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Abstract

Conventional video outpainting methods primarily focus on maintaining coherent
textures and visual consistency across frames. However, they often fail at handling
dynamic scenes due to the complex motion of objects or camera movement, leading
to temporal incoherence and visible flickering artifacts across frames. This is
primarily because they lack instance-aware modeling to accurately separate and
track individual object motions throughout the video. In this paper, we propose a
novel video outpainting framework that explicitly takes shadow-object pairs into
consideration to enhance the temporal and spatial consistency of instances, even
when they are temporarily invisible. Specifically, we first track the shadow-object
pairs across frames and predict the instances in the scene to unveil the spatial
regions of invisible instances. Then, these prediction results are fed to guide the
instance-aware optical flow completion to unveil the temporal motion of invisible
instances. Next, these spatiotemporal guidances of instances are used to guide the
video outpainting process. Finally, a video-aware discriminator is implemented
to enhance alignment among dynamic shadows and the extended semantics in the
scene. Comprehensive experiments underscore the superiority of our approach,
outperforming existing state-of-the-art methods in widely recognized benchmarks.

1 Introduction

Shadows are an integral part of many natural scenes, providing rich but often ignored cues about
both invisible semantics. While shadows in static images can help infer approximate categories and
coarse shapes of invisible objects [44], dynamic shadows in videos offer even more, as they contain
spatiotemporal information of invisible instances like unveiling the motion and actions of objects and
even dynamic light sources in the scene.

Despite recent video outpainting methods [5, 8, 36] making significant progress in generating
contextually matching content with coherent textures and scene structure. However, this consistency
often applies to broader backgrounds rather than specific instances: objects may lack detail, exhibit
distortions, or fail to preserve identity across frames, or become temporally misaligned with dynamic
shadows, leading to inconsistencies with the motion and action of extended semantics.

Specifically, given an input video, conventional video outpainting methods often suffer from temporal
inconsistency and action misalignment when an instance is temporarily outside the visible scene. As
shown in Fig. 1(a), while the shadow moves, conventional methods tend to generate instances that
remain static. In contrast, our method aligns the generated instance with the motion of the dynamic
shadow, thereby preserving consistency across frames. Additionally, conventional approaches often
lead to action misalignment, as shown in Fig. 1(b), where the actions of the generated instance do
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not correspond to the dynamic shadow in the scene. In contrast, our method captures the variations
of the dynamic shadow and generates appropriate actions for the instance. Beyond addressing the
aforementioned temporal inconsistency and action misalignment with dynamic shadows, our method
is also capable of generating a harmonious light source, even when it is not explicitly visible in the
ground truth, shown in Fig. 1(c).

(a) Temporal Inconsistency (b) Action Misalignment (c) Light Source Generation
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Figure 1: Failure example of previous methods. Many previous methods, including intensively
trained models for video outpainting, often generate semantics that are temporally inconsistent with
dynamic shadows and misaligned with them within the scene, as they primarily focus on maintaining
coherent textures and visual consistency. In contrast, our method extends consistent semantics with
dynamic shadow alignment and even generates a harmonious light across the frames.

To perform video outpainting by leveraging the hidden information in dynamic shadows, we propose
a novel framework that explicitly models the associations between dynamic shadows and their
corresponding instances, enabling instance-level spatiotemporal consistency even when the instances
are temporarily invisible.

Specifically, we first track the shadow-instance pairs across frames and predict the instances outside
the scene to unveil the spatial regions of invisible instances. Then, the prediction results are fed to
guide the instance-aware optical flow completion to unveil the temporal motion of invisible instances.
Next, the prediction results and the completed optical flow are used to guide the video outpainting
process. Finally, a video-aware discriminator is implemented to enhance spatiotemporal alignment
among dynamic shadows and the extended semantics in the scene.

Our main contributions are as follows:

• We propose a shadow-aware module that tracks and predicts the spatial region of instances, and
completes optical flow in invisible areas to generate spatiotemporal guidance for outpainting.

• We introduce an instance-aware spatiotemporal guidance module that employs separate adapters
for spatial predictions and completed flows to guide video outpainting, enhancing temporal
consistency and semantic coherence.

• We present the first framework that explicitly leverages dynamic shadows for instance-aware video
outpainting, by modeling the associations between shadows and their corresponding instances in
the visible scene to unveil invisible semantics based on the cues of dynamic shadows.

2 Related Work

Video Shadow Processing. Conventional video shadow processing methods seek to track and seg-
ment dynamic shadows in complex scenes [50, 6, 2, 15]. Unlike static image shadow processing,
which only focuses on individual frames, dynamic shadow processing enables the capture of spa-
tiotemporal information in objects and light sources over time Then, a sequence of methods [11,
18, 35] is developed to enhance the tracking and segmentation of moving objects. ViShadow [38]
not only detects shadows and their corresponding objects in video frames, but also continuously
tracks each shadow, object, and their relationships throughout the entire video sequence. Additionally,
several methods in video shadow processing, such as [38, 52], not only track shadows and objects but
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also enable video editing by removing instances, all while preserving temporal coherence. However,
none of the existing methods deeply look into the spatiotemporal hidden information of dynamic
shadows to generate invisible semantics.

Video Outpainting. Conventional video outpainting methods [5, 42, 41, 30] seek to extend the con-
tent beyond its original borders based on the dynamic scene, maintaining inter-frame and intra-frame
consistency in videos. Although image outpainting [4, 14, 44, 24, 19] has been extensively studied,
video outpainting still needs to be fully researched. Dehan [5] proposes a modified Generative
Adversarial Network (GAN) [49] for video outpainting, performing flow estimation and background
estimation before integrating them into a complete result. Recently, with the powerful generative
capabilities of diffusion models [29, 22, 23, 25], some diffusion-based approaches have been intro-
duced. M3DDM [8] presents global frame-guided training with a coarse-to-fine inference pipeline
to handle the artifact accumulation issue. Meanwhile, MOTIA [36] proposes a test sample-specific
fine-tuning strategy to learn the patterns of each sample. However, none of these methods can take
advantage of the dynamic shadows in the scene to reasonably extend the invisible areas in the video.

3 Method

In this section, we detail the working scheme of the proposed video outpainting framework, which
comprises four sequential stages, as illustrated in Fig. 2.
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Figure 2: Illustration of the proposed framework. We first extract the shadow-object pair mask from
the video and perform shadow-aware instance prediction to obtain spatial information of instances
beyond the scene. This is then fed into an instance-aware optical flow completion module to generate
temporal guidance for video outpainting. With the predicted spatiotemporal guidance, we perform
video outpainting with two types of adapters. Finally, a video-aware discriminator is employed to
enhance temporal consistency between the extended semantics and dynamic shadows.

3.1 Shadow-aware Instance Prediction

Tracking the mask of foreground instances in a video sequence is easy while using existing video
object/instance segmentation methods [38, 27, 3]. However, predicting the masks of invisible
instances that are temporarily outside the scene, either before they appear or after they leave, remains
challenging due to their complex motions and actions.

To address this problem, we propose a novel shadow-aware instance prediction module that utilizes
dynamic shadow information in the scene to recover the masks of instances while they are temporarily
outside the visible scene.
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Specifically, given the input video Vin = {I0, I1, . . . , IT }, where each frame It ∈ RH×W×3 and T is
the total number of frames, we extend the video borders according to user-defined target aspect ratio to
obtain the padded video V = {Î0, Î1, . . . , ÎT }, where each padded frame Ît ∈ R(H+ph)×(W+pw)×3

results from adding ph pixels horizontally and pw pixels vertically to the original frame. And we
define Mvis ∈ {0, 1}H×W as the visible region mask of the video, where 1 indicates the visible area
and 0 indicates the non-visible area, which is defined as:

Vin = V ⊙Mvis, Vinvis = V ⊙ (1−Mvis) (1)

where ⊙ denotes the Hadamard product, Vinvis denotes the region of V that needs to be outpainted,
representing the content beyond the original field of view.

We first adopt a pretrained video shadow instance detection model [38] to obtain the initial visible
shadow-object pairs from the input video, which is defined as:{(

M t,n
o_vis, M

t,n
s_vis

)}T

t=1
= Video_Instance_Detection(Vin), n = 1, 2, . . . , N (2)

where we assume that each frame contains N shadow-object pairs, and each pair consists of an object
mask M t,n

o_vis and its corresponding shadow mask M t,n
s_vis, indicating the visible region of the object

and its shadow at time t, respectively.

After obtaining the initial masks of visible shadow-object pairs in the scene, we aim to predict the
shadow-object masks for instances that are temporarily outside the visible scene while simultaneously
refining the initial tracking results, which may be inaccurate due to shadow overlap and discontinuity
in complex dynamic scenes, as discussed in [44]. For simplicity, we denote the initial masks of a
single shadow-object pair as (M t

o_vis, M
t
s_vis) at each time step.

To predict the instance masks outside the visible scene, we treat each shadow-object pair as a token
in a spatiotemporal transformer [33], which is widely used in video understanding [12, 45, 51] for
capturing long-range spatiotemporal coherence.

Specifically, we first apply a shared image encoder to extract high-level semantic features F t
i of each

padded frame Ît. And the visible object mask and the shadow mask are fed it into a mask encoder to
obtain their feature embeddings F t

o and F t
s , respectively, which are defined as:

F t
i = Image_Encoder(Ît) (3)

F t
o = Mask_Encoder(M t

o_vis), F t
s = Mask_Encoder(M t

s_vis) (4)

where Image_Encoder(·) and Mask_Encoder(·) are convolutional networks (CNNs) designed to
extract features from the input image and the respective masks. Note that a standalone image encoder
helps reduce redundant computation over V when predicting multiple shadow-object pairs.

Next, we feed the extracted features of a single pair into the transformer for spatiotemporal fusion
across frames. Specifically, for each shadow-object pair, we construct a sequence of length T + 1,
where the 0-th input token is a learnable vector z0 used to aggregate global information of this
shadow-object pair, and the remaining T tokens correspond to the local instance features at each time
step. For each time t, we concatenate F t

i , F t
o , and F t

s along channels and feed the result into a feature
encoder, obtaining the instance feature zt of time t used for inter-frame fusion, which is defined as:

zt = Feature_Encoder(concat(F t
i , F

t
o , F

t
s)), t = 1, 2, . . . , T (5)

h0, h1, . . . , hT = Inter-Frame_Fusion(z0, z1, . . . , zT ) (6)

where Feature_Encoder(·) is a convolutional network designed to encode instance features of a
single frame at time t, and Inter-Frames_Fusion(·) is a transformer-based module to fuse inter-
frame information of instances. The 0-th output feature h0 is the aggregated global embedding of the
shadow-object pair, serving as shadow-object memory in the subsequent outpainting module, while
the 1st to T-th output features ht are inter-frame fused features capturing spatiotemporal correlations.

When multiple shadow-object pairs are detected, their predictions often influence each other, making
it necessary to fuse spatial information across pairs. For object mask prediction, each pixel can belong
to only one object. In contrast, for shadow mask prediction, a pixel may belong to several shadow
regions, since shadows from different pairs may overlap.

To achieve inter-pair feature fusion within a single frame across pairs, we perform spatial fusion
on the features hn

t for all pairs at each time step t. The temporal fused features hi
t are then passed
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through another transformer for spatial fusion across shadow-object pairs, which is defined as:

ĥt,1, ĥt,2, . . . , ĥt,N = Inter-Pair_Fusion(ht,1, ht,2, . . . , ht,N ), t = 1, 2, . . . , T (7)

where each ĥt,n is a spatiotemporal fused feature across frames and shadow-object pairs.

The spatiotemporal fused feature is passed through a lightweight mask prediction head to predict the
object mask M̂ t,n

o and the shadow mask M̂ t,n
s of each shadow-object pair at each time step:

M̂ t,n
s , M̂ t,n

o = Mask_Decoder(ĥt,n), t = 1, 2, . . . , T, n = 1, 2, . . . , N (8)

where Mask_Decoder(·) are convolutional networks designed to decode from each mask logit for
the object and its corresponding shadow masks at time t.

Finally, the predicted outputs M̂ t,n
s and M̂ t,n

o are used to compute the training loss for supervising
the object and shadow mask prediction in the completed scene. Additionally, the aggregated global
feature h0 serves as the memory embedding of a shadow-object pair and is passed to the video
outpainting module to guide the recovery of the appearance of the object. Besides, the mask logits
of each pair ĥt are passed to the next module for guiding optical flow completion, facilitating
instance-level temporal consistency outside the visible scene.

3.2 Instance-aware Optical Flow Completion

Pretrained flow completion modules are commonly used in video generation networks [47, 46, 13],
as they provide a simpler solution for handling invisible flow compared to directly extending complex
RGB content [40]. This approach leverages the inherent simplicity of flow completion to enhance
video generation efficiency by using the completed flow to propagate pixels, thereby reducing the
burden of video outpainting and better preserving temporal coherence.

To address this problem, we propose a novel instance-aware optical flow completion module, which
recovers the instance-level optical flow outside the visible scene and provides temporal consistency
guidance for the video outpainting process.

Specifically, we first use the pretrained optical flow estimation model RAFT [31] and the visible region
mask Mvis to obtain the optical flow of padded video V and initialize these flows with Laplacian
filling for the initialized optical flow Oin, which is defined as :

Oin = Laplacian_Filling(RAFT(V )⊙Mvis) (9)

Then, the initialized optical flow is fed into a pseudo-3D U-Net [26] encoder-decoder structure
with skip connections from the encoder to the corresponding layers in the decoder, which takes the
initialized optical flow Oin and invisible region mask (1−Mvis) and output the completed optical
flow Oout, which is defined as:

Fflow = Flow_Encoder(Oin), Fmask = Mask_Encoder((1−Mvis)) (10)

Oout = U-Net(concat(Fflow, Fmask), ĥ
t) (11)

where Flow_Encoder(·) is a convolutional network that extracts features from the initialized optical
flow and the invisible region mask. The U-Net architecture is conditioned on the spatiotemporal
features ĥt, which enables the network to incorporate instance-level mask features, enhancing the
prediction of the completed optical flow outside the scene.

Specifically, to enable optical flow completion of the padded areas with instance-awareness, we
introduce a cross-attention mechanism [33] after the temporal 2D convolutions in U-Net. This
mechanism allows the network to effectively incorporate conditions from the dynamic foreground,
enhancing its ability to complete the optical flow, which is defined as :

Q = WQ(x), K = WK(concat(ĥ1, ĥ2, . . . , ĥT )) (12)

V = WV (concat(ĥ
1, ĥ2, . . . , ĥT )) (13)

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (14)
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where x denotes the latent feature from the U-Net, and ĥt represents the conditional mask features of
time t. WQ, WK , and WV are learned linear projection layers that map inputs into the query, key,
and value spaces of dimension dk.

Finally, we utilize the instance logits generated by the previous module to achieve instance-aware
optical flow completion, particularly in regions with sharp motion boundaries in previously invisible
areas. In regions around the padded boundaries, the module promotes smoothness where there is no
moving instance, while preserving sharp motion boundaries when moving instances are present.

3.3 Video Outpainting with Multi-adapters

To enhance the temporal coherence and spatial consistency at the instance level in video outpainting,
we incorporate spatiotemporal instance conditioning and flow conditioning into a video diffusion
model via a two-branch architecture, complemented by a multi-scale adapter proposed by [43], which
provides different types of guidance across the U-Net blocks of latent diffusion model (LDM).

For the spatial consistency of video outpainting, we first combine the mask logit ĥn
t of the t-th frame

and the memory embedding hn
0 for each pair n at time t. Then, the combined features of all objects

are concatenated and projected to obtain the condition for the k-th block and t-th frame in up-blocks:

f t,n = ĥt,n + h0,n, n = 1, 2, . . . , N (15)

Cmask
k,t = Mask_Projection(concat(f t,1, f t,2, . . . , f t,N )) (16)

x′
k,t = xk,t + γ1 × Cross_Attn(xk,t, C

mask
k,t ), t = 1, 2, . . . , T (17)

where the parameter γ1 controls the influence of the instance condition on the generated video And
Cross_Attn(·) denotes the cross-attention mechanism applied at the t-th frame and the k-th block,
where xk,t is used to project the query, and Cmask

k,t is used to project the key and value.

For the temporal conherence of video outpainting, We inject them into the U-Net with the multi-scale
optical flow features extracted from Oout, We combine the latent features xk of the k-th block of
the U-Net with the condition from flow features Ck through element-wise addition. The combined
feature is then processed by a linear layer, and its output is fed directly into the cross attention layer
before each motion module in the up-blocks:

Cflow
k = Flow_Projection(Oout) (18)

x′
k = xk + γ2 × Cross_Attn(xk, C

flow
k ) (19)

where the parameter γ2 controls the influence of the flow condition on the generated video, and xk is
used to project the query, and Cflow

k is used to project the key and value.

Finally, after the diffusion process, the denoised latents are obtained by integrating the spatiotemporal
conditioning signals through the U-Net. The instance and flow conditioning help guide the denoising
process, ensuring both spatial consistency and temporal coherence in the generated video.

3.4 Video-aware Shadow Alignment Discriminator

After obtaining the denoised video latent, the latents are fed to the decoder to transform them from
the latent space back to pixel space, producing the outpainted video.

Our outpainting module builds on a pre-trained image LDM [29], whose autoencoder, trained on
individual images, causes flickering when applied to temporally coherent sequences, leading to
shadow-object inconsistency in videos.

To address this problem, we incorporate dedicated temporal layers into the decoder, proposed in [28],
to capture spatio-temporal dependencies across video frames. These layers are subsequently fine-
tuned on video data, allowing the decoder to reconstruct temporally coherent textures and structures
of instances within the outpainted regions.

we propose a video-aware shadow alignment discriminator that focuses on the dynamic shadow-object
pairs in the scene. After obtaining the output video Vout of decoder, extract masks of shadow-object
pairs Mn

o and Mn
s . For each shadow-object pair, we take the object mask and the shadow mask to

extract mask features. For each frame, we also extract image features and then concatenate them
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along the channel dimension. The resulting feature dimension is [T,w, h, cs + co + ci], where T is
the number of frames, w and h are the width and height of the image feature, cs is the number of
channels in the shadow mask feature, co is the number of channels in the object mask feature, and ci
is the number of channels in the image feature. Then, the result is fed into a local shadow-instance
alignment video discriminator to ensure that each pair of extended semantics is visually coherent,
which is defined as :

min
D

V (D) =
1

2
Ex∼pdata(x)[(D(x)− b)2] +

1

2
Ez∼pz(z)[(D(Vout,M

n
o ,M

n
s )

2],

min
G

V (G) =
1

2
Ez∼pz(z)[(D(Vout,M

n
o ,M

n
s )− c)2]

(20)

where D denotes the alignment discriminator. a and b denote the ground truth real and fake labels,
respectively. c denotes the value that G wants D to believe for the fake data.

Moreover, to ensure photorealistic reconstructions, a patch-wise temporal discriminator [10] built
with 3D convolutions is implemented. Additionally, the image-level shadow-instance alignment
discriminators proposed by [44] are also adapted to enhance alignment between the extended seman-
tics and their shadows. By integrating these discriminators during finetuning, the decoder learns
to generate outpainted content that not only matches the spatial quality of individual frames but
also preserves temporal coherence, reducing flickering, shadow misalignment, and even light source
inconsistencies in the final video output.

4 Implementation Details

Video Shadow Instance Detector We directly use ViShadow [38] as our video shadow instance
detector, which provides robust paired tracking of objects and their corresponding shadows, even in
cases where one of them is temporarily invisible or occluded. The initial tracking results provide
object–shadow relationships that serve as a heuristic to guide the tracking and prediction mask of
instances outside the scene.

Diffusion Module Our method is built upon Stable Diffusion v1-5. The temporal modules are
initialized with the weights from pretrained motion modules [9] to obtain additional motion priors.
Each spatial 2D convolutional layer is followed by a temporal 1D convolutional layer, which is
pretrained in text-to-video tasks on the WebVid dataset [1].

Multi-instance Pair Prediction Since the video shadow instance detector is limited to identifying
shadow-object pairs with visible shadows, we employ YOLO [34] and SAM2 [27] to track and
segment objects without visible shadows, particularly those near boundary regions. To maintain
computational efficiency, we limit the number of instance pairs to a maximum of 10.

Outpainting Strategy For long video outpainting, M3DDM [8] adopts a hybrid coarse-to-fine
pipeline, performing coarse outpainting over larger time intervals followed by fine outpainting over
shorter intervals. In contrast, MOTIA [36] sequentially splits the long video into short clips with
temporal overlap for outpainting. Our approach, however, takes the lifespan of instances into account.
Specifically, we dynamically split the long video based on the predicted instance masks to ensure
spatial consistency of instances across frames. In scenarios with multiple instances, we prioritize
splitting and outpainting at segments with the highest instance overlap.

Training Details Our method is implemented using PyTorch [20] and trained on eight NVIDIA RTX
A6000 GPUs. During training, we employ the AdamW optimizer [17] with a fixed learning rate
of 1 × 10−4 and the warm-up learning rate step is 1k. Following the training scheme of [8], the
model is trained on the WebVid dataset [1] for 6 epochs with a batch size of 16, utilizing gradient
accumulation to stabilize optimization under memory constraints. During the inference process, we
use the PNDMScheduler [16] to guide the denoising steps in the reverse diffusion process. Also, we
use 50 inference steps and a scaled linear β schedule that starts at 0.00085 and ends at 0.012.

5 Experiments

In this section, we describe our experimental setup and present quantitative and qualitative compar-
isons, ablation studies, and a user study to validate the effectiveness of our method.
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5.1 Datasets

We evaluate our proposed approach on two common datasets, DAVIS [21] and YouTube-VOS [39],
which are widely used benchmarks for video outpainting.

DAVIS [21] dataset collects 150 videos in total (60 for training, 30 for validation, and 60 for testing),
with each video annotated with multiple foreground instances per frame. It was originally introduced
as a benchmark for Video Object Segmentation (VOS) to segment and track object instances with
precise and temporally consistent annotations across video frames.

YouTube-VOS [39] dataset collects 4,000 high-resolution YouTube videos, totaling over 340 minutes,
providing rich diversity in object appearance, motion patterns, and scene complexity. Each video is
densely annotated with high-quality pixel-level masks for multiple objects in selected frames.

Additionally, since these two datasets only provide foreground object segmentation annotations and
lack instance-level shadow annotations, we introduce a dataset with shadow annotations to further
validate the effectiveness of our approach.

SOBA-VID [38] dataset collects 292 videos with a total of 7045 frames, capturing shadow-object
interactions across diverse scenarios. It emphasizes varied shadow patterns, dynamic backgrounds,
occlusions, and lighting conditions. The dataset is split into 232 training videos with 5863 sparsely
annotated frames and 60 testing videos with 1182 densely annotated frames, resulting in 637 shadow-
object pairs in total. On average, each video contains 24.1 frames and 2.2 shadow-object pairs.

5.2 Comparisons to Baseline Methods

Qualitative Comparisons. As shown in Fig. 3, we show qualitative results comparing our method to
baseline approaches. M3DDM and MOTIA fail to align extended semantics with dynamic shadows.
In contrast, our method generates visual content consistent with shadows, improving temporal
coherence and shadow alignment. This is due to our shadow-object prediction and flow completion
modules, which provide effective spatiotemporal guidance for video outpainting. Additionally, the
video-aware shadow alignment discriminator enhances spatiotemporal consistency across frames.
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Figure 3: Qualitative comparison of video outpainting results with a mask ratio of 0.666 on the
DAVIS [21] and YouTube-VOS [39] datasets.

Quantitative Comparisons. We compare our method with several state-of-the-art approaches on
the widely used video outpainting benchmarks DAVIS [21] and YouTube-VOS [39], using four
common evaluation metrics: PSNR, SSIM [37], LPIPS [48], and FVD [32]. As shown in Tab. 1,
our approach achieves significant improvements over the state-of-the-art in terms of PSNR, SSIM,
and FVD. However, the LPIPS score is slightly higher compared to MOTIA. Compared to our
efficient zero-shot approach, MOTIA achieves better perceptual alignment and lower LPIPS scores
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by fine-tuning the model on each test sample. Note that we follow the test setting of [8, 36] using
mask ratios of 0.25 and 0.666 in the horizontal direction.

Table 1: Quantitative Comparisons on DAVIS [21] and YouTube-VOS [39]. ↑ means “better when
higher", and ↓ indicates “better when lower". †denotes it is based on test sample-specific fine-tuning.

Method
DAVIS [21] YouTube-VOS [39]

PSNR↑ SSIM↑ LPIPS↓ FVD↓ PSNR↑ SSIM↑ LPIPS↓ FVD↓

Dehan [5] 17.96 0.6272 0.2331 363.1 18.25 0.7195 0.2278 149.7
SDM [28] 20.02 0.7078 0.2165 334.6 19.91 0.7277 0.2001 94.81
M3DDM [8] 20.26 0.7082 0.2026 300.0 20.20 0.7312 0.1854 66.62
MOTIA†[36] 20.36 0.7578 0.1595 286.3 20.25 0.7636 0.1727 58.99
Ours 20.81 0.7254 0.1842 234.7 20.32 0.7719 0.1793 40.78

5.3 Ablation Studies

Ablation Study on Multi-adaption. We further conduct a visual analysis to evaluate the effects
of different adaptations on the quality of generated results, as shown in Fig. 4. It can be seen that,
although all methods can generate plausible results shortly after the object becomes invisible, as the
invisibility duration increases, notable differences emerge. Specifically, without the instance adapter,
objects tend to exhibit artifacts or even disappear entirely. The absence of object memory embedding
causes significant changes in the appearance of the object, while omitting the flow adapter leads to
blurred object motion. In contrast, our method leverages dynamic shadow to generate temporally
consistent objects, maintaining both appearance and motion fidelity over longer periods of invisibility.

Figure 4: Visual results of multi-adaption ablation study on the DAVIS [21] dataset. The region to
the right of the red line is masked out and needs to be generated.

Ablation Study on Outpainting. We conduct an ablation study on the YouTube-VOS [39] dataset
to analyse the contribution of each module, shown in Tab. 2. The results demonstrate that both
the instance and flow adapters significantly improve the video generation quality, with noticeable
enhancements in PSNR, SSIM, and LPIPS. Additionally, the video-aware discriminator significantly
helps reduce the FVD, further improving the overall performance of the model.

Ablation Study on Shadow-aware Prediction. We conduct an ablation study to assess the impact of
dynamic shadow information on object mask predictions across multiple datasets, as shown in Tab. 3.
Our results show that incorporating dynamic shadow improves both object and shadow mask accuracy.
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Note that we introduce the SOBA-VID [38] dataset to further validate the impact of shadows, which
provides annotations for both objects and shadows. In this dataset, without shadow information
incorporated, objects and shadows are treated as independent instances for prediction.

Table 2: Ablation study on the YouTube-VOS [39] dataset.

Method PSNR↑ SSIM↑ LPIPS↓ FVD↓

w/ instance adapter 19.89 0.7583 0.1881 64.51
w/ flow adapter 19.94 0.7602 0.1865 61.34
w/ instance & flow adapter 20.15 0.7657 0.1813 51.92
w/ video-aware discriminator 20.11 0.7628 0.1827 42.66
Ours 20.32 0.7719 0.1793 40.78

5.4 User study

We conducted a user study comparing our method against M3DDM [8] and MOTIA [36] using the
YouTube-VOS [39] dataset with a horizontal mask ratio of 0.66 as source videos. We collected
preferences from 40 volunteers, each evaluating 20 randomly selected result sets. The evaluation
focused on two aspects: visual quality (e.g., clarity, color fidelity, and texture detail) and temporal
consistency (e.g., motion smoothness, object continuity, and temporal coherence). As shown in Tab. 4,
our method is preferred over both baselines in terms of both visual quality and temporal consistency.

Table 3: Ablation study of mask IoU with and
without shadow incorporated across datasets.

Method DAVIS YouTube-VOS SOBA-VID
Object Object Object / Shadow

w/o shadow 0.75 0.78 0.65 / 0.56
w shadow 0.82 0.84 0.76 / 0.65

Table 4: User preference distribution (%) across
three methods.

Method Visual Quality Temporal Consistency

M3DDM [8] 18.0% 22.3%
MOTIA [36] 25.6% 15.7%
Ours 56.4% 62.0%

6 Conclusion

In this paper, we propose a novel instance-aware video outpainting framework that leverages shadow-
object associations to enhance the spatial and temporal consistency of generated content. By explicitly
tracking and modeling shadow-object pairs, our method effectively unveils both the spatial region and
temporal motion of instances that are invisible in the input video. The integration of spatiotemporal
instance guidance with optical flow completion, along with a video-aware discriminator, ensures
temporal consistency and coherent scene extension even in complex dynamic scenarios. Extensive
experiments on several benchmarks demonstrate that our approach significantly outperforms existing
state-of-the-art methods.

Limitations. Our method exploits shadow cues to improve instance generation beyond the visible
scene. The informativeness of shadows depends on the angle of the light source. For example, lower
angles usually cast longer shadows, which carry more semantic hints of invisible instances, such as
their motion, actions, or even the location of the light source. In scenes without visible shadows,
these cues are absent, and our approach falls back to standard instance-aware video outpainting.

Societal Impacts. Our approach can extrapolate scenes beyond the original camera view, supporting
applications in film production, surveillance, and autonomous driving. However, the generated regions
are synthetic and may not reflect reality, raising concerns about authenticity and trust. Following [7],
we apply watermarking to label generated content and reduce the risk of misuse.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of the paper have been truthfully described
throughout the abstract and the introduction, and concisely summarized at the end of the
introduction. Each of the listed contributions is backed up by experimental results or
literature review throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We included detailed descriptions of our model architecture in Section 3,
references to publicly available pre-trained weights, data processing procedures, and other
training details in Section 4 and further in the supplementary material. We will also
opensource our code and model checkpoints upon paper acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: As stated in the response above, we provided detailed instructions on how to
replicate our experiment results in the main paper and further in the supplementary material.
We will release our code and models upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided detailed instructions on replicating the training and evaluation
procedures in Section 4, Section 5, and further in the supplementary material. We did not
perform delicate tuning for the hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not compute error bars due to the lack of adequate computational
resources. However, we tried our best to provide faithful and reliable quantitative evaluation
results, including a user study. All experiments are conducted with the same and commonly
used random seed.
Guidelines:

• The answer NA means that the paper does not include experiments.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We described our compute setup as well as the training time and inference
runtime in Section 4 and further in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Authors carefully read the NeurIPS Code of Ethics and preserved anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of the work are discussed in Section 6.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We mentioned in Section 6 that the generated content from our model can be
watermarked to prevent potential misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset. All
the pre-trained models and tools we used are specified in Section 4 and further in the
supplementary material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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