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Abstract

We study the problem of aligning a generative model’s response with a user’s prefer-
ences. Recent works have proposed several different formulations for personalized
alignment; however, they either require a large amount of user preference queries
or require that the preference be explicitly specified as a text input. In this paper,
we propose a novel inference-time personalized alignment method, USERALIGN,
that elicits the user’s preferences with a few queries as pairwise response compar-
isons. In particular, USERALIGN builds on the theoretical framework of best-arm
identification in logistic bandits and selects a personalized response from a fixed
pool of the model’s generated responses. The key idea is to consider the user’s feed-
back consistent and noise-free, and incorporate it into the theoretical framework
to identify the best response quickly. Experimental results across several tasks,
involving personalized text and image generation, showcase the effectiveness of
USERALIGN in achieving personalized alignment.

1 Introduction

Generative models have demonstrated remarkable capabilities across language and vision tasks, yet
aligning their outputs with human preferences remains a central challenge [1, 2]. While population-
level alignment methods such as Reinforcement Learning from Human Feedback (RLHF) [3, 4, 5] and
Direct Preference Optimization (DPO) [6, 7, 8] have made significant strides, practical applications
often demand personalization. Users exhibit highly individual tastes and requirements, from stylistic
writing preferences to visual aesthetics to lifestyle preferences, which generic alignment cannot fully
capture. Consequently, our key research question is: How can we align a generative model’s response
to a specific user on the fly, where the user’s preferences need to be elicited with limited interaction?

Recent efforts toward personalized alignment have explored both training-time and inference-time
strategies, each with drawbacks when query budgets are small. Training-time personalization
approaches fine-tune models on user-specific data but typically rely on extensive preference annota-
tions [9, 10]. Inference-time methods offer more flexibility by adapting model outputs at deployment;
however, many require users to articulate their preferences as explicit text prompts [11, 12], which
can be cognitively demanding and imprecise for complex tastes. Even theoretically grounded active
learning and bandit-based methods for modeling latent reward functions demand a lot of pairwise
comparisons to converge to a reliable preference estimate [13, 14], making them impractical for
real-world, low-interaction settings.
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1 Input: Generate concept art for a videogame hero that players would instantly connect with.

2 System generates a diverse pool of responses

3 USERALIGN eliciting user preferences via pairwise comparisons

t=1 t=2 t=3
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t=7 t=8 t=9

4 Output

Figure 1: An illustrative example showcasing inference-time personalized alignment methodology.
Starting with a user question (Stage 1), the system generates a pool of responses (Stage 2). Then,
USERALIGN iteratively collects user preferences (Stage 3) via pairwise comparisons to determine
the most suitable response—user’s preferred responses are highlighted. At the end, the final response
is selected (Stage 4). The user in this example is simulated by the GPT-4o-mini model conditioned
on the persona description “NostalgicExplorer: A 36-year-old who grew up with classic platformers
and adventure games. Loves timeless heroes with a sense of wonder and a hint of retro charm”.

In this paper, we introduce USERALIGN, a novel inference-time personalized alignment method that
efficiently elicits user preferences through only a few pairwise comparisons among a fixed pool of
candidate responses. Building on the best-arm identification framework in logistic bandits [15, 16,
17, 18, 19], USERALIGN maintains a loss-based confidence region over the user’s latent preference
model and aggressively shrinks this region by treating each comparison as consistent and noise-
free. By leveraging version-space elimination via intersecting halfspaces defined by the observed
duels [20, 21], our method rapidly isolates the best response without extensive querying. Figure 1
provides an illustrative example showcasing USERALIGN’s interaction with the user on an image
generation task. Our main results and contributions are summarized below:

• We formulate the problem of inference-time personalized alignment with a particular focus on prac-
tical settings where the user’s preferences need to be elicited with limited interaction. (Section 3)

• We develop a novel method, USERALIGN, theoretically grounded in the logistic bandits framework,
and achieve fast alignment by modeling the user’s feedback as consistent and noise-free. (Section 4)

• We demonstrate that USERALIGN can achieve fast personalized alignment with a few preference
queries in personalized text and image generation, evaluated on both simulated and real users. We
release our implementation and datasets to support further research.1 (Sections 5 and 6)

1Github repo: https://github.com/machine-teaching-group/neurips2025-useralign.
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Table 1: Related work on preference alignment of generative models; see Section 2 for details.

(a) Preference alignment methods. General preference alignment methods use aggregated population-level
preference data, while personalized methods rely on user-level data (with user identity).

Training-time Inference-time

General Preferences

Offline RLHF [3, 4, 5] BoN [22, 23]
DPO [6, 7, 8] Reward guided decoding [24, 25, 26]

Online Active RLHF [27, 28] Active BoN [29, 30]
Active DPO [28, 30, 31] Active Bayesian PM [14, 32, 33]

Personal Preferences

Offline Personalized RLHF [9] URIAL [11], DeAL [12]
Personalized DPO [10] PAD [34], OPAD [35], Amulet [36]
VPL [37] Personalized Soups [38], MOD [39]

LoRE [40], PAL [41]

Online PBO [42], APL [43]
Active BoN [29, 30]
Active Bayesian pref. model [14, 32, 33]
USERALIGN

(b) Inference-time personalized preference alignment methods. User preference input can take the form of
explicit text (e.g., preference specifications or prompt-response examples), pairwise comparisons of base model
outputs, or weights over predefined objectives. Offline methods impose less user load than online methods, as
they do not require active user interaction. Warmup options include training a personalized preference model with
multi-user pairwise data, or training an ensemble of generative models for different objectives. Inference-time
operations include in-context learning, active preference learning from user comparisons, logit adjustment
using on-the-fly reward functions with text-based preference input, logit adjustment via learned user preference
weights with a pre-trained preference model, or logit adjustment using an ensemble of pre-trained generative
models and user-defined weights. Online methods typically account for uncertainty in user preference modeling.
Aligned responses can be generated via guided decoding or selection from a pool of pre-generated outputs.

Preference
Input

User
Load

Warmup
Operation

Test-Time
Operation

Uncertainty
Quantification

Response
Generation

URIAL [11] Text Low None In-context learn No Guiding
DeAL [12] Text Low None In-context learn No Guiding

PAD [34] Text Low Train pref. model On-the-fly pref. No Guiding
OPAD [35] Text Low None On-the-fly pref. No Guiding
Amulet [36] Text Low None On-the-fly pref. No Guiding

Personalized Soups [38] Weight Low Train gen. models Ensemble No Guiding
MOD [39] Weight Low Train gen. models Ensemble No Guiding

LoRE [40] Comparisons Low Train pref. model Learn pref. weight No Guiding
PAL [41] Comparisons Low Train pref. model Learn pref. weight No Guiding

PBO [42] Comparisons High None Active pref. model Yes Selection
APL [43] Comparisons High None Active pref. model Yes Selection
Active BoN [29, 30] Comparisons High None Active pref. model Yes Selection
Active Bayesian pref. model [14] Comparisons High None Active pref. model Yes Selection
USERALIGN Comparisons Low None Active pref. model Yes Selection

2 Related Work
A broad range of general preference alignment methods has emerged (see Table 1a). Offline ap-
proaches like Reinforcement Learning from Human Feedback (RLHF) [3, 4, 5] and Direct Preference
Optimization (DPO) [6, 7, 8] fine-tune models using aggregated preference data. At inference, meth-
ods like Best-of-N sampling (BoN) [22, 23] and reward-guided decoding [24, 25, 26] steer outputs
without retraining. To lower annotation cost, online variants such as Active RLHF [27, 28] and
Active DPO [28, 30, 31] adapt losses on-the-fly, while methods like Active BoN [29, 30] and Active
Bayesian preference modeling [14, 32, 33] refine decoding via sequential pairwise feedback. These
methods capture broad community norms but struggle to personalize outputs for individual users.

In contrast, personalized preference alignment methods leverage user-specific data to generate indi-
vidualized outputs (see Table 1b). Offline methods [9, 10, 37] fine-tune models on per-user preference
data. At inference, text-based logit adjustment methods like URIAL [11] and DeAL [12] embed
few-shot examples, while PAD [34], OPAD [35], and Amulet [36] learn lightweight reward functions
on-the-fly. Personalization is also supported by weight-based ensembling (Personalized Soups [38],
MOD [39]) and comparison-driven logit adjustment (LoRE [40], PAL [41]). Online personalization
algorithms, such as PBO [42] and APL [43], actively query users for pairwise comparisons to refine
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Algorithm 1 System-User Interaction

1: User u provides an input prompt x ∈ X to the system.
2: System uses the generative model π to generate a pool of responses Ycand for x.
3: while stopping criteria not met do

System selects a pair of responses (y, y′) ∈ Y2
cand.

System asks the user to provide a preference over the pair (y, y′).
System sets r = 1 if the user prefers y over y′, and r = 0 otherwise.
System updates the preference dataset D with the preference tuple (x, y, y′, r).

4: System selects a final response ŷ ∈ Ycand for the user.

decoders in real time; Active BoN and Active Bayesian preference modeling naturally extend to this
user-specific setting. Recent surveys provide broader overviews of personalized alignment [44, 45].

Another line of related work is Bayesian active learning that treats a user’s latent reward as a random
variable and selects queries that most reduce posterior uncertainty [14, 46], enabling sample-efficient
recovery of preference weights under mild assumptions. Similarly, the dueling bandit framework
models preference learning as an online decision problem with pairwise feedback [13, 47], where
algorithms using upper-confidence bounds or Thompson sampling achieve sublinear regret and con-
vergence guarantees [48, 49]. However, both approaches often require many user queries in practice.

3 Problem Formulation
System-user interaction. The envisioned system is powered by a generative model and interacts with
a user u. The generative model is a stochastic mapping π : X → ∆(Y), where X is the input space
and Y is the output space (∆(Y) denotes the probability simplex over Y). The user’s preferences
are captured by an unknown latent preference model: for any input x ∈ X and a pair of responses
(y, y′) ∈ Y2, the probability that the user prefers y over y′ (denoted y ≻ y′) is given by the preference
model pu[y ≻ y′ | x]. Given an input x ∈ X from the user, the system first generates a candidate
pool of responses Ycand using the generative model π, and then seeks to output a preference-aligned
response ŷ from this pool. To this end, the system must learn or infer the user’s preference model
for x through interaction. This interaction consists of querying the user to express a preference over
a pair (y, y′) ∈ Y2

cand from the pool. Throughout, the system maintains and updates a dataset of
preferences D = {(x, y, y′, r)}, where r = 1 if the user prefers y over y′ for x, and r = 0 otherwise.
The complete interaction process is described in Algorithm 1.

Objective. Let ỹ ∈ Y be a baseline response for x generated by the model π with zero sampling
temperature. This response is produced prior to any user interaction. For input x, we define the
win-rate of any response y ∈ Y against the baseline ỹ as pu[y ≻ ỹ | x]. The system aims to
output a response that approximately maximizes this win-rate while using as few preference queries
as possible. Specifically, given the candidate pool Ycand for x, the goal is to find the response
y⋆ = argmaxy∈Ycand

pu[y ≻ ỹ | x] with minimal interaction.

4 Methodology
In this section, we present our algorithm, USERALIGN, for generating user preference-aligned
responses using best-arm identification methods from logistic bandits literature. The full procedure is
outlined in Algorithm 2, with its subroutine SOLVE detailed in Algorithm 3.

Preliminaries. For any input x ∈ X and a pair of responses (y, y′) ∈ Y2, the Bradley-Terry-Luce
(BTL) preference model is defined as pBTL

[
y ≻ y′

∣∣ x, θ
]
:= µ(⟨θ, ϕ(x, y)− ϕ(x, y′)⟩), where θ ∈

Θ ⊂ Rd is a weight vector, ϕ : X ×Y → Rd is a feature mapping, and µ(z) = 1/(1 + e−z) denotes
the logistic function. To develop our algorithm, we consider a user preference model pu following
the BTL model with some unknown θ⋆ ∈ Θ. We also adopt the following standard assumption [50]:
∥ϕ(x, y)− ϕ(x, y′)∥2 ≤ 1,∀x ∈ X , y, y′ ∈ Y and ∥θ⋆∥2 ≤ S with known S > 0. We define
κ⋆
X ,Y := maxx∈X maxy,y′∈Y

1
µ̇(⟨θ⋆,ϕ(x,y)−ϕ(x,y′)⟩) and ∆Ycand := miny,y′∈Ycand;y ̸=y′⟨θ⋆, ϕ(x, y) −

ϕ(x, y′)⟩. Under this setup, the response maximizing the win-rate can be equivalently written as:

y⋆ = argmax
y∈Ycand

⟨θ⋆, ϕ(x, y)⟩. (1)
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Algorithm 2 USERALIGN: Eliciting User Preferences

1: Input: generative model π : X → Y , feature mapping ϕ : X × Y → Rd, stopping threshold ϵ,
confidence level δ, problem dimension d, and norm bound S

2: User u provides an input prompt x ∈ X to the system.
3: Generate a diverse set of responses Ycand for x by sampling from π.
4: Initialize the preference dataset D0 ← {}.
5: for t = 0, 1, 2, . . . do

▷ Obtain a representative preference model parameter and confidence set.
6: Obtain (θ̂t,Θt)← SOLVE(Dt, d, S, t, δ)

▷ Obtain responses for comparison.
7: Select the first response y

(1)
t ← argmaxy∈Ycand

⟨θ̂t, ϕ(x, y)⟩.
8: Select the second response (y

(2)
t , θ̃t)← argmax(y′,θ)∈Ycand×Θt

⟨θ, ϕ(x, y′)− ϕ(x, y
(1)
t )⟩.

▷ Check the stopping condition.
9: Compute stopping criteria B(t) = ⟨θ̃t, ϕ(x, y(2)t )− ϕ(x, y

(1)
t )⟩.

10: if B(t) ≤ ϵ then
11: Output: Response y

(1)
t to the user u.

▷ Obtain user feedback and update the preference dataset.
12: Ask the user u to provide preference over responses y(1)t and y

(2)
t .

13: Observe rt ∼ pu[y
(1)
t ≻ y

(2)
t | x] and update Dt+1 ← Dt ∪ {(x, y(1)t , y

(2)
t , rt)}.

Algorithm 3 USERALIGN: SOLVE Subroutine

1: Input: preference dataset Dt, dimension d, norm bound S, step t, and confidence level δ
2: Compute the MLE θ̂t by solving the optimization problem in Eq. (2).
3: Construct the loss-based confidence set Θt as in Eq. (3).

▷ Obtain the practical confidence set (see Section 4.2).
4: Update Θt ← Θt ∩Ht w.r.t. the consistency set in Eq. (4);

when updated Θt is empty, set Θt = {θ̂t}.
5: Output: preference parameter θ̂t and confidence set Θt

4.1 Theoretical Framework for USERALIGN

Here, we describe USERALIGN without line 4 in the SOLVE subroutine, referring to this variant as
USERALIGNLOSS. Starting with an empty preference dataset D0 = {}, we actively populate it with
preference tuples (x, y(1), y(2), r), where r = 1 if user u prefers y(1) over y(2), and r = 0 otherwise.
Let Dt = {(xτ , y

(1)
τ , y

(2)
τ , rτ )}t−1

τ=0 be the dataset at step t. We select a pair of responses (y(1)t , y
(2)
t )

for which we request user feedback and then add the resulting tuple (x, y
(1)
t , y

(2)
t , rt) to Dt.

SOLVE. For the preference dataset Dt, we define the negative log-likelihood function as follows:
Lt(θ) :=

∑t−1
τ=0 ℓ(θ; (xτ , y

(1)
τ , y

(2)
τ , rτ )), where ℓ(θ; (x, y(1), y(2), r)) := −r · logµ(⟨θ, z⟩)− (1−

r) · log(1 − µ(⟨θ, z⟩)) is the logistic loss function, with z = ϕ(x, y(1))− ϕ(x, y(2)). Finally, we
obtain the norm-constrained, unregularized maximum likelihood estimator (MLE) of the unknown
parameter θ⋆ via solving the following optimization problem:

θ̂t := argmin
∥θ∥2≤S

Lt(θ). (2)

We construct the loss-based confidence set as follows:

Θt :=
{
θ ∈ Rd : ∥θ∥2 ≤ S and Lt(θ) ≤ Lt(θ̂t) + βt

}
, (3)

where βt = 10d log
(
St
4d + e

)
+ 2((e − 2) + S) log 1

δ [19]. Since Lt is convex, the confidence set
Θt is also convex. The SOLVE procedure is presented in Algorithm 3. After obtaining θ̂t and Θt,
we select the first response y

(1)
t as the one that maximizes the win-rate objective in Eq. (1) under θ̂t.

Next, we choose the second response y(2)t to maximize the regret of y(1)t within Θt. If this maximum
regret (i.e., B(t) in line 9 of Algorithm 2) is below the given ϵ threshold, we output y(1)t .
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(a) Loss-based confidence set Θt in Eq. (3) shrinks slowly due to incremental log-loss updates.

(b) Practical confidence set Θt ∩Ht shrinks aggressively due to version-space elimination.
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(c) Normalized area of confidence set, viable response pool size, and stopping criteria over interaction
steps. The practical confidence set shrinks significantly faster.

Figure 2: Geometric convergence in a two-dimensional synthetic domain. We consider a 2D
preference space where each candidate response is represented by a point randomly sampled from
the ball of radius 0.5. For each run, the ground-truth user preference θ⋆ is sampled uniformly from
the circle with radius 3. The plots compare the rate at which the loss-based and practical confidence
sets shrink over successive pairwise comparisons.

Theoretical Analysis. The following proposition shows that the loss-based confidence set Θt contains
the true parameter θ⋆ with high probability [19]. Proofs are provided in the supplementary material.

Proposition 1. For the confidence set Θt defined in Eq. (3), we have: P [∀t ≥ 0, θ⋆ ∈ Θt] ≥ 1− δ.

Note that for any θ′, Lt(θ)−Lt(θ
′) ≤ Lt(θ)−Lt(θ̂t) ≤ βt. Therefore, even if only an approximate

estimate of θ̂t is obtained, the high-probability guarantee that θ⋆ ∈ Θt still holds. The following
theorem shows that USERALIGNLOSS identifies an ϵ-near-optimal response with high probability.

Theorem 1. Let τ be the stopping round of USERALIGNLOSS, and y⋆ is defined in Eq. (1). Then, the
response y

(1)
τ returned by USERALIGNLOSS satisfies P[⟨θ⋆, ϕ(x, y⋆)− ϕ(x, y

(1)
τ )⟩ ≤ ϵ] ≥ 1− δ.

Below, we show that the stopping time of USERALIGNLOSS is bounded with high probability.

Theorem 2. Let τ be the stopping round of USERALIGNLOSS. Define K = |Ycand|, and Ω :=
S2κ⋆

X ,Y
max{ϵ,∆Ycand}2

(
d+ log 1

δ

)
. Then, with probability at least 1−δ, we have: τ ≤ O(ΩK2 · log(ΩK2)).

4.2 Practical Confidence Set in USERALIGN

Despite strong convergence guarantees, USERALIGNLOSS requires a larger number of user preference
queries to identify the best (win-rate maximizing) response in practice. This is because the loss-
based confidence set defined in Eq. (3) shrinks slowly due to incremental log-loss updates (see
Figure 2). This behavior is expected under the stochastic BTL model of user preferences. To
overcome this challenge, the key idea is to treat the user’s preference feedback as consistent and
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Table 2: Domain specifications for our experiments involving personalized text and image generation.

Domain Preference Space # Questions # Users Response Pool Example Question

food2d 2d (domain-specific) 10 3 20 What should I cook for dinner tonight?

food64d 64d (Potion [52]) 10 3 20 What should I cook for dinner tonight?

travel64d 64d (Potion [52]) 10 3 20 Which travelling destination would sur-
prise me in the best possible way?

visual512d 512d (OpenCLIP [53, 54]) 10 3 40 Generate concept art for a videogame hero
that players would instantly connect with.

dsp64d 64d (Potion [52]) 100 3 20 Describe the main character of Shake-
speare’s play Hamlet.

noise-free2, and incorporate it into the theoretical framework to identify the best response more
efficiently. Specifically, by leveraging version-space elimination via intersecting halfspaces consistent
with observed preference tuples [20, 21], we can aggressively shrink the confidence set. Given the
preference dataset Dt = {(xτ , y

(1)
τ , y

(2)
τ , rτ )}t−1

τ=0, we define the consistent half-spaces set as:

Ht :=
{
θ ∈ Rd : rτ · ⟨θ, zτ ⟩ − (1− rτ ) · ⟨θ, zτ ⟩ ≥ 0 for all τ ∈ [t− 1]

}
, (4)

where zτ = ϕ(xτ , y
(1)
τ )− ϕ(xτ , y

(2)
τ ). Using this consistent set of halfspaces, we refine the loss-

based confidence set as Θt ← Θt ∩Ht, enabling rapid identification of a near-optimal response with
fewer queries; in case Θt becomes empty, we set it as Θt = {θ̂t}. We refer to the resulting algorithm
with the updated confidence set as our main method, USERALIGN. The computational efficiency of
USERALIGN is discussed in Appendix F.1. In the following section, we empirically demonstrate the
effectiveness of USERALIGN in quickly selecting personalized responses.

5 Experimental Evaluation

To thoroughly evaluate our method, we consider a diverse set of domains (see Table 2). We begin with
food2d, enabling controlled experiments with users modeled through BTL in an interpretable 2D
space. We then assess real-world domains (food64d, travel64d, visual512d) to test performance
with complex GPT-simulated personas. Finally, we include dsp64d based on an existing large-scale
benchmark to rigorously examine scalability and robustness.

Domain food2d. This domain defines Θ as a 2D space with dimensions ‘spiciness’ and ‘veginess’,
each feature ranging from−1 (no spice/animal protein) to 1 (high spice/plant-based protein). Building
on this space, we define the set of questions, construct user models, generate response pools, and
obtain feature representations. First, we construct X as 10 food recommendation questions. Second,
for each question, we sample 3 user preferences θ⋆ uniformly on the circle of radius S = 3 in R2 (i.e.,
∥θ⋆∥2 = 3). We conduct experiments with two types of user behavior: pu modeled through BTL, and
pu considered consistent and noise-free. Third, we generate a candidate pool Ycand of 20 responses per
question x ∈ X with GPT-4o [51]. Finally, we obtain ϕ(x, y) by asking GPT-4o to map a question-
response pair to the 2D ‘spiciness’/‘veginess’ space, given the domain description as context.

Domains food64d, travel64d, and visual512d. We define Θ as {θ ∈ Rd : ∥θ∥2 ≤ S}, with
dimensionality d based on pretrained embeddings and S = 3. First, we define X as 10 questions
per domain (see Table 2). Second, for each question, we construct 3 brief persona descriptions
representing user preferences, and simulate user behavior pu by prompting GPT-4o-mini [55]
(temperature = 0) to select preferred responses conditioned on these descriptions (see Figure 1).
Third, we construct Ycand by generating 20 responses per question with GPT-4o for text domains
(food64d, travel64d) and 40 images per question with GPT-Image-1 [56] for visual512d.
Finally, we obtain ϕ(x, y) using pretrained models, specifically a sentence transformer for the
64-dimensional text domains [52] and an OpenCLIP variant for the 512-dimensional vision
domain [53, 57, 54]. The framework is modular, so specialized (handcrafted or learned) embeddings
can replace the pretrained ones to capture finer nuances when needed.

Domain dsp64d. For this domain, we similarly define Θ with dimensionality based on pretrained
embeddings and S = 3. First, we define X as 100 questions sampled from the Domain Specific

2Our work focuses on short-term, task-specific interaction sessions, where users typically have clear and
stable preferences. In such cases, assuming consistent and noise-free feedback is both practical and realistic.
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(b) u = Consistent: Win-rate vs. interaction cost
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(c) u = BTL: Win-rate w.r.t. increasing steps
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(d) u = Consistent: Win-rate w.r.t. increasing steps

Figure 3: Results on food2d across two types of user behavior. Top row shows win-rate vs. interaction
cost trade-off; here USERALIGN and USERALIGNLOSS results show scatter plot corresponding to vary-
ing values of ϵ. Bottom row shows win-rate per increasing interaction steps; here USERALIGN and
USERALIGNLOSS are run for a given number of steps as mentioned in Footnote 3. In these plots, ORA-
CLE and RANDOM are flat lines, and IIDBEST results are reported at different number of given steps.

Preference (DSP) dataset [58, 35]. Second, for each question, we sample 3 user descriptions from the
dataset to simulate user behavior pu, prompting GPT-4o-mini to select preferred responses given each
description. Third, we construct the candidate pool Ycand for each question using GPT-4o, following
the same approach as above. Finally, we obtain ϕ(x, y) using the same sentence transformer encoder
as for the other text domains, yielding 64-dimensional representations.

5.1 Evaluation Setup

Candidate pool generation. For each question, we generate a diverse pool of candidate responses
by following two sampling approaches. We obtain half of the candidate responses by sampling
from GPT-4o or GPT-Image-1 at high temperature, conditioned only on the question, resulting in
unbiased responses. We obtain the remaining half by prompting the generative model to first reason
about possible diverse interests relevant to the question, then generate one response per interest,
thereby obtaining greater diversity in the pool. We provide full details about pool generation in the
supplementary material, and also report additional experiments using different candidate pools.

Metrics. We consider two metrics: (i) interaction cost as the number of interaction steps taken by
a given method before outputting a final response; (ii) win-rate pu[y ≻ ỹ | x] of the output response
y against baseline ỹ, where ỹ is generated by the original model (GPT-4o or GPT-Image-1) with
zero sampling temperature for the same question x (see Section 3). The win-rate is computed using
different types of simulated user preference models pu, with u = BTL, u = Consistent, or u = GPT.

5.2 Evaluated Methods

ORACLE and RANDOM. These two baseline methods provide upper/lower performance bounds. OR-
ACLE selects the response with highest utility using explicit knowledge of the user. RANDOM selects a
response uniformly at random from the candidate pool. These methods don’t have any interaction cost.

IIDBEST. This method collects user preferences over a fixed number of steps, each time randomly
sampling a pair of responses. At the end, it computes the MLE θ̂ of the user’s preference as in Eq. (2),
and selects the response maximizing the utility, i.e., ŷ = argmaxy∈Ycand

⟨θ̂, ϕ(x, y)⟩.
USERALIGN and USERALIGNLOSS. These two methods select pairs using Algorithm 2. Our
main method, USERALIGN, is based on the practical confidence set introduced in Section 4.2.
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Figure 4: Win-rate vs. interaction cost trade-off on domains with arbitrary preference spaces. Here
USERALIGN and USERALIGNLOSS results show scatter plot corresponding to varying values of ϵ. OR-
ACLE and RANDOM are flat lines, and IIDBEST results are reported at different number of given steps.

USERALIGNLOSS is based on the theoretical confidence set, introduced in Section 4.1. Both methods
are parameterized by (ϵ, δ) which determines their stopping condition (see lines 1 and 10 in
Algorithm 2). We set δ = 0.05 for all the experiments. When reporting results, we will vary the
value of ϵ in [0, S] to get a trade-off between interaction cost and win-rate.3

5.3 Evaluation Results

All results are averaged over five random seeds, questions, and user personas (see Table 2).

Results w.r.t. different types of users in 2D. Figure 3 shows the results on food2d across two
types of user behaviors (u = BTL and u = Consistent). USERALIGN achieves high win-rate
at a low interaction cost, outperforming USERALIGNLOSS, IIDBEST, and RANDOM. Moreover,
Figures 3a and 3b showcase that USERALIGN is effective in automatically deciding how many
interaction steps are needed to achieve competitive win-rates based on its stopping criterion.

Results in an arbitrary preference space. Figure 4 shows the results on four domains with arbitrary
preference spaces, where the user preferences are given by GPT-based simulated personas. USER-
ALIGN achieves competitive win-rates at lower interaction costs, outperforming USERALIGNLOSS,
IIDBEST, and RANDOM across all domains. As an illustrative example, Figure 1 highlights that
USERALIGN picks informative comparison queries, and can identify a high-quality response quickly
even in high-dimensional settings. Overall, these findings highlight the robustness and adaptability of
our method across diverse domains and representation spaces.

6 Evaluation with Human Users

Next, to go beyond simulated user preference models considered above (u = BTL, u = Consistent,
u = GPT), we evaluate the methods with an additional user behavior type, u = Human, with
preferences coming from human users.

Evaluation setup. We consider two domains, food64d and visual512d, due to the high cost
involved in this evaluation. We compare three methods (USERALIGN, IIDBEST, and RANDOM) using
the same candidate pool sizes as in the earlier experiments (food64d has 20 responses per question
and visual512d has 40 images per question). To ensure a fair comparison and keep cognitive load
manageable, we fix the per-domain interaction budget to 10 for food64d and 20 for visual512d, and

3We will additionally look at dynamics when running these algorithms for a fixed number of steps without
using ϵ-based stopping; here, the algorithm will resort to i.i.d. sampling of y(2) if no viable response remains.
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Table 3: Results of the food64d and visual512d evaluation with human users under fixed
interaction budgets. The table reports win-rate versus the zero-temperature baseline at two different
interaction steps for two personalization conditions.

food64d visual512d

Method With-persona Without-persona With-persona Without-persona

t = 5 t = 10 t = 5 t = 10 t = 10 t = 20 t = 10 t = 20

RANDOM 44.2 (3.2) 44.2 (3.2) 43.8 (3.2) 43.8 (3.2) 46.9 (3.2) 46.9 (3.2) 42.3 (3.2) 42.3 (3.2)
IIDBEST 71.7 (4.1) 78.3 (3.8) 73.3 (4.0) 76.7 (3.9) 75.6 (3.9) 81.5 (3.6) 78.3 (3.8) 79.2 (3.7)
USERALIGN 82.5 (3.5) 89.2 (2.8) 79.2 (3.7) 85.8 (3.2) 81.7 (3.5) 90.0 (2.7) 79.8 (3.7) 82.4 (3.5)

we report results at interaction steps t ∈ {5, 10} for food64d and at t ∈ {10, 20} for visual512d.
Personalization is varied with two conditions to test robustness to how preferences are specified. In
the with-persona condition, participants see a concise persona and are asked to roleplay it (similar to
Section 5). In the without-persona condition, no persona is shown and participants choose according
to their own preferences, reflecting greater individual variability and a more challenging setting.
Method identities are blinded to the users throughout.

Web application and participation sessions. We provide an overview of the user study setup below,
and full details are available in Appendix E. We developed a web application to expose the methods
through an interactive interface. We recruited a total of 960 participants on Amazon Mechanical Turk,
split uniformly across the domains, methods, and personalization conditions. Before a participation
session began, each participant was randomly assigned a domain (food64d or visual512d), a
question from that domain’s question set, an interaction method (USERALIGN or IIDBEST), and a
personalization condition (with-persona or without-persona). Each session has three stages. Stage
1 presents the question and the assigned personalization instruction. Stage 2 consists of the fixed
number of pairwise comparisons based on the interaction budget mentioned above. In Stage 3,
participants compare three final candidates against the zero-temperature baseline for their assigned
question: the method’s selection at the later interaction step, the selection at the earlier interaction
step, and a candidate chosen by the RANDOM method. On average, a session lasted about 7.5 minutes
and participants received a compensation of 1.80 USD for each session.

Results. In each domain, for each of USERALIGN and IIDBEST, we collected n = 120 evaluation
sessions per setting; for RANDOM, which does not depend on interaction steps, we recorded 2n = 240
samples. Table 3 reports win-rates across both domains and personalization conditions. Under
matched interaction budgets, USERALIGN consistently outperforms IIDBEST, with larger gains at the
later interaction step in each domain and higher absolute performance in the with-persona condition.
These results highlight that the improvements observed for the simulated user behavior in Section 5
also carry over when user preferences are provided by humans.

7 Concluding Discussions

We introduced USERALIGN, a novel inference-time method for efficiently aligning generative model
responses to user preferences via sequential pairwise comparisons. Through theoretical analysis and
empirical evaluation across text and image generation domains, we demonstrated the efficacy of our
method, which provides substantial speed-ups and cost reductions.

Next, we discuss a few limitations of our work and outline a future plan to address them. First,
we considered pairwise comparisons as the feedback modality; it would be useful to explore richer
forms of user feedback such as rankings or free-form inputs. Second, our method relies on a
pre-generated response pool; it would be interesting to study how we can guide the generations
adaptively during the preference elicitation process. Finally, our method treats a user’s question
independently; it would be useful to leverage historical user preferences data, e.g., from previous
questions, to reduce interaction cost. As broader implications of our work, we note that adopting
personalized alignment methods in AI systems raises ethical considerations, including transparency
in how preferences are collected/used and guarding against potential bias or overfitting to noisy
feedback. Future deployment of such methods in real-world would require proactive safeguards
to ensure that personalization enhances user experience without compromising ethical aspects.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction (Section 1) introduce USERALIGN, its bandit-
based formulation, theoretical guarantees, and empirical advantages, which match the results
in Section 4.1, Section 5, and Section 6.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss limitations in Section 7.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions are stated in Section 4 and proofs are provided in appendices.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 provides the details for the experimental evaluation.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access code and data in a Github repository (Section 1).

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify these experimental details in Section 5.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 5, we state that we use multiple random seeds and average across
seeds, user personas, and questions. Figures 3 and 4 shade the standard error computed
using Python libraries, so that the variance information is visible. Our evaluation with
human users (Section 6) likewise reports win-rates with standard errors (see Table 3).

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
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Justification: We include details about compute resources in the appendices.
9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work follows the NeurIPS Code of Ethics by adhering to research-ethics
norms, discussing risks of bias/privacy, and briefly outlining mitigation strategies (Section 7).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 7 addresses both societal risks and opportunities.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release a foundation model or sensitive dataset. USERALIGN is
a post-hoc decision algorithm run over responses generated by other models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We use and cite external models and datasets only for evaluation purposes.
As we do not modify or redistribute these assets, we do not explicitly mention their licenses.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code and created data under the CC BY-NC-SA 4.0 license.
Full documentation is provided alongside these assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Section 6 describes the participant setup and compensation. Appendix E
includes interface screenshots and the full on-screen instructions (plain text).

15. Institutional Review Board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We have provided details about the instructions shown to participants in
Appendix E, and the study followed a standard protocol for eliciting human annotations
with participants recruited from crowdsourcing platforms. There were no specific risks
involved in this study, and the participants were fully informed about the study details.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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A Table of Contents

In this section, we briefly describe the content provided in the paper’s appendices.

• Section B provides further results for food2d, showcasing a worked example of personalized
alignment and evaluations with GPT-based simulated users.

• Section C presents win-rate vs. cost trade-off results in tabular form, then offers a brief
head-to-head comparison of the methods.

• Section D gives further details about the procedures for generating candidate response pools
and reports experiments with unbiased response pools.

• Section E provides additional details about the web-application used for human evaluation.
• Section F provides a breakdown of API usage, computational efficiency, and costs.
• Section G contains complete proofs for the theoretical results in the main paper.
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B Additional Results for food2d domain

1 Input: What should I cook for dinner tonight?

2 System generates a diverse pool of responses:
1. How about trying a creamy garlic chicken pasta with a side of roasted vegetables?
2. How about trying a garlic butter shrimp pasta with a fresh green salad on the side?
3. How about trying a creamy garlic Tuscan chicken with spinach and sun-dried tomatoes, served over pasta or rice?
4. How about trying a delicious and easy-to-make chicken stir-fry with vegetables and rice?
5. How about trying a delicious chicken stir-fry with vegetables and rice for dinner tonight?
6. How about trying a creamy garlic chicken with sautéed spinach and mashed potatoes for a comforting and delicious meal?
7. How about a comforting chicken stir-fry with vegetables and rice for a quick and delicious dinner?
8. How about trying a creamy garlic parmesan chicken with roasted vegetables on the side?
9. How about trying a creamy garlic parmesan chicken with roasted vegetables and a side of mashed potatoes?

10. How about trying a creamy garlic parmesan chicken with roasted vegetables on the side?
11. How about a spicy chickpea and vegetable curry with a medley of bell peppers, zucchini, and spinach, served over basmati rice?
12. How about a comforting vegetable risotto with fresh herbs like basil and parsley, where the creamy arborio rice perfectly ...
13. How about a spicy roasted vegetable stir-fry with a hint of chili, served over quinoa for a nutritious and flavorful plant-based meal?
14. How about a comforting vegetable risotto with creamy Arborio rice, sautéed mushrooms, and tender asparagus, finished with a sprinkle ...
15. How about a hearty roast chicken with garlic mashed potatoes and a side of steamed broccoli for a satisfying, protein-rich meal?
16. How about a juicy ribeye steak with a side of garlic butter mushrooms for a rich, savory meal?
17. How about sizzling chicken fajitas with a touch of jalapeño for that perfect hint of heat, served alongside a vibrant mix of ...
18. How about a spicy chicken stir-fry with bell peppers and a hint of garlic, served over jasmine rice for a satisfying yet mildly fiery meal?
19. Ignite your taste buds with a fiery Thai green curry loaded with fresh vegetables and a generous splash of chili heat.
20. How about a comforting vegetable stir-fry with broccoli, bell peppers, and tofu, served over fluffy jasmine rice, seasoned with ...

3 USERALIGN eliciting user preferences via pairwise comparisons:

θ∗ θ̂t θ̃t y
(1)
t y

(2)
t Pool

Ignite your taste buds with a fiery Thai green curry loaded with
fresh vegetables and a generous splash of chili heat.

How about a juicy ribeye steak with a side of garlic butter mush-
rooms for a rich, savory meal?

How about a spicy chickpea and vegetable curry with a medley of
bell peppers, zucchini, and spinach, served over basmati rice?

How about a comforting vegetable risotto with fresh herbs like
basil and parsley, where the creamy arborio rice perfectly com-
plements the flavors of sautéed mushrooms, peas, and asparagus?

4 Output

How about a comforting vegetable risotto with fresh herbs like basil
and parsley, where the creamy arborio rice perfectly complements the
flavors of sautéed mushrooms, peas, and asparagus?

Figure 5: Illustrative example in the foods2d domain showing inference-time personalized alignment
(see also Figures 1 and 2). In Stage 3, y(1)t appears above y(2)t at each step (preferred highlighted). The
user is simulated by GPT-4o-mini, conditioned on the persona: “A plant-based eater who avoids all
heat and meat (spiciness: −1.0, veginess: 1.0), preferring gentle, nourishing dishes with no spice.”
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B.1 Illustrative Example of Personalized Alignment

Figure 5 provides a concrete step-by-step illustration of inference-time personalized alignment in
the foods2d domain. In addition to showing each stage of the interaction (i.e, the user question,
candidate response generation, preference elicitation, and final response selection; also see Figure 1),
the figure also visualizes how the version space is progressively reduced throughout the process
(also see Figure 2). This integrated example highlights both the workflow of USERALIGN and the
mechanism by which it narrows the set of plausible user preferences.

B.2 Empirical Results with GPT-based Users

Figure 6 shows results on food2d with GPT-based simulated users (also see Figure 3). USERALIGN
consistently achieves high win-rate at a low interaction cost, confirming that USERALIGN remains
effective in the 2D setting even when user preferences are simulated by a large language model.

UserAlign UserAlignloss iidBest Oracle Random

0 2 4 6 8 10
Interaction Cost

0.4

0.6

0.8

1.0

W
in

-r
at

e

(a) Win-rate vs. interaction cost
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(b) Win-rate w.r.t. increasing steps

Figure 6: Results on food2d for u = GPT. Top plot shows win-rate vs. interaction cost trade-off;
here USERALIGN and USERALIGNLOSS results show scatter plot corresponding to varying values of ϵ.
Bottom plot shows win-rate per increasing interaction steps; here USERALIGN and USERALIGNLOSS

are run for a given number of steps as mentioned in Footnote 3. In these plots, ORACLE and RANDOM
are flat lines, and IIDBEST results are reported at different number of given steps.
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C Results in Tabular Form

Tables 4 and 5 offer additional details regarding the results, complementary to Figure 4. The number of
steps is capped at 199. Colored entries for USERALIGN and USERALIGNLOSS correspond to ϵ = 0.0,
the default and most interpretable alignment setting. For IIDBEST, highlighted entries are chosen
to match the interaction cost of the main USERALIGN configuration, enabling direct comparison.
ORACLE and RANDOM are included as fixed reference baselines. USERALIGN consistently reaches
high win-rates at low interaction cost, especially as the stopping threshold ϵ decreases, confirming its
efficiency in identifying user-aligned responses with minimal queries. The reported standard errors
are small, indicating reliable and stable performance.

Table 6 complements these results with direct head-to-head win-rates of USERALIGN versus IIDBEST.
These results confirm that the superior win-rates observed against a fixed baseline also extend to
one-on-one comparisons across all domains.

Table 4: Win-rate vs. interaction cost trade-off on domains with arbitrary preference spaces (food64d
and travel64d domains). Results are presented as mean (sem), complementing the results shown in
Figure 4. For readability, we report win-rates as percentages.

Method food64d travel64d

Win-rate (%) Cost Win-rate (%) Cost

USERALIGN (ϵ = 3.0) 54.00 ( 4.07) 0.00 ( 0.00) 58.67 ( 4.02) 0.00 ( 0.00)

USERALIGN (ϵ = 2.0) 74.67 ( 3.55) 1.00 ( 0.00) 74.00 ( 3.58) 1.00 ( 0.00)

USERALIGN (ϵ = 1.0) 84.67 ( 2.94) 2.19 ( 0.07) 76.00 ( 3.49) 1.95 ( 0.07)

USERALIGN (ϵ = 0.5) 100.00 ( 0.00) 11.39 ( 0.23) 94.67 ( 1.83) 11.57 ( 0.23)

USERALIGN (ϵ = 0.4) 100.00 ( 0.00) 13.47 ( 0.22) 97.33 ( 1.32) 13.82 ( 0.22)

USERALIGN (ϵ = 0.3) 98.67 ( 0.94) 15.49 ( 0.25) 100.00 ( 0.00) 16.00 ( 0.23)

USERALIGN (ϵ = 0.2) 97.33 ( 1.32) 16.85 ( 0.29) 100.00 ( 0.00) 18.31 ( 0.29)

USERALIGN (ϵ = 0.1) 98.67 ( 0.94) 18.28 ( 0.30) 100.00 ( 0.00) 19.67 ( 0.23)

USERALIGN (ϵ = 0.0) 98.67 ( 0.94) 19.13 ( 0.24) 100.00 ( 0.00) 20.69 ( 0.21)

USERALIGNLOSS (ϵ = 3.0) 54.00 ( 4.07) 0.00 ( 0.00) 58.67 ( 4.02) 0.00 ( 0.00)

USERALIGNLOSS (ϵ = 2.0) 74.67 ( 3.55) 1.00 ( 0.00) 74.00 ( 3.58) 1.00 ( 0.00)

USERALIGNLOSS (ϵ = 1.0) 82.67 ( 3.09) 180.52 ( 4.70) 76.00 ( 3.49) 195.04 ( 2.26)

USERALIGNLOSS (ϵ = 0.5) 84.67 ( 2.94) 199.00 ( 0.00) 76.67 ( 3.45) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.4) 84.67 ( 2.94) 199.00 ( 0.00) 76.67 ( 3.45) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.3) 84.67 ( 2.94) 199.00 ( 0.00) 76.67 ( 3.45) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.2) 84.67 ( 2.94) 199.00 ( 0.00) 76.67 ( 3.45) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.1) 84.67 ( 2.94) 199.00 ( 0.00) 76.67 ( 3.45) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.0) 84.67 ( 2.94) 199.00 ( 0.00) 76.67 ( 3.45) 199.00 ( 0.00)

IIDBEST (t = 0) 54.00 ( 4.07) 0.00 ( 0.00) 58.67 ( 4.02) 0.00 ( 0.00)

IIDBEST (t = 5) 87.33 ( 2.72) 5.00 ( 0.00) 78.00 ( 3.38) 5.00 ( 0.00)

IIDBEST (t = 10) 88.67 ( 2.59) 10.00 ( 0.00) 86.67 ( 2.78) 10.00 ( 0.00)

IIDBEST (t = 15) 90.00 ( 2.45) 15.00 ( 0.00) 85.33 ( 2.89) 15.00 ( 0.00)

IIDBEST (t = 20) 90.00 ( 2.45) 20.00 ( 0.00) 85.33 ( 2.89) 20.00 ( 0.00)

IIDBEST (t = 25) 90.00 ( 2.45) 25.00 ( 0.00) 87.33 ( 2.72) 25.00 ( 0.00)

IIDBEST (t = 50) 92.00 ( 2.22) 50.00 ( 0.00) 88.00 ( 2.65) 50.00 ( 0.00)

IIDBEST (t = 75) 92.67 ( 2.13) 75.00 ( 0.00) 90.00 ( 2.45) 75.00 ( 0.00)

IIDBEST (t = 100) 92.67 ( 2.13) 100.00 ( 0.00) 90.00 ( 2.45) 100.00 ( 0.00)

IIDBEST (t = 150) 93.33 ( 2.04) 150.00 ( 0.00) 91.33 ( 2.30) 150.00 ( 0.00)

IIDBEST (t = 199) 93.33 ( 2.04) 199.00 ( 0.00) 90.67 ( 2.38) 199.00 ( 0.00)

ORACLE 100.00 ( 0.00) 0.00 ( 0.00) 100.00 ( 0.00) 0.00 ( 0.00)

RANDOM 54.00 ( 4.07) 0.00 ( 0.00) 58.67 ( 4.02) 0.00 ( 0.00)

21



Table 5: Win-rate vs. interaction cost trade-off on domains with arbitrary preference spaces
(visual512d and dsp64d domains). Results are presented as mean (sem), complementing the
results shown in Figure 4. For readability, we report win-rates as percentages.

Method visual512d dsp64d

Win-rate (%) Cost Win-rate (%) Cost

USERALIGN (ϵ = 3.0) 40.67 ( 4.01) 0.00 ( 0.00) 51.73 ( 1.29) 0.00 ( 0.00)

USERALIGN (ϵ = 2.0) 58.00 ( 4.03) 1.00 ( 0.00) 65.33 ( 1.23) 1.00 ( 0.00)

USERALIGN (ϵ = 1.0) 65.33 ( 3.89) 7.58 ( 0.25) 70.73 ( 1.17) 1.49 ( 0.02)

USERALIGN (ϵ = 0.5) 86.00 ( 2.83) 34.09 ( 0.68) 84.80 ( 0.93) 5.03 ( 0.07)

USERALIGN (ϵ = 0.4) 92.00 ( 2.22) 41.12 ( 0.74) 88.53 ( 0.82) 7.53 ( 0.09)

USERALIGN (ϵ = 0.3) 93.33 ( 2.04) 47.57 ( 0.71) 91.33 ( 0.73) 11.53 ( 0.11)

USERALIGN (ϵ = 0.2) 94.67 ( 1.83) 49.31 ( 0.72) 94.67 ( 0.58) 17.07 ( 0.13)

USERALIGN (ϵ = 0.1) 94.67 ( 1.83) 49.31 ( 0.72) 96.00 ( 0.51) 20.58 ( 0.14)

USERALIGN (ϵ = 0.0) 94.67 ( 1.83) 49.31 ( 0.72) 96.27 ( 0.49) 21.12 ( 0.14)

USERALIGNLOSS (ϵ = 3.0) 40.67 ( 4.01) 0.00 ( 0.00) 51.73 ( 1.29) 0.00 ( 0.00)

USERALIGNLOSS (ϵ = 2.0) 58.00 ( 4.03) 1.00 ( 0.00) 65.33 ( 1.23) 1.00 ( 0.00)

USERALIGNLOSS (ϵ = 1.0) 59.33 ( 4.01) 199.00 ( 0.00) 71.20 ( 1.17) 164.82 ( 1.93)

USERALIGNLOSS (ϵ = 0.5) 59.33 ( 4.01) 199.00 ( 0.00) 72.47 ( 1.15) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.4) 59.33 ( 4.01) 199.00 ( 0.00) 72.47 ( 1.15) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.3) 59.33 ( 4.01) 199.00 ( 0.00) 72.47 ( 1.15) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.2) 59.33 ( 4.01) 199.00 ( 0.00) 72.47 ( 1.15) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.1) 59.33 ( 4.01) 199.00 ( 0.00) 72.47 ( 1.15) 199.00 ( 0.00)

USERALIGNLOSS (ϵ = 0.0) 59.33 ( 4.01) 199.00 ( 0.00) 72.47 ( 1.15) 199.00 ( 0.00)

IIDBEST (t = 0) 40.67 ( 4.01) 0.00 ( 0.00) 51.73 ( 1.29) 0.00 ( 0.00)

IIDBEST (t = 5) 65.33 ( 3.89) 5.00 ( 0.00) 75.33 ( 1.11) 5.00 ( 0.00)

IIDBEST (t = 10) 68.00 ( 3.81) 10.00 ( 0.00) 77.87 ( 1.07) 10.00 ( 0.00)

IIDBEST (t = 15) 69.33 ( 3.76) 15.00 ( 0.00) 79.73 ( 1.04) 15.00 ( 0.00)

IIDBEST (t = 20) 77.33 ( 3.42) 20.00 ( 0.00) 81.60 ( 1.00) 20.00 ( 0.00)

IIDBEST (t = 25) 74.67 ( 3.55) 25.00 ( 0.00) 81.67 ( 1.00) 25.00 ( 0.00)

IIDBEST (t = 50) 84.00 ( 2.99) 50.00 ( 0.00) 82.47 ( 0.98) 50.00 ( 0.00)

IIDBEST (t = 75) 83.33 ( 3.04) 75.00 ( 0.00) 83.60 ( 0.96) 75.00 ( 0.00)

IIDBEST (t = 100) 86.67 ( 2.78) 100.00 ( 0.00) 84.27 ( 0.94) 100.00 ( 0.00)

IIDBEST (t = 150) 86.00 ( 2.83) 150.00 ( 0.00) 84.87 ( 0.93) 150.00 ( 0.00)

IIDBEST (t = 199) 84.67 ( 2.94) 199.00 ( 0.00) 84.47 ( 0.94) 199.00 ( 0.00)

ORACLE 100.00 ( 0.00) 0.00 ( 0.00) 99.33 ( 0.21) 0.00 ( 0.00)

RANDOM 40.67 ( 4.01) 0.00 ( 0.00) 51.73 ( 1.29) 0.00 ( 0.00)

Table 6: Head-to-head win-rate (%) comparison between USERALIGN (ϵ = 0.0) and IIDBEST across
four domains. Results are presented as mean (sem).

Comparison Win-rate (%)

food64d travel64d visual512d dsp64d

USERALIGN vs. IIDBEST (t = 20) 96.67 (1.47) 93.33 (2.04) 85.33 (2.89) 91.00 (0.74)

USERALIGN vs. IIDBEST (t = 25) 97.33 (1.32) 95.33 (1.72) 85.33 (2.89) 90.33 (0.76)

USERALIGN vs. IIDBEST (t = 50) 96.67 (1.47) 95.33 (1.72) 87.33 (2.72) 90.07 (0.77)
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D Pool Generation Details and Additional Experiments

D.1 Details about Pool Generation Used in Section 5

Below we provide details about the pool generation that was used for evaluation in Section 5.

Pool generation procedure for food64d, travel64d, and visual512d. As introduced in Sec-
tion 5.1, for each question, we generate a diverse pool of candidate responses by following two
sampling approaches.

• We obtain half of the candidate responses by sampling from GPT-4o or GPT-Image-1
temperature 0.5, conditioned only on the question, resulting in unbiased responses. We
generate 10 responses per question in food64d and travel64d, and 20 in visual512d.

• We obtain the remaining half by prompting the generative model to first reason about
possible diverse interests relevant to the question, at temperature 0.8. For each generated
interest, we then prompt GPT-4o (for text) or GPT-Image-1 (for vision) at temperature 0.5
to produce a candidate response. We generate 10 interests per question in food64d and
travel64d, and 20 in visual512d, with one response generated per interest.

Pool generation procedure for dsp64d. Similar to the procedure discussed above, here we also
generate a diverse pool of candidate responses by following slightly different approaches.

• We obtain half of the candidate responses by sampling from GPT-4o at temperature 0.5,
conditioned only on the question, resulting in unbiased responses. We generate 10 responses
per question.

• We obtain the remaining half by using the interests provided in the DSP dataset. We generate
5 responses for each interest using GPT-4o at temperature 0.5, and from this collection, we
sample 10 responses to obtain the remaining half.

D.2 Additional Experiments with Different Candidate Pools

Below we provide evaluation results for experiments using different candidate pool to further assess
the utility and robustness of our method.

Unbiased response pool construction. For each question, we generate a pool of candidate responses
by following one sampling approach. More concretely, responses are sampled from GPT-4o or
GPT-Image-1 (at temperature 0.5), conditioned only on the question. The pool size remains the same
as in the main experiments, i.e., 20 for text domains and 40 for the image-based domain.

Results. Figure 7 summarizes the results with these pools of unbiased responses. USERALIGN
continues to achieve high win-rate at low interaction cost. These results demonstrate that USERALIGN
remains effective and outperform baselines also when applied to this variant of candidate pools.

D.3 Practicality of Pairwise Comparisons vs. Best-of-N Selection

As Best-of-N requires users to scan a potentially large pool and pick a single winner, this approach
becomes impractical as N grows. Pairwise comparisons reduce this burden by focusing on one
local decision at a time. Our approach relies solely on pairwise feedback, avoids repeating pairs,
and maintains an incumbent that is continually challenged, encouraging early exploration and later
convergence.

To demonstrate this, we experimented with increasing N . Table 7 shows the performance of
USERALIGN at N=1000, where a usable Best-of-N interface is no longer realistic. USERALIGN
maintains high win-rates, demonstrating scalability without increasing user effort.
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(b) Domain travel64d
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(c) Domain visual512d

0 10 20 30 40 50
Interaction Cost

0.4

0.6

0.8

1.0

W
in

-r
at

e

(d) Domain dsp64d

Figure 7: Win-rate vs. interaction cost trade-off on domains with arbitrary preference spaces with
fully unbiased pools. Here USERALIGN and USERALIGNLOSS results show scatter plot corresponding
to varying values of ϵ. ORACLE and RANDOM are flat lines, and IIDBEST results are reported at
different number of given steps.

Table 7: Win-rate (%, sem) on food64d across interaction budgets t for a large pool size N = 1000.

Method t = 0 t = 5 t = 10 t = 20

RANDOM 52.00 (4.09) 52.00 (4.09) 52.00 (4.09) 52.00 (4.09)

IIDBEST 52.00 (4.09) 72.00 (3.68) 76.00 (3.50) 82.67 (3.10)

USERALIGN 52.00 (4.09) 86.67 (2.78) 90.67 (2.38) 96.67 (1.47)
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E Additional Details for Evaluation with Human Users

Figures 8 and 9 expand on the web application interface described in Section 6. Figure 8 illustrates
the food64d text-based workflow, showing the Stage 1 onboarding (for both personalization
conditions), the Stage 2 comparisons, and the Stage 3 evaluation against baseline. Figure 9 presents
the corresponding visual512d image-based workflow.

(a) Stage 1 for the food64d domain and with-persona condition.

(b) Stage 1 for the food64d domain and without-persona condition.

(c) Stage 2 for the food64d domain and with-persona condition.

(d) Stage 3 for the food64d domain and with-persona condition.

Figure 8: Screenshots from the web application for the food64d text-based workflow.
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(a) Stage 1 for the visual512d domain and with-persona condition.

(b) Stage 1 for the visual512d domain and without-persona condition.

(c) Stage 2 for the visual512d domain and with-persona condition.

(d) Stage 3 for the visual512d domain and with-persona condition.

Figure 9: Screenshots from the web application for the visual512d image-based workflow.
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E.1 Flow and On-Screen Instructions (Plain Text)

Landing. Participants first see an overview of the study and the system. The screen shows: “Here,
you will interact with an AI-based system. The system aims to provide personalized content for a
given query and a user persona. The system will infer user preferences through pairwise comparisons
while interacting with you. We are conducting this study as part of a research project”.

Stage 1. First, participants see the query and the personalization condition. The screen shows
the instructions, the query and, in the with-persona condition, also the user persona card; in the
without-persona condition, it shows only the query. In the with-persona condition, the header shows
“Query and Persona”, and the instructions read: “This stage presents a given query and a user persona
that will be used throughout this HIT. Please read the query and the persona you will roleplay in the
next stages”. In the without-persona condition, the header shows “Query and Your Preferences”, and
the instructions read: “This stage presents a given query that will be used throughout this HIT. Please
read the query and reflect on your preferences for how you would like the query to be answered in
the following stages”.

Stage 2. Next, participants perform pairwise comparisons. On top, the screen shows the instructions,
the query and, in the with-persona condition, also the user persona card; in the without-persona
condition, it shows only the query. The header shows “Pairwise Comparisons for Training”. In the
with-persona condition, the instructions read: “Review the two options and select the one that better
fits the user persona for the given query”. In the without-persona condition, the instructions read:
“Review the two options and select the one that best fits your own preferences for the given query”.

Stage 3. Finally, participants complete additional pairwise comparisons for evaluation. On top, the
screen shows the instructions, the query and, in the with-persona condition, also the user persona card;
in the without-persona condition, it shows only the query. The header shows “Pairwise Comparisons
for Evaluation”. In this stage, participants compare, one matchup at a time, the system’s selected
candidates at the two chosen interaction steps and a RANDOM candidate against the shared zero-
temperature baseline. In the with-persona condition, the instructions read: “Review the two options
and select the one that better fits the user persona for the given query”. In the without-persona
condition, the instructions read: “Review the two options and select the one that best aligns with your
own preferences for the given query”.
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F Wall-clock, Compute, and API Costs

All experiments ran on a compute node with dual AMD EPYC 7702 64-core processors (128 cores
total) and 2TB DDR4 ECC memory (2933MHz).

F.1 Computational Efficiency of USERALIGN

The optimization problem of computing θ̂t in Eq. (2) is convex, with a convex objective Lt(·) and a
convex constraint set {θ ∈ Rd : ∥θ∥2 ≤ S}. Moreover, the confidence set Θt defined in Eq. (3) is also
convex. The first response y(1)t ← argmaxy∈Ycand

⟨θ̂t, ϕ(x, y)⟩ can be computed via |Ycand| inner prod-

uct evaluations. The second response (y
(2)
t , θ̃t)← argmax(y′,θ)∈Ycand×Θt

⟨θ, ϕ(x, y′)− ϕ(x, y
(1)
t )⟩

requires solving |Ycand| convex optimization problems: for each y′ ∈ Ycand, solve
θ̃t(y

′) ← argmaxθ∈Θt
⟨θ, ϕ(x, y′) − ϕ(x, y

(1)
t )⟩, which has a linear objective and convex

constraints. Then, select y(2)t ← argmaxy′∈Ycand
⟨θ̃t(y′), ϕ(x, y′) − ϕ(x, y

(1)
t )⟩ via another |Ycand|

inner product evaluations.

Table 8 reports average wall-time for a single step t and its breakdown. As can be seen from these
results, the wall-time in a single step is under a second, making it usable for real-world settings.

Table 8: Average wall-time for a step t for USERALIGN across representative domains, broken down
by the different computations done by the algorithm. Results are presented as mean values in seconds.

Domain Wall-time Total (s) Wall-time θ̂t (s) Wall-time y
(1)
t (s) Wall-time y

(2)
t (s)

food64d (|Ycand|=20) 0.1287 0.0100 0.0002 0.1187

visual512d (|Ycand|=40) 0.8719 0.0328 0.0003 0.8392

F.2 API and Embedding Costs

Next, we give more details about the costs related to API calls and embedding. All costs are for
a single run (steps capped at 49) of USERALIGN with ϵ = 0, one question, and one GPT-based
simulated user.

food64d domain. Candidate pool generation with GPT-4o cost $0.01; embedding all candidates
was done locally with Potion [52] and took 0.01 seconds. The pairwise comparison stage with
GPT-4o-mini cost $0.01.

visual512d domain. Candidate pool generation with GPT-Image-1 cost $1.71; embedding with
OpenCLIP [53, 54] was done locally and took 12.13 seconds. The pairwise comparison stage cost
$0.12 using GPT-4o-mini.

F.3 Notes About the Solver

All optimization problems are solved with the cvxpy Python package using the CLARABEL conic
solver with default settings. If CLARABEL is numerically unstable, the implementation falls back to
ECOS, and then to SCS with eps=1e-6 and a 50,000 iteration cap.
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G Proofs

Proof of Proposition 1. The result follows directly from Theorem 1 of [19].

Proof of Theorem 1. Let θ⋆ ∈ Θt. If ⟨θ⋆, ϕ(x, y⋆) − ϕ(x, y
(1)
τ )⟩ > ϵ holds, i.e., the returned

response y
(1)
τ is worse than the best response y⋆ by ϵ, then we have:

⟨θ⋆, ϕ(x, y⋆)− ϕ(x, y(1)τ )⟩ > ϵ

≥ ⟨θ̃τ , ϕ(x, y(2)τ )− ϕ(x, y(1)τ )⟩
≥ ⟨θ⋆, ϕ(x, y⋆)− ϕ(x, y(1)τ )⟩,

where the second last inequality is due to the stopping condition of Algorithm 2, and the last
inequality is due to (y

(2)
t , θ̃t)← argmax(y′,θ)∈Ycand×Θt

⟨θ, ϕ(x, y′)− ϕ(x, y
(1)
τ )⟩ and θ⋆ ∈ Θt. Note

that θ⋆ ∈ Θt holds with probability at least 1− δ according to Proposition 1.

Proof Sketch of Theorem 2. The proof involves the following key steps:

• In Lemma 1, we obtain an upper bound on ∥θ − θ̂t∥Ht(θ⋆).

• In Lemma 2, we obtain an upper bound on ∥zt∥H−1
t (θ⋆), where zt = ϕ(x, y

(2)
t )−ϕ(x, y

(1)
t ).

• In Lemma 3, we use the above bounds to upper bound the number of times the pair of
responses (y(1), y(2)) is selected before the stopping time τ ; then, summing over all the
response pairs provides an upper bound on the stopping time τ .

Lemma 1. Let zs = ϕ(x, y
(2)
s ) − ϕ(x, y

(1)
s ) and Ht(θ

⋆) =
∑t−1

s=1 µ̇(⟨θ⋆, zs⟩)zsz⊤s + λId with
λ = 1

4S2(2+2S) . Then, for any θ ∈ Θt, the following holds with probability at least 1− δ:

∥θ − θ̂t∥Ht(θ⋆) ≤ 2S

√
d log

(
e+

St

d

)
+ log

1

δ
.

Proof of Lemma 1. Note that θ, θ̂t ∈ Θt. By using the triangle inequality, we have:

∥θ − θ̂t∥Ht(θ⋆) ≤ ∥θ − θ∗∥Ht(θ⋆) + ∥θ̂t − θ∗∥Ht(θ⋆)

≤ S

√
d log

(
e+

St

d

)
+ log

1

δ
+ S

√
d log

(
e+

St

d

)
+ log

1

δ
,

where the last inequality holds with probability at least 1− δ due to Lemma 6 of [19].

Lemma 2. Let zs = ϕ(x, y
(2)
s ) − ϕ(x, y

(1)
s ) and Ht(θ

⋆) =
∑t−1

s=1 µ̇(⟨θ⋆, zs⟩)zsz⊤s + λId with
λ = 1

4S2(2+2S) . Then, we have:

∥zt∥H−1
t (θ⋆) ≤

√
κ⋆
X ,Y

|E
y
(1)
t ,y

(2)
t

(t− 1)|

Proof of Lemma 2. Let us define z̃t =
√
µ̇(⟨θ⋆, zt⟩)zt. Note that Ht(θ

⋆) =
∑t−1

s=1 z̃sz̃
⊤
s + λtId.

Further, we have:

∥zt∥2H−1
t (θ⋆)

=
1

µ̇(⟨θ⋆, zt⟩)
∥z̃t∥2H−1

t (θ⋆)
≤ κ⋆

X ,Y · ∥z̃t∥2H−1
t (θ⋆)

.
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Let z(y, y′) = ϕ(x, y′)− ϕ(x, y) and z̃(y, y′) =
√
µ̇(⟨θ⋆, z(y, y′)⟩)z(y, y′). Then, note that Ht(θ

⋆)
can be written as follows:

Ht(θ
⋆) = λId +

∑

(y,y′)∈Ycand×Ycand

|Ey,y′(t− 1)| · z̃(y, y′)z̃(y, y′)⊤

= A+B + C,

where

A = λId

B = |E
y
(1)
t ,y

(2)
t

(t− 1)| · z̃(y(1)t , y
(2)
t )z̃(y

(1)
t , y

(2)
t )⊤

C =
∑

(y,y′)∈Ycand×Ycand\(y(1)
t ,y

(2)
t )

|Ey,y′(t− 1)| · z̃(y, y′)z̃(y, y′)⊤

Note that λId + zz⊤ is a positive definite matrix in Rd×d for any z ∈ Rd and λ > 0. Then, by
repeatedly applying Sherman-Morrison formula [59] (see Lemma 3 of [18]), we get:

∥z̃(y(1)t , y
(2)
t )∥2

H−1
t (θ⋆)

= z̃(y
(1)
t , y

(2)
t )⊤H−1

t (θ⋆)z̃(y
(1)
t , y

(2)
t )

≤ z̃(y
(1)
t , y

(2)
t )⊤(A+B)−1z̃(y

(1)
t , y

(2)
t )

= z̃(y
(1)
t , y

(2)
t )⊤


I

−1
d

λt
−
|E

y
(1)
t ,y

(2)
t

(t− 1)| I
−1
d

λt
z̃(y

(1)
t , y

(2)
t )z̃(y

(1)
t , y

(2)
t )⊤

I−1
d

λt

1 + |E
y
(1)
t ,y

(2)
t

(t− 1)|z̃(y(1)t , y
(2)
t )⊤

I−1
d

λt
z̃(y

(1)
t , y

(2)
t )


 z̃(y

(1)
t , y

(2)
t )

=
∥z̃(y(1)t , y

(2)
t )∥22

λt
−

|E
y
(1)
t ,y

(2)
t

(t−1)|

λ2
t

∥z̃(y(1)t , y
(2)
t )∥42

1 +
|E

y
(1)
t ,y

(2)
t

(t−1)|

λt
∥z̃(y(1)t , y

(2)
t )∥22

=

∥z̃(y(1)
t ,y

(2)
t )∥2

2

λt

1 +
|E

y
(1)
t ,y

(2)
t

(t−1)|

λt
∥z̃(y(1)t , y

(2)
t )∥22

≤
∥z̃(y(1)

t ,y
(2)
t )∥2

2

λt

|E
y
(1)
t ,y

(2)
t

(t−1)|

λt
∥z̃(y(1)t , y

(2)
t )∥22

=
1

|E
y
(1)
t ,y

(2)
t

(t− 1)|
.

Lemma 3. Let τ be the stopping round of USERALIGNLOSS. Further, we define ∆Ycand :=
miny,y′∈Ycand;y ̸=y′⟨θ⋆, ϕ(x, y)− ϕ(x, y′)⟩. Then, with probability at least 1− δ, we have:

τ ≤
4S2K2κ⋆

X ,Y

max {ϵ,∆Ycand}
2

[
d log

(
e+

Sτ

d

)
+ log

1

δ

]
+K2.

Proof of Lemma 3. Let τ be the stopping time of the algorithm. For any two response y(1), y(2) ∈
Ycand, we define:

Ey(1),y(2)(τ) :=
{
t̃ ∈ [τ ] : responses y(1) and y(2) are selected by Algorithm 2 for feedback

}
.

For every time step t̃ ∈ Ey(1),y(2)(τ), we have:

y(1) = y
(1)

t̃
= argmax

y∈Ycand

⟨θ̂t̃, ϕ(x, y)⟩ (5)
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(y(2), θ̃t̃) = (y
(2)

t̃
, θ̃t̃) = argmax

(y′,θ)∈Ycand×Θt̃

⟨θ, ϕ(x, y′)− ϕ(x, y(1))⟩ (6)

Note that θ̂t̃, θ̃t̃ ∈ Θt̃, and θ⋆ ∈ Θt̃ with probability at least 1− δ.

Since the stopping condition is violated in t̃, we have:

⟨θ̃t̃, ϕ(x, y
(2))− ϕ(x, y(1))⟩ ≥ ϵ. (7)

Also, due to Eq. (6), we have:

⟨θ̃t̃, ϕ(x, y
(2))− ϕ(x, y(1))⟩ ≥ ⟨θ⋆, ϕ(x, y(2))− ϕ(x, y(1))⟩

≥ min
y,y′∈Ycand;y ̸=y′

⟨θ⋆, ϕ(x, y)− ϕ(x, y′)⟩

= ∆Ycand , (8)

where the second inequality is due to the observation that y(2) ̸= y(1) (because of stopping condition
violation). Then, by combining Eq. (7) and Eq. (8), we get:

⟨θ̃t̃, ϕ(x, y
(2))− ϕ(x, y(1))⟩ ≥ max {ϵ,∆Ycand} . (9)

Further, due to Eq. (5), we have:

⟨θ̂t̃, ϕ(x, y
(1))− ϕ(x, y(2))⟩ ≥ 0. (10)

Then, by combining Eq. (9) and Eq. (10), we get:

max {ϵ,∆Ycand} ≤ ⟨θ̃t̃ − θ̂t̃, ϕ(x, y
(2))− ϕ(x, y(1))⟩

≤ ∥θ̃t̃ − θ̂t̃∥Ht̃(θ
⋆) · ∥ϕ(x, y(2))− ϕ(x, y(1))∥H−1

t̃
(θ⋆)

≤ 2S

√√√√d log

(
e+

St̃

d

)
+ log

1

δ
· ∥ϕ(x, y(2))− ϕ(x, y(1))∥H−1

t̃
(θ⋆),

where the last inequality holds with probability at least 1− δ due to Lemma 1.

Now, let t̃ be the largest value in Ey(1),y(2)(τ), i.e., the last time the pair of responses (y(1), y(2))

selected before time step τ . Then, for the time step t̃, we have:

max {ϵ,∆Ycand} ≤ 2S

√√√√d log

(
e+

St̃

d

)
+ log

1

δ
· ∥ϕ(x, y(2))− ϕ(x, y(1))∥H−1

t̃
(θ⋆)

≤ 2S

√√√√d log

(
e+

St̃

d

)
+ log

1

δ
·

√
κ⋆
X ,Y∣∣Ey(1),y(2)(t̃− 1)

∣∣

where the first inequality holds with probability at least 1 − δ due to Lemma 1 and the second
inequality is due to Lemma 2. Hence, we can bound:

∣∣Ey(1),y(2)(τ)
∣∣ =

∣∣Ey(1),y(2)(t̃− 1)
∣∣+ 1

≤
4S2κ⋆

X ,Y

max {ϵ,∆Ycand}
2

[
d log

(
e+

St̃

d

)
+ log

1

δ

]
+ 1

≤
4S2κ⋆

X ,Y

max {ϵ,∆Ycand}
2

[
d log

(
e+

Sτ

d

)
+ log

1

δ

]
+ 1

By summing over all the pairs of responses, we get:

τ =
∑

(y(1),y(2))∈Ycand×Ycand

∣∣Ey(1),y(2)(τ)
∣∣

≤
4S2K2κ⋆

X ,Y

max {ϵ,∆Ycand}
2

[
d log

(
e+

Sτ

d

)
+ log

1

δ

]
+K2
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Full Proof of Theorem 2. Let α = log
(
e+ Sτ

d

)
. Then, τ = d

S (e
α − e). Thus, we can write the

inequality in Lemma 3 as follows:

d

S
(eα − e) ≤

4S2K2κ⋆
X ,Y

max {ϵ,∆Ycand}
2

[
dα+ log

1

δ

]
+K2,

which we can write as follows:

eα ≤
4S3K2κ⋆

X ,Y

max {ϵ,∆Ycand}
2 · α+

4S3K2κ⋆
X ,Y

max {ϵ,∆Ycand}
2
d
log

1

δ
+

K2S

d

By letting w = eα, we have:
w ≤ A logw +B

where A =
4S3K2κ⋆

X ,Y

max{ϵ,∆Ycand}
2 , and B =

4S3K2κ⋆
X ,Y

max{ϵ,∆Ycand}
2
d
log 1

δ + K2S
d .

Below, we consider the case w > e. If w ≤ e, we already get the bound. For w ≥ e, we have
logw ≥ 1, so

w ≤ A logw +B ≤ A logw +B logw = C logw,

where C := A+B. Hence, we get:
w

logw
≤ C.

Define f(t) = t
log t for t ≥ e. One can easily check that f ′(t) > 0 for t > e. Thus, f is strictly

increasing on (e,∞). Therefore, the inequality f(w) = w
logw ≤ C forces

w ≤ t0,

where t0 > e is the unique solution of f(t0) = C. Let t1 = 3C logC. Then, for C ≥ 3, we have:

log t1 = log 3 + logC + log logD ≤ logC + logC + logC = 3 logC.

Hence, we get

f(t1) =
t1

log t1
≥ 3C logC

3 logC
= C = f(t0).

Finally, due to monotonicity of f(t) for t > e, we have:

t0 ≤ t1 = 3C logC, for all C ≥ 3.

Thus, we have: w ≤ max {e, t0} ≤ max {e, t1}. Therefore, τ = d
S (w − e) ≤ d

Sw ≤
d
S max {e, t1} ≤ d

S t1. Then, with probability at least 1− δ, we have:

τ ≤ 3d

S
· (A+B) log(A+B)

= 3 ·

[
4S2K2κ⋆

X ,Y

max {ϵ,∆Ycand}
2

(
d+ log

1

δ

)
+K2

]
log

(
4S3K2κ⋆

X ,Y

max {ϵ,∆Ycand}
2
d

(
d+ log

1

δ

)
+

K2S

d

)

≤ 3 ·

[
8S2K2κ⋆

X ,Y

max {ϵ,∆Ycand}
2

(
d+ log

1

δ

)]
log

(
8S3K2κ⋆

X ,Y

max {ϵ,∆Ycand}
2
d

(
d+ log

1

δ

))

= 24 · Ω ·K2 · log
(
8S

d
· Ω ·K2

)

= O(ΩK2 · log(ΩK2)),

where Ω :=
S2κ⋆

X ,Y

max{ϵ,∆Ycand}
2

(
d+ log 1

δ

)
.

Since |⟨θ, ϕ(x, y)− ϕ(x, y′)⟩| ≤ ∥θ∥2 · ∥ϕ(x, y)− ϕ(x, y′)∥2 ≤ S, we have ϵ ≤ S. Further note
that κ⋆

X ,Y ≥ 4, K ≥ 1, and S ≥ 1 (we can scale up S). Thus, we have C = A + B ≥ A =
4S3K2κ⋆

X ,Y

max{ϵ,∆Ycand}
2 ≥ 16S ≥ 3.
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