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Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance across diverse
tasks and exhibited impressive reasoning abil-
ities by applying zero-shot Chain-of-Thought
(CoT) prompting. However, due to the evolv-
ing nature of sentence prefixes during the pre-
training phase, existing zero-shot CoT prompt-
ing methods that employ identical CoT prompt-
ing across all task instances may not be opti-
mal. In this paper, we introduce a novel zero-
shot prompting method that leverages swarm
intelligence algorithms to dynamically generate
diverse promptings for LLMs. Our approach
involves initializing several CoT promptings,
performing evolutionary operations based on
LLMs to create a varied set, and utilizing the
LLMs to select a suitable CoT prompting for a
given problem. Additionally, a rewriting oper-
ation, guided by the selected CoT prompting,
enhances the understanding of the LLMs about
the problem. Extensive experiments conducted
across ten reasoning datasets demonstrate the
superior performance of our proposed method
compared to current zero-shot CoT prompting
methods on both black-box and open-source
LLMs. Moreover, in-depth analytical experi-
ments underscore the adaptability and effective-
ness of our method in various reasoning tasks.

1 Introduction

The capacity for logical inference stands out as a
defining characteristic of human intelligence, grant-
ing us the ability to engage in deduction, induction,
and problem-solving. With the revolutionary ad-
vancement of pre-training (Brown et al., 2020; Tou-
vron et al., 2023; OpenAl, 2022, 2023), the rise
of LLMs has firmly established itself as a corner-
stone in the field of natural language processing
(NLP), showcasing exceptional performance across
a spectrum of NLP tasks. However, LLMs often
face challenges in the nuanced domain of reason-
ing, prompting researchers to strategically leverage

their embedded knowledge through the condition-
ing of LLMs on a limited set of illustrative exam-
ples, referred to as few-shot learning (Wei et al.,
2022; Wang et al., 2023b), or through the provision
of prompts for solving problems in the absence
of illustrative examples, constituting a paradigm
known as zero-shot learning (Kojima et al., 2022).

Current research mainly focuses on designing
diverse prompting strategies to guide the reason-
ing processes of LLMs. For instance, Wei et al.
(2022) propose the few-shot CoT prompting, in-
volving the use of a limited number of manually
demonstrated reasoning examples to enable LLMs
to explicitly generate intermediate reasoning steps
before predicting the final answer. Various ap-
proaches have been explored to eliminate the need
for manually selected examples in few-shot CoT
prompting. For instance, Kojima et al. (2022) in-
troduce zero-shot CoT prompting by appending
"Let’s think step by step" to the target problem, PS+
prompting (Wang et al., 2023a) add "Let’s first un-
derstand the problem and devise a plan to solve the
problem. Then, let’s carry out the plan and solve
the problem step by step" after the target problem,
and RE2 prompting (Xu et al., 2023) add "Read
the question again" combined with "Let’s think
step by step" to the target problem. However, these
zero-shot CoT prompting methods employ uniform
CoT prompting across all task instances. Given
the ongoing evolution of sentence prefixes during
the pre-training phase of extensive language mod-
els, using identical CoT prompting for all instances
may introduce disruptions to predictive accuracy
and potentially result in a degradation of overall
performance. Consequently, a fundamental query
emerges: Is it feasible to ascertain an appropriate
CoT prompting for each instance within a discrete
space?

Fortunately, swarm intelligence algorithms (SIA)
(Mitchell, 1998; Hansen et al., 2003; Li and Tan,
2018) provide a solution. SIA represents a category



of optimization algorithms inspired by the princi-
ples of natural evolution. Crossover, mutation, and
selection steps in SIA can generate various CoT
promptings. In this paper, we introduce a novel
method guided by swarm intelligence algorithms
named Evolution of Tought (EoT) prompting. The
process begins by initializing several CoT prompt-
ings based on human design or auto-generation
using large language models. Using LLMs as the
optimizer within a swarm intelligence algorithm
framework, we perform crossover and mutation op-
erations on the initialized CoT promptings, generat-
ing a diverse set of new ones. Subsequently, we use
LLMs to select a CoT prompting deemed suitable
for the current problem. Furthermore, to deepen
the understanding of LLMs of the current problem,
a rewriting operation is performed on the selected
CoT prompting. The LLMs engage in reasoning
based on the rewritten problem. This strategy aims
to capitalize on the diversity of CoT prompting
generated through the SIA and problem rewriting
to provide richer information that encourages the
LLMs to attain a more profound understanding of
the given problem.

To validate the effectiveness of our proposed
zero-shot EoT prompting, we conduct a compre-
hensive series of experiments across ten datasets,
covering arithmetic, commonsense, and symbolic
reasoning. The experiments are carried out on
black-box LLMs GPT-3.5-Turbo (OpenAl, 2022)
and GPT-4 (OpenAl, 2023), as well as open-source
LLM Llama-3-8B-Instruct'. Specifically, the re-
sults in mathematical reasoning indicate that our
zero-shot EoT prompting outperforms existing
zero-shot CoT prompting, with average improve-
ments of 3.1% on GPT-3.5-Turbo. Its comparable
performance to few-shot CoT prompting is particu-
larly noteworthy, especially in arithmetic and sym-
bolic reasoning. Additionally, extensive analytical
experiments are conducted to gain a deeper under-
standing of the different components of zero-shot
EoT prompting and the impact of various factors
on EoT prompting.

2 Preliminaries

Zero-shot Chain-of-Thought Prompting In-
context learning leverages a few demonstrations as
a prompt and conducts inference without training
the model parameters (Brown et al., 2020). Chain-
of-thought (CoT) prompting (Wei et al., 2022) has
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been proposed as a type of in-context learning that
decomposes the original problem into several small
parts and achieves encouraging results on many
complex reasoning tasks in large language models.
Moreover, the zero-shot chain-of thought prompt-
ing (Kojima et al., 2022) has shown impressive
effectiveness on various tasks in large language
models by attaching a sentence before the reason-
ing process. For standard zero-shot CoT prompting,
given the reasoning question Q, zero-shot CoT spe-
cific instructions 7 like "Let’s think step by step.",
we formalize this simple yet fundamental solving
paradigm as:

P(A|T,Q) = P(A|IT,Q,C)P(C|T,Q) (1)

where C denotes a sampled rationale in natural lan-
guage and A is the generated answer. As such,
LLMs can perform complex reasoning by decom-
posing the problem into sequential or modular
steps.

3 Method

Overview. We introduce our proposed zero-shot
EoT prompting. EoT utilizes the large language
model as an evolutionary optimizer, performing
crossover and mutation operations on several given
promptings to generate diverse promptings. Sub-
sequently, EoT empowers LLMs to autonomously
select the most suitable or optimal prompting from
the generated set as the final prompting. Finally,
EoT employs the chosen prompt to instruct LLMs
in rewriting given problems, generating an inter-
mediate reasoning process, and predicting the final
answer for the input problem. Similar to zero-shot
CoT prompting, our EoT prompting incorporates
an answer extraction prompting, such as "There-
fore, the answer (arabic numerals) is" to extract
the answer for evaluation.

3.1 Prompt Generation Through Swarm
Intelligence Algorithms

As depicted in Figure 1(a), zero-shot CoT prompt-
ing (Kojima et al., 2022) appends the same sen-
tence "Let’s think step by step” or the recently
proposed Plan-and-Solve prompting (Wang et al.,
2023a) connects the same sentence "Let’s first un-
derstand the problem and devise a plan to solve
the problem. Then, let’s carry out the plan and
solve the problem step by step” to each instance,
encouraging LL.Ms to generate multi-step reason-
ing. Given the continuous evolution of sentence
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Q: Professors borrowed Rs.

5000 from the university at
simple interest. After 3
years, the university got
Rs. 300 on interest. What
was the rate of interest per
annum? Answer Choices:
(A) 2% (B) 8% (C) 5% (D)
10% (E) None of these.

A: Let’s think step by step.

Step 1: We know that the
interest earned is Rs. 300
after 3 years. Step 2: To
find the rate of interest per
annum, we need to divide
the interest earned by the

principal amount borrowed.

Step 3: The principal
amount borrowed is Rs.
5000. Step 4: Now, we can
calculate the rate of
interest per annum using
the formula: Rate of
Interest = (Interest /

Q: Professors borrowed Rs. 5000 from the university at simple interest. After 3 years, the
university got Rs. 300 on interest. What was the rate of interest per annum? Answer Choices: (A)
2% (B) 8% (C) 5% (D) 10% (E) None of these.
A: I'd like you to first crossover and mutate the following prompts to generate several new
prompts:
Prompt 1: Let’s first understand the problem and carefully extract all relevant variables and their
corresponding numerals Then, Let’s calculate intermediate variables (pay attention to correct
numerical and and solve the problem step by step carefully.
Prompt 2: Let's first understand the problem and solve the problem step by step.

, etc.
Finally, select a prompt that is suitable for this problem to rewrite and solve the problem.

LLM
fCrossover Prompt: N
Prompt 1: Let s first understand the prob! and ly extract all variables and their
corr . Then, Let’s inter iate variables (pay attention to correct
numerical ion and and solve the problem step by step carefully.

Prompt 2: Let's first understand the problem and solve it step by step.

Crossover the prompts: Let's first understand the problem and identify all relevant variables and
their numerical values. Then, let's calculate intermediate variables carefully, ensuring accurate
numerical calculations and applying commonsense. Finally, solve the problem step by step.
Mutation:

*Mutated Prompt 1: Let's analyze the problem and provide a clear, step-by-step solution.
+Mutated Prompt 2: Understanding the problem thoroughly, let's proceed to solve it methodically.
Now, let's select a prompt that is best for this problem:

Select Prompt: Let's analyze the problem and provide a clear, step-by-step solution.

Now, let's rewrite, solve the problem step by step, and show the answer:

Given: Principal amount (P) = Rs. 5000 Time (t) = 3 years Interest (I) = Rs. 300

Principal) * 100. Step 5:
Plugging in the values, we
get Rate of Interest = (300 /
5000) * 100. Step 6:
Simplifying the equation,
we get Rate of Interest =
6%. Therefore, the correct

answer is (E). X

| is the interest,

R=l/(P*T)

1.The formula for simple interest is I=P-R-T, where:

P is the principal amount,
R is the rate of interest per annum,
T is the time in years.
2.Given that I=300, P=5000, and T=3, we can rearrange the formula to solve for R:

1.Plug in the values: R=300/(5000*3)=300/15000=0.02
2.Convert the decimal to a percentage: R=0.02x100=2%

\ / \Therefore, the rate of interest per annum is 2%, and the answer is (A) 2%. v Y,

(a) Zero-shot CoT

(b) Zero-shot EoT (Ours)

Figure 1: Example inputs and outputs of GPT-3.5-Turbo with (a) Zero-shot CoT prompting and (b) Zero-shot EoT
prompting. Zero-shot CoT prompting attaches the sentence "Let’s think step by step” for each instance to encourage
LLMs to generate multi-step reasoning. Our proposed method, EoT prompting, uses the LLMs as an evolutionary
optimizer and generates suitable CoT prompting for each instance.

prefixes during the pre-training phase of large lan-
guage models, using identical CoT prompting for
all instances may disrupt predictions and lead to a
decline in performance.

To address these concerns, we aim to identify
suitable CoT prompting for each instance of the
current reasoning task within a discrete space be-
fore proceeding with the reasoning process. How-
ever, determining the most suitable CoT prompting
for each instance in a discrete space poses a chal-
lenge. Fortunately, swarm intelligence algorithms
provide a solution. We employ the large language
model as an optimizer, executing crossover and mu-
tation on the initialized CoT prompting, denoted
as LLM-Crossover and LLM-Mutation. As illus-
trated in Figure 1(b), for a given problem Q, we
first initialize several CoT promptings 71 and 7s.
Subsequently, we first use the large language model
as the evolutionary optimizer, applying the LLM-
Crossover operation on 77 and 75, which is defined
as:

7. = LLM-Crossover (71, 72) (2

Then, we enable LLM-Mutation on the crossovered

CoT prompting 7., which is defined as:
T = LLM-Mutation(7;) 3)

This leverages the powerful generative capability
of the large language model to generate additional
CoT promptings.

We aim to generate more high-quality prompt-
ings by evolving from the initial ones. To
obtain good initial promptings, we use either
auto-generated promptings (Zhou et al., 2023) or
manual-designed promptings as the initial prompt-
ings. Additionally, pursuing a more diverse set of
selectable CoT promptings, it is customary to sub-
ject the model to crossover and mutation operations
iteratively. However, the temporal demand tends to
escalate proportionally with the quantity of gener-
ated CoT promptings. Consequently, we opt for a
default strategy of conducting a singular round of
crossover and mutation operations to mitigate rea-
soning time. As illustrated in Figure 2, our analysis
delves into the correlation between the number of
CoT promptings (i.e., the population size V) gen-
erated through multiple rounds of crossover and
mutation operations and the performance of LLMs.



3.2 Problem Rewriting with Generated
Prompt and Answer Extraction

Based on the generated and initialized pool of CoT
promptings, we enable the LLMs to select the most
optimal or contextually suitable CoT prompting for
the current problem Q. Subsequently, to enhance
the retention of the LLMs regarding the problem,
we employ the selected CoT prompting to rewrite
the question Q and instruct the LLMs to conduct
reasoning. The formalization of this process is
exemplified as follows:

P(A[T5, Q) = P(A|T,, R(Q),C) P(C[T,, R(Q))

“)
Here, 7, denotes the selected CoT prompting by
LLMs, C denotes a sampled rationale in natural lan-
guage, A is the generated answer, and R(-) means
rewriting the question Q with 7,. For instance,
in Figure 1b, for a given question Q: Professors
borrowed Rs. 5000 from the university at simple
interest. After 3 years, the university got Rs. 300
on interest. What was the rate of interest per an-
num? Answer Choices: (A) 2% (B) 8% (C) 5%
(D) 10% (E) None of these. We employ the cho-
sen CoT prompting (Let’s analyze the problem and
provide a clear, step-by-step solution.) to rewrite
the question R(Q). Then, the LLMs generate an
intermediate reasoning process and predict the final
answer for the question Q. Moreover, our method
defaults to employing the greedy decoding strategy
for the generation of output.

Similar to the zero-shot CoT prompting, our EoT
prompting incorporates specific trigger sentences,
such as "Therefore, the answer (arabic numerals)
is", into the sentences generated by LL.Ms through
EoT prompting. Following this augmentation, the
composite text is reintroduced to LLMs, producing
the desired answer format. In Appendix A.2, we
present the trigger sentences utilized for different
reasoning tasks.

4 Experiments

4.1 Experimental Setup

Datasets We systematically evaluate the efficacy
of our proposed method across ten datasets encom-
passing three main categories: arithmetic, com-
monsense, and symbolic tasks. For arithmetic rea-
soning tasks, we consider the following six arith-
metic reasoning problem benchmarks: (1) Multi-
Arith (Roy and Roth, 2015), (2) GSMS8K (Cobbe
etal., 2021), (3) AddSub (Hosseini et al., 2014), (4)

AQUuA (Ling et al., 2017), (5) SingleEq (Koncel-
Kedziorski et al., 2015), and (6) SVAMP (Patel
et al., 2021). SingleEq and AddSub comprise more
straightforward problems that do not require multi-
step task resolution calculations. Conversely, Multi-
Arith, AQUA, GSMSK, and SVAMP present more
intricate challenges, demanding multi-step reason-
ing for effective problem-solving. In the realm of
commonsense reasoning, we include (7) Common-
senseQA (Talmor et al., 2019) and (8) StrategyQA
(Geva et al., 2021). CommonsenseQA requires
the application of diverse forms of commonsense
knowledge for accurate answers. Meanwhile, Strat-
egyQA tasks models with deducing implicit multi-
hop reasoning to respond to posed questions. For
symbolic tasks, we select Last Letter Concatena-
tion and Coin Flip (Wei et al., 2022). Last Letter
Concatenation challenges the model to concatenate
the last letters of individual words. At the same
time, the Coin Flip task requires the model to deter-
mine whether a coin remains in a heads-up position
after being flipped or left undisturbed. Details on
dataset statistics are provided in Appendix A.1.

Baselines We conduct a comparative analysis be-
tween our proposed zero-shot EoT prompting
method and several task-specific zero-shot CoT
prompting methods: (1) Zero-shot CoT prompt-
ing (Kojima et al., 2022), which appends a sen-
tence "Let’s think step by step"” before the reason-
ing process; (2) Zero-shot PS and PS+ prompting
(Wang et al., 2023a), employing a "plan-and-solve"
strategy to guide the model throughout the infer-
ence process; (3) Zero-shot RE2 prompting (Xu
et al., 2023), a plug & play approach that entails
re-reading the question before engaging in the rea-
soning process; (4) APE prompting (Zhou et al.,
2023), utilizing LLMs to generate instructions
automatically and requiring additional training.
We also compare our method with two few-shot
CoT prompting methods: Few-shot Manual-CoT
prompting (Wei et al., 2022), utilizing eight manu-
ally crafted examples as demonstrations, and Few-
shot AuTo-CoT prompting (Zhang et al., 2023),
which automatically selects examples through clus-
tering for diversity.

Implementation Details We mainly use ChatGPT
(GPT-3.5-Turbo-0613) (OpenAl, 2022) and Llama-
3-8B-Instruct as the backbone language models.
Regarding decoding strategy, we employ greedy
decoding with a temperature setting of 0 and im-
plement self-consistency prompting with a temper-



Table 1: Accuracy of six math reasoning datasets on GPT-3.5-Turbo with different zero-shot and few-shot CoT
prompting methods. The boldfaced and underlined fonts indicate the best and the second results in the zero-shot

settings, respectively.

Method MultiArithh  GSM8S8K ~ AddSub  AQuA  SingleEq SVAMP  Average A
Zero-Shot

CoT 95.3 75.3 86.6 55.1 92.9 79.0 80.7

PS 92.3 76.3 85.8 56.7 90.2 75.8 79.5 -1.2
PS+ 93.8 76.1 86.6 58.7 92.5 79.4 81.2

RE2 96.8 76.9 88.6 59.8 91.7 79.7 82.3

APE 93.3 80.2 88.9 59.4 94.1 81.5 82.9

EoT (Ours) 96.0 78.5 91.1 62.2 93.7 82.0 83.8
Few-Shot

Manual-CoT 95.5 75.9 89.9 58.7 92.3 81.1 82.2
AuTo-CoT 96.2 77.3 90.6 61.8 92.7 81.8 83.4

ature setting of 0.7. We set the initial number of
promptings to two to reduce inference time and
perform one iteration of crossover and mutation.
Furthermore, to fortify the robustness and general-
izability of our proposed method, we conduct com-
plementary evaluations utilizing GPT-4 (OpenAl,
2023). For the few-shot baselines, Manual-CoT
and Auto-CoT, we adhere to the configurations
outlined in the Wei et al. (2022) and Zhang et al.
(2023). We adopt accuracy as our evaluation metric
for all datasets.

4.2 Main Results

Results on Arithmetic Reasoning. Table 1 and Ta-
ble 2 present a thorough performance comparison
between our zero-shot EoT prompting and existing
zero-shot and few-shot baselines on the arithmetic
reasoning datasets with GPT-3.5-Turbo and Llama-
3-8B-Instruct. In contrast to prevalent zero-shot
CoT, PS, and PS+ prompting methods, our EoT
prompting exhibits notable improvements in per-
formance across six arithmetic reasoning datasets,
showcasing particularly significant improvements
on the AddSub, SVAMP, AQuA, GSM8K and
SingleEq datasets. Furthermore, on average, our
EoT prompting achieves a 3.1% and 2.6% score
improvement over zero-shot CoT prompting and
PS+ prompting methods on GPT-3.5-Turbo. EoT
prompting also achieves a 1.6% and 2.1% score
improvement over zero-shot CoT prompting and
PS+ prompting methods on Llama-3-8B-Instruct.

Concerning the zero-shot RE2 prompting, our EoT
prompting outperforms it across five datasets on
both GPT-3.5-Turbo and Llama-3-8B-Instruct. The
observed similarity between the zero-shot RE2
prompting, characterized by repetitive questions,
and our approach of rewriting questions using CoT
prompting generated via swarm intelligence algo-
rithms suggests the advantageous impact of en-
hancing the model’s capacity to retain questions on
the reasoning process. Compared to the automatic
prompting generation method, APE, our method
improves average performance by 0.9 and 2.3% on
GPT-3.5-Turbo and Llama-3-8B-Instruct, respec-
tively. Concurrently, we compare our proposed
EoT prompting with a few-shot methods: Manual-
CoT and Auto-CoT. The results indicate that our
proposed EoT prompting surpasses Manual-CoT
and Auto-CoT on six and five arithmetic reasoning
datasets on GPT-3.5-Turbo, respectively, suggest-
ing the effectiveness of our zero-shot EoT prompt-
ing in achieving comparable results to few-shot
methods in arithmetic reasoning datasets without
the need for example selection.

Results on Commonsense Reasoning and Sym-
bolic Reasoning. Table 3 shows the result on
two commonsense reasoning datasets. Our EoT
prompting exhibits superior performance in the
zero-shot setting relative to zero-shot CoT prompt-
ing, PS prompting, PS+ prompting, RE2 prompt-
ing, and APE methods on two commonsense rea-
soning datasets. Conversely, compared to two few-



Table 2: Accuracy of six math reasoning datasets on Llama-3-8B-Instruct with different zero-shot and few-shot CoT
prompting methods. The boldfaced and underlined fonts indicate the best and the second results in the zero-shot

settings, respectively.

Method MultiArithh  GSM8S8K ~ AddSub  AQuA  SingleEq SVAMP  Average A
Zero-Shot

CoT 95.2 80.4 85.3 50.0 90.4 83.6 80.8

PS 92.2 78.6 87.6 47.6 89.6 83.3 79.8 -1.0
PS+ 94.7 79.1 86.3 48.4 89.4 83.7 80.3 -0.5
RE2 94.5 80.1 86.8 48.0 90.0 84.0 80.6 -0.2
APE 923 78.5 86.1 50.4 89.8 83.2 80.1 -0.7
EoT (Ours) 95.3 81.7 894 53.1 914 83.5 824

Few-Shot

Manual-CoT 95.8 81.7 86.8 52.0 91.5 83.9 82.0
AuTo-CoT 96.8 82.0 87.6 52.4 92.1 84.1 82.5

shot methods, Manual-CoT and Auto-CoT, our
zero-shot EoT prompting demonstrates compara-
tively lower performance on these two common-
sense reasoning datasets. This observation implies
that commonsense reasoning problems may neces-
sitate a certain degree of demonstration to guide
the model reasoning process.

We also show the result on two symbolic rea-
soning datasets: Last Letters and Coin Flip. Our
EoT prompting performs better than zero-shot CoT
prompting, PS prompting, PS+ prompting, and the
RE2 prompting methods on these two symbolic
reasoning datasets, especially in the Last Letter
dataset. In contrast to few-shot methods, Manual-
CoT, and Auto-CoT, our EoT prompting excels
relative to these methods in the Last Letter dataset
while demonstrating comparable performance in
the Coin Flip dataset. This observation suggests
the effectiveness of our zero-shot EoT prompting in
achieving comparable results to few-shot methods
in symbolic reasoning datasets without the need for
example selection.

5 Additional Experiments and Analysis

5.1 Results of EoT Prompting in GPT-4

To evaluate the performance of our proposed zero-
shot EoT prompting with more powerful models,
as shown in Table 4, we conduct experiments on
GPT-4 using three arithmetic reasoning datasets:
AQuA, AddSub, and SVAMP. We compare our

zero-shot EoT prompting against four alternative
methods: zero-shot CoT prompting, PS+ prompt-
ing, RE2 prompting, and APE prompting. The
results presented in Table 4 reveal that our zero-
shot EoT prompting yields superior performance
compared to these methods, suggesting that our
proposed method maintains robust performance ad-
vantages when applied to more powerful language
models.

5.2 Ablation Study of EoT

We perform the ablation study of our EOT prompt-
ing measured on four math reasoning datasets un-
der the zero-shot setting to understand the impor-
tance of different factors. As delineated in Table
5, the notations 'R’, °C’, and "M’ denote the op-
erations of rewrite, crossover, and mutate, respec-
tively. Our observations indicate that refraining
from employing EoT prompting for problem rewrit-
ing results in a discernible decline in model perfor-
mance across all tasks. This underscores the impor-
tance of augmenting the model’s comprehension
of problems through a more profound engagement,
thereby fostering more effective inference. Fur-
thermore, while generating our EoT promptings,
the omission of crossover or mutation processes
results in a significant performance decrease across
all tasks except the SVAMP dataset. Notably, the
AQUuA dataset exhibits a pronounced performance
degradation, emphasizing the indispensability of
the crossover and mutation processes in the effec-



Table 3: Accuracy of commonsense reasoning and symbolic reasoning datasets on GPT-3.5-turbo and Llama-3-8B-
Instruct with different zero-shot and few-shot CoT prompting methods. CSQA denotes CommonsenseQA

Method CSQA  StrategyQA  Last Letters  Coin Flip ‘ CSQA  StrategyQA  Last Letters  Coin Flip
GPT-3.5-Turbo Llama-3-8B-Instruct

Few-Shot

Manual-CoT ~ 75.3 70.1 75.7 99.2 74.5 72.6 73.4 99.0

AuTo-CoT 77.1 71.3 76.3 99.6 75.6 72.9 74.8 99.6

Zero-Shot

CoT 64.9 65.7 72.6 98.6 67.1 68.4 71.5 97.2

PS 68.6 66.4 71.3 97.0 68.4 67.9 70.8 96.8

PS+ 70.9 67.8 70.4 97.6 69.1 68.7 71.9 98.0

RE2 71.5 68.1 74.3 97.6 68.9 70.2 71.5 98.2

APE 69.1 70.6 - - 71.6 69.8 - -

EoT (ours) 73.1 69.9 77.0 99.0 72.1 71.8 76.4 99.4

Table 4: Results of different methods measured on three
math reasoning datasets with GPT-4.

Method AQuA  AddSub SVAMP
Zero-shot CoT 72.8 94.9 89.7
Zero-shot PS+ 73.2 96.5 89.2
Zero-shot RE2 74.0 96.2 90.1
Zero-shot APE 73.6 93.7 90.1
Zero-shot EoT (ours) 76.4 97.5 92.9

tive generation of our EoT prompting.

Table 5: Ablation study of EoT measured on four math
reasoning datasets with GPT-3.5-Turbo. 'R’, °C’, and
"M’ denote rewrite, crossover, and mutate, respectively.

Method AQuA  AddSub SVAMP GSMSK

EoT 62.2 91.1 82.0 78.5
-w/o R 61.4 90.1 80.7 76.4
-w/o C 58.7 89.1 82.3 76.2
-wloM 575 88.1 81.1 76.9

5.3 Results of Prompting with
Self-Consistency

Existing research suggests that the CoT prompting
method can be enhanced through the incorporation
of self-consistency (Wang et al., 2023b). This is
achieved by generating N reasoning results, with
the final answer determined by a majority voting
process. Our interest is additionally piqued by the
prospect of further augmenting the proposed EoT
prompting through self-consistency. Consequently,

experimental validations are conducted across four
arithmetic reasoning datasets: AddSub, AQuA, Sin-
gleEq, and SVAMP. As depicted in Table 6, the
comparative assessment involves an analysis of
the performance of zero-shot CoT prompting, PS+
prompting, and RE2 prompting after applying the
self-consistency method. Our EoT prompting ex-
hibits superior performance across diverse arith-
metic reasoning datasets when compared to these
baselines.

Table 6: Results of different methods in a zero-shot
setting with self-consistency measured on four math
reasoning datasets with GPT-3.5-Turbo.

Method AddSub AQuA SingleEq SVAMP
CoT +SC 87.1 62.6 94.5 80.6
PS++SC 88.6 63.0 94.1 81.1
RE2 +SC 89.6 63.4 94.9 80.8
EoT +SC (ours) 92.9 65.4 95.5 83.9

5.4 Effect of Population Size

In our prior experiments, we strategically employ
the EoT prompting method to facilitate a singular
round of crossover and mutation operations, aim-
ing to optimize inference speed. In this context,
our objective is to systematically verify the rela-
tionship between the number of our EoT prompt-
ings (i.e., represented as the population size V)
generated during multiple rounds of crossover and
mutation operations and the ensuring model per-
formance. As depicted in Figure 2, we conduct



the experiments across four arithmetic reasoning
datasets, including SingleEq, AddSub, SVAMP,
and CSQA. The results manifest a discernible posi-
tive correlation, wherein an increased quantity of
CoT promptings (i.e., a larger population size N)
corresponds to a consistent enhancement in the
model’s performance. Thus, in scenarios where
inference speed is either of lesser concern or can
be overlooked, our EoT prompting affords substan-
tial performance gains. This empirical evidence
substantiates the efficacy of our proposed approach.
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Figure 2: Results of different population size N mea-
sured on four math reasoning datasets with GPT-3.5-
Turbo.

5.5 Whether the Selections Made by LLMs
Are Random?

Our method utilizes LLMs to select promptings
suitable for the current problem. However, are the
selections made by the large language models ran-
dom? We first iteratively generate 10 CoT prompt-
ings using the LLM to investigate this. Then, we
allow the LLM to select the most appropriate CoT
promptings and perform reasoning. Additionally,
we randomly sampled CoT promptings from the
ten generated promptings and conducted reason-
ing. We conduct experiments on the AQuA and
SVAMP datasets using GPT-3.5-Turbo, and the re-
sults are depicted in Figure 3. It is evident that
the performance of LLM-based selection signifi-
cantly outperforms random selection, suggesting

GPT-3.5Turbo

\ccuracy (%)

A
2
g
S

Random LLM-based

Figure 3: Performance of random selection and LLM-
based selection on GPT-3.5-Turbo

that the selections made by LL.Ms are not random
but guided by the robust prior knowledge of LLMs.

6 Related Work

Chain-of-Thought Prompting Built upon in-
context learning (Brown et al., 2020), the recently
introduced CoT prompting (Kojima et al., 2022;
Wei et al., 2022; Wang et al., 2023b) significantly
enhances the reasoning capabilities of LLMs. CoT
prompting not only deepens the model’s under-
standing of subtle questions and their underlying
logic but also generates a series of explicit reason-
ing steps. Subsequent works (Wang et al., 2023a;
Schaeffer et al., 2023; Zhang et al., 2023; Xu et al.,
2023) have proposed different approaches to ad-
dress complex problems. Our EoT prompting,
by treating LLMs as evolutionary optimizers and
generating distinct discrete CoT promptings for
each instance, demonstrates superior performance
across various reasoning problems.

Additional related works can be found in Ap-
pendix C

7 Conclusion

This paper introduces EoT, a novel zero-shot CoT
prompting method. EoT prompting generates di-
verse CoT promptings tailored to specific instances
within a task through swarm intelligence algo-
rithms. The proposed method surpasses existing
zero-shot CoT, PS+, RE2, and APE prompting
methods across various reasoning datasets, demon-
strating notable performance, especially in arith-
metic and symbolic reasoning. Extensive exper-
iments and analyses validate the effectiveness of
zero-shot EoT prompting, showcasing its potential
to enhance LLLMs’ reasoning capabilities. We be-
lieve there is considerable potential for refining the
application of swarm intelligence algorithms based
on LLMs to enhance model reasoning capabilities.



Limitations

In our proposed method, we have integrated core
elements of swarm intelligence algorithms to lever-
age the capabilities of large language models
for chain-of-thought reasoning. Notably, specific
swarm intelligence algorithms, such as differential
evolution, still need to be explored in our current
experimentation and could be deferred for inves-
tigation in future endeavors. Our preliminary ex-
periments are exclusively conducted using GPT-
3.5-Turbo, Llama-3-8B-Instruct, and GPT-4. Con-
sidering the substantial costs associated with API
usage, we intend to broaden the validation of our
proposed method across a more extensive range of
large language models in subsequent stages, aim-
ing to enhance the generalizability and robustness
of our method, ensuring its applicability across var-
ious language models and further validating its ef-
ficacy. Moreover, we do not evaluate our proposed
EoT prompting under the few-shot setting because
of the substantial costs associated with API usage.
We leave this for further exploration in the future.
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A Details of Experimental Setup
A.1 Datasets

Table 7 shows the statistics of datasets used in our experiment.

Table 7: Details of datasets evaluated in our experiment.

No. Dataset Samples Avg Words Answer Format Domain

1 SingleEq 508 274 Number Math

2 AddSub 395 31.5 Number Math

3 GSMSK 1319 46.9 Number Math

4 MultiArith 600 31.8 Number Math

5 SVAMP 1000 31.8 Number Math

6 AQuA 254 51.9 Option Math

7 CommonsenseQA 1221 27.8 Option Commonsense
8 StrategyQA 2290 9.6 Yes/No Commonsense
9 Coin Flip 500 37.0 Yes/No Symbolic
10 Last Letters 1000 15.0 String Symbolic

A.2 Answer Extraction Prompts

Table 8 shows a list of answer extraction prompts used in our experiments.

Table 8: Answer extraction prompts used in our experiments across all baselines.

No Dataset Answer Extraction Prompts

1 SingleEq Therefore, the answer (arabic numerals) is

2 AddSub Therefore, the answer (arabic numerals) is

3 GSME8K Therefore, the answer (arabic numerals) is

4 MultiArith Therefore, the answer (arabic numerals) is

5 SVAMP Therefore, the answer (arabic numerals) is

6 AQuA Therefore, among A through E, the answer is
7 CommonsenseQA  Therefore, among A through E, the answer is
8 StrategyQA Therefore, the answer (Yes or No) is

9 Coin Flip Therefore, the answer (Yes or No) is

10  Last Letters Therefore, the answer is

B Additional Analysis
B.1 Effect of Number of Initializing CoT Promptings

Our method can initialize multiple CoT promptings rather than limit them to just two. By initializing
multiple CoT promptings and performing a single round of crossover and mutation, it is possible to
generate more promptings better suited to the current reasoning problem. Figure 4 shows the experimental
results of our method after initializing multiple CoT promptings and applying crossover and mutation with
GPT-3.5-Turbo. As the number of initial promptings increases, the performance of the LLM in AQuA
and AddSub improves. Considering the escalating temporal demand and token count limitations with
increasing CoT promptings, we set the number of initializing CoT promptings to two.

B.2 Effect of Initialization Prompts

To assess the impact of varied initializations of CoT prompting on the ensuring quality of generated
EoT prompting, we conduct a series of experiments to investigate the influence of EoT prompting
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Figure 4: Performance of the number of initializing CoT Promptings on GPT-3.5-Turbo

instructions systematically. As illustrated in Table 9, the experiments encompass four arithmetic reasoning
datasets: AddSub, SVAMP, AQuA, and GSMS8K. P1 designates the prompt employed by the zero-shot
CoT prompting method, while P2, P3, and P4 signify the prompts integral to our proposed method.
Notably, it is observed that the EoT prompting instruction utilized in P4 exhibits superior performance,
surpassing the previously employed P3 in antecedent experiments. This observation underscores the
potential for leveraging swarm intelligence algorithms to generate CoT promptings for each instance,
thereby warranting further exploration. We show the example outputs of different reasoning tasks in
Appendix D.

Table 9: Performance comparison of trigger sentences measured on four math reasoning datasets with GPT-3.5-
Turbo.

No.  Trigger Sentence ‘ AddSub SVAMP AQuA GSMSK

P1 Let’s think step by step. ‘ 86.6 79.0 55.1 75.3

Below are the two Prompts: Prompt 1: Let’s think step by step. Prompt 2: Let’s first understand
the problem and carefully extract all relevant variables and their corresponding numerals.
Then, Let’s calculate intermediate variables (pay attention to correct numerical calculation
P2 and commonsense) and solve the problem step by step carefully. I'd like you to follow the | 90.4 80.5 59.8 76.9
instruction step-by-step to generate a new prompt: 1.
2. 3.
and solve the problem.

Prompt 1: Let’s first understand the problem and carefully extract all relevant variables and
their corresponding numerals. Then, Let’s calculate intermediate variables (pay attention to
correct numerical calculation and commonsense) and solve the problem step by step carefully.
Prompt 2: Let’s first understand the problem and solve the problem step by step. Finally,

and solve the problem.

P3 91.1 82.0 62.2 78.5

Id like you to follow the instructions step-by-step to solve the problem step by step, and show
the answer. 1. Crossover the following prompts and generate a new prompt: Prompt 1: Let’s
first understand the problem and carefully extract all relevant variables and their corresponding
numerals. Then, Let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and solve the problem step by step carefully. Prompt 2: Let’s
first understand the problem and solve the problem step by step. 2. Mutate the crossover prompt
in Step 1 to generate the final prompt. 3. Apply a prompt that is suitable for this problem to
rewrite and solve the problem.

P4 91.4 82.5 63.4 79.1

C Additional Related Work

LLMs and Prompting With the increasing model complexity and the scale of parameters, LLMs
have unlocked emerging capabilities, notably in-context learning (ICL) (Brown et al., 2020). The ICL
strategy directly incorporates demonstrations into manually crafted prompts, enabling LLMs to perform
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exceptionally well without requiring task-specific fine-tuning. Recently, researchers have proposed
continuous prompt tuning (Li and Liang, 2021; Lester et al., 2021; Liu et al., 2021) to overcome challenges
in discrete prompt searching. For instance, Wu et al. (2022) and Jin et al. (2023) seek suitable prompts for
each instance by learning continuous prompt information relevant to the instance. However, these methods
require fine-tuning the parameters of the entire model, which are not friendly for LLMs. In contrast,
our EoT prompting seeks suitable prompt information for each instance in a discrete space, avoiding
fine-tuning the parameters of the entire model while maintaining good interpretability and robustness.
LLMs and Optimization Algorithms Recent research has seen a flourishing exploration of treating
LLMs as optimizers (Anonymous, 2024a; Liu et al., 2023; Meyerson et al., 2023). Some recent endeavors,
leveraging the formidable capabilities of LLMs, have demonstrated impressive performance in tasks such
as neural network search (Chen et al., 2023), mathematical problem-solving (Romera-Paredes et al., 2023),
and various other domains by integrating LLLMs with swarm intelligence algorithms (Guo et al., 2023;
Mouret, 2024; Anonymous, 2024b; Hollmann et al., 2023). In our work, we pioneer the application of
considering LL.Ms as part of swarm intelligence algorithms, specifically applying our EoT prompting to
CoT reasoning, yielding favorable results across diverse tasks.

D Example Outputs of Zero-shot EoT

Tables 10 to 13 list example outputs generated by our proposed method Zero-shot EoT prompting for
several datasets, including SVAMP, AQuA, AddSub, and MultiArith.

Table 10: Example output of Zero-shot-EoT for SVAMP

Q: Jack received 10 emails in the morning, 5 emails in the afternoon and 4 emails in the evening. How
many more emails did Jack receive in the afternoon than in the evening?

A: I'd like you to follow the instructions step-by-step to solve the problem step by step, and show the
answer.

1. Crossover the following prompts and generate a new prompt:

Prompt 1: Let’s first understand the problem and carefully extract all relevant variables and their cor-
responding numerals. Then, Let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and solve the problem step by step carefully.

Prompt 2: Let’s first understand the problem and solve the problem step by step.

2. Mutate the crossover prompt in Step 1 to generate the final prompt.

3. Apply a prompt that is suitable for this problem to rewrite and solve the problem.

Output:

Step 1: Crossover the prompts to generate a new prompt. Crossover Prompt: "Let’s first understand the
problem and carefully extract all relevant variables and their corresponding numerals. Then, let’s solve
the problem step by step."

Step 2: Mutate the crossover prompt. Mutated Prompt: "First, let’s carefully examine the problem and
extract all relevant variables along with their corresponding numbers. Then, we’ll calculate intermediate
values (ensuring accuracy and using common sense) and solve the problem methodically."

Step 3: Apply the mutated prompt to rewrite and solve the problem.

Given: Morning emails = 10, Afternoon emails = 5, Evening emails = 4. To find: How many more emails
did Jack receive in the afternoon than in the evening?

Solution: Extract the relevant variables and their corresponding numbers:

Morning emails = 10, Afternoon emails = 5, Evening emails = 4.

Calculate the difference between afternoon and evening emails:

Difference = Afternoon emails - Evening emails

Difference =5 - 4

Difference = 1

So, Jack received 1 more email in the afternoon than in the evening.
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Table 11: Example output of Zero-shot-EoT for AQuA

Q: A rope 20 meters long is cut into two pieces. If the length of one piece of rope is 3 meters shorter than
the length of the other, what is the length, in meters, of the longer piece of rope? Answer Choices: (A) 7.5
(B)89(C)9.9(D) 11.5(E) 11.7.

A: I'd like you to follow the instructions step-by-step to solve the problem step by step, and show the
answer.

1. Crossover the following prompts and generate a new prompt:

Prompt 1: Let’s first understand the problem and carefully extract all relevant variables and their cor-
responding numerals. Then, Let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and solve the problem step by step carefully.

Prompt 2: Let’s first understand the problem and solve the problem step by step.

2. Mutate the crossover prompt in Step 1 to generate the final prompt.

3. Apply a prompt that is suitable for this problem to rewrite and solve the problem.

Output:

Crossover Prompt: "Let’s first understand the problem and carefully extract all relevant variables and their
corresponding numerals. Then, let’s solve the problem step by step."

Mutated Prompt: "First, let’s thoroughly grasp the problem and identify all pertinent variables along with
their respective values. Next, we’ll systematically work through the problem, ensuring accuracy at each
step, until we find the solution."

Selected Prompt: "First, let’s thoroughly grasp the problem and identify all pertinent variables along with
their respective values. Next, we’ll systematically work through the problem, ensuring accuracy at each
step, until we find the solution."

Now, let’s solve the problem using this prompt:

Given:

Total length of rope = 20 meters

Length of one piece of rope = ?

Length of the other piece of rope = ?

To find: What is the length, in meters, of the longer piece of rope?

Solution: Extract the relevant variables and their corresponding numbers: Total length of rope = 20 meters
Set up the equation based on the problem statement: Let x be the length of the longer piece of rope. Then,
the length of the shorter piece of rope is x-3 meters.

The sum of the lengths of the two pieces of rope is equal to the total length of the rope:x + (x-3)=20
Solve the equation for

2x-3=20

2x=23

x=11.5

So, the length of the longer piece of rope is 11.5 meters.

Answer: (D) 11.5
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Table 12: Example output of Zero-shot-EoT for AddSub

Q: There are 54 scissors in the drawer. Keith placed 22 scissors in the drawer. How many scissors are
now there in all?

A: I'd like you to follow the instructions step-by-step to solve the problem step by step, and show the
answer.

1. Crossover the following prompts and generate a new prompt:

Prompt 1: Let’s first understand the problem and carefully extract all relevant variables and their cor-
responding numerals. Then, Let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and solve the problem step by step carefully.

Prompt 2: Let’s first understand the problem and solve the problem step by step.

2. Mutate the crossover prompt in Step 1 to generate the final prompt.

3. Apply a prompt that is suitable for this problem to rewrite and solve the problem.

Output:

Crossover Prompt: "Let’s first understand the problem and carefully extract all relevant variables and their
corresponding numerals. Then, Let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and determine the solution step by step."

Mutated Prompt: "First, let’s thoroughly comprehend the problem and identify all relevant variables along
with their respective values. Then, we’ll proceed to calculate intermediate values (ensuring accuracy and
using common sense) and arrive at the solution methodically."

Selected Prompt: "Let’s first understand the problem and carefully extract all relevant variables and their
corresponding numerals. Then, Let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and determine the solution step by step."

Now, let’s solve the problem using this prompt:

Given:

Total number of scissors in the drawer = 54

Scissors placed by Keith = 22

Solution:

Extract the relevant variables and their corresponding numbers:

Total number of scissors in the drawer = 54

Number of scissors placed by Keith = 22

Calculate the number of scissors now:

Number of scissors now = Total number of scissors + Number of scissors placed by Keith

Number of scissors now = 54 + 22

Number of scissors now = 76

So, there are now 76 scissors in all.

Answer: 76
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Table 13: Example output of Zero-shot-EoT for MultiArith

Q: A store had 27 coloring books in stock. They ended up putting them on sale and getting rid of 6 of
them. The put the ones they still had onto shelves with 7 on each shelf. How many shelves did they use?
A: I'd like you to follow the instructions step-by-step to solve the problem step by step and show the
answer.

1. Crossover the following prompts and generate a new prompt:

Prompt 1: Let’s first understand the problem and carefully extract all relevant variables and their cor-
responding numerals. Then, Let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and solve the problem step by step carefully.

Prompt 2: Let’s first understand the problem and solve the problem step by step.

2. Mutate the crossover prompt in Step 1 to generate the final prompt.

3. Apply the final prompt in Step 2 to think, rewrite, solve the problem step by step, and show the answer.
Output:

Crossover Prompt: "Let’s understand the problem and carefully extract all relevant variables and their
corresponding numerals. Then, let’s calculate intermediate variables and solve the problem step by step."
Mutated Prompt: "First, let’s thoroughly understand the problem and identify all relevant variables along
with their respective values. Then, we’ll proceed to calculate intermediate values (ensuring accuracy and
using common sense) and unravel the solution methodically."

Selected Prompt: "Let’s first understand the problem and carefully extract all relevant variables and their
corresponding numerals. Then, let’s calculate intermediate variables (pay attention to correct numerical
calculation and common sense) and solve the problem step by step carefully."

Now, let’s solve the problem using this prompt:

Given:

Total number of coloring books in stock = 27

Number of coloring books sold = 6

Number of coloring books left = Total number - Number sold =27 - 6 =21

Number of coloring books placed on each shelf =7

To find: How many shelves did they use?

Solution:

Extract the relevant variables and their corresponding numbers:

Total number of coloring books left = 21

Number of coloring books placed on each shelf =7

Calculate the number of shelves used:

Number of shelves = Total number of coloring books left / Number of coloring books placed on each shelf
Number of shelves =21/7

Number of shelves = 3

So, they used 3 shelves.

Answer: 3
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