Xia, J., Wu, L., Chen, J., Hu, B, and Li, S. Z. Simgrace: A
simple framework for graph contrastive learning without
data augmentation. In Proceedings of ACM Web Confer-
ence, pp. 1070-1079, 2022a.

Xia, J., Wu, L., Wang, G., Chen, J., and Li, S. Z. Progcl:
Rethinking hard negative mining in graph contrastive
learning. In Proceedings of International Conference on
Machine Learning, pp. 24332-24346, 2022b.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting semi-
supervised learning with graph embeddings. In Proceed-
ings of International Conference on Machine Learning,
pp. 40-48, 2016.

Yin, Y., Wang, Q., Huang, S., Xiong, H., and Zhang, X. Au-
togcl: Automated graph contrastive learning via learnable
view generators. In Proceedings of AAAI Conference on
Artificial Intelligence, pp. 8892-8900, 2022.



ML2-GCL: Manifold Learning Inspired Lightweight Graph Contrastive Learning

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. In Pro-
ceedings of Advances in Neural Information Processing
Systems, pp. 5812-5823, 2020.

You, Y., Chen, T., Shen, Y., and Wang, Z. Graph contrastive
learning automated. In Proceedings of International Con-
ference on Machine Learning, pp. 12121-12132, 2021.

Yu, Y., Wang, X., Zhang, M., Liu, N., and Shi, C. Provable
training for graph contrastive learning. In Advances in
Neural Information Processing Systems, 2024.

Zhang, Y., Zhu, H., Song, Z., Koniusz, P., and King, L.
Costa: covariance-preserving feature augmentation for
graph contrastive learning. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 2524-2534, 2022.

Zhang, Y., Zhu, H., Song, Z., Koniusz, P., and King, I.
Spectral feature augmentation for graph contrastive learn-
ing and beyond. In Proceedings of AAAI Conference on
Artificial Intelligence, pp. 1128911297, 2023.

Zhao, H., Yang, X., Wang, Z., Yang, E., and Deng, C. Graph
debiased contrastive learning with joint representation
clustering. In Proceedings of International Joint Confer-
ence on Artiffcial Intelligence, pp. 3434-3440, 2021.

Zhu, Y., Xu, Y., Yu, F, Liu, Q., Wu, S., and Wang, L. Deep
graph contrastive representation learning. In Proceedings
of ICML Workshop on Graph Representation Learning
and Beyond, 2020.

Zhu, Y., Xu, Y., Yu, F, Liu, Q., Wu, S., and Wang, L.
Graph contrastive learning with adaptive augmentation.
In Proceedings of Web Conference, pp. 2069-2080, 2021.

11



ML2-GCL: Manifold Learning Inspired Lightweight Graph Contrastive Learning

A. Theoretical Proofs
A.1. Proof of Proposition 1

Proposition 1. Equation 4 without constraints has an optimal closed solution w? = (X; X! + A )~!X;x;, where
wl € RIP:l is the reconstruction weight vector of v;, X; € RIPiIXF i the positive pairs embedding matrix of v; and
x; € RF is the embedding vector of v;.

Proof. First, we review Equation 4 of our proposed ML2-GCL method and rewrite the objective for each anchor point
v;,1 = 1,2, ..., N without constraints as:

L(w?) =|lo; — > whaj||3 + Al[w?]|3 (10)
v; €P;

Then, we take the derivative of ; with respect to w?

di;
dw?

= 22Xz, + 2XF X;w? + 22 w? (1D

Let ddlip = 0, we obtain
w;

(XTI X; + \Dw? = X'z, (12)

p

i

Considering X' X; = 0 and A > 0, we may conclude the second derivative of ; with respect to w

d2;
L —oXT X, + 2\ 1
A(w?)? IX,+20 I =0 (13)

3

Hence, w! = (X' X; + \I)71 X Tz, is the extreme point of Equation 10 and also the optimal solution of Equation 4. [J

A.2. Proof of Proposition 2

Proposition 2. The optimal closed solution of Equation 4 can be derived with non-negativity and normalization constraints
on solution of Proposition 1. Specifically, we may input the weights into the ReLU activation function, i.e., w? = ReLU(w?)

N
and normalize the weights, i.e., w! = w!/ > wfj.

Jj=1

Proof. As ReLU(w}) = max(0,w; ), we may infer that w}; = max(0,w};) > 0, = 1,2,..., N,v; € P;. In addition, we
can derive conclusion as follows

5w

p
Wy v;€P;
P __ J _ J ° _ ;o

E wy; = E ~ = 7 = Li= 1,2,...,.N (14)

, Z ws . + Z W

v E€P; v EP; D i ik

A A E Wy v; EP; vk ENG
Jj=1

where wi, = 0,v; € V. O

A.3. Proof of Theorem 1

Theorem 1. Suppose for a given anchor point v; in a graph, other nodes can be divided into its positive pairs or negative
pairs. The training objective is equivalent to graph embedding as given:

2open; Wiks(Zis 1)

{ <—
Z’L}jepi w’IZ]S(Z'“ z])

15)

12
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Proof. We rewrite the loss function of anchor point v; with Taylor expansion of the first order as:

> wiexp(s(zi 2)/7)+ 3 wijexp(s(z, 21)/7)
v; €P; v ENG

> wy;exp(s(zi,2;)/T)
v; €P;

> wiexp (s(zi, zk)/7)
vaNq‘, )
' %:P wy; exp (s(2i, 2§)/7)

> wi exp (s(zi, 21)/7)
~ Uk E./\/.i

2wy exp(s(zi, 25)/7)
v; €P;

{(z;) = log

log(1 + (16)

We extend the loss function of v; to the form of the entire graph G and remove the temperature hyperparamter 7:

1 N
L= NZazi)

im1
N > wiexp(s(zi,zk)) 17

v EN;
X
Z: > wijexp (s(zi, 25))

v; €EP;

Different from typical graph embedding, each positive pair or negative pair is associated with its own weight. The overall
objective is calculated with the exponential ratios sum of the negative and positive similarities with anchor points. O

B. Dataset Descriptions

We evaluate the performance of ML?-GCL on node-level and edge-level tasks, i.e., node classification and link prediction.
We conduct experiments on 6 widely used datasets including Cora, Citeseer, Pubmed, Amazon-Photo, Amazon-Computers
and Wiki-CS. The detailed statistics are summarized in Table 4.

* Cora, Citeseer and PubMed (Sen et al., 2008) are well-known citation network datasets, where nodes represent
scientific papers and edges represent citation relations. Node features are bag-of-words vectors of papers, and labels
represent domains of papers.

¢ Amazon-Photo and Amazon-Computers (Shchur et al., 2018) are two networks of co-purchase relationships con-
structed from Amazon. Nodes are product and edges exist when two products are frequently co-purchased. Each node
has a bag-of-words feature encoding product reviews and is labeled with its product category.

* Wiki-CS (Mernyei & Cangea, 2020) is a reference network from Wikipedia references. Nodes correspond to articles
about computer science and edges are hyperlinks between the articles. Articles are labeled with 10 related subfields,
and their features are calculated as the average of pre-trained Glove (Pennington et al., 2014) word embeddings.

Table 4. Statistics of datasets used in experiments.

Dataset #Nodes #Edges # Features # Labels
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Photo 7,650 119,081 745 8
Amazon-Computers 13,752 245,861 767 10
Wiki-CS 11,701 216,123 300 10
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C. Hyperparameter Choices

In hyperparameter search, we attempt to adjust the value of k£ and A in ML?-GCL, as well as other deep learning hyperpa-
rameters including temperature parameter 7, hidden dim, learning rate, dropout and weight decay. We apply the grid search
strategy to choose the optimal hyperparameters. Specifically, we search & in [1, 5], A in {0, 0.01, 0.1, 1, 10, 100}, hidden
dim from {128, 256, 500, 512}, learning rate from {0.0005, 0.001, 0.005, 0.01} and weight decay in {5e-5, le-4, 5e-4,
7e-4}. Tables 5-6 give the hyperparameters specifications for ML2-GCL on node classification and link prediction tasks.

Table 5. Hyperparameters specifications for ML2-GCL on node classification task.

Cora  Citeseer Pubmed Amazon-Photo Amazon-Computers Wiki-CS

k 1 1 1 1 1 1

A 0.01 1 100 10 0.01 10
Temperature 7 0.7 1 0.5 0.5 0.3 0.5

# Hidden dim 500 256 512 512 512 128
Learning rate  0.0005  0.005 0.001 0.001 0.0005 0.01

# Epochs 40 20 80 120 240 280
Dropout 0.5 0.4 0.5 0.3 0.5 0.4
Weight decay Se-5 Te-4 Se-4 Se-4 Se-4 le-4

Table 6. Hyperparameters specifications for ML?-GCL on link prediction task.
Cora  Citeseer Pubmed Amazon-Photo Amazon-Computers Wiki-CS

k 3 3 2 2 4 1

A 10 0.001 1 100 100 1
Temperature 7 0.4 0.5 0.3 0.4 0.3 0.3

# Hidden dim 500 256 500 500 256 500
Learning rate ~ 0.0005 0.01 0.0001 0.0001 0.01 0.001
# Epochs 200 100 200 100 200 40
Dropout 0.4 04 0.1 0.1 0.1 0.1
Weight decay 5e-5 5e-5 5e-5 le-4 Se-5 Se-5

D. Memory Usage

Table 7 shows the GPU memory of ML2-GCL and baselines including GRACE, GCA, AFGRL, NCLA and GTCA on node
classification task. The results indicate that ML?-GCL has less memory requirement compared with existing methods due to
its closed-form solution of positive pairs weights and removal of pairwise distances calculation. Cross-view contrastive
methods such as GRACE require additional storage for the embedding matrices of multiple augmented views, as well as the
indices of positive and negative pairs, thereby increasing memory requirement.

Table 7. The GPU memory (GiBs) usage across 6 datasets on node classification task. Best results are colored: first, second, third.

Model Cora Citeseer Pubmed Amazon-Photo Amazon-Computers Wiki-CS
GRACE 0.47 0.55 13.17 2.11 6.23 4.46
GCA 0.58 0.69 14.32 2.34 6.61 5.01
AFGRL 0.37 0.48 12.59 2.12 5.94 4.41
NCLA 0.67 1.02 14.56 2.25 7.16 7.71
GTCA 1.64 2.64 22.03 4.09 13.14 10.89
ML2-GCL  0.33 0.45 12.15 2.01 5.74 4.22

We show part of the information from Table 7 as a scatterplot to visualize the different scaling properties of ML>-GCL and
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Figure 5. Memory usage of NCLA, GTCA and ML?-GCL across 6 standard datasets on node classification task.

NCLA, GTCA intuitively in Figure 5 . Among the top 3 ranked methods on node classification task, ML?-GCL consumes

the least GPU memory usage. As the number of nodes increases, its memory usage increases slower compared with NCLA
and GTCA.
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