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Abstract

We consider the multiple-instance learning (MIL) paradigm, which is a special case1

of supervised learning where training instances are grouped into bags. In MIL, the2

hidden instance labels do not have to be the same as the label of the comprising bag.3

On the other hand, the hybrid modelling approach is known to possess advantages4

basically due to the smooth consolidation of both discriminative and generative5

components. In this paper, we investigate whether we can get the best of both6

worlds (MIL and hybrid modelling), especially in a semi-supervised learning (SSL)7

setting. We first integrate a variational autoencoder (VAE), which is a powerful8

deep generative model, with an attention-based MIL classifier, then evaluate the9

performance of the resulting model in SSL. We assess the proposed approach on10

an established benchmark as well as a real-world medical dataset.11

1 Introduction12

In the standard form of supervised learning, it is assumed that the learner encounters training data13

in a flat form where each instance, e.g., an image, belongs to a class (category). However, another14

setting which can be more practical in representing many real-world applications is multiple-instance15

learning (MIL), where training instances are grouped together into bags. In MIL, both bags and16

instances have labels, but an instance within a bag may have a different label from that of the bag.17

Only the bag label is available for learning since instance labels are not observed. Several applications18

can be cast as MIL problems, e.g., in medical imaging [Quellec et al., 2017] and computational19

biology [Dietterich et al., 1997].20

The principal goal of MIL is to learn a model which can predict the bag label. This corresponds to the21

molecule binding property in the above example or to the all-important medical diagnosis in medical22

imaging applications. Nonetheless, inferring which instances are the most influential in predicting23

the bag label is of major importance due to several reasons including interpretability of the obtained24

prediction (especially in medical diagnosis) and related issues like GDPR (General Data Protection25

Regulation) which forces the right to understand in sensitive applications like self-driving cars and26

medical applications.27

In this work, we investigate how the MIL framework fares in the semi-supervised learning paradigm28

(SSL, Zhu et al., 2003, Chapelle et al., 2006, Kingma et al., 2014, Siddharth et al., 2017). In SSL,29

the data presented to the learner typically consists of a few labeled examples as well as numerous30

unlabeled examples. The main goal of a semi-supervised learner is to utilize the unlabeled data in31

order to improve the model’s performance on the supervised subset of the data. In case of the SSL32

MIL setting, the supervision is at the bag level. This means that the learner encounters both labeled33

and unlabeled bags.34
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To deal with both the labeled and unlabeled data, we propose to learn a joint distribution over35

instances and a bag label within the hybrid modeling framework. Hybrid models are known to36

combine the advantages of (standard supervised) discriminative models with those of generative37

models [Jaakkola and Haussler, 1999, Tulyakov et al., 2017, Nalisnick et al., 2019]. Hybrid models38

have also been exploited in other frameworks including semi-supervised learning [Ilse et al., 2020,39

Nalisnick et al., 2019] and anomaly detection [Maaloe et al., 2019, Liu and Abbeel, 2020]. In this40

work, we propose an MIL framework which leverages the prowess of hybrid models so that they can41

excel in problems and applications possessing the bag-instance nature modelled by MIL. We build42

our modelling on top of the seminal attention-based deep MIL classifier [Ilse et al., 2018], mainly43

due to its permutation-invariant characteristics and its ability to give instance weights which can44

be interpreted as the contributions of each instance to the bag label. As a result, we formulate a45

latent variable model that could be seen as a Variational Auto-Encoder (VAE, Kingma and Welling,46

2014, Rezende et al., 2014) for instances and a classifier that is fed with the outputs of the VAE’s47

encoder. We evaluate the SSL performance of the proposed framework on a common benchmark and48

a real-world medical data.49

As such, our main contributions can be summarized as follows: (1) Integrating an attention-based50

Deep MIL classifier with a deep generative model in the form of a VAE. (2) Developing an SSL51

framework based on the proposed hybrid MIL approach. (3) Evaluating the proposed hybrid approach52

on the semi-supervised MIL scenario and comparing it with baselines on two datasets (MNIST-BAGS,53

COLON-CANCER).54

2 Methodology55

2.1 Multiple-Instance Learning56

In standard binary classification, the main goal is to establish a model which predicts the target variable57

y ∈ {0, 1} for a data instance x ∈ RD. On the other hand, each data sample in an MIL paradigm58

comes in the form of a bag of unordered and independent1 instances X = {x1,x2, . . . ,xK}, where59

the number of instances, referred to as K can differ for different bags. An MIL model must learn to60

predict the bag label Y , which is observed for the training data instances. In addition, there are also61

instance labels y1, y2, . . . , yK which are all hidden even for the training data. The standard MIL rule62

on how to infer the bag label Y given its instance labels y1, y2, . . . , yK can be expressed as follows:63

Y =

{
0, iff

∑
k yk = 0,

1, otherwise.
(1)

The MIL model we develop is trained by optimizing the log-likelihood (LL) function where the bag64

label is distributed according to a Bernoulli distribution θ(X) ∈ [0, 1], which depicts the probability65

Y = 1 given a bagX of instances. Also note that, since we assume bags of unordered and independent66

instances, the bag probability θ(X) must be permutation-invariant.67

We pursue a three-step approach to predict bag labels, in which: (1) instances xk are first transformed68

into a low-dimensional representation zk = fψ(xk), (2) a combination of the transformed instances69

is formed via a permutation-invariant function (referred to as the MIL pooling), and (3) in order70

to form a bag representation, another transformation is applied over the combined instances, after71

which a classifier θ(X) is used for the resulting bag representation. We adopt a deep neural network72

to parameterize all the transformations. Thus, the whole model can be optimized in an end-to-end73

fashion via backpropagation.74

2.2 Hybrid MIL75

Joint distribution As mentioned earlier, we assume that instances within a bag X are identically76

and independently distribution. This assumption is crucial in our methodology. Further, we are77

interested in calculating the joint distribution over X and Y given the number of points in the bag X ,78

1We refer to the standard MIL case which assumes independence among instances within a bag. Nonetheless,
there are a few works which study MIL settings where instances within a bag do not follow the IID assumption,
e.g. [Zhou et al., 2009, Zhang, 2021]
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p(X,Y |K). Moreover, we consider the following generative model with shared latent variables:79

p(X,Y |K) =

∫
p(Y, Z,X|K) dZ (2)

=

∫
p(Y |Z,X)p(X,Z|K) dZ (3)

=

∫
p(Y |Z)p(X|Z,K)p(Z|K) dZ (4)

iid
=

∫
p(Y |Z)

(
K∏
k=1

p(xk|zk)p(zk)

)
dZ, (5)

where Z = {z1, z2, . . . , zK}.80

Variational inference We parameterize these distributions using neural networks, thus, calculating81

the integral becomes analytically intractable. In order to overcome this issue, we propose to use varia-82

tional inference which allows calculating the lower bound to the logarithm of the joint distribution (the83

ELBO). Considering the following family of variational posteriors qφ(Z|X,K) =
∏K
k=1 qφ(zk|xk)84

yields:85

log pϑ(X,Y |K) = log

∫
pϑ(X,Y, Z|K)

qφ(Z|X,K)

qφ(Z|X,K)
dZ (6)

≥ Eqφ(Z|X)

[
log pϑ(Y |Z) +

K∑
k=1

(
log pϑ(xk|zk) + log pϑ(zk)− log qφ(zk|xk)

)]
(7)

df
= −L(X,Y,K|ϑ, φ) (8)

Notice that in the ELBO we have a component for the classification of a bag, log p(Y |Z), and a86

sum of objectives for each object in the bag X that conincide with the formulation of Variational87

Auto-Encoders [Kingma and Welling, 2014, Rezende et al., 2014].88

Semi-supervised learning Since the ELBO consists of a sum of two objectives, namely, one89

for the classifier and one for the marginal over objects, the proposed approach is well-suited for90

semi-supervised learning. Let us denote the part with X as follows:91

U(X,K|ϑ, φ) df= −Eqφ(Z|X)

[
K∑
k=1

(
log pϑ(xk|zk) + log pϑ(zk)− log qφ(zk|xk)

)]
. (9)

For two given sources of data, namely, laballed data (X,Y ) ∼ pl(X,Y ), and unlabelled data X ∼92

pu(X), we can formulate a joint learning objective by minimizing the combination ofL(X,Y,K|ϑ, φ)93

and U(X,K|ϑ, φ). However, typically we have more unlabelled data, therefore we consider a94

weighted objective:95

J (ϑ, φ) = α ·
∑

(X,Y )∼pl

L(X,Y,K|ϑ, φ) +
∑
X∼pu

U(X,K|ϑ, φ), (10)

where α > 0. This approach is known as hybrid modeling [Lasserre et al., 2006].96

Modeling p(Y |Z) In this paper, we pursue an attention-based MIL pooling approach for modeling97

p(Y |Z) due to several reasons: Attention-based MIL pooling is more flexible, adaptive, and more98

trainable than the max and mean pooling operators. It is also more interpretable due to the data-driven99

adjustment of instance weights according to the task and data at hand, which can potentially provide100

instance scores signifying the most relevant instances w.r.t. the bag label prediction. Attention-based101

pooling is depicted in the form of a weighted averaging with learnable parameters. To ensure102

invariance to the size (i.e. number of instances) of a bag, the weights are constrained to sum up to 1.103
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Assuming a bag of K instance representation embeddings Z = {z1, . . . , zK}, the MIL pooling is104

expressed as:105

h =

K∑
k=1

akzk, (11)

where:106

ak =
exp{w>

(
tanh

(
Vz>k

)
� sigm

(
Uz>k

))
}

K∑
j=1

exp{w>
(
tanh

(
Vz>j )� sigm

(
Uz>j

))
}

, (12)

where w ∈ RL×1, V ∈ RL×M and U ∈ RL×M are parameters, and tanh(·) is an element-wise107

hyperbolic tangent nonlinearity. Element-wise multiplication is depicted by �, and sigm(·) refers to108

the sigmoid nonlinearity which grants the adoption of a gating mechanism, potentially avoiding some109

troublesome linearity issues associated with tanh(·) [Ilse et al., 2018].110

Eventually, the classifier works as follows:111

1. X is transformed to Z through a shared stochastic encoder qφ(Z|X,K), i.e., we calculate a112

sample Z ∼ qφ(Z|X,K).113

2. An embedding h is calculated trough the attention-based MIL pooling operator (see Eq. 11)114

for given Z.115

3. A neural network is used to calculate probabilities of class labels, θ(h).116

3 Experiments117

We quantitatively and qualitatively evaluate the proposed framework, which we refer to as semi-118

supervised multiple-instance learning variational autoencoder (ssMILVAE). The conducted experi-119

ments mainly address the following issues: (i) To assess the (accuracy) performance of the proposed120

ssMILVAE in the SSL paradigm, and (ii) to gauge the degree of interpretability granted by ssMILVAE121

and whether the learned instance weights can provide information on the contributions of each122

instance to the bag label prediction.123

We assess ssMILVAE on two datasets, MNIST-BAGS which is an MNIST-based image dataset, and124

COLON CANCER which is a real-world histopathology dataset. We use 10-fold cross-validation125

and repeat each experiment five times. To compare on common ground, we follow most of the126

settings and modelling choices pursued by Ilse et al. [2018]. We refer to the latter method here as127

AD-MIL. The MIL pooling layers are located right below the top layer of the model. In addition to128

the classification accuracy, we compare the bag level performance based on: recall (true positive rate),129

the area under the receiver operating characteristic curve (AUC) and (bag) classification accuracy. All130

the experiments have been run for 100 epochs. Adam [Kingma and Ba, 2015] is the optimized used,131

with values of β1 and β2 set equal to 0.9 and 0.999, respectively. Weights are initialized according to132

[He et al., 2015]. The hyperparameter α (i.e., the weighting between the labelled objective and the133

unlabelled objective) was determined through the model selection on the validation set.134

3.1 MNIST-BAGS135

MNIST-BAGS is based on the well-known MNIST image data. We sample images from the MNIST136

training (test) set to form training (test) bags, respectively. Each bag consists of a random number137

of 28 × 28 greyscale handwritten MNIST images. Number of images within a bag is Gaussian138

distributed where the closest integer value is the chosen bag size. Since the number ‘9’ can possibly139

be confused with ‘7’ and ‘4’, we rate a bag as positive if it contains at least one image of the digit ‘9’.140

The ROC and accuracy results are displayed in Figures 1. The results demonstrate the supremacy141

of the proposed ssMILVAE when the learner encounters a small number of labeled bags. The142

performance of ssMILVAE is nearly equalled by AD-MIL with a larger number of labeled bags.143
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Figure 1: A comparison between ssMILVAE and AD-MIL. A: The ROC curve results for a bag size
of 10 instances on the MNIST-BAGS dataset. B: The bag AUC results for 10-instance bags on the
MNIST-BAGS dataset.

We next evaluate the attention mechanism of the proposed ssMILVAE algorithm on the MNIST-BAGS144

dataset, and compare it with the seminal AD-MIL approach. We compare the two algorithms based on145

a rather limited number of labeled bags, which is 50 bags. The bags displayed in Figure 4 have been146

correctly classified by both algorithms and not cherry-picked. The proposed ssMILVAE is capable of147

assigning higher weights to the positive instances than AD-MIL. This suggests that ssMILVAE may148

provide more interpretable bag label predictions than AD-MIL, when trained on a limited number of149

labeled bags, since the instance weights convey the relevance of the respective instances for the bag150

labeling decision.151

1= 0.001 2= 0.001 3= 0.537 4= 0.001 5= 0.001

6= 0.001 7= 0.039 8= 0.001 9= 0.417 10= 0.001

(a) ssMILVAE

1= 0.099 2= 0.099 3= 0.102 4= 0.100 5= 0.100

6= 0.100 7= 0.099 8= 0.099 9= 0.101 10= 0.100

(b) AD-MIL

Figure 2: Evaluation of the attention mechanism of the proposed ssMILVAE algorithm compared to
that of AD-MIL, tested on bags containing multiple positive (‘9’) instances from the MNIST-BAGS
dataset.

3.2 COLON CANCER152

The COLON CANCER dataset consists of real-world histopathology data [Sirinukunwattana et al.,153

2016]. The data contains cancerous regions in hematoxylin and eosin (H&E) stained whole-slide154

images. There are a total of 22,444 nuclei labeled as epithelial, inflammatory, fibroblast or miscella-155

neous. It consists of 100 H&E images originating from a variety of tissue appearances from healthy156

and malignant regions [Ilse et al., 2018]. Each bag consists of 27 × 27 patches. A bag is labeled as157

positive if it contains at least one epithelial nuclei. Colon cancer clinically originates from epithelial158

cells, and this is why epithelial nuclei are very informative about the diagnosis here.159

The accuracy results for experiments on the COLON CANCER dataset are displayed in Figure 3.160

We experiment with the following number of labeled training bags: 22, 92 and 162. The proposed161

ssMILVAE algorithm is more accurate when trained on a small number of training bags. When the162

number of available labeled training bags increases, AD-MIL begins to outperform ssMILVAE.163
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Figure 3: The bag AUC results on the COLON CANCER dataset for the proposed ssMILVAE and
AD-MIL given a small number of labeled training bags.

Regarding the attention mechanism, we compare the proposed ssMILVAE with AD-MIL in terms of164

the resulting regions of interest (ROIs), which are of paramount importance in medical diagnosis.165

The raw histopathological image is displayed in Figure 4a. The histopathological image is split into166

smaller patches containing single cells. A heatmap is generated by multiplying cell images by their167

respective attention weights. The attention weights are then rescaled using a′ = ak−min(a)
max(a)−min(a) .168

As can be noticed in Figure 4d, the proposed attention mechanism by ssMILVAE achieves a much169

better outcome in spotting the relevant cells compared to AD-MIL. As such, the attention mechanism170

of the proposed ssMILVAE provides more interpretable predictions by identifying the key patches171

responsible for the diagnosis.172

4 Conclusion173

In this paper, we have presented an extension of the MIL classification problem to learning a joint174

distribution in the semi-supervised setting. We have proposed a latent variable model for the MIL175

generative model with a shared parameterization between the classifier and the unsupervised part.176

In the experiments, we have shown that the proposed approach is beneficial in cases with a limited177

number of labeled data.178

In many applications, (especially in the medical domain), it is difficult to obtain huge sizes of labeled179

cases, and in such cases ssMILVAE seems to represent a recommended choice due to its ability to180

learn from limited numbers of labeled bags (medical cases). Moreover, the attention mechanism181

allows assisting a human expert (e.g., a physician) in interpreting results.182
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(a) Raw image (b) All cells (c) The ground-truth relevant cells

(d) Attention mechanism of the proposed ssMILVAE. (e) Attention mechanism of AD-MIL.

Figure 4: Evaluation of the attention mechanism of the proposed ssMILVAE algorithm compared
to that of AD-MIL, tested on the COLON CANCER dataset. Compared to AD-MIL, ssMILVAE
assigns significantly higher weights to most of the relevant cells.
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