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ABSTRACT

Capsule Networks (CapsNets) have been re-introduced as a more compact and
interpretable alternative to standard deep neural networks. While recent efforts
have proved their compression capabilities, to date, their interpretability properties
have not been fully assessed. Here, we conduct a systematic and principled study
towards assessing the interpretability of these types of networks. We pay special
attention towards analyzing the level to which part-whole relationships are encoded
within the learned representation. Our analysis in the MNIST, SVHN, PASCAL-
part and CelebA datasets on several capsule-based architectures suggest that the
representations encoded in CapsNets might not be as disentangled nor strictly
related to parts-whole relationships as is commonly stated in the literature.

1 INTRODUCTION

Capsule Networks (CapsNets) Sabour et al. (2017) were recently re-introduced as a more compact and
interpretable alternative to deep neural networks. This motivated their introduction in different critical
applications including healthcare Deepika et al. (2022); Afriyie et al. (2022), object detection Lin et al.
(2022); Yu et al. (2021), hyperspectral imaging Deng et al. (2018); Wang et al. (2018), autonomous
driving Heylen et al. (2018); Grigorescu et al. (2020); Dulian & Murray (2021), and finance Sezer
et al. (2020). Different from standard convolutional neural networks (CNNs), which arrange neurons
in a predefined 2-dimensional manner, a capsule is a group of neurons whose activity vector represents
the instantiation parameters of a specific type of entity such as an object or an object part. Then,
by explicitly providing a mechanism to link specific capsules at neighboring layers, part-whole
relationships are modelled. Based on these mechanisms ensembles of capsules are capable of
modelling higher level semantic concepts, e.g. objects and scenes, with a proper spatial arrangement.
Recent efforts Mukhometzianov & Carrillo (2018); Jung et al. (2020) have shown that CapsNets
are capable of obtaining comparable results with respect to their convolutional counterparts while
requiring less parameters. Thus, confirming their compression capabilities. However, while it is
theoretically expected that the activities of the neurons within an active capsule represent relevant
properties of the data (e.g. deformation, velocity, hue, texture, etc.), to date, this built-in interpretable
characteristic has not been systematically assessed.

Efforts towards improving the intelligibility of systems based on deep models have been oriented in
two fronts. Either, by providing insights into what a model has actually learned (model interpretation),
or by providing justifications for the predictions made by these models (model explanation). In the
last decade, a significant amount of work Fong & Vedaldi (2017); Grün et al. (2016); Hendricks
et al. (2016); Zeiler & Fergus (2014) has been conducted towards explanation. In contrast, the
amount of efforts Bau et al. (2017); Oramas et al. (2019) around the interpretation task is much more
reduced. A more critical trend has been observed in the context of CapsNets, where efforts toward
their interpretation are almost non-existent. Putting the previous points together paints a worrying
picture. CapsNets are a type of model that is proving effective and is gaining attention in the context
of several critical applications. However, when compared with its CNN-based counterparts, this type
of model is not well studied and their inner-working are not necessarily well understood.

Starting from these observations, we aim to experimentally assess the interpretability capabilities of
CapsNets. More specifically, we verify whether the internal representations of CapsNets do encode
features that are both relevant for the data they were trained on, and critical for the performance on the
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task at hand, e.g. classification. This paper puts forward the following contributions: i) We propose a
principled methodology for assessing the interpretation capabilities of capsule networks. This aims at
a complete understanding by looking at the inner workings of the CapsNet across all its layers. ii) We
conduct an empirical analysis to assess the level to which CapsNet-based representations do encode
part-whole relationships. To the best of our knowledge, this is one of the first efforts conducting this
type of study. iii) As part of our methodology, we propose two methods for the extraction of relevant
units in CapsNets. These units lead to comparable performance.

2 RELATED WORK

Understanding how deep complex models operate internally have received significant attention in
recent years Zeiler & Fergus (2014); Simonyan et al. (2014); Grün et al. (2016); Selvaraju et al.
(2017). Most of the methods in the literature operate in a post-hoc manner, i.e. they provide
interpretation/explanation capabilities on a pre-trained model. More recently a new trend has emerged
which focuses on the design of methods or learning algorithms that aim to produce models that are
interpretable. Thus producing models that are interpretable-by-design Zhang et al. (2018).

Related to this trend, Sabour et al. (2017) proposed CapsNets. A characteristic aspect of this model is
that the learned representations encode part-whole relationships from features present in the data. Li
et al. (2019) analyzed their proposed CapsNet-based recommendation model (CARP) which verifies
whether it was able to detect suitable reasons and their effects. This was done by retrieving the top-k
phrases which are used to interpret rating behavior. In a similar manner, Wang et al. (2020) proposed
a multi-head attention layer with capsules that capture the semantic aspects which resemble the global
interpretation with respect to the entire dataset. Moreover, they explain the output of the network for
a given input by referring to the primary capsule that strongly agrees with the class capsule.

In the medical context, Shen & Gao (2018) proposed a modified CapsNet model for automatic
thoracic disease detection. Grad-CAM Selvaraju et al. (2017) visualizations were used to inspect
regions of interest that are considered critical for assessing the location of the disease. In the domain
of hyperspectral imaging, Shi et al. (2021) proposed a two stage model for vegetation recognition. The
interpretability of their model was improved by using a capsule-based stage for learning a hierarchical
representation from inputs. This capsule-based stage was composed of enriched low-level feature
representations computed during the first stage. The interpretation capabilities of this model were
assessed by measuring the correlation between intermediate features in the model and annotations in
auxiliary datasets. de Jesus et al. (2018) proposed a CapsNet-based method for protein classification
and prediction. Outputs produced by this model are explained by following an input-modification
method in which information about some ”atoms” of a given input is modified and its effect on the
output is measured. Shahroudnejad et al. (2018) analyzed the behavior of CapsNets (Sabour et al.
(2017)) to identify the relevant activation path defined by the bi-product of the routing procedure and
use it as an explanation for the network. Jung et al. (2020) proposed the interpretable iCaps model
which produces explanations of classification predictions based on relevant information in active
capsules. This is achieved by an additional supervised approach for representation disentanglement
and a regularizer that ensures low redundancy on the concepts encoded in the model. Previously
Bhullar (2020); Shahroudnejad et al. (2018) introduced interpretation methods to verify the path
based on the dynamic routing procedure introduced in Sabour et al. (2017). More recently, new
efforts emerged, questioning the hierarchical relationships encoded in CapsNets. Along this line,
Mitterreiter et al. (2023) argues that CapsNets do not exhibit any theoretical properties suggesting the
emerging of parse trees in their encoded representation. They discussed how a parse tree structure is
crucial when capsules are expected to serve as nodes and their connections function as edges.

Inspired by Bhullar (2020); Shahroudnejad et al. (2018), we follow a similar approach in our
experiments to obtain and interpret the relevant connections between layers. In line with Wang et al.
(2020) we consider local and global interpretation from models trained on visual data. Different from
it, we analyze the internal behavior including the convolution layer, and we also analyzed forward
and backward path estimation alternatives. Similar to Shen & Gao (2018) we also explain model
predictions, visually, by producing heatmaps. Different from iCaps Jung et al. (2020) and all previous
efforts, we analyze the internal behavior of the CapsNet architectures. We analyzed the drop in
performance when relevant filters and capsules are removed in such a network. Finally, similar to
Mitterreiter et al. (2023), we introduce a systematic study towards assessing the interpretability of
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Figure 1: Considered capsule network architecture by Sabour et al. (2017).

several Capsule Architectures. However, we propose a more general protocol that extends beyond
examining the connections between various levels of capsule layers. Our protocol consists of
perturbation analysis and extracts the relevant features that define the relevant paths connecting the
inputs and outputs. We also assess the emergence of the part-whole relationship

3 OVERVIEW: CAPSULE NETWORKS

Fig. 1 presents an overview of the CapsNet architecture proposed by Sabour et al. (2017). In a
CapsNet architecture, each capsule is defined by a set of neurons (represented by the activity vectors
denoted by ui ∈ Rdl×dl+1

, where dl and dl+l are the dimensions of the primary and class capsule
layers respectively) along with instantiation parameters T . These parameters represent the features
of the entities in the desired dataset such as pose (position, size, orientation), lighting, deformation,
and velocity. The length of the output vector v j indicates the likelihood of occurrence of an entity. A
standard CapsNet architecture (as proposed in Sabour et al. (2017)) consists of two parts (Fig. 1).
First; an encoder which is composed of three layers; a convolutional layer (Conv), a primary capsule
layer (PC ), and a class capsule layer (CC). Second, a decoder which aims a reconstructing the input.

The encoder part starts with a standard Conv layer which aims to obtain the initial features (e.g., edges
and lines) from an input image xs ∈RH×W . The Conv layer is followed by a ReLU activation function.
The PC layer is represented by 32 PC capsules which aim to detect high-level features (e.g., part of
an object) based on features extracted by the Conv layer. PCs perform 8 convolution operations each
time. Each PCi in the PC layer (i ∈ [1≤ i≤ N], with N the number of PC capsules) encodes T by
vector ui. Consequently, CC j in the CC layer ( j ∈ [1≤ j≤M], with M being the number of discrete
classes to be predicted (e.g., M=10 in case of the MNIST digits). The CC layer receives an input from
the PC layer whose size depends on the dataset being used (e.g., 6×6×8×32 in case of the MNIST
digits). Then, an affine transformation is applied via the transformation matrix Wi j ∈ Rdl×dl+1

.
This type of transformation is a unique procedure to CapsNet since it considers both the missing
spatial relationships and the relationships between parts in relation to the object. A product between
the transformation matrix Wi j and capsules in the PC layer is computed. This transforms ui to a
vote/predicted vector ˆu j|i ∈ Rdl+1

towards the jth capsule. The predicted vector ˆu j|i indicates how the
ith capsule from the PC layer contributes to the jth capsule in the CC layer. Coupling coefficients
ei j ∈ Rdl×pd+1

are added, and further computed, to indicate the forward path/flow (links) from PCi
capsule at l to the CC j capsule at l +1. ei j ∈ [0,1]; i ∈ {1,2, ...,n}. In the literature, this procedure
is usually referred to as dynamic routing Sabour et al. (2017). In CapsNets, CC is the classification
layer, where each capsule vector v j indicates a single class. The predicted class ŷs is obtained by
looking at the highest predicted probability v j ∈ Rdl+1

(see Fig. 1). The decoder consists of several
fully connected layers. It aims to reconstruct the input example xs from the vector v j that is produced
by the CC layer. The decoder output is the reconstruction x̂s.

4 METHODOLOGY

The proposed methodology for assessing the interpretability of the representation encoded in a
CapsNet consists of two parts. First, a hollistic perturbation analysis in which various parts of the
architecture are ablated to assess their impact on classification performance. Second, during the
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forward pass, the activation paths linking input and output are analyzed with the goal of verifying the
most relevant features in each layer and their influence on modelling part-whole relationships.

4.1 PERTURBATION ANALYSIS

Given a trained CapsNet model F that takes an input x and produces a class label ŷ as output,
i.e a classifier. The first step is to push every example xs,c belonging to class c and extract the
activations al

s,c ∈ Rw×h×d for every internal layer l. Then, after computing the activations al
s,c of

every example s in the dataset, flattening them and concatenating them on top of each other, a matrix
Al

c = [al
1,c;al

2,c; ...;al
s,c] is defined with Al

c ∈ R[S′×A′] where S′ refers to number of training examples
corresponding to a class c and A′ refers to total number of (1D) flattened activations.

With Al
c in place, first-order statistics η l

c = [min(Al
c);max(Al

c);mean(Al
c);std(Al

c)] ∈ R[4×A′] are com-
puted in a column-wise manner. To complement this, a similar η matrix is composed of the first-order
statistics across the whole dataset Al

all = [Al
1;Al

2; ...;Al
M] ∈ R[D×A′], where D refers to the number

of examples in the dataset. From here, we define the interval α = [min(Al
all),max(Al

all)] which
represents the empirical range of the activation space of a given unit at layer l in the CapsNet. By
estimating the range α in this way, we ensure the proper analysis of the activation space of different
units located at different layers of the model. This differs significantly from previous efforts Sabour
et al. (2017); Amer & Maul (2020); Shahroudnejad et al. (2018), which use heuristically-defined α

values. We apply a perturbation analysis on v j (output of the CC layer) based on α for a given class c.
We systematically replace each dimension of v j by an uniformly-sampled value ξ in the range α ,
which produces a new vector v′j ∈ Rdl+1

. Then, v′j is fed to the decoder to produce a reconstruction
x̂s,c. In our analysis, the reconstructed input x̂s,c has two purposes. It is used to conduct a systematic
qualitative assessment on how variations in one of the dimensions of v j lead to different reconstruc-
tions. In addition, the effects of these variations can be quantitatively assessed by measuring the
difference in classification performance that is obtained when x̂s,c are fed to the CapsNets as inputs.

4.2 LAYER-WISE RELEVANT UNIT SELECTION

This method is aimed at detecting the relevant features/units that define activation paths in a given
network. This is achieved by probing one layer at a time and verifying how the selection/suppression
of internal units in such layers affects classification performance.

For Conv layers, global average pooling (GAP) Lin et al. (2014) is computed on the output channel
produced by each filter. The filters with the highest GAP values, i.e. with the highest average
activation, are assumed as the most relevant in the layer. Given this relevance rank, as defined by the
GAP score of each filter, we select the top-k most relevant filters via cross-validation. More precisely,
given trained CapsNet and a validation set, we feed every example and gradually increase the number
(k) of considered filters that are considered. During inference, the output/response of the selected
filters is preserved while that of the rest is suppressed, i.e. set to zero. After repeating this procedure
for several k values, the lowest k value which led to the highest classification accuracy is adopted.
We consider these k relevant filters, in the Conv layer, as the starting point of the activation path.
For capsule-based layers, we apply a slightly different procedure. As mentioned earlier, CapsNets
are characterized by the routing algorithms Mukhometzianov & Carrillo (2018) which determine
how activations flow internally across capsule layers. Taking advantage of this, the ”joint” capsules
linking the PC and CC layers are identified. This is done based on the coupling coefficients ei j that
determine the routes across capsule layers. Connecting the most relevant filters in the Conv layer
with the ”joint” capsules linking PC and CC produces a complete path between the input xs and the
prediction ŷs. It is worth mentioning that during inference, some capsules from the PC layer that hold
irrelevant features (for a given class) may appear to be active Bhullar (2020). However, following the
routing algorithms, these capsules are eventually routed to inactive capsules in the CC layer. This
prevents them from having a significant effect on the prediction ŷs. Similar as within the Conv layer,
the number k of selected units is estimated via cross-validation.

On the basis of the procedure described above, we propose two methods to define ac-
tivation paths on CapsNets. These methods are characterized by the direction, i.e.
forward or backward, that is followed to estimate the path. These directions are
closely related to the awareness of the method on the class ŷs predicted by the model.
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Table 1: Mean classification accuracy of the orig-
inal dense CapsNet and sparser versions based on
the identified activation paths

MNIST SVHN PASCAL CelebA

Model valid Test Valid Test Valid Test Valid Test

Dense (original) 99.9 99.1 96.7 91.0 99.1 78.0 93.0 92.0
Backward Path 76.9 78.5 89.3 87.2 61.0 56.0 81.4 80.6
Forward Path 95.2 95.1 96.0 88.3 65.8 60.1 89.1 86.2

Class-Agnostic Forward Path Estimation. Dur-
ing the forward pass, the routing procedure de-
fines the path of the predicted vector û which
represents the relationship between a child (part)
i and a possible parent (whole) j capsule where
we ignored the target classes. This is achieved
by following the internal sequence of units (cap-
sules) that maximize the internal activation flow-
ing forward. In particular, we solve Eq. 1 by passing xs through the CapNet to obtain the cor-
responding coefficients E∗. By solving Eq. 1, the optimal E∗ indicates the agreement to the
magnitude of v j is maximized. In other words, this optimization leads to identifying the rel-
evant capsules that should be activated in the PC layer. Then, we find the relevant capsules
of an example xs based on the coupling coefficients ei j with the highest values. The term
eiM ûM|i refers to coefficients that agree on what could be the predicted class for the input xs.

E∗ = ∑
N
i (max(F(û))) = ∑

N
i (max(∑N

i eiM ûM|i))(1)Class-Aware Backward Path Estimation. In contrast
to the previous method, which defines an activation
path in a class-agnostic fashion, here the coefficients E∗ are obtained based on the predicted class ŷs.

E∗ = max( f (û)|ŷs) = ∑
N
i (max(∑N

i eiŷûŷ|i)|ŷs)(2)

More specifically, each input example xs is fed to the
CapsNet to produce a predicted class ŷs. Then, in a
reverse manner, we extract the ei j of the prediction of
class ŷs. Another difference with the previous method, which included all class coefficients, is that
this method ignores the ei j that might be relevant to other classes.
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D
im

en
si

on
s

SV
H

N
   

   
   

   
   

   
   

   
   

   
  M

N
IS

T 
   

 

           -0.55   -0.46   -0.37    -0.28  -0.19  -0.10     0     0.07     0.16     0.25    0.34    0.43
-0.25      -0.2      -0.15    -0.10    -0.05       0         0.05      0.1      0.15      0.2

           -0.6   -0.5    -0.4    -0.3    -0.2      -0.1      0       0.09     0.19   0.29    0.39  0.49 -0.25      -0.2     -0.15    -0.10    -0.05       0          0.05      0.1       0.15      0.2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

10

 -0.25      -0.2     -0.15    -0.10    -0.05       0          0.05      0.1       0.15      0.2

Figure 2: Mean classification Accuracy as perturbations
are applied to the 16 dimensions of vector v j.

In practice, this is a achieved by solving
Eq. 2 given ŷs where the term (eiŷûŷ|i)|ŷs
indicates agreement with respect to ŷs.

5 EXPERIMENTAL SETUP

Datasets: Following the settings of well
established efforts Sabour et al. (2017);
Gu & Tresp (2020); Ren et al. (2019);
Ning et al. (2020); Shahroudnejad et al.
(2018); Jung et al. (2020) we validate our
methodology on the MNIST and SVHN
datasets. In addition, we include the
more complex PASCAL-Part Chen et al.
(2014), CelebA Liu et al. (2015), and
CelebAMask-HQ Lee et al. (2020) (re-
ferred to as ”CPS”) datasets. MNIST is a
grayscale dataset depicting hand-drawn
digits. It is composed by 60k training images, from which 10k have been selected for validation,
and 10k for testing. SVHN is an RGB dataset depicting number plates. It consists of 63k images
for training, 10k for validation, and 26k for testing. The PASCAL-Part dataset is composed of 10k
images covering 20 classes with detailed part-level annotations for each image. The dataset has been
split into 1k images for both the validation and the test phases. CelebA is composed by 202k facial
images consisting of two classes, male and female. For training the CapsNet, we follow the provided
partitioning. CPS is a subset of CelebA with part-level annotations, 2842 test images were used to
quantify the coverage of relevant parts.

Implementation Details: We consider the CapsNet architectures from Sabour et al. (2017) and
Hinton et al. (2018). Both were trained on the MNIST and SVHN datasets for 50/32 epochs with a
batch size of 32. The input size was set to 28×28 and 32×32 for the MNIST and SVHN datasets,
respectively. On the PASCAL-part dataset, the models were trained for 50 epochs with a batch size
of 14. In this case, the images were changed to grayscale. The input size was changed to 48×48.
Similar to SVHN, CelebA and CPS were resized to an input size of 32×32. The CapsNet was trained
for 7 epochs with a batch size of 32. In the training step, no data augmentation was applied, and batch
size was determined empirically. Our experiments were implemented in PyTorch; code is publicly
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Figure 3: Examples of reconstructed inputs as the vector v j is perturbed. In some cases, multiple
visual features are modified at the same time via the perturbation of a single dimension of the vector.
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Figure 4: Changes in classification performance as the number of selected relevant units k changes
across CapsNet layers (left) where the relevant units k increased gradually. Number of top-k units
exclusive for each class and shared w.r.t all the other classes (right)

available in the following link 1. For brevity, we limit ourselves to report results on the original
architecture from Sabour et al. (2017). Please refer to the supplementary material for results on the
CapsNetEM architecture from Hinton et al. (2018).

6 EXPERIMENTS

Classification. Table 1 reports the mean classification accuracy of the trained models. In addition,
we report the performance from sparser versions of the models based on the identified paths (Sec. 4.2).
More specifically, when only the relevant activations were used to make the prediction. Worth noting
is that while the performance using the dense model is on a par with that reported in previous works,
the performance using the identified paths is lower. This is more critical for the backward path where
it is much more reduced in comparison. As mentioned in Sabour et al. (2017), the backbone CapsNet
did not perform well on complex datasets. This is also noticeable in the results from PASCAL.

6.1 PERTURBATION ANALYSIS

This analysis is conducted on the MNIST and SVHN datasets. Following Sec. 4.1, we estimate the
empirical activation range α for the v j vector from the considered datasets. Then, a step size ξ is
computed (0.09 for MNIST, 0.1 for SVHN), in order to partition the α range into 12 perturbation
possibilities per dimension; similar as in Sabour et al. (2017); Ning et al. (2020); Shahroudnejad et al.
(2018). We replace the value of each dimension in v j producing the perturbed vector v′j. This vector
is pushed through the decoder in order to produce reconstructions x̂s for each perturbed v′j. These
reconstructions are then pushed through the CapsNet and classification performance is computed.

Results: Fig. 3 presents some qualitative results in the form of reconstructions obtained by this
procedure. A quick inspection to this figure reveals how the applied perturbations effectively provide
some insights related to the features encoded by v j. As can be noted, each dimension encodes various
characteristics of the digits such as thickness, rotation, deformation, and scale. Moreover, the shape

1http://annonymized/github/URL
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Figure 5: (a)Reconstructed inputs when only a small amount k of units in the PC layer are considered.
Note the difference on sharpness between the reconstructions for the SVHN dataset. (b) Reconstructed
inputs when only relevant units of the network (k=35 Conv and k=10 PC) are considered.

(top and bottom regions in some digit classes) of x̂s shows changes in different forms. It is clear that
changes in specific elements of this feature space (v j) are not exclusive to a single visual feature. As
can be noted in Fig. 3 (MNIST digits 1-4), perturbations along a single dimension of v j introduce
changes in both rotation and thickness of the generated digit. This suggests some level of feature
entanglement. Moreover, we have observed that a given dimension in the representation space may
encode different visual features for different classes. These observations are sufficient to conclude
that CapsNets might be interpretable but the representations they encode are not disentangled.

To complement the qualitative analysis, Fig. 2 presents the classification performance that is obtained
when each of the mentioned perturbations is applied. We show the output when the typical (heuristic)
perturbation is applied (left), and the output of our perturbation analysis (right). As can be noted,
overall performance is relatively high. However, our analysis indicates that the activation range to be
considered should be wider than the usual one arbitrarily used in previous works Sabour et al. (2017);
Shahroudnejad et al. (2018); Bhullar (2020). This observation further stresses that the range used
for the analysis (via the α parameter in our case) should be properly estimated. Further experiments
(Sec. E.1) show that CapsNetEM exhibit similar trends.

6.2 LAYER-WISE RELEVANT UNIT SELECTION

This experiment is also conducted on the MNIST and SVHN datasets. Following the methodology
introduced earlier, we define the forward (FP) and backward (BP) activation paths based on the top-k
units on the CapsNet. The cross-validation procedure led to the selection of k=35 filters for the Conv
layer and k=10 for the PC layer for both datasets. Due to the complexity of PASCAL, the number of
internal capsules was increased. Therefore, the number of selected relevant units is set to k=1000. In
Fig. 4(left) we report test classification performance as the number (k) of selected units is increased.
We report results when only the Conv layer is modified (Fig. 4.a (left)), when only the PC layer is
modified (Fig. 4.b (left)) and when both layers are modified at the same time, i.e. when the complete
path is considered, for the MNIST (Fig. 4.c & e (left)) and SVHN (Fig. 4.d & f (left)) datasets.

Convolutional Layer Ablation. When only the Conv layer is modified (Fig. 4.a(left)) we notice that
performance is quite acceptable for the case of MNIST. The story is different on SVHN, where there
is a drop in performance when only considering the selected (k=35) units. This suggests a significant
domain shift between the validation and test subsets of that dataset.

Capsule Layer Ablation. When only the PC layer is modified (Fig. 4.b(left)),
we notice that performance is relatively high in most cases. For the selected
units (k=10) we notice that the units selected via the forward (FP) path achieve
higher performance than their backward (BP) counterparts on both datasets.

Table 2: Number (%) of shared top-k units among
two classes.

Dataset C1-C7 C2-C8 C3-C5 C4-C8 C6-C8 C7-C9 C0-C9

MNIST 4 (40) 2 (20) 3 (33) 2 (20) 1 (10) 2 (20) 1 (10)
SVHN 4 (40) 2 (20) 5 (50) 1 (10) 4 (40) 2 (20) 2 (20)

We looked for shared and exclusive units
among the top-k units selected for each class
(Fig. 4(right)) by our layer-wise relevant unit se-
lection method (Sec. 4.2). In MNIST, we noted
that classes with similar appearance had a higher number of shared units. In particular, classes [1,7],
[3,5], [3,8], [8,9], with 4, 3, and 3 shared units, respectively (Table 2). In SVHN, on the quantitative
side, we noted a higher number of shared units. On the qualitative side, the relation between class and
the relevant unit was less pronounced, possibly due to the occurrence of parts of other digit instances
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co-occurring in the input images. In this dataset, classes [0,2], [5,9], [6,8], [2,5], [3,4] had 6, 6, 5,
and 5, shared units, respectively. For the PASCAL dataset, the classes dog-horse, person-tvmonitor,
car-tvmonitor were the ones that had the highest number (5) of shared units. Worth mentioning is
that it was observed across all the datasets, that the activation magnitude of the shared units was
significantly low in comparison with the units exclusive to each class. For CelebA/CPS, all units were
exclusive between class male and female. These are also observed on the qualitative results presented
on Fig. 5(a). There it can be observed that, for both datasets, the quality of the reconstructed images
stabilizes around the selection of k=10 units. Moreover, it is noticeable that, for the case of SVHN,
reconstructions produced from units in the forward path are sharper that those from the backward
path. These observations support the difference in performance across paths observed in Table 1.

Network Ablation. When the complete path is used, we notice that overall classification performance
remains high. By inspecting the per-class performance, we observe that very few cases (digit-4 for
MNIST and digit-0 for SVHN) suffer a significant drop when only considering the selected top-k
units per layer. Fig. 5(b) shows qualitative reconstructions that were obtained with the selected
k relevant units (filters/capsules). For MNIST, we notice that, while the digit sketches were not
complete, the selected regions of the sketches seem to be sufficient to characterize the digit classes.
For SVHN, we notice that background information, usually in the form of other digit regions, seem to
be suppressed in the reconstructions. This suggests the selected units focus on the foreground objects,
i.e. the digit of interest. These observations support our analysis on these relevant units for the search
of possibly encoded parts. We anticipated similar behavior using CapsNetEM routing. However, we
observed that the units do not seem to be class-specific (see Sec. E.2).

6.3 MEASURING Part-Whole RELATIONSHIP ENCODINGS

This experiment aims to measure the level to which features encoded in a CapsNet encode part-whole
relationships. Towards this goal, inspired by methods proposed for CNNs Bau et al. (2017); Gonzalez-
Garcia et al. (2018), we measure the spatial overlap between the internal responses of relevant
capsules at layer l (Parts) and the internal response at a layer l +1 (Whole). In our experiments, we
measure this overlap between the PC (hl) and CC (hl+1) layers. The responses of relevant capsules
were represented as heatmap h Simonyan et al. (2014) computed by, first, estimating the prediction
ŷs produced by input xs when only the activations of a given unit are propagated forward during
inference. Then, given the prediction ŷs we compute the gradients of this prediction w.r.t. the input xs.

The overlap between hl and hl+1 is measured via the Relevance Mass Accuracy (RMA) metric Arras
et al. (2022), which provides a value in the range [0,1] indicating the level of overlap. The RMA
requires hl+1 to be a binary matrix. To meet this requirement, we binarized the response hl+1 from
CC. Each hl was normalized in a per-unit basis by considering the min/max values from all the
heatmaps related to that unit. We report results for various threshold values (0.1, 0.25 & 0.5). When
measuring the overlap between hl and hl+1, we focus our analysis on the top-k (k=200) units selected
following the BP (Sec. 6.2) extraction procedure. For PASCAL, from the 1000 units, a subset of the
top 200 is considered to measure the level of overlap between the responses of PC and CC.

Isolated Unit Analysis. Table 3 (left) presents the mean RMA scores across all classes for different
thresholds. For a given input example, overlap is computed for every response pair [hl (from PC),
hl+1 (from CC)] produced by each of the selected top-200 units, in isolation.
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Figure 6: Qualitative examples of the responses considered for the computation of relevance mass
accuracy (RMA) with 0.25 threshold (Thr) applied on CC. Heatmaps are generated based on top-k=1
relevant unit (isolated) and when top-k=200 (Aggregated).
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Across datasets, we can notice that the RMA scores significantly drop as the threshold increases. This
is to be expected since a higher threshold enforces a small region in hl+1 (CC), which is harder to
cover accurately. However, it is noticeable how, even for more lenient threshold values (0.1 and 0.25)
the overlap scores remain relatively low. We notice that the scores related to PASCAL and SVHN
seem to be the highest. Overall, the mean of RMA is lower than what was anticipated. This could
be due to the inner-workings of the RMA metric. As we can see in Fig 6, the hl+1 (CC) responses
are sparse even when binarized with a relatively low threshold value (0.25). We notice a similar
behavior on the hl responses from PC. For instance, as depicted in Fig 6 (4th column), for the class
aeroplane from PASCAL, the hl (PC) response is not only sparse, but also covers a very small region.
This affects the overlap score during the estimation. Moreover, the very focused nature of the PC
responses, see Fig 6, suggests, first, that each of the relevant units model very specific details from
the input data; and second, that compositions of all the hl responses might achieve higher coverage.

Aggregated Unit Analysis. Complementing the experiment above, we conduct a second analysis
where the overlap is computed between aggregated hl responses from PC and the single hl+1 response
they produce at CC. This aggregation occurs at the pixel level by taking the maximum response
per pixel location across the response maps produced by the considered top-200 relevant units.

Table 3: RMA scores obtained by the top-
200 relevant units when analyzed separately
and aggregated over different thresholds.

Isolated Aggregated
Dataset/Thr 0.1 0.25 0.5 0.1 0.25 0.5

MNIST 31 ± 6 12 ± 4 3 ± 1 31 ± 5 12 ± 3 3 ± 4
PASCAL 45 ± 5 18 ± 4 3 ± 1 45 ± 4 16 ± 3 3 ± 2
SVHN 60 ± 10 26 ± 8 6 ± 3 55 ± 10 25 ± 7 7 ± 2
CelebA 44 ± 7 18 ± 5 4 ± 2 33 ± 6 12 ± 3 3 ± 1

A quick inspection of Fig. 6 (Agg) show two different
trends. For the case of PASCAL and CelebA (Fig. 6,
2nd & 4th column), the effectiveness of the compo-
sitions (Agg) from different relevant units is evident.
Here, the composition covers a significant region be-
longing to the objects of interest. On the contrary, for
MNIST and SVHN (Fig. 6, 1st & 3rd column), consid-
ering additional units does not lead to higher coverage.
These two observations might be pointing at the simplicity of such datasets and the inherent complex-
ity of making predictions on them. More concretely, for more complex cases (PASCAL & CelebA)
the units are steered towards learning complementary features; leading to larger coverage when
aggregated. For the latter simpler, more constrained, case (MNIST & SVHN) a lower amount of
features are needed. This results in more redundancy across the features encoded by the units, and
might be the reason behind the reduced coverage from the aggregated responses.

Table 3 (right) shows the mean RMA scores related to this experiment. It is noticeable that for most
of the cases even after aggregating a significant amount of relevant units into hl , the RMA score
remains low. Moreover, a significant drop is observed in the PASCAL and CelebA datasets. The
reason for these low values may find its origin in the relationship between the aggregated response hl

and the binarized response hl+1 when considered in the RMA computation. As indicated earlier, for
PASCAL and CelebA, a larger-coverage response hl is observed. This is clearly an over-estimation
when compared to the binarized hl+1 (CC) that is used as a reference. This is different in the case of
MNIST and SVHN, where the compared responses are roughly the same. In our experiments with
CapsNetEM routing (Sec. E.3) we noticed similar trends where the overlap is relatively low.

While the results presented in Table 3 suggest that CapsNets may not effectively encode part-whole
relationships, it is worth noting that the observed low overlap may have its origin in other sources.
More specifically, beyond an unsatisfactory overlap between the responses from PC and CC, the
observed low RMA scores can also be attributed to the sparsity of the considered responses (see
Fig. 6). As shown in Vandersmissen & Oramas (2023), RMA scores and other metrics for measuring
overlap tend to favor smooth continuous heatmaps. In addition, we currently focused on the analysis
of the top-200 relevant units due to the high computational costs required for a fine-grained analysis.

7 CONCLUSION

We propose a methodology to assess the interpretation properties of capsule networks. Our analysis is
centered on the identification and ablation of relevant units in the network. Our results suggest that the
representation encoded in CapsNets might not be as disentangled nor explictly related to part-whole
features as is usually stated in the literature. Future work will concentrate in denser analysis of the
architecture plus pinpointing the effect that the selection of k-top units has in the obtained insights.
We hope the proposed methodology and discussed observations serve as a starting point for future
efforts towards a deeper study and understanding of representations learned via CapsNets.
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A SUPPLEMENTARY MATERIAL

B INTRODUCTION

This section consists of supplementary material. We introduce an extension of three sections where
we provide extra details on the considered capsule network models and conducted experiments. First,
we provide detailed information related to the layers of CapsNet architecture that are presented in the
original manuscript. Afterwards, we introduce the algorithms that we followed in our methodology.
Finally, we elaborate in more detail on our observed results.

C OVERVIEW: CAPSULE NETWORKS

Dynamic Routing CapsNet: We introduced the first CapsNet architecture Sabour et al. (2017) in
Sec. 3. This section provides more details of the model used in our methodology which consists of
two parts, encoder and decoder. Table 4 presents details of the CapsNet proposed by Sabour et al.
(2017). This table shows more details of the input and output shapes in both encoder and decoder
parts.

Table 4: The input and the output shapes of the considered capsule network architecture (Dynamic
Routing Sabour et al. (2017))

MNIST SVHN & CelebA PASCAL Parts
Layers Input shape Output shape Input shape Output shape Input shape Output shape

Encoder:
Conv⇒ relu [1,28,28] [20,20,256] [3,32,32] [24,24,256] [1,48,48] [32,32,256]
PC⇒ CC [6,6,32] [1152,8] [6,6,32] [2048,8] [16,16,32] [8192,8]
CC⇒ decoder [1152,8] [10,16] [2048,8] [10,16] [8192,8] [20, 16]
Decoder:
Linear1⇒ relu [1,160] [1,512] [1,160] [1,512] [1,160] [1,512]
Linear2⇒ relu [1,512] [1,1024] [1,512] [1,1024] [1,512] [1,1024]
Linear3⇒ sigmoid [1,1024] [1,784] [1,1024] [1,3072] [1,1024] [1,2304]

Expectation Maximization (EM) Routing CapsNet: The second capsule architecture used in our
proposed methodology is the matrix capsule with EM routing Hinton et al. (2018). The case is further
validate the proposed methodology and obtained insights. The following describes the considered
architecture in more detail.

Moving beyond the concept of vector outputs, Hinton et al. (2018) introduced matrix capsules
(CapsNetsEM) that employ the EM routing algorithm (EMR), leveraging capsules to work effectively.
At different capsule levels, each capsule is associated with a 4×4 pose matrix (M) and its activation
probability (a). M encodes the pose parameters where M learns to form the relationship between
the object and the pose (the viewer or some of the object), while a represents the presence of a
particular feature. The transformation matrices (W ) are learned during the backpropagation step.
The potential votes V are associated with coupling coefficients (ei j) where they are learned during
specified iterations using EMR algorithm. Each capsule i (the child) at layer l will vote for M of
capsule j at layer l +1 (the parent) as follows Vi j = MiWi j. By multiplying the Mi and Wi j between a
given layer and the layer above that could learn to represent the hierarchical relationships between
the parts and its whole. (please refer to Hinton et al. (2018) for more details of the inner workings of
matrix capsules). To have consistency on our experiments, we added a similar decoder at the end of
the considered architecture. Table 5 presents more details of Matrix capsules with EM routing. We
show extra details of the input and output shapes in both the encoder and decoder parts.
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Table 5: The input and the output shapes of the considered capsule network architecture (EM Routing
Hinton et al. (2018)

MNIST SVHN & CelebA PASCAL Parts
Layers Input shape Output shape Input shape Output shape Input shape Output shape

Encoder:
Conv⇒ BatchNorm [1,28,28] [14,14,32] [3,32,32] [16,16,32] [3,48,48] [24,24, 32]
BatchNorm⇒ relu [14,14,32] [14,14,32] [16,16,32] [16,16,32] [24,24, 32] [24,24, 32]
PC⇒ ConvC1 [14,14,544] [14,14,544] [16,16,32] [16,16,544] [24,24, 32] [24,24,544]
ConvC1⇒ ConvC2 [14,14,544] [6,6,544] [16,16,544] [7,7,544] [24,24, 544] [11,11, 544]
ConvC2⇒ ClassC [6,6,544] [4,4,544] [7,7,544] [5,5,544] [11,11, 544] [9,9, 544]
ClassC⇒ decoder [4,4,544] [512, 10,17] [5,5,544] [(10 or 2),17] [9,9, 544] [20,17]
Decoder:
Linear1⇒ relu [1,160] [1,512] [1,160] [1,512] [1,160] [1,512]
Linear2⇒ relu [1,512] [1,1024] [1,512] [1,1024] [1,512] [1,1024]
Linear3⇒ sigmoid [1,1024] [1,784] [1,1024] [1,3072] [1,1024] [1,6912]

D METHODOLOGY

In order to assess the learned representations that are encoded in both capsule architectures, a
perturbation analysis was conducted on different parts of both capsule architectures.

Perturbation Analysis: we introduce our perturbation protocol in Sec. 4.1 which aims to define the
perturbation interval based on computing the first order statistics including all layers across the entire
datasets. We conducted the perturbation analysis by following the defined procedure shown in Alg. 1.
The algorithm is general enough for both capsule architectures.

Algorithm 1 Perturbation Analysis
0: as,c the internal activations
0: v j output vector
0: d dimensions
0: f features
0: α perturbation ranges
0: while xs do in dataset
0: for all filters in a given layer: extract(f)
0: flatten(f)
0: as,c ← concatenations the flatten filters
0: repeat finding as,c for all classes
0: find(min, max, mean, and std of (as,c)) column-wise in a given class
0: Ac ← first order statistics(min, max, mean, and std of (as,c)) column-wise in all classes
0: Aall ← statistics(min, max, mean, and std of (Ac)) column-wise in all classes
0: end while
0: while d < 16 do
0: v̂ j = copy(v j)
0: while r within α do
0: v̂ j[d] = v̂ j[α values]
0: end while
0: end while

=0

D.1 LAYER-WISE RELEVANT UNIT SELECTION

This section aims at further extending the description of our methods presented in the original
manuscript (see Sec. 4.2). The following methods were defined to detect the relevant features/units
that define activation paths in a given pre-trained CapsNets.
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Conv: In the case of the Conv layer, GAP was computed in filter level. This step aimed at
obtaining the top-ranking filters based on the highest GAP values which indicated the highest average
activations. Through a cross-validation step, top-k values were selected as the most relevant filters in
Conv layer. In the case of CapsNetEM architecture, we followed the same procedure for Conv layer
since they share similar characteristics. Additionally, the primary capsule layer in CapsNetEM is only
used for preparing the pose matrix M and the activation a for the EM routing algorithm. Therefore,
we followed the same procedure to determine the top-ranking filters by considering the activations a
at the primary capsule layer for this experiment. We followed the procedure defined in Alg. 2 for
both capsule architectures.

Algorithm 2 Conv Layer Units Selection

0: xm← input example
0: k← top-k
0: f ← filters
0: D← filters with ascending orders
0: while xm in dataset do
0: D← ranked(GAP(filters))
0: k← select(top-k(D))
0: while k < length(D) do
0: start k← 1
0: if k in D then
0: Conv[f]← Conv[k]
0: else if
0: thenConv[f]← 0
0: end if
0: gradually increased(k)
0: end while
0: end while=0

Algorithm 3 Class-Agnostic Forward Path Estimation

0: xm← input example
0: k← top-k relevant units
0: ei j ← coupling coefficients
0: E*← optimal coupling coefficients
0: while xm in dataset do
0: extract(ei j) for all classes
0: ranked(ei j) with corresponding capsules
0: if ei j > 0.3 then
0: E*← index[ei j]
0: k← select(top-k(E*))
0: end if
0: end while=0

Class-Agnostic Forward Path Estimation: In contrast with the Conv layer, the relevant units were
selected based on the different procedures in the capsule layers. We extract the units considering
the routing algorithms (both algorithms, dynamic routing and EM routing) which determine how
ith capsule flows to the jth capsule during the forward pass. We followed the procedure outlined in
Alg. 3 for both capsule architectures. These steps are designed to determine the optimal routings E*.
We select the top-k units that flow forward starting from the input layer until we obtain the output
prediction. We added an extra step directly after we obtained the optimal routings E*. We needed
to recompute the routing assignment probabilities by multiplying these assignments with the input
probabilities. Then, we multiply the results with the potential votes. This means we are reconsidering
only those votes with higher assignment routing coefficients.

Class-Aware Backward Path Estimation: Different from the previous method, we followed the
procedure described in Alg. 4 for the top-k selection. E* were obtained based on a given predicted
class ŷ. We also repeated the same step by reconsidering only those votes with higher assignment
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properties as that were followed in Class-Agnostic Forward Path Estimation process.

Algorithm 4 Class-Aware Backward Path Estimation

0: xm← input example
0: k← top-k relevant units
0: ŷ the predicted label
0: E*← optimal coupling coefficients
0: while xm in dataset do
0: ŷ← CapsNet(xs)
0: ei j← extract(coefficients given ŷ))
0: ei j← ranked(ei j)
0: E*← select(top-k(ei j))
0: end while =0

Putting the previous steps together, we defined the full path along with all layers based on the steps
defined in Alg. 5. In the case of CapsNetEM architecture Alg. 6, we assume the child layer is
ConvCaps2 and the parent layer is ClassCaps. For the case of the ConvCaps1 and the ConvCaps2,
we adopted a fixed number of relevant capsules by considering the minimal number of capsules that
gave us a higher classification performance. We previously defined those steps in the Class-Agnostic
Forward Path Estimation and Class-Aware Backward Path Estimation sections.

Algorithm 5 Full Path Units Selection

0: xm← input example
0: k← top-k relevant units
0: D← filters with ascending orders
0: E*← optimal coupling coefficients
0: while xm in dataset do
0: start k← 1
0: if k in D then
0: Conv[ f ]← Conv[k]
0: else
0: Conv[ f ]← 0
0: end if
0: if k in E* then
0: PC[ith]← PC[k]
0: else
0: PC[ith]← 0
0: end if
0: gradually increased(k)
0: end while CapsNet(path) =0

E EXPERIMENTS

Classification Performance: On the one hand, in Fig. 7 we depict the classification performance
and loss values during the training step when we consider the CapsNet model from Sabour et al.
(2017). On the other hand, in Fig. 8 we show the classification performance and loss curves during
the training step and we inspect the training process of our CapsNetEM model Hinton et al. (2018)
to ensure it is trained properly. For the CapsNetEM Hinton et al. (2018), the performance using the
forward path is higher than the dense model and the backward path as stated in Table 6.

E.1 PERTURBATION ANALYSIS

This step was conducted to analyze the impact of perturbing the dimensions of v j that were
systemically replaced by values in a range of α with fixed steps ξ . To this end, the qualitative
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Algorithm 6 Full Path Units Selection considering EM routing

0: xm← input example
0: k← top-k relevant units
0: D← filters with ascending orders
0: E*← optimal coupling coefficients
0: while xm in dataset do
0: start k← 1
0: if k in D then
0: Conv[ f ]← Conv[k]
0: else
0: Conv[ f ]← 0
0: end if
0: if k in D then
0: PC[ f ]← PC[k]
0: else
0: PC[ f ]← 0
0: end if
0: if k in E* then
0: ConvCaps1[ith]← ConvCaps1[k]
0: else
0: ConvCaps1[ith]← 0
0: end if
0: if k in E* then
0: ConvCaps2[ith]← PC[k]
0: else
0: ConvCaps2[ith]← 0
0: end if
0: if k in E* then
0: ClassCaps[ith]← ClassCaps[k]
0: else
0: ClassCaps[ith]← 0
0: end if
0: gradually increased(k)
0: end while CapsNet(path) =0

experiments were conducted w.r.t. the provided classes in the considered datasets. In Fig. 11 (the top),
12, 14, 16, 18, and 20 (the top), we show a few qualitative results in the form of reconstructions
obtained from the perturbations introduced in Alg. 1. It can be noted that several features (e.g.,
rotation and thickness) of the reconstructed class get modified.

Similarly, we followed the same procedure to conduct our experiments considering CapsNetEM. We
systemically perturb the dimensions of the pose matrix M by replacing the original value of a given
dimension with values in a range of α with fixed steps ξ .

In the case of CapsNetEM, we found the α values between [-1,0.1]. Therefore, we used fixed steps
ξ=0.08. In Fig 11 (the bottom), 13, 15, 17, 19, and 20 (the bottom), we show some of our

Table 6: Mean classification accuracy on the MNIST, SVHN, PASCAL-Parts, and CelebA datasets
for the original dense CapsNet and a sparser version based on the identified activation path

Capsule Type MNIST SVHN PASCAL CelebA

Train Valid Test Train Valid Test Train Valid Test Train Valid Test

Dense (original) 99.8 99.9 99.1 96.9 96.7 91.0 99.5 99.1 78.0 92.2 93.0 92.0
Dynamic Routing Backward Path 74.9 76.9 78.5 89.0 89.3 87.2 59.0 61.0 56.0 81.1 81.4 80.6

Forward Path 95.2 95.2 95.1 96.0 96.0 88.3 66.7 65.8 60.1 88.2 89.1 86.2

Dense (original) 99.1 98.1 98 82.7 81.4 80 - - - 85.9 85.7 85.7
Em Routing Backward Path 98.5 98.6 97.6 83.9 84.3 78.7 - - - 86.7 85.6 85.1

Forward Path 98.9 98.8 97.8 84 83.3 78.9 - - - 86.9 85.7 85.2
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Figure 7: Mean classification performance on the train and validation of the MNIST, SVHN, and
PASCAL-Parts dataset for the original dense CapsNet

reconstruction results when we perturb the Pose matrix M following the algorithm (see Alg. 1) that
we introduced earlier.

E.2 LAYER-WISE RELEVANT UNITS SELECTION

Convolutional Layer Ablation: This section is extended from the original manuscript. This section
shows more results regarding the selected top-k values from the cross-validation procedure. In
(Fig. 21.a & 21.b), we show the impact of classification performance. We notice the results in the
case of MNIST are better than in the case of SVHN.

For the case of CapsNetEM, we followed the same procedure and in Fig 22 we show the impact of
the classification performance on several level of layers in the architecture. We consider both datasets
MNIST (the left) and SVHN (the right).

We noticed the same behavior on both models such that the classification performance significantly
dropped when we removed relevant filters/units. For CapsNetEM, we notice that when we move

MNIST
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SVHN CelebA

Figure 8: Mean classification performance on the train and validation of the MNIST and SVHN of
EM matrix dense CapsNet
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Classes/MNIST

           MNIST                                                        SVHN
Class-Agnostic Perturbation Ranges (MNIST) [-0.55, 0.5] of (0.09) steps, (SVHN [-0.6, 0.6]) of (0.1) steps

Class-Agnostic Perturbation Range on both datasets [-0.3, 0.3] of (0.05) steps

Class-Agnostic Perturbation Ranges and Steps Respectively: 
                     (MNIST) Class-2 [-0.2, 0.3] (0.045), Class-8 [-0.45, 0.22] (0.06), Class- [-0.27, 0.29] (0.05)
                     (SVHN) Class-2 [-0.25, 0.28] (0.048), Class-8 [-0.2, 0.25] (0.04), Class- [-0.4, 0.4] (0.07)

Figure 9: Qualitative Examples of reconstructed inputs as the vector v j is perturbed Considering
CLass-Agnostic and Class-Specific.
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Figure 10: Mean classification Accuracy as perturbations are applied to the 16 dimensions of vector
v j on different intervals. We present results for the standard perturbation approach followed in the
literature (1st column), the Mean Range across classes obtained from variant of the proposed method
(2nd column) and the largest overarching range covering the activation ranges of all the classes of
interest (3rd column).

toward the end of the architecture, the classification performance significantly increases when we
consider a few relevant units.

Capsule Layer Ablation: Given top-k relevant units that were defined previously, when the PC
is only modified. In Fig. 21.c and Fig. 21.d show the impact of the classification performance in
the case of relevant k units were increased gradually. In Fig. 23, 24, 25,and & Fig. 26, we show
the distribution of the magnitude of v j over classes. These experiments were conducted in both
the MNIST and SVHN datasets. In Fig. 27, 31, 29 & 33, we present additional qualitative
reconstruction results of CapsNets (Dynamic routing) when we considered the top-k relevant units
that were defined previously. We started from top-k=1 and we increased the number of top-k units
gradually to reconstruct some input examples of different classes.

Similarly, we show further qualitative reconstruction results of CapsNetsEM (EM routing) when we
considered the top-k relevant units that were defined previously. We started from top-k=1 and we
increased the number of top-k units gradually to reconstruct some input examples of different classes.
We present in Fig. 28, 32, 30 & 34 reconstructions of CapsNetsEM on MNIST and SVHN. For the
case of CapsNetsEM, as we mentioned earlier, there are three capsule layers. In this case, we fixed
the number of relevant units on both layers; the ConvCaps1 and the ConvCaps2 where top-k=10 as
we defined earlier based on the impact of the classification performance in Sec. 4.2. Therefore, we
conduct our experiments on the ClassCaps layer. We noticed that when we used the forward path, the
reconstructions were better compared to identifying the backward path.

Network Ablation: In Fig. 35, we show qualitative reconstructions based on the path that was
defined in our proposed protocol. In a similar manner, we show the reconstructed input examples in
the case of CapsNetEM in Fig. 36

We noticed that we correctly reconstructed the input examples with their predictions when only using
a small number of relevant units on both datasets for both capsule architectures.

Similarly, we looked for shared and exclusive units among the top-k units selected for each class
by the selection method we have introduced in Sec. 4.2. See Fig. 37, in the case of CapsNetsEM
by Hinton et al. (2018), we noticed that there are less exclusive units on both datasets.
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Figure 11: Qualitative example of reconstructed inputs as the vector v j the pose matrix M are
perturbed - class 0 on both architectures. The top shows DR reconstructions (DR refers to the
dynamic routing) and the button shows EMR reconstructions (EMR refers to matrix capsule with EM
routing)

Table 7: Number (%) of shared top-k units among two classes.

Dataset C1-C6 C3-C8 C4-C5 C0-C8 C5-C8 C7-C5 C6-C9

MNIST 2 (20) 3 (30) 1 (10) 3 (30) 3 (30) 3 (30) 0 (0)
SVHN 0 (0) 0 (0) 1 (10) 1 (10) 0 (0) 0 (0) 1 (10)
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Figure 12: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 1&2.

E.3 MEASURING Part-Whole RELATIONSHIP ENCODINGS

This section is an extension to the Sec. 6.3 that aims to measure the part-whole relationship encodings.
We define an algorithm that shows the procedure we followed for measuring the level to which
features encoded in a CapsNet encode part-whole relationships. In Alg. 7, we show the steps we
followed to find our results. measure the spatial overlap between the internal responses of relevant
capsules at layer l (Parts) and the internal response at a layer l +1 (Whole) using Relevance Mass
Accuracy (RMA) Arras et al. (2022). Tables 8, 9, and 10 show the first-order statistics of RMA scores
when we considered CapNets proposed by Sabour et al. (2017). we compute the overlapping of the
hl on the top of the aggregated relevant units K=5,15,30,200. We used several thresholds T hr=0.1,
0.25 & 0.5 respectively.

Similarly, we repeated the same experiments when we considered CapsNetsEM proposed by Hinton
et al. (2018). We show the RMA results on the same thresholds in Tables 11, 12, and 13. Additionally,
we show the mean of RMA scores when we consider only k=1 using the same thresholds and we
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Figure 13: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 1&2
(EM Routing).
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Figure 14: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 3&4.
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Figure 15: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 3&4
(EM Routing).
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Figure 16: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 5&6.
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Figure 17: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 5&6
(EM Routing).
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Figure 18: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 7&8
(Dynamic Routing).
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Figure 19: Qualitative example of reconstructed inputs as the vector v j is perturbed - classes 7&8
(EM Routing).
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Figure 20: Qualitative example of reconstructed inputs as the vector v j the pose matrix M are
perturbed - class 9 on both architectures. The top shows DR reconstructions (DR refers to the
dynamic routing) and the button shows EMR reconstructions (EMR refers to matrix capsule with EM
routing).
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Figure 21: Mean classification accuracy on the MNIST, SVHN, and PASCAL-Parts dataset for the
original CapsNet

reported the reults in Table. 14.

Fig. 38 presents the results of the responses considered for the computation of relevance mass
accuracy (RMA). We followed a similar set-up to the results obtained by Sabour et al. (2017). We
show the results when only T hr=0.25 and we considered the top relevant unit when K=1 using the
same threshold K=5,15,30,200.

To summarize the observed results, we present the final results obtained from both capsule archi-
tectures in Table. 15. As we noticed in Fig. 38 and Table. 15, we anticipated similar trends on both
capsule architectures and we noticed that CapsNetEM by Hinton et al. (2018) had a lower mean of
RMA scores compared to CapsNets by Sabour et al. (2017).

Please note that the final results of CelebA and PASCAL are being computed and will be eventually
added when available.
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MNIST

Top-K filters/capsules

SVHN

Figure 22: Mean classification accuracy on the MNISTdataset of EM matrix CapsNet
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Figure 23: Vector Magnitude (v j) for the selected k units from the forward path.
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Figure 24: Vector Magnitude (v j) for the selected k units from the forward path
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Figure 25: Vector Magnitude (v j) for the selected k units from the backward path

33



Under review as a conference paper at ICLR 2024

M
ag

n
it

u
d

e
 V

e
ct

o
r 

(𝒗
𝒋)

 

SVHNMNIST Backward Pass

Figure 26: Vector Magnitude (v j) for the selected k units from the backward path
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Figure 27: Reconstructed inputs when only a small amount k of units in the PC layer are considered

Table 8: Quantitative analysis of RMA scores obtained by aggregating the top-k (5, 15, 30, and 200)
the relevant units across all datasets over the threshold of 0.1.

MNIST PASCAL SVHN CelebA

Class 5 15 30 200 5 15 30 200 5 15 30 200 5 15 30 200

0 35 ± 5 34 ± 5 34 ± 4 34 ± 5 46 ± 5 45 ± 4 45 ± 4 46 ± 6 60 ± 8 59 ± 7 59 ± 7 59 ± 8 45 ± 5 43 ± 6 43 ± 7 43 ± 6
1 39 ± 5 37 ± 6 37 ± 6 38 ± 7 48 ± 6 47 ± 5 47 ± 4 47 ± 4 54 ± 7 53 ± 6 53 ± 6 53 ± 6 44 ± 5 43 ± 5 44 ± 4 43 ± 5
2 34 ± 4 32 ± 5 33 ± 4 32 ± 5 48 ± 4 47 ± 4 46 ± 4 47 ± 5 63 ± 7 62 ± 6 62 ± 5 62 ± 5
3 40 ± 3 39 ± 3 38 ± 5 38 ± 5 44 ± 4 42 ± 3 42 ± 4 42 ± 2 61 ± 8 61 ± 7 60 ± 7 60 ± 6
4 33 ± 4 33 ± 4 31 ± 3 32 ± 5 45 ± 5 44 ± 4 44 ± 4 45 ± 3 60 ± 7 58 ± 5 57 ± 8 58 ± 6
5 32 ± 3 31 ± 3 30 ± 4 30 ± 5 41 ± 5 41 ± 4 40 ± 5 41 ± 4 62 ± 8 62 ± 7 61 ± 7 62 ± 6
6 26 ± 4 28 ± 4 26 ± 4 27 ± 5 41 ± 5 40 ± 4 40 ± 4 40 ± 5 62 ± 7 61 ± 6 61 ± 6 61 ± 5
7 30 ± 4 30 ± 5 28 ± 4 29 ± 5 45 ± 5 45 ± 4 44 ± 5 44 ± 4 59 ± 9 57 ± 7 57 ± 6 57 ± 5
8 32 ± 4 30 ± 5 29 ± 4 30 ± 5 46 ± 8 46 ± 5 45 ± 4 45 ± 4 61 ± 7 61 ± 6 60 ± 6 60 ± 6
9 28 ± 4 25 ± 4 27 ± 3 26 ± 5 45 ± 9 44 ± 8 44 ± 6 44 ± 5 64 ± 10 60 ± 9 60 ± 8 60 ± 6
Avg 33 ± 4 32 ± 4 31 ± 4 31 ± 5 45 ± 6 44 ± 5 44 ± 4 44 ± 4 61 ± 8 61 ± 7 59 ± 7 55 ± 10 45 ± 5 43 ± 6 44 ± 6 43 ± 6
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Figure 28: Reconstructed inputs when only a small amount k of units in the PC layer are considered
(EM Routing)

Table 9: Quantitative analysis of RMA scores obtained by aggregating the top-k (5, 15, 30, and 200)
the relevant units across all datasets over the threshold of 0.25.

MNIST PASCAL SVHN CelebA

Class 5 15 30 200 5 15 30 200 5 15 30 200 5 15 30 200

0 14 ± 5 13 ± 4 13 ± 4 14 ± 4 17 ± 4 17 ± 4 17 ± 4 17 ± 4 24 ± 8 23 ± 7 24 ± 8 23 ± 7 19 ± 5 18 ± 5 19 ± 5 12 ± 3
1 14 ± 5 14 ± 5 14 ± 5 14 ± 4 17 ± 4 18 ± 4 18 ± 5 17 ± 4 21 ± 7 21 ± 7 20 ± 7 22 ± 8 17 ± 4 18 ± 4 18 ± 4 12 ± 3
2 13 ± 4 13 ± 4 13 ± 4 13 ± 4 16 ± 2 17 ± 3 14 ± 4 17 ± 2 24 ± 8 23 ± 7 23 ± 6 27 ± 7
3 14 ± 4 14 ± 4 13 ± 5 14 ± 4 14 ± 2 15 ± 2 15 ± 4 14 ± 2 25 ± 7 24 ± 7 25 ± 7 25 ± 7
4 14 ± 4 12 ± 3 11 ± 3 12 ± 3 17 ± 3 17 ± 3 17 ± 4 17 ± 2 25 ± 7 24 ± 6 25 ± 7 25 ± 7
5 12 ± 3 11 ± 4 12 ± 4 12 ± 3 15 ± 4 16 ± 4 17 ± 4 17 ± 3 26 ± 7 26 ± 7 26 ± 7 26 ± 7
6 9 ± 3 9 ± 4 9 ± 3 10 ± 3 15 ± 4 14 ± 3 16 ± 4 17 ± 0.09 25 ± 6 26 ± 6 26 ± 7 26 ± 7
7 11 ± 3 11 ± 3 11 ± 3 11 ± 3 16 ± 5 16 ± 4 17 ± 5 17 ± 2 24 ± 4 24 ± 6 24 ± 7 25 ± 7
8 12 ± 4 13 ± 3 13 ± 3 12 ± 3 17 ± 5 17 ± 4 15 ± 4 16 ± 4 25 ± 8 25 ± 7 25 ± 8 25 ± 6
9 11 ± 3 11 ± 3 11 ± 3 11 ± 3 16 ± 5 16 ± 6 15 ± 7 16 ± 5 25 ± 8 25 ± 7 25 ± 8 25 ± 7
Avg 12 ± 4 12 ± 4 12 ± 4 12 ± 3 16 ± 4 16 ± 4 16 ± 5 16 ± 3 24 ± 7 24 ± 7 24 ± 7 25 ± 7 18 ± 5 18 ± 5 19 ± 5 12 ± 3
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Figure 29: Reconstructed inputs when only a small amount k of units in the PC layer are considered
(Dynamic Routing)

Table 10: Quantitative analysis of RMA scores obtained by aggregating the top-k (5, 15, 30, and
200) the relevant units across all datasets over the threshold of 0.5.

MNIST PASCAL SVHN CelebA

Class 5 15 30 200 5 15 30 200 5 15 30 200 5 15 30 200

0 3 ± 6 3 ± 5 3 ± 5 3 ± 6 3 ± 2 3 ± 3 3 ± 3 3 ± 3 6 ± 3 6 ± 3 5 ± 3 5 ± 3 3 ± 2 3 ± 2 3 ± 1 3 ± 1
1 3 ± 3 3 ± 5 3 ± 7 3 ± 7 3 ± 2 3 ± 2 3 ± 2 3 ± 1 5 ± 3 5 ± 3 5 ± 2 5 ± 2 4 ± 2 4 ± 2 3 ± 2 3 ± 1
2 3 ± 5 3 ± 5 3 ± 6 3 ± 6 3 ± 2 3 ± 1 2 ± 1 2 ± 0.8 6 ± 3 6 ± 2 5 ± 2 5 ± 2
3 3 ± 5 3 ± 4 3 ± 5 3 ± 6 3 ± 1 3 ± 2 3 ± 2 3 ± 2 6 ± 3 6 ± 3 5 ± 3 5 ± 3
4 3 ± 2 3 ± 3 3 ± 3 3 ± 4 3 ± 2 3 ± 3 3 ± 5 3 ± 7 6 ± 3 6 ± 3 6 ± 2 6 ± 2
5 3 ± 2 3 ± 3 3 ± 5 3 ± 5 3 ± 2 3 ± 2 4 ± 1 4 ± 0.05 6 ± 2 6 ± 3 6 ± 3 6 ± 3
6 3 ± 2 3 ± 1 3 ± 1 3 ± 1 3 ± 1 3 ± 1 3 ± 1 3 ± 0.04 6 ± 4 6 ± 3 6 ± 3 6 ± 3
7 3 ± 2 3 ± 2 3 ± 1 3 ± 1 3 ± 1 3 ± 1 3 ± 1 3 ± 1 6 ± 3 6 ± 3 6 ± 2 6 ± 2
8 3 ± 4 3 ± 2 3 ± 3 3 ± 2 3 ± 1 3 ± 1 3 ± 1 3 ± 1 6 ± 3 6 ± 3 6 ± 2 6 ± 2
9 3 ± 3 3 ± 2 3 ± 4 3 ± 4 3 ± 1 3 ± 1 3 ± 1 3 ± 1 7 ± 3 7 ± 2 7 ± 2 7 ± 2
Avg 3 ± 3 3 ± 3 3 ± 4 3 ± 4 3 ± 4 3 ± 2 3 ± 2 3 ± 2 6 ± 3 6 ± 3 6 ± 2 7 ± 2 2 ± 2 4 ± 2 3 ± 2 3 ± 1
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Figure 30: Reconstructed inputs when only a small amount k of units in the PC layer are considered
(EM Routing)

Table 11: Quantitative analysis of RMA scores obtained by aggregating the top-k (5, 15, 30, and
200) the relevant units across all datasets over the threshold of 0.1..

MNIST PASCAL SVHN CelebA

Class 5 15 30 200 5 15 30 200 5 15 30 200 5 15 30 200

0 21±12 21±13 21±13 21 ±13 - - - - 42±12 42±11 42±11 42±11 42±18 40±18 41±18 41±18
1 24±15 24±15 42±12 24 ± 13 - - - - 43±12 42±12 42±12 42±12 44±18 44±18 44±18 44±18
2 17 ±11 18±11 18±10 19±11 - - - - 41±12 40±12 40±12 40±12
3 18±11 17±11 18±11 18±11 - - - - 43±12 42±12 42±11 43±11
4 21±13 21±14 21±13 21±13 - - - - 41±12 40±12 40±12 40±12
5 21±13 20±13 20±13 20±13 - - - - 43±11 43±11 43±11 43±11
6 22±12 22±12 22±12 22±12 - - - - 43±13 42±13 42±13 41±13
7 23±12 22±13 22±13 22±13 - - - - 41±13 37±12 37±12 37±12
8 23±12 23±15 22±13 23±15 - - - - 41±12 41±12 42±11 42±12
9 25±15 25±15 22±15 25±15 - - - - 42±12 42±12 42±12 42±12
Avg 22±13 21±13 21±13 22±13 - - - - 42±11 41±12 41±12 41±12 43±18 42±18 43±18 43±18
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Figure 31: Reconstructed inputs when only a small amount k of units in the PC layer are considered

Table 12: Quantitative analysis of RMA scores obtained by aggregating the top-k (5, 15, 30, and
200) the relevant units across all datasets over the threshold of 0.25..

MNIST PASCAL SVHN CelebA

Class 5 15 30 200 5 15 30 200 5 15 30 200 5 15 30 200

0 7±5 8±4 7±4 7±4 - - - - 14±6 14±6 15±6 14±6 14±1 13±1 13±1 13±1
1 8±5 8±5 8±4 8±5 - - - - 14±6 14±6 14±6 14±6 14±1 14±1 14±1 14±1
2 6±3 6±3 6±3 6±4 - - - - 14±6 14±6 13±6 13±6
3 6±3 6±3 6±4 6±4 - - - - 15±6 14±6 15±6 14±6
4 7±4 7±4 7±4 7±5 - - - - 14±6 13±6 14±6 14±6
5 7±5 7±4 7±4 7±5 - - - - 15±6 14±6 13±5 15±6
6 8±4 8±4 7±4 7±4 - - - - 15±6 13±6 14±6 14±6
7 7±4 7±4 7±4 7±5 - - - - 15±6 12±5 13±5 12±6
8 7±5 7±5 7± 4 8±5 - - - - 15±6 14±6 14±6 14±6
9 8±5 8±4 8±3 7±4 - - - - 14±6 14±6 14±6 14±6
Avg 7±4 7±4 7±4 7±5 - - - - 15±6 14±6 14±6 14±6 14±1 14±1 14±1 14±1
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Figure 32: Reconstructed inputs when only a small amount k of units in the PC layer are considered
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Figure 33: Reconstructed inputs when only a small amount k of units in the PC layer are considered

Table 13: Quantitative analysis of RMA scores obtained by aggregating the top-k (5, 15, 30, and
200) the relevant units across all datasets over the threshold of 0.5..

MNIST PASCAL SVHN CelebA

Class 5 15 30 200 5 15 30 200 5 15 30 200 5 15 30 200

0 2±1 2±1 2±1 2±1 - - - - 3±1 3±1 3±2 3±2 2±2 2±2 2±2 3±2
1 2±1 2±2 2±2 2±1 - - - - 3±2 3±2 3±2 3±2 3±2 3±2 3±2 3±2
2 1±0.1 2±0.1 2±0.1 2±0.1 - - - - 3±2 3±2 3±2 3±2
3 2±0.1 2±1 2±1 2±0.1 - - - - 3±2 3±2 3±2 3±2
4 2±1 2±1 2±0.1 2±1 - - - - 3±1 2±1 3±1 2±1
5 2±1 2±1 1±1 2±1 - - - - 3±2 3±2 3±2 3±2
6 2±1 2±1 2±1 2±1 - - - - 3±2 3±2 3±2 3±1
7 2±1 2±1 2±1 2±1 - - - - 3±1 3±1 3±1 3±2
8 2±1 2±1 2±1 2±2 - - - - 3±2 3±2 3±2 3±2
9 1±1 2±1 2±1 2±1 - - - - 3±1 3±1 3±2 3±2
Avg 2±1 2±1 2±1 2±1 - - - - 3±2 3±2 3±2 3±2 3±2 3±2 3±2 3±2
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Figure 34: Reconstructed inputs when only a small amount k of units in the PC layer are considered
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Figure 35: Reconstructed inputs when only relevant units of the network (k=35 Conv and k=10 PC)
are considered.
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Figure 36: Reconstructed inputs when only relevant units of the network (k=35 Conv and k=10 PC)
are considered.
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Figure 37: Number of top-k units exclusive for each class (left) and shared w.r.t all the other classes
(right).

Algorithm 7 Measuring Part-Whole Relationship Encodings

0: xm← input example
0: k← k relevant units
0: RMA Relevance Mass Accuracy
0: while xm in dataset do
0: only k=200 or k=1000 capsule selected
0: push the changes to find ŷ from CapsNet(only k=1000)
0: ei j← CapsNet(ŷ)
0: ei j← ranked(ei j)
0: select relevant units (k=200)
0: Produce heatmap of each unit (hl)
0: min&max values from all the heatmaps used to Normalize the heatmap
0: Produce heatmap of CC layer (hl+1)
0: computes RMA(hl and hl+1)
0: if RMA < threshold then
0: visualize(heatmap on top of example)
0: else
0: ignore them
0: end if
0: end while =0

Table 14: Quantitative analysis of RMA scores obtained by top-k (1) the relevant units separately
across all datasets over different thresholds (EM routing)..

MNIST PASCAL SVHN CelebA

Class 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5

0 26±16 9±7 3±2 - - - 51±17 18±9 4±3 48±21 17±11 4±3
1 24±15 8±5 2±1 - - - 51±16 19±9 4±3 56±22 21±13 4±3
2 18±11 6±4 1±0.09 - - - 50±17 21±10 4±3
3 18±11 6±3 2±0.09 - - - 53±18 18±9 5±3
4 26±15 9±6 2±2 - - - 49±14 17±10 4±3
5 27±17 9±7 2±1 - - - 52±16 18±9 4±3
6 22±12 6±4 2±1 - - - 59±16 20±10 4±3
7 22±13 9±6 3±2 - - - 51±17 19±9 4±3
8 26±16 11±8 2±2 - - - 50±16 19±10 4±3
9 31±18 7±4 3±2 - - - 51±15 19±9 4±4
Avg 22±14 8±5 2±1 - - - 52±16 19±9 4±3 52±21 19±12 4±3
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Figure 38: Qualitative examples of the responses considered for the computation of relevance mass
accuracy (RMA) with 0.25 threshold (Thr) (EM routing). The CC2 refers to ConvCaps2 in EM
routing experiments.

Table 15: RMA scores obtained by the top-200 relevant units when analyzed separately (left - DR
and EMR) and aggregated (right - DR and EMR) over different thresholds (DR: dynamic routing and
EMR: EM routing).

DR EMR
Isolated Aggregated Isolated Aggregated

Dataset/Thr 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5

MNIST 31±6 12±4 3±1 31±5 12±3 3±4 22±14 8±5 2±1 22±13 7±5 2±1
PASCAL 45±5 18±4 3±1 45±4 16±3 3±2 - - - - - -
SVHN 60±10 26±8 6±3 55±10 25±7 7±2 52±16 19±9 4±3 41±12 14±6 3±2
CelebA 44±7 18±5 4±2 33±6 12±3 3±1 52±21 19±12 4±3 43±18 14±1 3±2
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