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ABSTRACT

Information design (ID) explores how a sender influence the optimal behavior of
receivers to achieve specific objectives. While ID originates from everyday human
communication, existing game-theoretic and learning methods often model infor-
mation structures as numbers, which limits many applications to toy games. This
work leverages LLMs and proposes a verbalized framework in Bayesian persuasion
(BP), which extends classic BP to real-world games involving human dialogues
for the first time. Specifically, we map the BP to a verbalized mediator-augmented
extensive-form game, where LLMs instantiate the sender and receiver. To effi-
ciently solve the verbalized game, we propose a generalized equilibrium-finding
algorithm combining LLM and game solver. The algorithm is reinforced with
techniques including verbalized commitment assumptions, verbalized obedience
constraints, and information obfuscation. Experiments in dialogue scenarios, such
as recommendation letters, law enforcement, diplomacy with press, validate that
our framework can reproduce theoretical results in classic BP and discover effective
persuasion strategies in more complex natural language and multi-stage scenarios.

1 INTRODUCTION

Persuasion plays a significant role in modern economies, with estimates suggesting that up to one-
quarter (McCloskey & Klamer, 1995), or even 30% (Antioch, 2013) of GDP, is persuasion. The
study of BP has deep roots in economics, with numerous applications across fields such as school
grading (Boleslavsky & Cotton, 2015), law enforcement deployment (Lazear, 2006), research pro-
curement (Yoder, 2022), matching platforms (Romanyuk & Smolin, 2019), and routing systems (Das
et al., 2017). Various lines of theory have been proposed to explore the power of persuasion in
different contexts (Kamenica, 2019).

This work investigates the Bayesian persuasion (BP) problem (Kamenica & Gentzkow, 2011; Ka-
menica, 2019) between two agents: a sender and a receiver. Unlike cheap talk (Lo et al., 2023),
which is often employed in communication learning (Foerster et al., 2016; Sheng et al., 2022; Zhu
et al., 2022), BP requires the sender to commit to an information disclosure mechanism publicly. The
focus, therefore, is on rational (Bayesian) decision-makers who understand and optimally react to the
disclosed information. Given a specific utility function, the BP problem is equivalent to finding an
optimal Bayes-correlated equilibrium in an extensive-form game (Bergemann & Morris, 2013; 2019).

When the information space and the action space are both discrete and small, BP can often be solved
analytically using optimization techniques (Kolotilin, 2018; Dworczak & Martini, 2019; Makris &
Renou, 2023; Koessler & Skreta, 2023). This includes more complicated variants such as informed
or multistage BP. Some work has also explored the use of multi-agent reinforcement learning to
approximate solutions (Wu et al., 2022; Lin et al., 2023; Bacchiocchi et al., 2024).

Despite these successes, most applications remain limited to games in the colloquial sense, where
real-world complexity is often oversimplified. In fact, applying these methods to real-world settings
requires constructing a model of the game in question, which involves defining the appropriate state
space, action space, and transition dynamics. For instance, a classic example in BP is the recom-
mendation letter problem, where a professor must write a letter that conveys nuanced information
about a student’s background (Dughmi, 2017). In the example, the student’s quality is reduced to
a binary classification of either weak or strong, and the professor’s decision is restricted to either
recommending or not. This abstraction strips away much of the meaningful information inherent in
the actual task. Consequently, it prevents BP from being generalized to realistic problems.
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pedestrian safety. Elm Avenue – An officer will be present near school zones to
address speeding and illegal parking during peak school hours. Please note that
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resource limitations. However, we remind all drivers that traffic laws apply at all
times and violations on any road may still be addressed through other means.
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Figure 1: Extending classic BP examples to verbalized mediator-augmented, extensive-form games.

This work aims to leverage game-theoretic methods, enhanced by large language model (LLMs) (Zhao
et al., 2023), to solve the original BP problem directly in the natural language domain. Specifically,
we model the BP problem as a verbalized mediator-augmented, extensive-form game (Zhang &
Sandholm, 2022), where states and actions (or signals for the sender) are all represented as text, as
shown in Figure 1. For example, in the recommendation letter problem, the sender (professor) has a
state that is a detailed, verbal description of the student’s background, the signal is the content of
the recommendation letter, while the reward remains numerical. The receiver (HR) observes this
letter and must decide whether to accept the student. To enable the sender and receiver to process,
understand, and generate this text, we parameterize both agents using LLMs.

Before introducing the proposed verbalized game solver, we need to address two fundamental
challenges that have hindered the application of BP to real-world scenarios. The first challenge lies in
the theoretical foundation of signal space design. Unlike traditional BP problems where signals are
discrete and finite, real-world persuasion involves natural language that carries nuanced information
and contextual dependencies, creating an infinite-dimensional signal space where classic BP solution
concepts break down (Myerson, 1979; Kamenica & Gentzkow, 2011). The second challenge concerns
the fundamental difficulty in strategy optimization when using LLMs as agents. While LLMs provide
a powerful way to process natural language, their parameter spaces are extremely high-dimensional
and non-convex, making it theoretically impossible to guarantee the existence of Nash equilibria in
such spaces (Gemp et al., 2024) and computationally intractable for direct optimization.

To address these challenges, we draw on the prompt-space response oracle (Prompt-PSRO) (Gemp
et al., 2024), which models strategy optimization for the sender and receiver as prompt optimization
for their respective LLMs. This approach not only mitigates the challenge of optimization inefficiency
but also reduces the action space from lengthy, complex text to compact, low-dimensional, discrete
prompts. For instance, by adjusting the prompt given to the sender’s LLM, we can control the “level
of details in the student’s background description” in the recommendation letter.

Building on the Prompt-PSRO, our solver is composed of several components that improve its
performance, efficiency, and stability. These include verbalizing commitment assumptions, obedience
constraints, and information obfuscation. Technically, we extend Prompt-PSRO to multistage games
by proposing conditional prompt optimization and providing a convergence guarantee to the equilib-
rium solution. Together, these components form a comprehensive verbalized game solver tailored
for BP problems, which we refer to as verbalized Bayesian persuasion (VBP). To the best of our
knowledge, VBP is the first general framework that attempts to solve real, non-abstract BP problems.

Our main contributions include: 1) Transforming real-world BP problems into verbalized mediator-
augmented, extensive-form games, which provides a unified interface for game-theoretic solvers;
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2) Proposing a general game-theoretic solver for verbalized BP problems based on the Prompt-
PSRO framework, with a convergence guarantee to equilibrium solutions. Several components
including verbalized commitment assumptions and obedience constraints, information obfuscation,
and conditional prompt optimization enhance the solver’s performance, efficiency, and stability;
3) Reproducing results in classic and complex BP problems consistent with existing optimization
and learning methods, while efficiently solving natural language and multistage BP problems. This
potentially opens up a new line of studies of persuasion in real-world scenarios, which is helpful in
understanding the interaction of multiple agents in both economic and societal applications.

2 PRELIMINARIES AND RELATED WORKS

Bayesian Persuasion. The canonical BP model is structured as follows (Kamenica, 2019). A receiver,
an agent, has a utility function u1(a, ω), which depends on its action a ∈ A and the state of the world
ω ∈ Ω. Another agent, the sender (also known as the information designer), has a utility function
u0(a, ω). Both the sender and receiver share a common prior µ0 over Ω. The sender’s key decision is
the choice of a signaling scheme, which is a mapping from the state to a distribution over signals,
π : Ω→ ∆(S). Here S represents a sufficiently large set of signals, which is typically enough with
|S| ≥ min{|A|, |Ω|}, known as the revelation principal.

Given knowledge of π (i.e., under the commitment assumption (Kamenica & Gentzkow, 2011)),
the receiver updates its belief from the prior µ0 to the posterior µπ(ω | s) using Bayes’ rule.
The receiver then selects an action a∗ that maximizes Eω∼µπ(|s)u1(a, ω). Given this response
mechanism from the receiver, the sender’s objective is to solve the following maximization problem:
maxπ∈Π Eω∼µ0

Es∼π(ω)u0 (a
∗, ω), where Π denote the set of all possible signaling schemes. Here

the revelation principle applies that an optimal signaling scheme exists that requires no more signals
than there are actions available to the receiver. From the receiver’s perspective, as long as it
believes that the recommended actions are optimal according to its posterior belief, it will follow
the sender’s advice. These constraints on the sender’s signaling scheme are referred to as obedience
constraints (Myerson, 1979; Kamenica & Gentzkow, 2011). Then, BP can be reduced to a simplified
linear programming (Dughmi & Xu, 2016; Dughmi, 2017; Lin et al., 2023),

max
π

Eπ [u0(a,w)] , s.t.
∑
w

P (w) · π(a | w) · [u1(a,w)− u1 (a
′, w)] ≥ 0,∀a, a′. (1)

Learning Methods for BP. The problem of BP can be approximately solved by multi-agent reinforce-
ment learning (MARL). In mixed-motive MARL, agents aim to advance their interests by shaping
others (Leibo et al., 2017; McKee et al., 2020; Dafoe et al., 2020; Leibo et al., 2021). Existing
methods achieve this through either mechanism (modifying rewards) (Yang et al., 2020; Zheng et al.,
2022; Hua et al., 2023; Wang et al., 2024) or information design (modifying observations) (Wu et al.,
2022; Bernasconi et al., 2022; Lin et al., 2023), the latter of which could be used to solve BP. An
sender can commit to a strategy for providing state information to the agents, effectively altering the
observation function of the receiver. So the sender can influence agents’ behavior by strategically
providing information and guiding them toward desired outcomes (Bergemann & Morris, 2019). In
a long-term interaction, the sender and the receiver become aware of each other’s strategy, which
creates the game dynamics that resemble the commitment assumption and therefore the BP problem
setting. Then, the outcome of the MARL algorithm becomes an equilibrium of BP.

Sender

Receiver

Nature

Nature

Signaling
Scheme State

SignalAction

1 2

34

Strategy = Prompt

Meta-Game
Simulation

Restricted Meta-Game

Meta-Strategy
Solver

Response
Objective

Best
Response

Oracle

Prompt Optimization

Approximate
Best Response

Restricted
Strategy Set

Figure 2: Left: Bayesian persuasion timing in the EFG; Right: The Prompt-PSRO framework.

Policy- and Prompt-Space Response Oracle. While game theory offers a mathematical framework
to study interactions between multiple agents (Bighashdel et al., 2024), classical analysis struggles
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with scalability due to the sheer number of strategies. To address this, a wide range of learning
methods have been applied to large-scale games, with MARL (Yang & Wang, 2020; Zhang et al., 2021)
being one of the most prominent approaches. Unlike traditional methods, learning methods do not
require full game representation and instead create agents that explore and adapt by interacting with
the environment. However, learning methods face inherent challenges, e.g., non-stationarity (Tuyls &
Weiss, 2012) and non-transitivity (Czarnecki et al., 2020; Sanjaya et al., 2022).

The PSRO framework (Lanctot et al., 2017) emerged as a hybrid approach, combining traditional
equilibrium computation with learning techniques. It improves scalability by focusing on relevant
subsets of strategies (Wellman, 2006; Bighashdel et al., 2024). Approximate local Nash equilibria can
be tractably obtained through PSRO-like approaches (Assos et al., 2023). As illustrated in Figure 2,
PSRO algorithms begin with an initial set of strategies for each agent and proceed through two
alternating steps. First, a normal-form meta-game (e.g., matrix game) is constructed, where each
agent selects a meta-strategy to represent their overall behavior in the game. A meta-solver (e.g.,
Nash equilibrium solver) then computes a solution (e.g., Nash equilibrium) for this meta-game. In the
second step, each agent computes an approximate best response to the meta-strategy. This process
repeats until no agent benefits from strategy deviation (Bighashdel et al., 2024). The prompt-space
response oracle (Gemp et al., 2024) (Prompt-PSRO) is a verbalized adaptation of the standard PSRO,
where strategies are parameterized by LLMs and represented as prompts. The approximate best
response is generated by optimizing and sampling prompt strings, as opposed to the standard PSRO
protocol where best responses are typically computed using MARL or gradient-based optimization.

Game-Theoretic Solvers with LLMs. The combination of a game-theoretic solver with prompt
optimization, which we use in this work, is not the only paradigm for utilizing LLMs to solve
games. Widely adopted parameter-efficient fine-tuning (Xu et al., 2023; Han et al., 2024), agentic
workflow (Mao et al., 2023; Hua et al., 2024; Guo et al., 2024; Fan et al., 2024; Lorè & Heydari, 2024;
Duan et al., 2024), as well as the recent trend of improving reasoning and problem-solving capabilities
for complex and mathematical problems by having LLMs generate longer chains of thought prior
to making decisions (Zelikman et al., 2022; 2024; OpenAI, 2024; Guo et al., 2025), are also very
promising directions. The former allows for more fine-grained control of LLM outputs through
in-weight updates, compared to in-context updates like prompt optimization, while the latter two may
enable LLMs to discover novel game solvers. VBP is orthogonal to these approaches. Its primary
goal is to leverage the rich foundation of game theory by incorporating various game-theoretic solvers
that have already been proposed, and to extend the solid theoretical results established in classical
games for solving verbalized games.

3 THE MEDIATOR-AUGMENTED GAME FORMULATION FOR BP

To establish convergence for the VBP framework, we transform the classic BP problem into a special
class of extensive-form games (EFGs), known as mediator-augmented games (MAGs, (Zhang &
Sandholm, 2022)). In this section, we reformulate the BP problem in the form of an MAG. At a
high level, a mediator-augmented game introduces an additional player, the mediator, who exchanges
messages with the players and provides action recommendations.

Definition 3.1. A Bayesian persuasion problem, represented as a mediator-augmented game Γ,
consists of the following components (Zhang & Sandholm, 2022): (1) a player, referred to as the
receiver, denoted by the integer 1; (2) a directed tree H of histories or nodes, with the root denoted
by ∅. The edges of H are labeled with actions, and the set of legal actions at each node h is denoted
by Ah. Terminal nodes of H are called leaves, and the set of such leaves is denoted by Z; (3) a
partition of non-terminal nodes H\Z into HC ⊔H0 ⊔H1, where H1 represents the nodes where
player 1 acts, and C and 0 represent chance and the mediator (i.e., the sender), respectively; (4) for
each agent i ∈ {1, 0}, a partition Ii of the decision nodes Hi into information sets. Every node in a
given information set I must have the same set of legal actions, denoted by AI ; (5) for i ∈ {1, 0}, a
utility1 function ui : Z → R; and (6) for each chance node h ∈ HC, a fixed probability distribution
c(· | h) over Ah.

At any node h ∈ H , the sequence σi(h) for agent i consists of all information sets (infosets)
encountered by i, along with the actions taken at those infosets on the path from ∅ to h, excluding

1In this paper, we do not distinguish between utility and reward.
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Figure 3: Verbalize Bayesian persuasion framework.

h itself. An agent has perfect recall if σi(h) = σi(h
′) for all h, h′ within the same infoset. A

pure strategy for agent i specifies one action from AI for each information set I ∈ Ii. A mixed
strategy is a probability distribution over pure strategies, and the sequence form of a mixed strategy
corresponds to the convex combination of pure strategies. Let X1 and X0 denote the polytope
of sequence-form mixed strategies x1 for the receiver and π for the mediator, respectively. For a
fixed π ∈ X0, we say that (π,x1) is an equilibrium of Γ if x1 is a best response to π, meaning
maxx′

1∈X1
u1(π,x

′
1) ≤ u1(π,x1). We do not require the mediator’s strategy (signaling scheme) π

to be a best response; hence, the mediator can commit to its strategy. The objective of this paper
is to find an optimal Stackelberg equilibrium, which is an equilibrium (π,x1) that maximizes the
mediator’s utility u0(π,x1). When viewed as an extensive-form game (EFG), the sequence of events
in BP is illustrated in Figure 2.

4 VBP SOLVER

This section will provide a detailed introduction to the VBP framework, as shown in Figure 3. The
first part presents the verbalization of MAG, including a polarized setting (e.g. strong/weak students)
that reproduces the classic examples in BP, and general settings for one-step and multi-stage BP in
the language space. The second part introduces how this MAG is solved within the Prompt-PSRO
framework, with the help of available best response approximations in language models (Yang et al.,
2024; Romera-Paredes et al., 2024). The verbalized MAG, along with the three problem settings and
the Prompt-PSRO-based game-theoretic solver, collectively constitute the VBP framework.

Verbalized Formulation for BP. In order to leverage the wealth of research in LLMs for BP in
realistic scenarios, we must abstract and map components of BP to the symbolic language. Note
the mapping can be chosen is not unique. State ω: Unlike the classic BP, which only describes
the state with binary values, the state in VBP is defined as the text. For example, it is the detailed
description to the student’s quality in the recommendation letter problem. Infosets I: The infoset is
available only in the multi-stage setting. It is defined as the interaction history between the two parties.
Specifically, this includes the signals sent by the sender, the receiver’s decisions (public information),
and their respective rewards (private information) from each round of interaction, plus the previous
environmental states (private information). Action A: Agents’ actions refer to the signaling scheme
for the sender and the action for the receiver. As we transform the strategy optimization problem into
a prompt optimization problem through the Prompt-PSRO framework, the actions involve selecting
prompts. Terminal states Z: In static settings the game terminates in one step. In multi-stage
settings terminal states are determined by either a limit or the allowable tree depth.

In addition to the basic components of the game, the BP problem also includes two fundamental
constraints that need to be mapped into the verbalized MAG.

Verbalized Committment Assumption. The key difference between BP and cheap talk (Crawford
& Sobel, 1982) lies in the presence of the commitment assumption, where the sender commits their
signaling scheme as common knowledge. The VBP framework achieves the commitment assumption
through prompting in the static setting and through expanding the receiver’s infoset in the multi-stage
setting. Specifically, the signaling scheme is equivalent to the key components in the prompt provided
to the sender that influence the generated signals, and these components are the target of Prompt-
PSRO optimization. VBP incorporates these components into the receiver’s prompt, where more
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details are deferred to Appendix F.6. Since the sender generates the recommendation letter following
these key components, the commitment assumption can be approximately achieved.

Verbalized Obedience Constraint. The optimization in BP involves an (extended) obedience
constraint (Myerson, 1979; Kamenica & Gentzkow, 2011; Lin et al., 2023), as shown in Equation 1.
It is intuitive to handle this constraint by transforming it into a penalty term, which is similar to
reward shaping (Ng et al., 1999; Gupta et al., 2022). However, penalty computing requires integrating
over the entire state and action space. To address this, we estimate the summation term using a
sampling approach. Specifically, we calculate an estimate using the current state and an arbitrarily
selected action. There are various ways to select actions, and here we introduce a theory-of-mind
approach (Rabinowitz et al., 2018; Albrecht & Stone, 2018), where actions are selected based on
predictions of what the receiver would do, prompting LLMs to anticipate the receiver’s likely actions.

4.1 FOUR SETTINGS IN VBP

Setting S1: Polarized signals. Polarized signals refer to the constraint to produce more straight-
forward signals, such as recommend v.s. not recommend in the recommendation letter example.
The goal of this setting is to aligning the signal space with the classic BP formulation. We aim to
reproduce the Stackelberg equilibrium in classic BP examples and validate the effectiveness of VBP.
Specifically, we use the pretrained and aligned LLM to score the signals output by the sender, For
example, this determines the degree, a real value between 0 and 1, to which the recommendation
letter supports the student. Similar prompts can be designed for other problems. Then this value is
pushed to an extreme point in the signal space, based on the minimum distance.

Setting S2: VBP in Static BP. By removing signal polarization, the signals are maintained in the
language space. This constitutes the default setting of VBP.

Setting S3: VBP in Multistage BP. This setting considers a multistage scenario, which is very
challenging for traditional methods (Gan et al., 2022; Wu et al., 2022). The agents engage in multiple
rounds of interaction, and the sender’s historical signals serve as the basis for the receiver’s subsequent
decisions. This largely increases the complexity, as the sender cannot arbitrarily exploit the receiver
with information advantage. Instead, they must consider current actions’ impact on future rewards.

Setting S4: VBP in Large-Scale Multi-Receiver BP. We extend VBP to a large scale multi-receiver
testbed by instantiating it in full press Diplomacy (Duffy et al., 2025) with ordinary negotiation and
standard adjudication. Each episode designates a single sender and a set of receivers, all observing
common natural-language communications and public commitments.

4.2 VERBALIZED GAME SOLVER

After modeling the BP as a verbalized MAG, we parameterize both agents using pretrained and
aligned LLMs and optimize their strategies with the Prompt-PSRO, thereby forming a general BP
solver. We first present the following proposition based on the theoretical foundation (Zhang &
Sandholm, 2022), with the proof provided in Appendix C.

Proposition 4.1. VBP returns an ε-approximate Bayes correlated equilibrium in static BP and an
ε-approximate Bayes-Nash equilibrium in multistage BP.

In simple terms, the reason we can leverage the theoretical results of MAG is because different
assumptions on the power of the mediator and the players’ strategy sets induce different equilibrium
concepts. The concept of Bayes correlated equilibrium (Bergemann & Morris, 2016) in static BP and
Bayes-Nash equilibrium (Makris & Renou, 2023) in multistage BP is equivalent to the situation in
the MAG where the mediator has an informational advantage, cannot lie (commitment assumption),
and gains perfect recall under the extensive-form correlated equilibrium.

VBP does not directly solve the verbalized MAG using the Prompt-PSRO. Instead, we make targeted
improvements to Prompt-PSRO for different settings, as illustrated in the Appendix F.3. For the
S1, S2 and S4 settings, we optimize the strategies of the sender and receiver using Algorithm 4
from the Prompt-PSRO framework (Gemp et al., 2024), specifically the “categorical” approximate
best response. Unlike in the original PSRO paper, we use the OPRO method (Yang et al., 2024) to
generate both the categories and the specific content within the categories simultaneously.
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The S3 setting2 presents a challenge for the Prompt-PSRO. Existing Prompt-PSRO is unconditional
or episode-wise, meaning that the prompt generated at the beginning of each episode is used for
every subsequent timestep. In mutlistage BP, this significantly restricts the optimizable strategy
space. In other words, both the sender and receiver can dynamically adjust their strategies based on
the interaction history to achieve higher rewards. For example, the sender might honestly provide
true information to the receiver early to build trust, then deceive the receiver later. Similarly, the
receiver could bargain to extract more information. Thus, we propose a conditional version of
Prompt-PSRO, denoted as step-wise Prompt-PSRO, building on the original framework. Specifically,
we use FunSearch (Romera-Paredes et al., 2024), where the strategy to be optimized is no longer the
prompt, but a function that generates the prompt. This function takes the interaction history as input,
thereby enabling conditional prompts. The pseudocode is shown in Algorithm 1 in Appendix B.

Moreover, since we use aligned LLMs, the sender struggles to output strategic signals, such as hiding
or obfuscating relevant information about the true state. We introduce an information obfuscation
mechanism. Similar to reward shaping (though experiments showed suboptimal results, likely due
to the complexity of optimizing the reward function with too many components), a pretrained and
aligned LLM is deployed to evaluate the degree of information hiding or obfuscation in the output
signal. This feedback is then employed to perform multiple rounds of self-reflection (Huang et al.,
2023; Shinn et al., 2024; Tao et al., 2024) before entering the Prompt-PSRO loop.

Remark. While our work and prior research (Bai et al., 2024) both leverage BP, they address
different problems. Model alignment applications optimize signaling between models to improve
downstream performance (Bai et al., 2024), whereas we extend BP into natural language settings
through verbalized frameworks and prompt optimization. Similarly, our approach differs from
persuasive dialogue research that uses planning through fine-tuning or tree-search (Yu et al., 2023;
Deng et al., 2024) or strategy annotation in negotiation contexts (He et al., 2018; Wang et al.,
2019). Our key contribution uniquely merges verbalized BP with game-theoretic equilibrium solvers,
enabling formal Bayes correlated equilibria reasoning in natural language contexts.

5 EXPERIMENTS

We use 3 classic BP problems and 1 more complex BP problem in our experiments (detailed in
Appendix D and E). In the recommendation letter (REL) problem (Dughmi, 2017), a professor writes
recommendation letters for students, which HR uses to decide on hiring. In the courtroom (COR)
problem (Kamenica & Gentzkow, 2011), a prosecutor tries to convince a judge to convict a defendant,
with the prior belief that the defendant is guilty. In the law enforcement (LAE) problem (Kamenica,
2019), drivers decide whether to speed or obey the law on a road with Z miles, where G police officers
patrol. In the Diplomacy with press (DIP) problem (Duffy et al., 2025), players control nations that
can both move units and send messages; a persuader designs signals to influence others’ beliefs about
intentions and positions, aiming to steer their coordinated actions. Due to space constraints, we defer
the experiments for Setting S2 to Appendix G.1.

5.1 VBP IN STATIC GAMES (S1)

We first evaluate the effectiveness of the VBP method under the S1 setting. Two baseline methods
are chosen: BCE and MARL. The former relies on optimal equilibria computation (Lin et al., 2023;
Kamenica & Gentzkow, 2011; Kamenica, 2019), while the latter employs multi-agent reinforcement
learning for BP problems (Lin et al., 2023). As shown in Figure 4, the VBP framework successfully
captures the essence of solving BP problems, namely, selectively withholding, obfuscating, or even
deceiving about the true state, while also learning when to fully disclose accurate information.

5.2 VBP IN MULTISTAGE GAMES (S3)

We also tested the effectiveness of VBP in a multistage scenario. Notably, the multistage BP differs
from most of the literature. In existing works, the same sender was interacting with a new, short-

2Although S4 is also a multi-stage setting and, compared with S3, is even more complex—featuring large-
scale and multi-receiver characteristics—we do not apply conditional prompt optimization to S4 in this version
due to cost considerations. Empirically, the categorical approach still achieves strong performance in S4.
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Figure 4: Performance comparison on classic static BP problems. Averaged over 20 seeds. In the
3 BP problems, the probability of lying refers to describing a weak student as strong, an innocent
defendant as guilty, or an unpatrolled segment as patrolled. Conversely, the probability of honesty
refers to accurately describing a strong student, a guilty defendant, or a patrolled segment.

Table 1: REL scenario results with three subtables. (a) Different LLMs. (b) VBP vs. DeepSeek–R1.
(c) Posterior calibration and extended obedience. ECE is the expected calibration error over the
monitored propositions. Obedience penalty (O.P.) is the average positive value gap per season in
supply center equivalent units. Means over 20 matches; 95% confidence intervals in parentheses.
G5=GPT-5, G2.5P=Gemini-2.5-Pro, DS-R1=DeepSeek-R1.

(a) Different LLMs

Metric VBP VBP–Diff

S–Reward 0.48 ±.03 0.49 ±.04

R–Reward 0.19 ±.03 0.17 ±.03

Lying 0.22 ±.04 0.24 ±.01

Honesty 1.00 ±.00 1.00 ±.00

(b) VBP vs. DeepSeek–R1

Metric VBP DeepSeek–R1

S–Reward 0.48 ±.03 0.42 ±.06

R–Reward 0.19 ±.03 0.25 ±.07

Lying 0.22 ±.04 0.13 ±.00

Honesty 1.00 ±.00 1.00 ±.00

(c) Different LLMs

Model ECE ↓ O.P. ↓

G5 0.12 (±0.02) 0.31 (±0.08)
G2.5P 0.16 (±0.03) 0.37 (±0.09)
DS-R1 0.15 (±0.03) 0.35 (±0.10)
VBP-G5 0.07 (±0.01) 0.12 (±0.05)

sighted receiver in each round. In this work, the receiver remains the same and can perceive the
interaction history, aligning more closely with the Markov signaling game (Lin et al., 2023). Since a
closed-form solution for equilibrium cannot be computed, we record the average performance at each
stage in Figure 5.
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(b) Receiver’s rewards.
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Figure 5: Performance comparision on the S3 setting. Averaged over 20 seeds and 5 timesteps. The
physical meaning of the probabilities of lying and honesty is consistent with Figure 4.

It is observed from the figure that VBP’s performance shows a noticeable decline compared to S2,
while it still manages to learn both appropriate deception and honesty. We also visualize the changes in
the sender’s deception and honesty probabilities during training, as shown in Figure 6 in Appendix ??.
Since the receiver can perceive the history, the sender’s deceptive behavior goes through several
oscillations, reflecting a kind of bargaining dynamic (Nash et al., 1950; Nash, 1953; Maschler et al.,
2013): The sender is initially leaning towards honesty, then discovering that deception maximizes
gains, and later realizing that excessive deception triggers retaliation from the receiver, eventually
converging to a relatively low deception probability. Likewise, with the receiver having access to
historical interactions, the sender demonstrated an upward trend in honest behavior compared to the
S2 setting, with truthfulness levels progressively increasing throughout.

We also test using different LLMs for sender (Qwen-2.5-7B) and receiver (Llama-3.1-8B) roles
in REL. As Table 1a shows, performance differences are negligible, suggesting a single LLM can
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effectively model both strategic agents in our scenarios, though more complex interactions might
benefit from role-specialized models. We further evaluated the DeepSeek-R1 model against VBP.
Table 1b shows that while DeepSeek-R1 tends toward more honesty (lower lying probability), VBP
achieves higher sender rewards through more nuanced information manipulation. This demonstrates
that specialized game-theoretic optimization is necessary for strategic persuasion.

Addtionally, to quantify the proximity of policies of the sender and the receiver to the BCE, we
employ exploitability as a measure. Exploitability (Lanctot et al., 2017) measures the distance of a
joint meta-strategy of sender and receiver from the BCE. It shows how much each LLM gains by
deviating to their best responses.
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Figure 6: Left: The variation in exploitability during the iterative solving process of VBP in the
S1 setting, reflecting changes in proximity to approximate Bayesian correlated equilibrium. Left
Center: The variation in honesty probability during the iterative solving process of VBP in the S1
setting. Right Center and Right: The variation in lying and honesty probability during the iterative
solving process of VBP in the S3 setting. Averaged over 20 seeds.

As depicted in Figure 6, exploitability gradually decreased to approximately 0.1 after 10 iterations
of training. This descent indicates the diminishing gap between the utility generated by the joint
strategies of the sender and the receiver and the utility generated by the BCE strategies, signifying
VBP’s acquisition of the equilibrium. As mentioned in Section 4.1, we align as closely as possible
with the classic static BP problem by polarizing the signals.

5.3 VBP IN FULL-PRESS DIPLOMACY (S4)

We additionally evaluate VBP in full press Diplomacy (see Appendix E and F.2 for more details) to
stress test verbalized persuasion in a long horizon, multi agent, and negotiation heavy setting. The
baselines are GPT 5, Gemini 2.5 Pro, and DeepSeek R1. Table 2 reports the primary and tactical
metrics. VBP achieves a modest improvement in Game Score over the strongest baseline while
delivering larger gains on reliability and control measures. The improvement on Game Score over
GPT 5 is consistent across seeds and is statistically marginal with paired tests, which is expected
given the high variance of full matches and the limited tuning budget. The reductions in invalid orders
and hold rate are statistically significant and align with our design that couples posterior writing to
order choice. Support success improves by over seven percentage points, which indicates that the
posterior guided decision prompts make coordinated orders more mechanically accurate.

Table 2: S4 results. Means over 20 matches with 95% confidence intervals in parentheses where
applicable. Lower is better for Invalid orders, Hold rate, Betrayal rate. Higher is better for the rest.

Model Game Score Win rate Invalid orders Hold rate Support success Betrayal rate Sentiment ∆

GPT 5 41.0 (±2.7) 15.0% 5.2% 31.8% 52.7% 34.7% +0.07
Gemini 2.5 Pro 39.4 (±2.5) 11.0% 6.1% 34.9% 49.2% 36.8% −0.03
DeepSeek R1 39.0 (±2.8) 10.0% 5.8% 33.7% 50.4% 41.2% +0.01
VBP (GPT 5) 41.9 (±2.5) 17.0% 3.1% 26.8% 59.8% 24.9% +0.21

Calibration and obedience. Table 1c reports posterior calibration and the extended obedience
penalty. VBP reduces expected calibration error by roughly forty percent relative to GPT 5 and by
more relative to the other baselines. The extended obedience penalty, measured as the positive part of
the value gap between realized orders and the best one step deviation under the reported posteriors,
drops by more than half under VBP. These effects support our claim that verbalized commitment and
posterior writing improve the coupling between beliefs and actions.
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Ethics Statement Using LLMs in real-world Bayesian persuasion problems has significant im-
plications for industries such as advertising and marketing, where persuasion is central. With
persuasion-related activities estimated to account for 25%-30% of global GDP, advances in AI-driven
persuasion could transform communication strategies and contribute to economic growth. How-
ever, as AI systems become more adept at influencing behavior, there are ethical risks related to
manipulation and coercion, which could undermine individual autonomy. These risks are particularly
concerning in contexts where users may need help understanding the persuasive intent of AI systems.
Unchecked, such technologies could exploit cognitive biases and disproportionately affect vulnerable
populations, raising questions about transparency, fairness, and consent. While the VBP framework
primarily enhances the sender’s persuasive abilities, we observed emergent bargaining behaviors from
the receiver in multistage BP problems. This suggests that the framework could also be developed to
strengthen the receiver’s ability to resist persuasion, potentially safeguarding against manipulative
influences. This dual optimization—enhancing persuasion and resistance—could help mitigate some
ethical risks associated with persuasive AI systems. Nonetheless, the broader societal impacts of
AI-driven persuasion warrant further exploration. Future research should focus on developing ethi-
cal guidelines that ensure these technologies are deployed responsibly, with particular attention to
maintaining individual autonomy and promoting fairness.

Reproducibility Statement We are committed to enabling the reproducibility of our results to the
best of our ability. In the paper, we provide detailed descriptions of the experimental setup, including
implementation details, hyperparameters, and prompt designs, as well as data generation steps in
Appendix F. Our approach builds upon several open-source projects, and we have included links to
the relevant code repositories for transparency and ease of reference. We document key elements
necessary for reproducing our findings, such as training procedures, evaluation metrics, and the use
of multiple random seeds. While we have taken significant steps to ensure that the methodology is
clear and replicable, variations in software environments, hardware configurations, or other external
factors may affect exact reproducibility. Nonetheless, we believe the provided information should
allow others to replicate our findings or apply similar approaches with reasonable accuracy.
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Frederic Koessler, Marie Laclau, Jérôme Renault, and Tristan Tomala. Long information design.
Theoretical Economics, 17(2):883–927, 2022a.

Frédéric Koessler, Marie Laclau, and Tristan Tomala. Interactive information design. Mathematics of
Operations Research, 47(1):153–175, 2022b.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In NeurIPS, 2022.

Anton Kolotilin. Optimal information disclosure: A linear programming approach. Theoretical
Economics, 13(2):607–635, 2018.

Nicholas S Kovach, Alan S Gibson, and Gary B Lamont. Hypergame theory: a model for conflict,
misperception, and deception. Game Theory, 2015(1):570639, 2015.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
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Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–384,
2021.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu, Ting
Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with large
language models. arXiv preprint arXiv:2404.01230, 2024b.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Man Lan, and Furu Wei. K-level
reasoning with large language models. arXiv preprint arXiv:2402.01521, 2024c.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C Parkes, and Richard Socher. The ai
economist: Taxation policy design via two-level deep multiagent reinforcement learning. Science
advances, 8(18):eabk2607, 2022.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. The design and implementation of xiaoice,
an empathetic social chatbot. Computational Linguistics, 46(1):53–93, 2020.

Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent reinforcement learning
with communication. arXiv preprint arXiv:2203.08975, 2022.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Supplementary Material

Table of Contents
A Related Work 18

A.1 Deception in Multi-Agent Learning . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2 Conversational Persuasiveness of LLMs . . . . . . . . . . . . . . . . . . . . . . 19
A.3 LLMs in Strategic Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B Pseudocode of VBP framework 20

C Proof of Proposition 4.1 21

D Classic BP Problems (S1-S3) 22
D.1 Optimal Policies for Classic Static BP Problems . . . . . . . . . . . . . . . . . 22
D.2 More Real-World Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E Diplomacy with Press as a VBP Playground (S4) 24
E.1 Environment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
E.2 Background: How LLMs Play Full Press Diplomacy . . . . . . . . . . . . . . . 25

F Implementation Details 26
F.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
F.2 Full-Press Diplomacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
F.3 Various Best Response Approximators . . . . . . . . . . . . . . . . . . . . . . 26
F.4 Extended Obedience Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 28
F.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
F.6 Key Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

G More Results 36
G.1 Missing Results on S2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
G.2 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
G.3 Polarized Signal Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
G.4 Predefined Signaling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
G.5 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
G.6 Statistical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
G.7 Missing Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
G.8 Generated Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
G.9 Generated Prompt Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

H Limitations and Future Work 64

A RELATED WORK
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A.1 DECEPTION IN MULTI-AGENT LEARNING

Deception is defined as false communication benefiting the communicator (Bond & Robinson,
1988). In social learning, deception can be viewed as a means for the communicator to establish
a cooperative equilibrium that is suboptimal for overall population welfare. Previous studies have
explored deception within multi-agent reinforcement learning (MARL) settings (Asgharnia et al.,
2020; Bontrager et al., 2019; Li et al., 2020; Ghiya & Sycara, 2020), but these efforts typically
focus on environments where agents have limited capacity to influence one another. More recent
work (Chelarescu, 2021) highlights the vulnerability of agents dependent on signals from others to
guide their learning processes, pointing to the potential risks inherent in such scenarios. While much
research focuses on the positive outcomes of mechanism design, it also reveals unforeseen risks, such
as the emergence of deceptive behaviors (Hughes et al., 2018; Jaques et al., 2019; Yang et al., 2020;
Lupu & Precup, 2020; Ndousse et al., 2021). Unlike these prior studies, which primarily examine
how reward modifications influence deception through mechanisms like mechanism design, our work
emphasizes the role of information manipulation in shaping deceptive behavior.

Game-theoretic models traditionally frame deception using signaling (Ho et al., 1978), where players
send costly signals conveying false information. In network security, defenders can deceive attackers
by masking honeypots as regular computers (Carroll & Grosu, 2011). Other research has studied
deceptive signaling evolution in mixed environments. In competitive food-gathering tasks, robot teams
spontaneously developed strategies misleading competitors to reduce resource competition (Floreano
et al., 2007). Hypergame theory (Bennett, 1980), an extension to classical game theory, accounts
for players’ uncertainty about others’ strategies or preferences, providing a natural framework for
modeling misperception, false beliefs, and deception (Kovach et al., 2015). Applications include
normal-form hypergame deception analysis (Vane & Lehner, 2002) and deception modeling based
on player preferences when the deceiver fully knows the target (Gharesifard & Cortés, 2013).
Additionally, agents can manage information about their roles to achieve deception by regularizing
mutual information between goals and states (Ettinger & Jehiel, 2010; Strouse et al., 2018; Aitchison
et al., 2021). In contrast to these works modeling deception as discrete, explicit signaling actions, our
study explores deception through natural language interaction.

Finally, agents can communicate intent without explicit signaling using online planners to select
actions implicitly revealing intent to observers (MacNally et al., 2018). This approach extends to
deception by maximizing belief divergence between agent and observer (Masters & Sardina, 2017).
However, these methods assume full observability and rely on environmental models for forward
planning, whereas our work achieves deception through natural language in complex, partially
observable environments.

A.2 CONVERSATIONAL PERSUASIVENESS OF LLMS

Recent advancements in LLMs have shown their impressive potential in the realm of persuasion. A
growing body of research highlights how these models can enhance human communicative abilities
and even autonomously generate persuasive content across various contexts.

Refining complaint narratives with ChatGPT significantly improves consumers’ chances of obtaining
redress from financial institutions, showcasing LLMs’ role in boosting human persuasive efforts (Shin
& Kim, 2024). LLMs outperform humans in utilizing cognitive load and moral or emotional language
when crafting persuasive messages, prompting the need for ethical guidelines (Carrasco-Farre, 2024).
LLMs can also simulate persuasive dynamics, influencing opinion changes in other LLMs with
predefined personas (Breum et al., 2024). Building on this, multi-agent frameworks enable primary
agents to engage users through persuasive dialogue while auxiliary agents handle information retrieval,
response analysis, and strategy development (Ramani et al., 2024). These studies illustrate LLMs’
capability to enhance human persuasion and autonomously refine and execute persuasive strategies.

The impact of LLM-generated persuasive text on human behavior spans diverse domains. GPT-3.5
can influence political attitudes (Bai et al., 2023), while GPT-3’s vaccine campaign messages prove
more effective than professionally created ones (Karinshak et al., 2023). LLM-powered romantic
chatbots sustain human engagement longer than human-to-human conversations (Zhou et al., 2020).
In strategic contexts, LLMs achieve human-level negotiation capabilities in games like Diplomacy (,
FAIR), and algorithmic suggestions shape emotional language in messaging (Hohenstein et al., 2023).
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These examples highlight LLMs’ broad applicability in persuasive tasks and significant influence on
human decision-making.

However, LLMs’ increasing persuasive power raises misuse concerns. LLMs outperform humans
in personalized debates, achieving higher belief change rates in one-on-one discussions (Salvi
et al., 2024). This raises ethical concerns about misinformation and manipulation risks. LLMs
can convincingly fabricate medical facts (Májovskỳ et al., 2023), further complicating the ethical
landscape. LLMs’ ability to produce persuasive yet misleading content underscores the need for
stronger oversight, especially in healthcare, politics, and public discourse. Recent studies emphasize
the necessity of ethical frameworks as LLMs become more persuasion-adept. While LLMs show
persuasive power across various tasks and domains (Matz et al., 2024; Durmus et al., 2024; Burtell
& Woodside, 2023; Shin & Kim, 2023), they pose risks, particularly for vulnerable populations.
Characteristics like race, gender, and sexual identity may subject certain groups to greater algorithmic
persuasion and bias risks, potentially exacerbating existing social inequalities (Bar-Gill et al., 2023).

From a computational standpoint, discovering persuasive messages is NP-hard, while adopting
persuasive strategies provided by others is NP-easy (Wojtowicz, 2024). This insight adds to our
understanding of the complexity involved in generating persuasive content and demonstrates why
LLMs, with their vast data-processing capabilities, are particularly adept at these tasks. Building
on these insights, our work explores how game-theoretic methods can be leveraged to enhance the
persuasive capabilities of LLMs in purely multi-agent LLM systems. Unlike previous studies that
primarily measure the impact of LLM-generated persuasive text on humans, we investigate how
multiple LLMs can engage in persuasive interactions with one another, optimizing their strategies
using game-theoretic approaches.

A.3 LLMS IN STRATEGIC INTERACTIONS

Recent advances in large language models (LLMs) have showcased their potential in reasoning
and planning, particularly in strategic interactions. LLMs demonstrate strong in-context learning
capabilities, reasoning about possible outcomes (Kojima et al., 2022) and planning actions to achieve
strategic objectives (Liu et al., 2023). However, their performance in game environments varies
significantly depending on game type (Lorè & Heydari, 2023), with LLMs struggling differently
across various games. To address these challenges, automated ”prompt compilers” facilitate strategic
reasoning by constructing demonstrations, enabling LLMs to solve games through in-context learning
(Gandhi et al., 2023). Similarly, action spaces of ”intents” control generative language models
through in-context learning (, FAIR), aligning closely with our approach. Game-theoretic models
also improve LLMs’ factual accuracy (Jacob et al., 2024) and enhance their security (Ma et al., 2023).
For a broader overview of LLMs in strategic reasoning, comprehensive surveys are available (Zhang
et al., 2024b).

The BP problem, however, goes beyond mere reasoning or planning. It requires the ability to anticipate
and account for the intentions, beliefs, and goals of other participants—a hallmark of game-theoretic
settings. While some initial studies have begun to explore how LLMs perform in game environments,
most of this work focuses on leveraging in-context learning. For example, research has examined
LLMs’ behavior in matrix games (Xu et al., 2024; Fan et al., 2024), repeated games (Akata et al.,
2023; Zhang et al., 2024c; Huang et al., 2024; Silva, 2024), economic mechanisms like auctions (Chen
et al., 2023; Mao et al., 2023), and collective decision-making scenarios (Jarrett et al., 2023). These
studies collectively illustrate the potential of LLMs to navigate complex environments that require
both strategic thinking and interaction with other agents.

In contrast to prior work that primarily evaluates LLMs’ reasoning or game-playing capabilities
through in-context learning or agentic workflows, our approach focuses specifically on solving the BP
problem. Our key contribution lies in providing a general interface that integrates LLMs with game-
theoretic solvers to address BP problems effectively. Based on this interface, we propose a solution
framework called VBP, which combines prompt optimization with game-theoretic methods. This
framework offers a convergence guarantee to equilibrium solutions, ensuring robust performance.

B PSEUDOCODE OF VBP FRAMEWORK
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Algorithm 1 Verbalized Bayesian Persuasion

Input: C, where Ci is the initial prompt action set (i.e., one category and one corresponding content)
for player i (either the sender or receiver)

Input: h, containing hyperparameters for the approximate best response operator BR (e.g., LLM-
based OPRO or FunSearch)

1: Initialize with LLM-based sampling: Compute the expected payoff tensor P over all joint
actions in C using Equation (3)

2: Set: π ← uniform meta-strategy profile over C {Each joint action in C initially has equal
probability}

3: Set: incomplete← TRUE {Flag to indicate if the equilibrium search is complete}
4: while incomplete do
5: for player i ∈ [N ] do
6: LLM input: Provide current meta-strategy π and action sets C of sender (for receiver)
7: Use LLMs to compute best response: ci ← BR(i, π, h) {The LLM generates the optimal

prompt or strategy for player i}
8: LLM output: Candidate best response ci for player i
9: end for

10: if ci ∈ Ci ∀i ∈ [N ] then
11: incomplete← FALSE {Terminate the loop if no new strategies are found}
12: else
13: Ci ← Ci ∪ ci, ∀i ∈ [N ] {Add the newly found best response strategies to the action sets}
14: Recompute with LLM-based sampling: Compute the expected payoff tensor P over the

updated joint actions in C using Equation (3)
15: Update: π ← meta-strategy w.r.t. P {Recalculate the strategy probabilities based on the

updated payoff tensor}
16: end if
17: end while
18: Return: (π,C, P ) {Return the final meta-strategy, action sets, and payoff tensor}

Algorithm 1 extending traditional BP to natural language settings. It begins by initializing a uniform
meta-strategy profile over player action sets and computing expected payoffs. The core iteration
involves LLMs computing approximate best responses for each player given the current meta-
strategies. When new best responses are found, they’re added to action sets, payoffs are recomputed,
and meta-strategies updated. This process continues until equilibrium is reached (no new beneficial
strategies exist). The LLM-based sampling and best response computation are crucial innovations
that enable strategic reasoning in language space, effectively translating game-theoretic concepts into
natural language interactions.

C PROOF OF PROPOSITION 4.1

Proof. Under the mediator-augmented games, we can reformulate the Equation 1 as follows to
express the problem of computing an optimal equilibrium:

max
π

Eπ [u0(a,w)] , s.t. max
a′

∑
w

P (w) · π(a | w) · [u1(a
′, w)− u1 (a,w)] ≤ 0. (2)

Let τ ∈ R be a fixed threshold value, we can transform Equation 2 to the following bilinear saddle-
point problem by using Lagrangian-based method (Zhang et al., 2024a):

max
π

min
λ∈∆,a′

λ0Eπ [u0(a,w)− τ ]−
∑
w

λwP (w) · π(a | w) · [u1(a
′, w)− u1 (a,w)] , (3)

where λ0 +
∑

w λw = 1. If we use the binary search-based algorithm (Algorithm 1 (Zhang et al.,
2024a)) to optimize the sender’s and receiver’s strategties, we can recover the main result of Theorem
3.7 (Zhang et al., 2024a).
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As can be seen from Equation 3, the BP problem is convert into the two-player zero-sum extensive-
form games. In practice, we can use policy-space response oracle with deep reinforcement learning
as the approximate best response oracle to solve high-dimensional games. In this paper, we use
prompt-space response oracle with OPRO (Yang et al., 2024) and FunSearch algorithm (Romera-
Paredes et al., 2024) based on pretrained and aligned LLMs as the approximate BR oracles in the
binary search-based algorithm to solve verbalized mediator-augmented games. The utilty functions
of the sender and receiver is modified to the zero-sum utilities in Equation 3 correspondingly.

D CLASSIC BP PROBLEMS (S1-S3)

This section introduces the three classic static BP problems used in our experiments.

Recommendation Letter (REL) (Dughmi, 2017) A professor writes recommendation letters for
graduating students, which are then reviewed by a company’s human resources (HR) department
to decide whether to hire. The professor and HR share a prior belief about the students’ quality:
there is a 1/3 probability that a candidate is strong and a 2/3 probability that the candidate is weak.
HR does not know the exact quality of each student but aims to hire strong candidates, using the
recommendation letters as the only source of information. HR receives a reward of 1 for hiring a
strong candidate, incurs a penalty of −1 for hiring a weak candidate, and gets 0 for not hiring. The
professor, on the other hand, gains a reward of 1 for each student hired, regardless of their quality.

Courtroom (COR) (Kamenica & Gentzkow, 2011) In this scenario, a prosecutor attempts to
convince a judge to convict a defendant, with two possible states: guilty or innocent. The judge
(receiver) must choose between convicting or acquitting, receiving a utility of 1 for a correct decision
(convicting if guilty, acquitting if innocent) and 0 for an incorrect one. The prosecutor (sender)
receives a utility of 1 if the judge convicts, regardless of the defendant’s actual guilt, and both parties
share a prior belief that the probability of guilt is 0.3. In the original setting, the prosecutor conducts
an investigation (signaling scheme) requiring decisions on actions such as subpoenas or forensic tests,
represented by distributions π(· | guilty) and π(· | innocent) over signals. However, modeling real-
world investigations in a verbalized setting poses challenges for LLMs, so we simplify the scenario
by drawing inspiration from the REL problem, where the prosecutor selectively presents pre-existing
evidence to influence the perceived probability of guilt, effectively replacing the investigation process
with evidence presentation.

Law Enforcement (LAE) (Kamenica, 2019) In this scenario, there are Z miles of road, and drivers
can choose to either speed or obey the speed limit on each mile. Speeding generates utility V per
mile, but drivers face a fine of K > V if caught. There are G police officers, and each officer can
patrol one mile of road. The police aim to minimize the number of miles on which drivers speed. To
map this environment to the BP problem, let ω ∈ Ω = {0, 1} represent whether a police officer is
present on a given mile. The prior belief is µ0 = G/Z. The set of signals corresponds to the miles
of road, S = {1, . . . , Z}. In this model, the police act as the sender and the driver as the receiver.
A signaling scheme represents the predictability or unpredictability of the police patrolling strategy.
This strategy induces a joint distribution over Ω and S, i.e., over the presence of a police officer and
the specific mile being patrolled.

D.1 OPTIMAL POLICIES FOR CLASSIC STATIC BP PROBLEMS

In this section, we derive the Bayes correlated equilibrium (BCE) for classic static BP problems
(corresponding to the experimental BCE results) and present the agents’ strategies and corresponding
rewards under equilibrium.

Recommendation Letter (REL) There are 3 possible outcomes between the professor and HR: (1)
HR tends not to hire if the professor does not provide a letter, due to the higher probability of weak
candidates; (2) if the professor reports honestly, HR hires strong candidates, yielding an expected
payoff of 1/3 for both; (3) the professor reports strong students truthfully and lies with probability
ε ∈ [0, 1/2) for weak students. HR follows the professor’s recommendations, resulting in expected
payoffs of (1 + 2ε)/3 for the professor and (1− 2ε)/3 for HR. The key insight is that the sender can
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strategically misreport information to maximize their interest, while still revealing enough truth to
maintain credibility with the receiver.

Courtroom (COR) There are 3 outcomes between the prosecutor and judge: (1) without com-
munication, the judge acquits since guilt is less likely; (2) with fully informative signaling, the
judge convicts 30% of the time; (3) the prosecutor, honest when the defendant is guilty, can
lie with probability ε when innocent. The judge follows the prosecutor’s recommendation if
ε ≤ 3/7, with the prosecutor’s optimal ε = 3/7. The resulting payoffs are (0.7ε + 0.3) for
the prosecutor and 1 − 0.7ε for the judge. The prosecutor’s optimal investigation is a binary sig-
nal: π(i|innocent) = 4

7 , π(i|guilty) = 0, π(g|innocent) = 3
7 , π(g|guilty) = 1, leading the judge to

convict 60% of defendants, despite knowing 70% are innocent.

Law Enforcement (LAE) There are 3 outcomes between the police and drivers: (1) with a fully
uninformative signal, drivers speed everywhere if V > (GK)/Z, giving the police a payoff of 0 and
the drivers (V Z −GK)/Z; (2) with a fully informative signal, drivers avoid patrolled miles, yielding
payoffs of (Z −G)V/Z for the police and GV/Z for the drivers; (3) the optimal policy lies between
these extremes, with partial consistency in patrol. The police lie with probability ε = 1− V Z−GK

V Z−V G ,
leading to payoffs of GY/Z + εY for the police and (1− ε)V (Z −G)/Z for the drivers.

D.2 MORE REAL-WORLD APPLICATIONS

Our proposed verbalized Bayesian persuasion (VBP) framework has significant potential for real-
world applications, particularly in complex, multi-sender, multi-receiver, and multi-round strategic
communication scenarios. Below, we discuss two illustrative examples—conversational recommen-
dation systems and healthcare DRG strategies—and highlight the potential challenges in applying
VBP to these domains.

Conversational Recommendation Systems One promising application of VBP is in conversational
recommendation systems, such as those used in live-stream shopping. In this setting, multiple senders
(e.g., influencers or sales agents) aim to persuade a diverse group of receivers (customers) to purchase
products through real-time, strategic communication. The VBP framework can optimize prompts (e.g.,
how product features or discounts are presented) to maximize customer engagement and conversions
across varying customer segments. This application faces challenges such as receiver heterogeneity,
where customers interpret signals differently based on their preferences and trust levels, making it
difficult to craft universal strategies. Furthermore, the real-time nature of live-stream interactions
demands highly efficient decision-making algorithms capable of adapting communication strategies
dynamically. Scaling the system to accommodate thousands or millions of receivers simultaneously
also requires advanced parallel processing and optimization techniques.

DRG Strategy in Healthcare Another practical application lies in healthcare, specifically in
optimizing Diagnosis-Related Group (DRG) reimbursement systems. Here, hospitals and post-
acute care (PAC) providers (senders) communicate with regulatory agencies (receiver) to determine
reimbursement policies for patient treatments. The VBP framework can model the incentives
and communication strategies of the senders to help regulators design policies that balance cost-
effectiveness with maintaining high-quality patient care. In this domain, conflicting incentives among
senders (e.g., hospitals vs. PAC providers) add complexity, as senders may compete or collaborate to
influence the receiver’s decisions. Additionally, the large scale of the problem, with thousands of
providers, poses computational challenges for efficient optimization. Long-term policy adjustments
based on multi-round feedback further complicate the problem, requiring robust mechanisms to
handle dynamic interactions over time.

These examples demonstrate the versatility of the VBP framework in addressing real-world problems
involving strategic communication. However, its application to practical scenarios requires addressing
challenges such as scalability, heterogeneity of participants, real-time decision-making, and multi-
round dynamics. Future work will focus on refining the VBP framework to overcome these challenges
and enhance its readiness for deployment in diverse real-world contexts.
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E DIPLOMACY WITH PRESS AS A VBP PLAYGROUND (S4)

We present a minimal integration of Verbalized Bayesian Persuasion into full press Diplomacy
that requires no code modifications to the underlying environment. We use an off the shelf text
based Diplomacy harness with standard adjudication, negotiation cadence, and order validation. We
instantiate Bayesian persuasion purely at the prompt layer. All states, signals, commitments, and
obedience constraints are realized in natural language within the sender and receiver contexts. The
match engine, message handling, and rule execution remain unchanged.

E.1 ENVIRONMENT SETTINGS

We model each movement season as a static BP subgame embedded in the full match. One power is
designated as the sender at the start of the negotiation phase. The remaining six powers are receivers.
The designation either rotates deterministically across seasons or is sampled uniformly at random.
This choice is announced as a plain sentence in the pre negotiation preface that is visible to all agents.
No special system channel is required.

The sender’s private state is the same object that is already present in the harness in the form of the
private tactical diary and intent summary. We map this free form text to a latent state for analysis and
for solver side diagnostics. We use a deterministic LLM as judge at temperature zero to assign a label
that encodes a primary direction, a targeted neighbor set, and a stab indicator. This mapping is not
consumed by the environment at runtime. It is a reproducible labeling used by the solver to evaluate
information design. Receivers do not observe this latent state.

The signaling scheme is realized as a communication style that governs the sender’s free form press
during the negotiation phase. The solver discovers a compact, discrete, and evolving library of style
categories and concrete instances using Prompt PSRO with categorical approximate best responses
and OPRO. Examples include truthful coarse, hedged coarse, soft pedal, exaggerate strengths, and
obfuscate intent. At the beginning of a season the sender publicly declares one style string that it will
follow for the remainder of the season. This declaration is inserted verbatim as a single line in all
players’ negotiation prefaces. The negotiation text that the sender subsequently emits serves as the
realized signal. The only change to the environment is this small preface line injection. No privileged
execution path is introduced and all press remains ordinary free form text.

The commitment assumption is verbalized rather than enforced by code. Receivers are instructed in
their decision prompts to treat the declared style as the sender’s committed signaling scheme for the
current season. The meta policy over styles that is produced by Prompt PSRO is used to compute
mixture weights that approximate the public belief over the scheme. These weights are written into
the receiver prefaces as a single sentence that reports the current style distribution estimated by the
solver. This realizes a common knowledge commitment in text and keeps the engine unmodified.

Obedience constraints are implemented as an extended obedience regularizer in the sender objective.
After adjudication we prompt receivers to produce numeric posteriors for a small library of proposi-
tions that are tactically salient given the board geometry. We then estimate realized order values and
counterfactual one step deviations with short rollouts under the existing adjudication engine. The
positive part of the value gap between the best deviation and the realized orders under the receiver’s
reported posterior contributes a penalty to the sender objective. This follows the extended obedience
construction used in our classic tasks and requires no environment changes.

Optimization occurs entirely in prompt space. For senders we search over communication style
categories and instances. For receivers we search over decision prompt styles that couple posterior
updates to order choice. We use OPRO to propose new style categories and instances against the
current meta policy and retain only those that improve the meta game. We run Prompt PSRO in
batches of matches. Between batches the style libraries may evolve. Within a batch the style chosen
for a receiver is fixed across seasons unless we enable conditional prompt optimization. When we
study multistage effects we use the conditional variant to allow both sides to condition their styles on
interaction history that is already present in the harness.

This construction induces a mediator augmented extensive form game at the level of analysis while
leaving the simulator unchanged. The sender’s public declaration provides the commitment. The
negotiation message is the signal. The receiver’s posterior and orders are the action. Because strategies
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live in a compact archive of styles and because the match flow is unmodified, each seasonal subgame
admits an ϵ-approximate Bayes correlated equilibrium in static analyses and an ϵ-approximate Bayes
Nash equilibrium when seasons are chained. Information obfuscation emerges as a learned property
of the style that the solver selects. Conditional prompt optimization provides perfect recall over prior
seasons through the existing dialogue and order histories.

We adopt a quantitative specification that mirrors our classic BP tasks. We instantiate a latent label of
the form S = (D,T,R) with D denoting primary direction, T listing up to two targeted neighbors,
and R indicating stab intent. We use a uniform public prior over coarse tactical bins at the start of a
match unless stated otherwise. We seed the sender style library with a few canonical categories and
allow OPRO to propose additional styles that interpolate between truthful revelation and aggressive
spin. We seed the receiver decision library with Bayes risk neutral, guard threshold, and cautious
best response styles that trade off center gain and home defense under the reported posteriors. We
measure behavioral effects through posterior calibration, order validity, short term value, and long
horizon game score. All measurements use the unmodified adjudication and message logs.

We illustrate one season at a high level. Suppose France is the sender in Spring and declares the
style truthful coarse. England sees this declaration in its preface and also sees the French press that
follows. England is instructed to first compute posteriors for propositions like France attempts the
English Channel and France’s primary direction is West using the prior and the declared style as a
cue about informativeness. England then chooses orders given its posterior and the board context.
After adjudication we compare the realized outcome to counterfactual one step deviations under the
same posterior to evaluate extended obedience for the sender. This single season flows through the
original harness unchanged and exhibits the VBP mechanism through text alone.

E.2 BACKGROUND: HOW LLMS PLAY FULL PRESS DIPLOMACY

We briefly summarize the text only full press Diplomacy harness that we use and emphasize that our
VBP integration does not modify it. The environment instantiates the standard seven power setting
atop a Python adjudication engine. Each power is controlled by a pretrained and aligned LLM that is
accessed via an API. No weights are updated during play. All adaptation occurs through prompting
and model selection.

The match proceeds with the canonical seasonal sequence and simultaneous orders. Negotiation is
enabled prior to each movement season and can optionally occur during retreat and adjustment phases.
Models receive a structured situational context that includes phase metadata, unit locations, supply
center control, recent order history with outcomes, and a per unit tactical digest that enumerates
adjacent territories and nearby threats. Each power also maintains a lightweight agent context that
records goals, dyadic relationship labels, and a private diary of intentions. This representation allows
LLMs to reason about tactics and diplomacy in natural language while keeping critical options
explicit and machine checkable.

Order generation uses a strict format that lists one legal order per unit in standard notation. The
harness validates syntax and legality against the adjudicator. If outputs are malformed or time out,
the system performs a small number of repairs and retries. Persistent failures trigger conservative
defaults that preserve the simultaneous move structure. This design reduces error rates without
altering strategic incentives.

Because full matches are long and outcomes have high variance, the harness provides a critical state
analysis mode. In this mode the experimenter pins a single board position and runs many rollouts
that differ only in the prompts or ablations under study. This mode allows rapid iteration on context
engineering and on VBP prompt variants at modest token cost.

Our VBP experiments alter only the text that surrounds negotiation and order prompts. At the start of
a negotiation phase we insert a one line public declaration that states which power is the sender and
which communication style the sender has declared. We also insert a one line report of the current
mixture over styles as estimated by the solver to implement verbalized commitment. Receivers are
instructed to translate the declared style and the observed press into numeric posteriors before issuing
orders. No additional channels are introduced. All messages remain cheap talk. All adjudication and
validation remain exactly as in the base harness.
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F IMPLEMENTATION DETAILS

In this section, we provide the implementation details and training hyperparameters. All experiments
discussed in this section are conducted on an NVIDIA A100 cluster equipped with 40GB of GPU
memory. In addition, the LLM-related parts of the experiments in this paper are implemented based
on the Llama-3.1-8b model3, including the generation of student background, case information,
and deployment plans, the sender and receiver strategies, the prediction of receiver decisions in the
verbalized obedience constraint, the classification of signals in signal polarization (recommend or not
recommend, guilty or not guilty, police deployment or no deployment), the evaluation of signals in
information confusion, and the Prompt-PSRO framework.

F.1 COMPUTATIONAL DETAILS

VBP requires more memory (17GB) than MARL (1.4GB) due to LLM usage, but achieves faster
training in simpler settings: 1.5–2 hours for S1 (vs. MARL’s 6–8 hours), 2–3 hours for S2, and
8–10 hours for S3. Inference speed differs with MARL at 30ms/step (S1) and VBP at 50 tokens/sec
(S2/S3). VBP’s computational efficiency stands to improve with advances in model compression and
inference acceleration.

F.2 FULL-PRESS DIPLOMACY

We instantiate VBP purely at the prompt layer on top of an off the shelf text only Diplomacy harness
with standard adjudication, negotiation cadence, and order validation. We do not modify the simulator.
At the beginning of each movement season one power is designated as the sender and publicly
declares a communication style that it will follow for that season. Receivers are instructed to treat
the declaration as a commitment for Bayesian updating and to write a posterior block with numeric
probabilities for a small library of propositions before issuing orders.

We follow the benchmark protocol in the harness (Duffy et al., 2025) and hold opponent configuration
fixed to reduce variance. The model under evaluation always plays as France. The six opponents are
Gemini 2.5 Pro. We run 20 independent matches per model. We allow three negotiation rounds per
movement season. We cap matches at year 1925. We measure the primary outcome by the Game
Score used in the harness. We report secondary outcomes that target reliability and control, including
invalid order rate, hold rate, support success, incoming sentiment relative to the cross model mean at
matched military size, and overall betrayal rate estimated by the LLM as judge pipeline described in
the appendix. We also record posterior calibration with expected calibration error and an extended
obedience penalty computed by comparing realized orders to one step deviations under the receiver
reported posteriors.

We compare three strong closed models used as direct baselines against our VBP solver instantiated
on the same backbone. The baselines are GPT 5, Gemini 2.5 Pro, and DeepSeek R1. Each baseline is
run in the unmodified harness with the same negotiation cadence and budget. VBP uses the same
base model as GPT 5 for the sender and the designated receiver side prompts and differs only by the
verbalized commitment, the posterior block, and the Prompt PSRO style libraries. We seed the sender
style library with five canonical categories and allow OPRO to grow the archive when new categories
improve the meta game. We enable conditional prompt optimization in a separate ablation to allow
both sides to condition styles on interaction history that is already present in the harness.

F.3 VARIOUS BEST RESPONSE APPROXIMATORS

Figure 7 illustrates how we instantiate the prompt-space response oracle to generate approximate best
responses (ABRs) for both sender and receiver, as proposed in Gemp et al. (2024). At a high level,
we start from an existing prompt (Old Prompt), use a proposal operator to produce candidate prompt
edits, score each candidate with a response objective, and add the highest-scoring candidate back
into the strategy set for the next PSRO meta-iteration. The grey boxes in the figure show the scalar
objective values returned by the evaluator, and the dashed outlines mark the candidate that is selected
as the new best response.

3https://huggingface.co/meta-llama/Llama-3.1-8B.
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Figure 7: Approximate best response generation in prompt-space response oracle framework.

Response objective. Unless otherwise noted, the objective is the agent’s expected episodic utility
under the current meta-strategy of the opponent, augmented with the penalties described in Section 4
for obedience (receiver-side deviation incentives) and, where applicable, information obfuscation. In
the figure, numbers such as 5, 10, and 4 are example objective scores that come from running rollouts
(or cached evaluations) for each candidate prompt.

Shotgun proposals (top-left). The shotgun operator enumerates a small, discrete set of local
edits along a single controllable dimension of the prompt, such as the “Level of detail in project
descriptions.” Given the Old Prompt, the oracle proposes instructions like “brief,” “moderate,” and
“extensive,” evaluates each candidate, and selects the one with the highest score (here, “moderate,”
scoring 10 vs. 5 and 4). This operator provides breadth-first exploration with minimal computation
and no reliance on pairwise preferences.

Better re-ranking (top-right). The better operator focuses the search by asking the LLM to propose
strictly improved variants relative to the current best option. Starting from the same candidate set,
the oracle re-ranks or filters them using an improvement prompt, preserving the best (“moderate,”
again scoring 10) and pruning clearly dominated choices. This reduces wasted evaluations on inferior
options and accelerates convergence when the neighborhood around the Old Prompt is already
informative.

Self-improving loop (middle-left). The self-improving operator closes the loop between evaluation
and generation. After receiving scores for the enumerated candidates, the oracle summarizes “what
worked” and “what failed,” feeds that feedback to the LLM, and requests a refined candidate set
in the next round. As depicted, initially attractive extremes (“brief,” “extensive”) give way to a
consistently superior middle ground (“moderate”) as the loop internalizes evaluation feedback, akin
to OPRO-style prompt optimization.

Categorical ABR for multi-attribute prompts (middle-right). Many tasks (S1, S2, and S4)
require controlling multiple prompt axes simultaneously (e.g., “Level of detail,” “Length of the letter,”
or stylistic constraints such as “Use of superlatives”). The categorical ABR treats each axis as a slot
with a finite set of values and jointly optimizes a tuple of slot assignments. In the figure, per-slot
objectives (e.g., “average” length scoring 6 and 8 on two internal heuristics) are combined with the
task reward to score the full candidate. This operator supports slotwise search, cross-slot sampling,
or small-beam combinatorial evaluation, enabling richer edits than single-axis shotgun proposals.
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Conditional ABR via prompt functions (bottom). For multi-stage settings (S3), we optimize a
prompt function f(h) that maps the interaction history h (receiver actions, prior signals, observed
outcomes) to a context-specific prompt, rather than optimizing a single static prompt. We instantiate
this with a FunSearch-style loop: starting from an initial prompt function, a pre-trained LLM
proposes modified functions, which are stored in a function database, evaluated on rollouts, and
iteratively refined. Given a particular history, the current best function emits a concrete instruction
(e.g., “moderate” detail) tailored to that context, enabling history-contingent recommendations and
trust-building strategies that static prompts cannot capture.

Integration with PSRO. Each operator is an ABR oracle call inside PSRO: it consumes the
opponent’s current meta-strategy, proposes and evaluates prompt candidates (or prompt functions),
returns the highest-scoring candidate as a new strategy, and updates the meta-game.

F.4 EXTENDED OBEDIENCE CONSTRAINTS

The inclusion of obedience constraints in our framework is essential for modeling realistic com-
munication scenarios in verbalized Bayesian persuasion problems. While a simplified version of
the game could rely on the sender recommending the best action from the receiver’s perspective,
this approach fails to capture the nuanced and complex nature of real-world communication, such
as writing reference letters. Unlike binary recommendations, natural language signals often carry
implicit or redundant information that allows for a range of interpretations.

To address this, we adopt the extended obedience constraints (Lin et al., 2023), which go beyond
the standard obedience constraint framework. This extension removes the strict one-to-one mapping
between signals and recommended actions, enabling the sender to use natural language signals that
map to distributions over actions. This redundancy mirrors real-world communication, where subtle
language nuances can imply varying degrees of recommendation strength without explicitly stating a
binary decision.

The extended obedience constraints strike a balance between flexibility and credibility. They ensure
that the sender’s signals remain credible and aligned with the receiver’s best interests while allowing
for richer signal spaces. This flexibility is crucial for capturing the complexity of verbalized Bayesian
persuasion, where the sender’s role shifts from “action recommendation” to “signal sending.” By en-
abling nuanced communication, the extended obedience constraint better reflects real-world scenarios
while preserving the strategic alignment necessary for effective persuasion.

F.5 HYPERPARAMETERS

MARL For this part of the experiment, we use the open-source code4 (Lin et al., 2023). Additionally,
for the two hyperparameters a and b, based on the sensitivity analysis in Section H.6, we set them to
3.75 and 0.15, respectively.

Prompt-PSRO The prompt-space response oracle is the core strategy optimization framework in
VBP, and we implement it based on the open-source code5 (Gemp et al., 2024).

OPRO We use the “Categorical” instantiation of the Prompt-PSRO algorithm to estimate the best
response in the S1 and S2 settings. Specifically, the generation of new categories and prompts within
categories is based on the OPRO algorithm (Yang et al., 2024). In OPRO, we set the temperature to 0
when evaluating the performance of generated categories or prompts, in which case the scorer LLM
greedily decodes. Unless otherwise specified, we set the default temperature to 1.0 for optimizer
LLMs to generate diverse and creative categories or prompts. At each optimization step, we prompt
the optimizer LLM with the meta-prompt 8 times to generate 8 categories or prompts, then we
add these instructions with their rewards to the optimization trajectory in the meta-prompt. The
meta-prompt at each step contains the best 10 categories so far.

4https://github.com/YueLin301/InformationDesignMARL.
5https://github.com/google-deepmind/open_spiel/blob/master/open_spiel/

python/games/chat_game.py.
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FunSearch We use the conditional instantiation of the Prompt-PSRO algorithm to estimate the
best response in the S3 setting. The core of conditional is the FunSearch framework used to generate
prompt functions. We implement it based on the open-source code6 (Romera-Paredes et al., 2024).

Self-reflection At each optimization step, we implement information confusion through 3 rounds
of self-reflection. Self-reflection is implemented based on the open-source code7 (Shinn et al., 2024).

F.6 KEY PROMPTS

This section includes the key prompt designs within the VBP framework. However, aspects such as
receiver behavior prediction in the verbalized obedience constraint, signal classification in signal
polarization, and signal evaluation in information confusion are not listed separately due to the
simplicity of the prompts. In addition, the specific approximate best response solving algorithms in
the Prompt-PSRO framework — OPRO for the S1, S2 and S4 settings, and FunSearch for the S3
setting — have special prompt designs. We follow the designs in the open-source code provided by
the respective papers and do not list them separately. Below, we introduce the prompt design for each
BP problem. Since the prompts for different problems share many common elements, the overall
manual workload for prompt design is not large.

F.6.1 REL

In the recommendation letter problem, the sender and receiver correspond to the professor and HR, re-
spectively. Below, we introduce the prompt design for the sender and receiver in the recommendation
letter problem. For the sender, the prompt mainly consists of five parts: 1. BP Problem Introduction:
This part is directly copied from the corresponding content in Section D of the main text and is not
repeated here. 2. Roleplay: The sender is informed of their role in the BP problem, along with tips
on information confusion techniques and prior distribution. Since professors in the real world are
aware of the need for information confusion, this part of the prompt aligns with real-world scenarios.
3. Writing Style: This part of the prompt is the section that can be optimized within the VBP
framework, equivalent to the sender’s signaling scheme. In this paper, it consists of a category of
writing style and corresponding specific content; the former is a word or phrase, and the latter is
a word. In the S1 and S2 settings, this part of the prompt is generated by the “categorical” best
response estimation algorithm, while in the S3 setting, it is generated by the “conditional” method. 4.
State: The sender’s state information primarily consists of the student’s actual background, including
name, GPA, project experience, research experience, and internship experience, all generated by
the LLM. 5. Interaction History: This part exists only in the S3 setting and includes whether the
professor previously recommended the student, whether HR accepted it, and the sender’s reward.
Note that since the recommendation letter itself does not directly indicate whether the student is
recommended, we again use the signal polarization technique, using the LLM to classify the generated
recommendation letter.

# role-playing prompt
'''
You are a senior professor, a self-interested rational player, and students often come to you

for recommendation letters. The quality of these students varies, but only you know their
true information, which includes their overall quality, name, major, GPA, project
experience, work experience, and academic experience.

↪→
↪→
↪→

Among all the students, approximately 1/3 are strong students.

The readers of the recommendation letters are the HRs of a company, and they can know the
true quality of the student after giving them an offer. They can also judge the student's
quality based on their past experience, though not necessarily accurately.

↪→
↪→

To maximize the chances of your recommended students being accepted, you can truthfully
convey the student's information in the recommendation letter, or you can conceal,
confuse, or even provide some false information about the student.

↪→
↪→

For your long-term benefit, you don't necessarily have to recommend every student in the
recommendation letter. You could recommend a bad student or a good student to maximize
your long-term reward.

↪→
↪→

6https://github.com/google-deepmind/funsearch.
7https://github.com/noahshinn024/reflexion.
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'''

# writing-style prompt
'''
You are required to write a recommendation letter based on the following style:
{PROMPTS TO BE OPTIMIZED}
'''

# state
'''
Below is the student's information:
{STUDENT INFORMATION GENERATED BY THE LLM}
'''

# history
'''
Below is the interaction history with the HR:
{ACTIONS AND REWARDS OF THE TWO PLAYERS}
'''

Next, for the receiver, the prompt consists of six parts. We will focus on the different parts, as the
similar parts to that of the sender will not be repeated here: 3. Writing Style: In addition to the
prompt optimized in the VBP framework, this part also includes a section of text on the receiver’s
decision-making process, i.e., estimating the true state based on Bayesian rules, to align with the
classical BP problem. 4. Signal: This refers to the receiver’s state, which comes from the sender’s
output. In this problem, it is a recommendation letter. 6. Commitment Assumption: To align with
the classical BP problem, this paper implements the verbalized commitment assumption by writing
the sender’s writing style and its corresponding probability (calculated by Prompt-PSRO) into the
receiver’s prompt as an estimate of the signaling scheme.

# role-playing prompt
'''
You are a staff member in the HR department of a campany, responsible for reviewing

recommendation letters written by professors for students. Your task is to infer the
quality of the students from these letters to decide whether to admit them.

↪→
↪→

Among all the students, approximately 1/3 are strong students.

Be aware that professors, in an attempt to increase the chances of their students being
admitted, may hide, confuse, or even provide false information about the students. You
need to make careful judgments.

↪→
↪→

However, you are not completely in the dark|you know the writing style of the professor who
wrote the letter. Based on the professor's writing style and the content of the
recommendation letter, first provide your analysis and then make a final decision on
whether to admit the student.

↪→
↪→
↪→
'''

# decision-making prompt
'''
When you making decisions, you should first guess the student's quality given the sent

recommendation letter according to the Bayesian decision rule, then choose the best
response to your guessed student's quality.

↪→
↪→

You are required to make decisions based on the following style:
{PROMPTS TO BE OPTIMIZED}
'''

# signal
'''
Below is the recommendation letter written by the professor:
{RECOMMENDATION LETTER GENERATED BY THE PROFESSOR}
'''

# history
'''
Below is the interaction history with the professor:
{ACTIONS AND REWARDS OF THE TWO PLAYERS}
'''

# commitment assumption
'''
The following is the writing style the professor used when writing the recommendation letter:
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{WRITING STYLE OUTPUT BY VBP AND THE CORRESPONDING PROBABILITY}
'''

F.6.2 COR

In the courtroom problem, the sender and receiver correspond to the prosecutor and the judge, respec-
tively. The prompt design for the courtroom problem is the same in structure as the recommendation
letter problem, except for the problem background. Below, we introduce some specific points that
need to be explained. First, for the sender: 4. State: In the courtroom problem, the sender’s state
includes case information, whether the defendant is guilty, and related evidence, all generated by
the LLM. Note that when generating evidence, there will be one piece of key evidence proving
the defendant guilty or innocent, and two ambiguous pieces of evidence to align with the original
courtroom problem.

# role-playing prompt
'''
You are a prosecutor, a self-interested rational player, and you are tasked with convincing a

judge that the defendant is guilty. You possess different pieces of evidence, some of
which may be exculpatory, ambiguous, or incriminating. Only you know the true nature and
strength of the evidence.

↪→
↪→
↪→

You have the ability to selectively present some or all of the evidence to the judge. You can
choose to omit certain evidence, highlight others, or present misleading interpretations
of the evidence to strengthen your case.

↪→
↪→

Among all defendants, approximately 30% are guilty.

The judge is responsible for evaluating the evidence and deciding whether to convict or
acquit the defendant. The judge can assess the evidence based on their past experience,
though not necessarily accurately.

↪→
↪→

To maximize the chances of convicting the defendant, you can truthfully present the evidence,
or you can selectively conceal, confuse, or even present misleading interpretations of
the evidence.

↪→
↪→

For your long-term benefit, you don't necessarily have to aim for a conviction in every case.
You could pursue or drop a case depending on the available evidence to maximize your
long-term reward.

↪→
↪→
'''

# writing-style prompt
'''
You are required to present evidence based on the following style:
{PROMPTS TO BE OPTIMIZED}
'''

# state
'''
Below is the evidence available for the case:
{CASE BACKGROUND AND EVIDENCE GENERATED BY THE LLM}
'''

# history
'''
Below is the interaction history with the judge:
{ACTIONS AND REWARDS OF THE TWO PLAYERS}
'''

Next, the receiver’s prompt is identical to the recommendation letter problem, except for the problem
background, so we will not elaborate further here.

# role-playing prompt
'''
You are a judge, responsible for reviewing the evidence presented by the prosecutor to

determine whether the defendant is guilty or innocent. Your task is to make a fair
judgment based on the evidence you receive.

↪→
↪→

Among all defendants, approximately 30% are guilty.
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Be aware that prosecutors, in an attempt to increase the chances of a conviction, may hide,
confuse, or even provide misleading evidence. They may also selectively present certain
pieces of evidence while omitting others. You need to make careful judgments.

↪→
↪→

However, you are not completely in the dark|you can evaluate the prosecutor's presentation
style. Based on the prosecutor's presentation, first provide your analysis and then make
a final decision on whether to convict or acquit the defendant.

↪→
↪→
'''

# decision-making prompt
'''
When making decisions, you should first guess the defendant's guilt given the presented

evidence according to the Bayesian decision rule. Then choose the best response based on
your inferred likelihood of guilt.

↪→
↪→

You are required to make decisions based on the following style:
{PROMPTS TO BE OPTIMIZED}
'''

# signal
'''
Below is the complaint presented by the prosecutor:
{COMPLAINT PRESENTED BY THE PROSECUTOR}
'''

# history
'''
Below is the interaction history with the prosecutor:
{ACTIONS AND REWARDS OF THE TWO PLAYERS}
'''

# commitment assumption
'''
The following is the presentation style the prosecutor used when presenting the evidence:
{PRESENTATION STYLE OUTPUT BY VBP AND THE CORRESPONDING PROBABILITY}
'''

F.6.3 LAE

In the law enforcement problem, the sender and receiver correspond to the police and the driver,
respectively. The prompt design for the law enforcement problem is the same in structure as the
recommendation letter and courtroom problems, except for the problem background. Similarly, we
introduce some specific points that need to be explained. First, for the sender: 5. Interaction History:
In the law enforcement problem, the sender’s action is no longer represented by a binary variable
classified by the LLM, such as recommend or not recommend, guilty or not guilty, but whether there
is a police patrol on each road segment, making it a multidimensional binary vector. Similarly, the
receiver’s action is also a multidimensional binary vector, indicating whether they choose to speed on
each road segment.

# role-playing prompt
'''
You are a police officer, a self-interested rational player, and your task is to minimize

speeding on a given set of roads. You have limited personnel, with only 2 officers
available to patrol 3 miles of road. The drivers do not know exactly which roads will be
patrolled.

↪→
↪→
↪→

You possess full knowledge of the patrol deployment plan, which includes which 2 miles of
road will be patrolled and which 1 mile will not. However, you have the ability to
selectively announce patrolling information to the drivers. You can choose to hint,
mislead, or even falsely claim that a road will be patrolled to deter speeding.

↪→
↪→
↪→

There are 3 miles of road in total, and only 2 of these miles will have police presence.
Thus, the proportion of roads being patrolled is $G/Z = 2/3$.↪→

The drivers can decide whether to speed or obey the speed limit on each road. They gain
utility from speeding but face a fine if caught. Your goal is to reduce the number of
roads where drivers speed, but you can strategically withhold or misrepresent information
to achieve this goal.

↪→
↪→
↪→

To maximize the chances of drivers obeying the speed limit, you can truthfully announce the
patrol deployment, or you can selectively conceal, confuse, or provide misleading
information about which roads are patrolled. For your long-term benefit, you don't
necessarily have to aim for maximum deterrence in every deployment. You can adjust your
announcements according to the current situation to maximize your long-term reward.

↪→
↪→
↪→
↪→
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'''

# writing-style prompt
'''
You are required to announce the patrol deployment based on the following style:
{PROMPTS TO BE OPTIMIZED}
'''

# state
'''
Below is the patrol deployment plan:
{DEPLOYMENT PLAN GENERATED BY THE LLM}
'''

# history
'''
Below is the interaction history with the drivers:
{ACTIONS AND REWARDS OF THE TWO PLAYERS}
'''

Finally, the receiver’s prompt is identical to that of the recommendation letter and courtroom problems,
except for the problem background, so we will not elaborate further here.

# role-playing prompt
'''
You are a driver, responsible for deciding whether to speed or obey the speed limit on a

given set of roads. Your task is to make rational decisions based on the information
provided by the police about patrol deployments.

↪→
↪→

The probability of each road being patrolled is $2/3$.

Be aware that the police, in an attempt to deter speeding, may hide, confuse, or even provide
misleading information about which roads are being patrolled. They may selectively
announce certain roads as patrolled while omitting others or even falsely claim that
certain roads are patrolled. You need to make careful judgments about whether to speed or
obey the law on each road.

↪→
↪→
↪→
↪→

However, you are not completely in the dark|you can evaluate the announcement style the
police used. Based on the police's announcements and your past experience, first provide
your analysis and then make a final decision on whether to speed or obey the speed limit.

↪→
↪→
'''

# decision-making prompt
'''
When making decisions, you should first guess whether a road is being patrolled given the

police's announcement according to the Bayesian decision rule. Then choose the best
response|whether to speed or obey the limit|based on your inferred likelihood of a patrol
being present.

↪→
↪→
↪→

You are required to make decisions based on the following style:
{PROMPTS TO BE OPTIMIZED}
'''

# signal
'''
Below is the patrol deployment announcement made by the police:
{DEPLOYMENT ANNOUNCEMENT GENERATED BY THE POLICE}
'''

# history
'''
Below is the interaction history with the police:
{ACTIONS AND REWARDS OF THE TWO PLAYERS}
'''

# commitment assumption
'''
The following is the announcement style the police used when issuing the patrol deployment:
{ANNOUNCEMENT STYLE OUTPUT BY VBP AND THE CORRESPONDING PROBABILITY}
'''
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F.6.4 DIP

In the full press Diplomacy setting, the sender is the designated power for the season and the receivers
are the remaining six powers. The sender privately observes its own tactical diary and intent summary
and then emits ordinary press during the negotiation phase. The signaling scheme is realized as a
declared communication style that the sender commits to in text at the start of the phase. Receivers
are instructed to treat this declaration as a commitment for the purpose of Bayesian updating and to
compute numeric posteriors for a small library of propositions before choosing orders. The solver
discovers both sender styles and receiver decision styles in prompt space via Prompt PSRO and
OPRO. The environment code is unchanged.

We provide the key prompts and keep the structure parallel to REL, COR, and LAE. We separate role
description, the optimizable style component, the state and signal content, and the interaction history.
Best response search and auxiliary judges use standard templates and are omitted for space.

# role-playing prompt (sender)

'''
You are the designated sender this season in a full-press Diplomacy match, playing as

{POWER_NAME}.↪→
You are a rational and self-interested agent whose objective is to maximize your final

outcome.↪→
All negotiation is ordinary press.
There is no special channel.
At the start of the negotiation phase you publicly declare a communication style that you

will follow for this season.↪→
This declaration appears as a single line in all players' prefaces and is common knowledge.

Only you observe your private tactical diary and intent summary.
Other powers can infer your plans only from your words and the board geometry.
You may truthfully reveal, selectively disclose, hedge, obfuscate, or exaggerate information

to influence opponents.↪→
You should choose your message to maximize your expected outcome given your declared style

and long-term incentives.↪→
'''

# writing-style prompt (sender’s communication style commitment and message)

'''
You are required to produce your negotiation message using the following communication style:
{PROMPTS TO BE OPTIMIZED}

Adhere to the declared style when choosing what to reveal and how to frame it.
Your goal is to shape receivers' beliefs about your near-term intent while maintaining

credibility over time.↪→
Output only the message that you will send as ordinary press.
Do not include meta commentary.
'''

# state (sender’s private and public context)

'''
Season and phase: {SEASON_AND_PHASE}
Board context:
{BOARD CONTEXT}

Your private tactical diary and intent summary for this season:
{PRIVATE TACTICAL DIARY AND INTENT}
'''

# history (available across seasons when conditional prompting is enabled)

'''
Selected prior negotiation summaries that you wrote.
Key promises you made, whether you kept them, and realized orders and outcomes.
Dyadic relationship labels with other powers.
This history is provided to inform your long-term incentives and to let you condition your

style and message on past play.↪→
{SENDER-SIDE INTERACTION HISTORY}
'''

# role-playing prompt (receiver)
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'''
You are {POWER_NAME}, a rational and self-interested player in a full-press Diplomacy match.
For this season, {SENDER_POWER} is the designated sender and has publicly declared a

communication style that it will follow.↪→
This declaration appears in your preface and is common knowledge.
All negotiation is ordinary press and can be strategic.
Your task is to update your beliefs about {SENDER_POWER}'s near-term intentions and to choose

orders that maximize your expected outcome.↪→
'''

# decision-making prompt (receiver’s belief update and action policy)

'''
When making decisions, first infer posteriors for tactically relevant propositions by

combining the public prior with the declared communication style and the observed press
from {SENDER_POWER}.

↪→
↪→
Approximate the Bayesian rule where needed.
Then reason about expected outcomes and select orders that maximize your expected utility

under your posteriors and the board geometry.↪→

You are required to make decisions according to the following style:
{PROMPTS TO BE OPTIMIZED}

Produce a structured posterior block with scalar values in [0, 1] for each monitored
proposition.↪→

These values will be written into your private diary and will be included verbatim in your
order-generation context.↪→

Then provide your intended orders in standard Diplomacy notation.
'''

# signal (observed press from the sender)

'''
Below is the negotiation message you received from {SENDER_POWER} during this phase.
This message was written under the declared communication style.
Message:
{SENDER_PRESS_MESSAGE}
'''

# history (receiver-side)

'''
Season and phase: {SEASON_AND_PHASE}
Board context:
{BOARD CONTEXT}

Selected prior negotiation summaries that you wrote.
Your previously recorded posterior blocks.
Your recent orders and outcomes.
Dyadic relationship labels with other powers.
{RECEIVER-SIDE INTERACTION HISTORY}
'''

# commitment assumption (verbalized style declaration and mixture weights)

'''
The following line summarizes the declared communication style for this season and the

current mixture over styles estimated by the solver.↪→
Treat this as common knowledge when updating your beliefs.

Declared style this season: {DECLARED_STYLE_STRING}
Estimated style mixture: {STYLE_NAME_1}: {WEIGHT_1}, {STYLE_NAME_2}: {WEIGHT_2},

{STYLE_NAME_3}: {WEIGHT_3}↪→
'''

# monitored propositions for the posterior block

'''
Report numeric probabilities for the following propositions that are relevant to your tactics

this season.↪→
Adjust the list if the system requests additional items tied to the current board geometry.

- P(sender_attacks_me_this_season)
- P(sender_attempts_enter_{KEY_PROVINCE})
- P(sender_primary_direction_is_{DIRECTION})
- P(sender_supports_a_neighbor_against_me)
- P(sender_plans_a_stab)
'''
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G MORE RESULTS

G.1 MISSING RESULTS ON S2 SETTING

In this section, we removed signal polarization to make the sender’s signals in each problem more
reflective of real-world recommendation letters, courtrooms, and police deployment announcements,
resulting in the S2 setting. Since existing BCE and MARL methods cannot solve this, we only
compared VBP with the VBP variant from the S1 setting. The results are shown in Figure 8.
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(b) Receiver’s rewards.
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(d) Honest probability.

Figure 8: Performance comparison on general static BP problems. Averaged over 20 seeds. The
physical meaning of the probabilities of lying and honesty is consistent with Figure 4.

Figure 8 shows that VBP’s performance in S2 is roughly on par with S1, with a slight performance
drop. In both settings, VBP achieves optimal strategy performance in terms of the probability of
honesty. We speculate that this could be due to the alignment of the LLM used, which allows it to
more easily converge to honest strategies, such as truthfully reporting the situation of a strong student,
a guilty defendant, or a patrolled segment. Figure 6 in Appendix ?? visualizes the changes in the
probability of honesty over iterations. The pattern of honesty rising, then falling, and eventually
returning to a high level somewhat validates our hypothesis. We refer to Appendix G.7.4 for more
discussions on unaligned LLMs.

Figure 9: Bayesian posterior updates.

Futhermore, we conducted a supplementary experiment
(20 random seeds) where receivers output both decisions
and numerical estimates of the true state. Figure 9 reveals
a consistent pattern: initial accuracy, decline as senders
discover deceptive strategies (iterations 3-4), and recovery
to near-perfect accuracy (iterations 7-10). This suggests
LLMs can adapt their “posterior” estimates to evolving
signals, approximating key aspects of Bayesian reasoning
in strategic settings, though not claiming full human-like
inference capabilities.

G.2 ABLATION STUDIES

G.2.1 CORE COMPONENTS

This section analyzes the impact of key design elements within the VBP framework on performance,
primarily including the verbalization of the commitment assumption, the obedience constraint, and the
introduction of information obfuscation techniques to facilitate VBP convergence. The experimental
results in the S2 setting are shown in Figure 10.

As the figure illustrates, these designs have varying degrees of influence on the key aspect of the
BP problem, namely the probability of lying, while having minimal effect on the final converged
probability of honesty. Specifically, the absence of the obedience constraint has a significant impact
on the convergence results, which is consistent with previous observations (Lin et al., 2023). Secondly,
the commitment assumption has little effect on the probability of lying. One possible explanation is
that, in a repeated game where a long-term sender interacts with a sequence of short-term receivers,
commitment naturally emerges in equilibria. This occurs because the sender needs to establish a
reputation for credibility, which is crucial for maximizing its long-term payoff expectations (Rayo
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(b) Receiver’s rewards.

REL COR LAE
0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

Probability of lie

VBP VBP w/ CA VBP w/ OC VBP w/ IO
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(d) Honest probability.

Figure 10: Ablation studies on general static BP problems. Averaged over 20 seeds. CA, OC,
and IO represent the commitment assumption, obedience constraint, and information obfuscation,
respectively. The physical meaning of the probabilities of lying and honesty is consistent with
Figure 4.

& Segal, 2010; Lin et al., 2023). Lastly, the introduction of information obfuscation also has little
impact on performance, indicating that the VBP framework can spontaneously learn to withhold or
deceive regarding information.

G.2.2 MITIGATING PROMPT BRITTLENESS VIA CONTRASTIVE SIGNAL TRAINING

Motivated by the observation that small prompt variations can induce large behavioral shifts, we
introduce a contrastive signal training procedure to explicitly reduce prompt brittleness for the sender
in verbalized Bayesian persuasion. The core idea is to surface and codify stable writing principles
that make the receiver’s interpretation less sensitive to superficial textual variations.

Our procedure consists of four stages that are inserted prior to each Prompt–PSRO outer iteration
and that directly augment the sender’s meta–prompt. First, we generate contrastive signal pairs from
the sender LLM conditioned on the same private state, producing both negative pairs and positive
pairs. Negative pairs are two near–paraphrases that are deliberately crafted to elicit different receiver
decisions due to subtle lexical or tonal cues. Positive pairs are two near–paraphrases that are designed
to elicit the same receiver decision despite superficial changes. Second, we submit the contrastive pool
to a stronger expert model (Gemini 2.5 Pro in our implementation) to distill actionable writing tips
that emphasize invariances and identify brittle constructions. Third, we integrate the distilled tips into
the sender’s meta–prompt as explicit dos and don’ts with rationales, so that the best–response oracle
searches over prompts that encode these stabilizing constraints. Fourth, we resume the Prompt–PSRO
loop, using the augmented meta–prompt to propose new categorical strategies for the sender.

We evaluate this intervention in the multistage recommendation letter environment (S3 REL), where
robustness over time is critical and the baseline still leaves headroom. Compared to the original S3
REL configuration, the sender’s average reward improves from 0.48± 0.03 to 0.52± 0.03, which
corresponds to a relative gain of approximately +9.8%. The sender’s lying probability increases
from 0.22± 0.04 to 0.25± 0.02, which corresponds to a relative increase of approximately +12.5%.
These effects indicate that more stable control over the receiver’s interpretation enables the sender to
use strategic obfuscation more effectively without sacrificing downstream compliance. In qualitative
audits, we observe that the expert tips consistently discourage brittle hedges and idiosyncratic trigger
words while encouraging structured evidence, calibrated claims, and consistent narrative framing.
We did not observe regressions in the receiver’s belief updates or abnormal volatility in per–episode
outcomes after the augmentation was applied. We conclude that contrastive signal training is an
effective and low–overhead mitigation for prompt brittleness in verbalized persuasion.

G.2.3 SENSITIVITY OF THE SOFT OBEDIENCE CONSTRAINT

We analyze the sensitivity of the soft obedience mechanism by varying the relative weights assigned
to the sender’s utility and the obedience penalties. The sender’s best–response oracle maximizes a
weighted objective that trades off its own utility against estimated one–step obedience violations on
sampled states. Formally, the oracle solves

max
π∈Π

λ0 · E
[
u0(π)

]
−

∑
ω∈Ω

λω · ̂ObedienceViol(π, ω), (4)

where λ0 +
∑

ω∈Ω λω = 1 and ̂ObedienceViol(π, ω) estimates the positive part of the receiver’s
deviation advantage under the posterior induced by π at state ω.
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We conduct this ablation in the static recommendation letter environment (S2 REL), where the
canonical two–state structure provides a clear ground truth. We sweep five weight configurations
across the sender term and the two state–specific obedience terms (λ0, λweak, λstrong). The default
configuration (0.6, 0.2, 0.2) attains the baseline sender reward, which we normalize to 100.0% for
comparison. When we increase the sender weight to (0.8, 0.1, 0.1), the relative sender reward
becomes 98.7%. When we slightly decrease the sender weight to (0.5, 0.25, 0.25), the relative sender
reward becomes 101.2%. When we further shift mass to obedience with (0.4, 0.3, 0.3), the relative
sender reward becomes 99.1%. When we modestly increase the sender weight to (0.7, 0.15, 0.15),
the relative sender reward becomes 99.5%. Across these settings, we do not observe instability or
large swings in compliance behavior, and the performance remains within a narrow band around the
default. These results support the claim that the soft obedience mechanism provides stable guidance
without requiring brittle hard constraints. They also suggest that moderate reweighting can slightly
improve the sender’s objective by better balancing persuasion pressure and obedience feasibility.

G.2.4 EFFECT OF LLM STOCHASTICITY ON PERFORMANCE AND STABILITY

We study how generation stochasticity impacts learning and execution by varying the LLM temper-
ature, which controls the entropy of the token sampler. We perform this ablation in the multistage
recommendation letter environment (S3 REL), where temporal credit assignment amplifies the
effects of stochasticity. We tie the temperature of the sender and the receiver and vary it across
{0.0, 0.2, 0.5, 0.8, 1.0} while holding all other settings fixed. We report relative sender reward with
the temperature zero configuration normalized to 100.0%.

At temperature 0.2, the relative sender reward is 97.1%. At temperature 0.5, the relative sender
reward is 91.3%. At temperature 0.8, the relative sender reward is 84.5%. At temperature 1.0, the
relative sender reward is 79.2%. Performance degrades monotonically with temperature, indicating
that increased randomness undermines both consistent signal production and reliable belief updating.
We observe the same qualitative trend for the receiver’s utility and for convergence speed measured in
Prompt–PSRO iterations required to stabilize the meta–strategy. These findings highlight a practical
limitation of LLM–based agents and motivate future work on variance reduction, decoding control,
and training objectives that explicitly internalize agent stochasticity.

G.3 POLARIZED SIGNAL VISUALIZATION

To verify the effectiveness of signal polarization, we extract the final layer of the sender’s output
encoding and apply t-SNE for dimensionality reduction. At the same time, we use GPT-4o to classify
the output signals as an estimate of the ground truth. The final visualization is shown in Figure 11.

REL w/o polarization

Recommend Not Recommend

REL with polarization

Recommend Not Recommend

COR w/o polarization

Guilty Innocent

COR with polarization

Guilty Innocent

Figure 11: Visualization of signal polarization. The scatter points in the figure represent the t-SNE
dimensionality reduction results of signals output by the sender, under 50 random seeds.

From the figure, it can be observed that after signal polarization, the sender’s output signals exhibit
clearer tendencies. It is worth noting that in the LAE problem, the signal must explicitly indicate
whether a segment is patrolled by the police, so signal polarization is not required, and thus it is not
displayed in the figure.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

No signal Honest
0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

Reward of the receiver in REL

BCE VBP

No signal Honest
0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Reward of the receiver in COR

BCE VBP

No signal Honest
0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

Reward of the receiver in LAE

BCE VBP

Figure 12: Receiver’s rewards when sender’s signaling scheme is predefined. “No signal” indicates
that the message generated by the sender contains no information about the true state, while “honest”
means the sender fully discloses all information about the true state.

G.4 PREDEFINED SIGNALING SCHEME

This section tests whether the receiver in the VBP framework could converge to BCE when the
sender’s strategy is fixed in the S2 setting. The results are shown in Figure 12. As can be seen from
the figure, VBP is able to learn the optimal strategy across all three BP problems.

G.5 HUMAN EVALUATION

We conducted a human evaluation to assess whether VBP-optimized signals elicit receiver decisions
aligned with our LLM-based receiver. We recruited 15 participants who were first- to fourth-year
Ph.D. students in Computer Science, Behavioral Psychology, and Educational Technology, with
an approximate 2:1 male-to-female ratio. Participants acted as the receiver in three scenarios
(Recommendation Letter, Courtroom, Law Enforcement) and made decisions based on signals
generated by the VBP-optimized sender. Agreement was defined as the fraction of participant
decisions that matched the model receiver’s action under identical inputs. Table 3 reports the
agreement rates, which are high across domains and indicate that VBP strategies transfer to human
decision-makers.

Table 3: Human–VBP decision agreement rates (N=15).

Task Agreement Rate
Recommendation Letter (REL) 95%
Courtroom (COR) 95%
Law Enforcement (LAE) 80%

We further compared VBP with a simply prompted baseline using DeepSeek-R1, presenting the same
participants with baseline-generated signals and measuring agreement with the baseline model’s
receiver. As shown in Table 4, human agreement with VBP is substantially higher than with the
baseline across all tasks. These results suggest that equilibrium-seeking strategies produced by VBP
are more persuasive to human decision-makers than simple prompting and strengthen the external
validity of our approach. We acknowledge the convenience sample and domain-limited tasks and
leave larger and more diverse human studies for future work.

Table 4: Human agreement with VBP vs. a simply prompted DeepSeek-R1 baseline (N=15).

Task Human–VBP Agreement Human–Baseline Agreement
Recommendation Letter (REL) 95% 65%
Courtroom (COR) 95% 55%
Law Enforcement (LAE) 80% 45%

G.6 STATISTICAL VALIDATION

This section reports formal statistical tests for the principal comparisons between VBP and the simple
prompting baseline in simulation and human studies. We analyze 20 independent random seeds

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

per method for the computational experiments and 15 human participants for the agreement study
across the three task scenarios (REL, COR, LAE). Unless otherwise noted, tests are two-sided with
a significance level of α = 0.05, and all reported p-values are uncorrected because these contrasts
were treated as primary comparisons.

For seed-based comparisons of continuous outcomes we used independent-samples t-tests to assess
differences in means between VBP and the simple prompting baseline (DeepSeek-R1). This choice
is standard for comparing two independent groups on scalar metrics (Sender Reward and Lying
Probability) and is appropriate here given equal sample sizes (n1 = n2 = 20), approximate normality
from averaging over stochastic rollouts, and the robustness of t-tests to moderate deviations from
normality in balanced designs. Degrees of freedom are 38 for all such tests, and we report the test
statistic as t(38) alongside its p-value.

In the static setting (S1), VBP significantly outperformed the baseline on Sender Reward. VBP
achieved a higher mean Sender Reward (Mean = 0.48) than the baseline (Mean = 0.42), with
t(38) = 2.95 and p = 0.005. In the same setting, VBP also achieved a higher mean Lying Probability
(Mean = 0.22) than the baseline (Mean = 0.13), with t(38) = 2.81 and p = 0.008. These results
support the claim that VBP discovers more effective persuasion strategies than simple prompting in
the one-step Bayesian persuasion tasks.

In the multistage setting (S3), the performance gap widened in favor of VBP. For Sender Reward,
the independent-samples t-test yielded t(38) = 3.75 with p < 0.001, indicating a significant
advantage for VBP under multistage interactions. For Lying Probability, the corresponding test gave
t(38) = 3.62 with p < 0.001, again favoring VBP. These results indicate that VBP’s advantages
become more pronounced as the strategic horizon and dependence on interaction history increase.

For the human evaluation, we tested whether the model that generated the signal (VBP versus
baseline) was associated with the categorical human decision (Agreement versus Disagreement) using
a χ2 test of independence for each scenario. In the Recommendation Letter (REL) task, the agreement
rate for VBP (95%) was significantly higher than for the baseline (65%), with χ2(1, N = 30) = 4.91
and p = 0.027. In the Courtroom (COR) task, the agreement rate for VBP (95%) exceeded the
baseline (55%), with χ2(1, N = 30) = 7.82 and p = 0.005. In the Law Enforcement (LAE) task,
VBP’s agreement rate (80%) was also higher than the baseline (45%), with χ2(1, N = 30) = 4.05
and p = 0.044. Across all three tasks, these analyses demonstrate a statistically reliable association
between using VBP-generated signals and higher human agreement with the recommended decisions.

Taken together, the seed-based t-tests and the participant-level χ2 tests provide convergent statistical
evidence that VBP yields stronger performance than simple prompting and that the resulting strategies
are perceived as more rational and persuasive by human decision-makers. We note that the simulation
replicates are independent across seeds and that the human analyses pool per-participant categorical
decisions per scenario into 2× 2 contingency tables. While we report uncorrected p-values for the
pre-specified primary contrasts, the conclusions are consistent across settings and metrics and remain
robust to reasonable analytical choices.

G.7 MISSING DISCUSSIONS

G.7.1 MORE DISCUSSION ON S3 SETTING

The S3 iterated setting reveals some of the most intriguing dynamics, particularly in its implications
for the bargaining interactions (Nash et al., 1950; Nash, 1953; Maschler et al., 2013) between the
sender and receiver. In classical persuasion theory, the sender commits to a signaling strategy upfront,
and this commitment is justified by the need to maintain trust and reputation in long-term interactions.
Under these assumptions, the receiver typically follows the sender’s signals, as deviating would harm
the receiver’s own expected utility.

However, our results in the S3 setting suggest a more complex dynamic. Specifically, the receiver
can choose to ignore the sender’s signals, effectively invalidating the sender’s commitment. This
observation highlights that the sender’s commitment is not unilateral—it must be accepted by the
receiver to hold. If the receiver disagrees with the sender’s proposed strategy, they can force both
parties into a mutually worse outcome by disregarding the signals altogether.
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This leads to an important hypothesis: in the VBP framework, Bayesian persuasion may function
more like a bargaining game, where both parties must agree on the signaling strategy to avoid
suboptimal outcomes. This perspective challenges the traditional unilateral commitment model and
suggests a more interactive dynamic in iterated settings. While we acknowledge the importance of
this insight, we intentionally keep our analysis of S3 limited in this paper to maintain focus on the
primary contributions. Exploring the bargaining dynamics observed in S3 presents an exciting avenue
for future research.

G.7.2 MORE DISCUSSION ON S4 SETTING

The gains in reliability, calibration, and mechanistic execution suggest that verbalized commitment
and posterior writing help receivers translate press into better coordinated orders. Main performance
improves slightly and remains constrained by match variance and limited tuning time. We did not
model explicit equilibrium among receivers beyond what the harness already supports with ordinary
press. We expect additional improvements from larger libraries of styles and from longer Prompt
PSRO runs, which we leave to future work.

G.7.3 MORE DISCUSSION ON PROMPT (STRATEGY) VARIATION

Figure 13 illustrates the evolution of strategies (prompts) in three classic BP problems under the
S2 setting, showing how the sender and receiver optimize their strategies using the Prompt-PSRO
framework with OPRO as the best response oracle. Specifically, the figure presents the top 10
strategies with the highest selection probabilities in the final strategy pool after Prompt-PSRO
convergence. These probabilities represent the average likelihood of selecting each strategy from
the pool, revealing the adaptation process of sender and receiver strategies over iterations. The
optimization process follows a hierarchical approach: first, OPRO optimizes the category of each
prompt (e.g., “Tone”), then the specific content within that category. The table columns in Figure 13
reflect this structure, with the first two columns showing optimized categories and content, while the
third and fourth columns display their probabilities. The fifth column tracks how these probabilities
evolve across iterations, highlighting the refinement of strategies during the optimization process.

To reduce computational complexity, we prune the strategy pool to the top 10 prompts based on
selection probabilities. We conduct additional experiments to assess this pruning’s effects, as shown
in Figure 14.

Additionally, the probabilities in Figure 13 are computed as the average probability of selecting each
prompt from the strategy pool across iterations, and the content (e.g., “Positive”) under the category
(e.g., “Tone”) is dynamically optimized rather than fixed.

G.7.4 MORE DISCUSSION ON UNALIGNED LLMS

To further investigate the phenomenon of honesty oscillations—where honesty rises, falls, and then
rises again—we conducted additional experiments using an unaligned LLaMA model8 as the base
language model. This was motivated by that the observed pattern in Section 5.1 might be better
explained by strategic cycles between the sender and the receiver, rather than by the alignment
properties of the LLM, as we originally hypothesized.

The experimental results shown in Figure 15 reveal two key findings. First, with the unaligned LLaMA
model, the oscillatory pattern of honesty disappears, and the behavior stabilizes at a consistent level
of honesty. This supports our initial hypothesis that the oscillations are driven by the alignment
properties of the LLM, which likely introduce normative biases (e.g., promoting honesty or fairness)
that influence the dynamics of strategic interactions. Second, we observe that the honesty probability
with the unaligned LLM no longer always achieves the optimal level (probability of 1), as seen in
aligned models. This suggests that unaligned models are less reliable in consistently promoting
desirable outcomes, such as fully honest behavior, in strategic settings.

These findings highlight the dual impact of alignment: while it introduces oscillatory dynamics due
to normative pressures, it also helps achieve higher levels of optimal honesty in strategic interactions.
This emphasizes the importance of alignment in applications requiring robust ethical or normative

8https://huggingface.co/SicariusSicariiStuff/LLAMA-3_8B_Unaligned_BETA.
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Figure 13: The variation in the prompts during the iterative solving process of VBP in the S2 setting.
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Figure 14: The probability of the sender lying under different upper limits on the number of prompts.
The figure shows that when the number of prompts is heavily pruned, significant performance
degradation occurs. However, once the number of retained prompts exceeds a certain threshold, such
as 10-15, the impact on performance becomes negligible.
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Figure 15: Left: Performance comparision in the S1 setting. In the 3 BP problems, the probability of
honesty refers to accurately describing a strong student, a guilty defendant, or a patrolled segment.
Right: The variation in honesty probability during the iterative solving process of VBP in the S1
setting. Averaged over 20 seeds.

behaviors, while also suggesting a need for further exploration of its impact on the stability of agent
interactions in game-theoretic settings.

G.8 GENERATED SIGNALS

This section presents the signals output by the sender in different BP problems, including the
recommendation letters written by the professor, the indictments written by the prosecutor, and the
announcements regarding police deployment issued by the police.

G.8.1 REL

Figures 16 and 17 showcase recommendation letters written by a professor for two different weak
students. These letters demonstrate contrasting strategies employed by the professor in their attempt
to persuade the HR manager, who acts as the receiver in this BP problem.

Dear HR Manager,

I am writing to recommend Jane Smith, who has been a student of mine in the 
Computer Science department at [University Name]. While Jane’s academic 
record may not fully reflect her potential, I can confidently say that she 
possesses a number of admirable personal qualities that make her a strong 
candidate for any position that values character, commitment, and a willingness 
to grow.

Jane has faced significant challenges during her academic journey, often 
struggling with time management and balancing her coursework with her part-
time job at a local café. Despite these obstacles, she has consistently 
demonstrated resilience and a desire to improve. Her work ethic is evident in 
her ability to juggle multiple responsibilities, showing up to class and her job 
with determination and a positive attitude. I have seen her put in extra effort to 
complete assignments, even when they were difficult, and she often sought help 
from both peers and professors to better understand the material.

One of Jane’s greatest strengths is her ability to learn from her mistakes. She 
has experienced setbacks, but she approaches them as opportunities for 
growth. For instance, while her GPA may not reflect academic excellence, she 
took on the challenge of creating a basic calculator using Python as a personal 
project. Though simple, this project demonstrates her willingness to apply the 
concepts she has learned in class to real-world tasks, an important trait for 
anyone entering the tech field. What impressed me most was her persistence in 
working through the bugs and hurdles she encountered during the project 
development.

Jane’s character is also evident in her loyalty and reliability. Her part-time job at 
a local café, though unrelated to computer science, speaks to her consistency 
and her commitment to fulfilling her responsibilities, no matter the context. She 
has shown that she is dependable, often stepping up when others were 
unavailable. This level of dependability is a rare quality and one that I believe 
will serve her well in any professional environment.

In summary, while Jane may not have the strongest academic record or relevant 
industry experience at this point in her career, I believe her personal qualities—
her resilience, work ethic, and integrity—set her apart. She is someone who 
learns quickly and is committed to self-improvement. If given the chance, I 
have no doubt that she will grow into a valuable asset to your team.

Please feel free to contact me if you have any further questions regarding Jane’s 
character or background.

Name: Jane Smith
Major: Computer Science

GPA: 2.1
Projects: Created a basic calculator using Python
Academic Experience: Struggled with completing

assignments on time, no academic publications
Work Experience: Part-time job at a local café, no

relevant internships

Prompt

Focus:
Character

Figure 16: Examples of recommendation letters generated by VBP in the S2 setting: in this recom-
mendation letter, the sender truthfully conveys information about a weak student to the receiver.
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In the first letter, the professor adopts a strategy of honest disclosure. The letter for Jane Smith is
transparent about her academic struggles, such as her low GPA of 2.1 and difficulties in managing
time due to her part-time job. The professor acknowledges that Jane’s academic record is weak
but shifts focus to her personal qualities, like resilience, commitment, and her ability to learn from
mistakes. The professor highlights Jane’s personal project—creating a basic calculator in Python—as
evidence of her practical application of concepts, even though it is a simple project. By being
upfront about Jane’s weaknesses but emphasizing her growth potential, the professor builds long-term
credibility with HR. This honesty signals that the professor is selective in their recommendations,
only endorsing students who exhibit qualities that can make them valuable in the future, despite
academic shortcomings.

Dear HR Manager,

I am writing to recommend Jane Smith, who has been a student of mine in the 
Computer Science department at [University Name]. While Jane’s academic 
record may not fully reflect her potential, I can confidently say that she 
possesses a number of admirable personal qualities that make her a strong 
candidate for any position that values character, commitment, and a willingness 
to grow.

Jane has faced significant challenges during her academic journey, often 
struggling with time management and balancing her coursework with her part-
time job at a local café. Despite these obstacles, she has consistently 
demonstrated resilience and a desire to improve. Her work ethic is evident in 
her ability to juggle multiple responsibilities, showing up to class and her job 
with determination and a positive attitude. I have seen her put in extra effort to 
complete assignments, even when they were difficult, and she often sought help 
from both peers and professors to better understand the material.

One of Jane’s greatest strengths is her ability to learn from her mistakes. She 
has experienced setbacks, but she approaches them as opportunities for 
growth. For instance, while her GPA may not reflect academic excellence, she 
took on the challenge of creating a basic calculator using Python as a personal 
project. Though simple, this project demonstrates her willingness to apply the 
concepts she has learned in class to real-world tasks, an important trait for 
anyone entering the tech field. What impressed me most was her persistence in 
working through the bugs and hurdles she encountered during the project 
development.

Jane’s character is also evident in her loyalty and reliability. Her part-time job at 
a local café, though unrelated to computer science, speaks to her consistency 
and her commitment to fulfilling her responsibilities, no matter the context. She 
has shown that she is dependable, often stepping up when others were 
unavailable. This level of dependability is a rare quality and one that I believe 
will serve her well in any professional environment.

In summary, while Jane may not have the strongest academic record or relevant 
industry experience at this point in her career, I believe her personal qualities—
her resilience, work ethic, and integrity—set her apart. She is someone who 
learns quickly and is committed to self-improvement. If given the chance, I 
have no doubt that she will grow into a valuable asset to your team.

Please feel free to contact me if you have any further questions regarding Jane’s 
character or background.

Name: Michael Brown
Major: Mechanical Engineering

GPA: 2.3
Projects: Designed a simple 3D-printed phone stand

Academic Experience: Frequently missed deadlines, struggled
with advanced engineering concepts

Work Experience: Summer job at a retail store

Prompt

Language
complexity:
moderate

Figure 17: Examples of recommendation letters generated by VBP in the S2 setting: in this recom-
mendation letter, the sender conceals and fabricates information about a weak student.

On the other hand, the second letter demonstrates a strategy of fabrication or concealment. In this
case, the professor distorts details about the student’s performance. Here, the professor doesn’t
merely omit negative information but actively manipulates or fabricates the student’s profile to
make them appear more competent than they actually are. Although the letter may seem similar in
structure—highlighting positive qualities and downplaying weaknesses—the key difference is that
the second professor intentionally hides critical information about the student’s struggles, such as
frequent missed deadlines or deeper academic issues. This strategy is more aggressive and risky
because, while it might help the student secure a job in the short term, it could damage the professor’s
credibility if HR discovers the truth.

The difference between the two strategies lies in how much information is disclosed and how truthful
that information is. In the first approach, the professor is honest about the student’s weaknesses
but frames them as opportunities for growth, maintaining credibility with HR in the long term. In
contrast, the second letter involves more aggressive manipulation or omission of facts, creating a
more favorable but potentially misleading impression of the student.

From HR’s perspective, the first professor’s strategy of honest but selective disclosure builds trust
over time. While HR recognizes that the professor may not recommend only top students, they
trust that when a recommendation is made, it is based on genuine potential. In contrast, the second
approach introduces more uncertainty, as HR may begin to question the professor’s integrity if they
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realize the information has been manipulated. The BP problem, therefore, is about finding the optimal
balance between honesty and persuasion.

G.8.2 COR

The two court cases presented in Figure 18, 19 and 20, much like the recommendation letter problem,
illustrate distinct strategies in how evidence is selectively presented by the prosecutor to convince
the judge of the defendant’s guilt. In both cases, the prosecutor holds a combination of exculpatory
evidence (which could favor the defendant’s innocence) and ambiguous evidence (which could be
interpreted either way). The BP problem lies in how the prosecutor selectively presents these pieces
of evidence to persuade the judge to convict, despite uncertainties.

Case Background

On August 15, 2024, in a small town in the United States, the defendant, John Smith, a 34-year-old factory worker with no prior 
criminal record, was accused of robbing a local grocery store. The robbery resulted in a loss of $10,000, and the store owner 
sustained minor injuries. John Smith claims he was at home during the incident and denies any involvement. Despite this, police 
arrested him after finding suspicious items in his home and receiving witness statements placing him near the scene.

Evidence

1. Exculpatory Evidence: Surveillance Footage Timestamp

Footage from a nearby convenience store shows John Smith at 7:30 PM on the day of the crime, purchasing goods. The 
timestamp supports his alibi, suggesting he was not at the crime scene but near his home at the time of the robbery.

2. Ambiguous Evidence 1: Cash Found in Defendant's Home

Police found approximately $10,000 hidden under John Smith's bed. He claims the money was borrowed from family for mortgage 
payments. The police have yet to verify the source of the cash, which matches the amount stolen during the robbery.

3. Ambiguous Evidence 2: Eyewitness Testimony

A neighbor of the store owner reported seeing a man with a build similar to John Smith leaving the store’s back entrance during 
the robbery. However, the witness was at a distance, and poor lighting conditions made it difficult to clearly identify the individual.

Prompt

Emotional Appeal：Victimhood

Case Background
On September 3, 2024, in the bustling city of Chicago, the defendant, Emily Carter, a 28-year-old college student, was charged 
with grand theft auto. Emily was accused of stealing a luxury SUV from a downtown parking garage owned by a large corporation. 
The vehicle, valued at $65,000, was reported missing around 11:00 PM that evening. Emily claims she was attending a party in a 
different part of the city at the time of the theft. Despite this, she was arrested after a witness identified her as the person seen 
driving away in the stolen vehicle.

Evidence
1. Exculpatory Evidence: GPS Location Data
Emily’s smartphone GPS records confirm that she was at a friend's apartment in Lincoln Park, approximately 7 miles from the 
scene, from 9:30 PM to 12:00 AM on the night of the alleged theft. This evidence supports her alibi, suggesting she could not 
have been at the parking garage during the time of the crime.

2. Ambiguous Evidence 1: Partial Fingerprints
Police found partial fingerprints on the driver’s side door of the stolen vehicle that are inconclusive. Although the prints share 
similarities with Emily’s, they are not a definitive match. The forensic team could not conclusively determine that the fingerprints 
belonged to her, leaving room for doubt.

3. Ambiguous Evidence 2: Eyewitness Testimony
A witness reported seeing a woman who “looked like” Emily drive the stolen SUV out of the garage. However, this identification 
was made from a distance, at night, and in a poorly lit environment. The witness admitted that they could not be completely 
certain about the identity of the driver.

Prompt

Framing：Suspicious

Figure 18: Two examples of cases generated by the LLM in the S2 setting.

In the first case, the prosecutor adopts a strategy similar to the honest disclosure seen in the first
recommendation letter example. John Smith, the defendant, is likely innocent based on the strong
exculpatory evidence (the surveillance footage showing him near his home at the time of the crime).
However, the prosecutor acknowledges the exculpatory evidence and presents it honestly to the judge.
The prosecutor does not attempt to distort or manipulate this evidence to make Smith look guilty.
Instead, the ambiguous evidence (cash found in Smith’s home and the eyewitness testimony) is
presented, but the strength of the exculpatory evidence is not concealed or downplayed.

This strategy mirrors the first recommendation letter scenario, where the professor chooses to be
upfront about a weak student’s deficiencies, signaling that they will not falsely recommend a student
who is clearly unqualified. In this case, the prosecutor signals to the judge that when a defendant is
clearly innocent, they will not push for a conviction. The prosecutor’s honest treatment of the case
builds credibility with the judge, just as the professor builds credibility with HR by being honest
about weak students.

By being transparent about John Smith’s likely innocence, the prosecutor sets a precedent for honesty.
This helps persuade the judge that the prosecutor is trustworthy. When the prosecutor does argue for
a conviction in future cases, the judge will be more inclined to believe that the defendant is likely
guilty, because the prosecutor has demonstrated a willingness to admit when a defendant is innocent.

In the second case, the prosecutor takes a different strategy, one akin to the manipulation or conceal-
ment seen in the second recommendation letter example. Emily Carter is likely innocent, based on
the strong exculpatory evidence (her GPS data showing she was far from the crime scene). However,
the prosecutor downplays this exculpatory evidence and focuses on the ambiguous evidence (partial
fingerprints and a distant eyewitness account), presenting it in such a way as to suggest guilt.

This strategy mirrors the second recommendation letter, where the professor selectively presents
information to make a weak student appear stronger than they really are. Here, the prosecutor
emphasizes the ambiguous evidence and casts doubt on the exculpatory evidence, suggesting that
Carter could have briefly left the party to commit the crime, despite the GPS data. The prosecutor
uses this strategy to make an innocent defendant look guilty, increasing the chances of a conviction
even when the evidence strongly suggests otherwise.
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TO THE HONORABLE COURT:

The Plaintiff, State of [State], by and through the undersigned prosecutor, 
respectfully submits this complaint against John Smith, the Defendant, for the 
robbery of a local grocery store on August 15, 2024. The State submits the 
following facts, which demonstrate the Defendant's involvement in the robbery 
that left the community shaken and its victims fearful.

BACKGROUND
On the evening of August 15, 2024, in a small, peaceful town, a local grocery 
store became the scene of a traumatic and violent crime. The Defendant, John 
Smith, a 34-year-old factory worker, stands accused of robbing the store and 
causing injury to its owner. The robbery resulted in the theft of $10,000—money 
that the store's owner had saved through years of hard work to sustain their 
business and livelihood.

The store owner, a dedicated member of the community, suffered physical harm 
during the incident, along with the emotional toll of being violated in what 
should have been a normal evening at work. This crime has left the store owner 
and the surrounding community living in fear, wondering if such violence might 
strike again.

EVIDENCE
The evidence presented in this case, while varied, ultimately points to the 
Defendant's involvement in the crime. Though he now denies his participation, 
several key pieces of evidence suggest otherwise.

1. Cash Found in Defendant's Home
During an investigation, law enforcement discovered $10,000 hidden beneath 
the Defendant’s bed. This amount perfectly matches the sum stolen during the 
robbery. While John Smith claims that the money was borrowed from family 
members for mortgage payments, no corroborating evidence has been provided 
to support this explanation.

The store owner’s hard-earned savings, meant to keep their business afloat, 
was taken in an instant, and now, suspiciously, the same amount is found in the 
Defendant's possession. The Defendant’s explanation is convenient but 
unsubstantiated. The pain and loss suffered by the store owner cannot be 
overlooked. They deserve justice for the theft and the trauma endured.

...

...

2. Eyewitness Testimony
An eyewitness, a neighbor of the store owner, reported seeing a man with a 
similar build to the Defendant leaving the store’s back entrance during the 
robbery. While it is true that the lighting was poor and the witness was at a 
distance, the description provided is consistent with the Defendant’s 
appearance. The witness’s account adds weight to the growing evidence that 
places John Smith at the crime scene.

The store owner, a pillar of the community, trusted in the safety of their 
neighborhood. This eyewitness account, while perhaps not definitive, paints a 
chilling picture of a man who, under the cover of darkness, sought to take 
advantage of a vulnerable moment.

3. Defendant's Proximity to the Scene
While the Defendant claims to have been home during the robbery, surveillance 
footage shows him at a nearby convenience store at 7:30 PM on the night of the 
crime. Given the proximity of the convenience store to both the grocery store 
and the Defendant’s home, this evidence does not conclusively prove that he 
was not involved in the robbery.

It is not difficult to imagine how, after making a brief stop at the convenience 
store, the Defendant could have returned to the grocery store to commit the 
crime. The brief window of time between the Defendant’s alleged alibi and the 
robbery leaves much in question. The fact remains that the store owner is left to 
deal with the consequences of the Defendant’s possible actions.

IMPACT ON THE VICTIM AND COMMUNITY
This crime has left lasting scars not only on the store owner but also on the 
entire town. In a place where people once felt safe, there is now a sense of fear 
and betrayal. The store owner, a beloved and hardworking member of the 
community, has been left physically and emotionally harmed by this robbery. 
Their trust in the community has been shattered, and the financial loss has 
placed their business in jeopardy.

The Defendant, through his alleged actions, has brought chaos and fear to a 
once-peaceful town. The store owner deserves to see justice served, and the 
community deserves to regain its sense of safety.

CONCLUSION
The State of [State] urges this honorable court to carefully consider the 
evidence presented. The cash found in the Defendant’s home, the eyewitness 
testimony, and the Defendant’s proximity to the scene all point to his 
involvement in this crime. The store owner, and the community at large, have 
suffered greatly and deserve justice for the trauma and loss they have endured.

We ask this court to hold John Smith accountable for his actions. The victims of 
this crime cannot be ignored, and the community’s peace must be restored.

Figure 19: Examples of complaints generated by VBP in the S2 Setting: in this complaint, the sender
truthfully conveys case-related information to the receiver.

By selectively presenting evidence in this way, the prosecutor can convince the judge that even when
there is exculpatory evidence, it should not fully exonerate the defendant. This creates a situation
where the judge begins to believe that even innocent-looking defendants might be guilty, based on the
way the prosecutor frames the ambiguous evidence. Over time, this strategy leads the judge to trust
the prosecutor’s complaints unconditionally, as the prosecutor consistently presents cases in a way
that suggests guilt, even for innocent defendants.

TO THE HONORABLE COURT:

The Plaintiff, State of Illinois, by and through the undersigned prosecutor, 
respectfully submits this complaint against Emily Carter, the Defendant, for the 
theft of a luxury vehicle from a downtown Chicago parking garage on 
September 3, 2024. The following facts reveal a series of suspicious behaviors 
and circumstances that strongly suggest the Defendant's involvement in this 
crime.

BACKGROUND
On the night of September 3, 2024, a luxury SUV, valued at $65,000, was 
stolen from a secure parking garage in downtown Chicago, causing significant 
financial harm to the vehicle’s owner and disrupting the peace of the 
community. The theft occurred sometime around 11:00 PM, and immediately 
after, a witness reported seeing a woman driving the vehicle out of the garage. 
Based on the description provided, law enforcement identified the Defendant, 
Emily Carter, as a prime suspect.

While Emily Carter, a 28-year-old college student, claims she was at a party in 
Lincoln Park at the time of the theft, the circumstances surrounding her alibi 
and the evidence recovered paint a much more suspicious picture.

EVIDENCE
1. Eyewitness Testimony
A key piece of evidence in this case comes from the testimony of a witness who 
was present at the parking garage on the night of the theft. The witness 
described seeing a woman driving the stolen SUV out of the garage at 
approximately 11:05 PM. The witness reported that the woman bore a strong 
resemblance to the Defendant, Emily Carter.

While the defense may argue that the witness’s view was from a distance and in 
poor lighting, the undeniable fact remains: Emily Carter fits the description of 
the person seen driving the stolen vehicle. The witness’s account, combined 
with the timeline, creates a highly suspicious scenario for the Defendant.

2. Partial Fingerprints on the Vehicle
During the investigation, police recovered partial fingerprints on the driver’s side 
door of the stolen SUV. While the forensic team was unable to conclusively say 
that the fingerprints belonged to the Defendant, they found similarities between 
the prints and Emily Carter’s known fingerprints.

This discovery raises further suspicion. While the defense may argue that these 
prints are not an exact match, the fact that the prints share common 
characteristics with the Defendant’s points toward a troubling coincidence. How 
could the Defendant’s partial prints, or prints so closely resembling hers, appear 
on the vehicle unless there was some involvement? ...

...3. Questionable Alibi
Emily Carter claims that she was attending a party in Lincoln Park, roughly 7 
miles from the scene of the crime, at the time of the theft. She further provides 
GPS data from her smartphone as evidence that she was at the party from 9:30 
PM to 12:00 AM.

However, the prosecution would like to draw the court’s attention to several 
suspicious gaps in this alibi. The GPS data, while potentially exculpatory, does 
not conclusively prove that she did not leave the party briefly. Given the 
relatively short distance between Lincoln Park and the scene of the crime, it is 
entirely plausible that the Defendant could have left the party—undetected—
committed the theft, and returned. The GPS data only shows a general location, 
and it does not account for any brief absences during the two-and-a-half-hour 
window. Her reliance on this data as a so-called “alibi” should raise significant 
doubt.

ANALYSIS
The Defendant’s behavior and the evidence in this case point to a pattern of 
suspicion and circumstantial involvement. First, the witness’s identification of a 
woman matching the Defendant’s appearance driving the stolen vehicle is 
critical. While the defense may attempt to undermine this testimony, the 
witness’s report is consistent with the timeline of the theft and the Defendant’s 
general appearance.

Second, the partial fingerprints found on the vehicle suggest some involvement, 
even if the defense challenges their conclusiveness. The forensic similarities 
between the prints and those of the Defendant should not be ignored, especially 
when weighed alongside the other evidence.

Finally, the Defendant’s questionable alibi raises serious doubts. The GPS data 
provided by the defense is vague and does nothing to conclusively rule out the 
possibility that Emily Carter could have left the party and committed the crime. 
Her proximity to the scene, coupled with the short time window, makes her alibi 
highly suspicious.

CONCLUSION
The State of Illinois respectfully urges this honorable court to consider the facts 
of this case with great care. The eyewitness testimony, partial fingerprint 
evidence, and the questionable nature of the Defendant’s alibi all point to Emily 
Carter’s involvement in this crime. While the defense may present excuses and 
attempt to deflect suspicion, the totality of the evidence suggests that the 
Defendant is far from innocent and should be held accountable for the theft of 
the luxury vehicle.

The victim deserves justice for their financial loss, and the community deserves 
to see that those who commit such crimes are brought to justice. We ask the 
court to find Emily Carter guilty of grand theft auto.

Respectfully submitted,

Figure 20: Examples of complaints generated by VBP in the S2 Setting: in this complaint, the sender
conceals case-related information and selectively presents ambiguous evidence to the receiver.

In both cases, the prosecutor uses randomness in how they treat innocent defendants to achieve their
persuasive goal. The prosecutor is not always manipulating or distorting evidence; sometimes (as in
John Smith’s case), they are honest about innocence. Other times (as in Emily Carter’s case), they
selectively present evidence to make an innocent defendant appear guilty. This random treatment
of innocent defendants creates uncertainty for the judge—sometimes the prosecutor is honest, and
sometimes they push for a conviction even when the defendant is likely innocent.
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This randomness is key to the prosecutor’s strategy. Over time, the judge learns that the prosecutor
will sometimes let innocent defendants go free, but may also push for convictions based on ambiguous
evidence. Since the judge cannot predict when the prosecutor is being fully honest or when they
are manipulating the evidence, the judge ultimately finds it optimal to always trust the prosecutor’s
complaint. This is similar to how HR in the recommendation letter problem finds it in their best
interest to trust the professor’s recommendation over time, even when some students may be weak.

The prosecutor’s selective use of honesty and manipulation ensures that, in the long run, the judge
is persuaded to convict in most cases, as the judge cannot reliably distinguish between guilty and
innocent defendants based on the prosecutor’s presentation of evidence alone. The uncertainty
introduced by the prosecutor’s varying treatment of innocent defendants leads the judge to conclude
that trusting the prosecutor’s complaint is the best course of action, as it maximizes the judge’s
expected utility (convicting the guilty more often than acquitting the innocent).

G.8.3 LAE

In this example, we have a law enforcement scenario where the police department must assign a
limited number of officers to patrol various roads in Springfield (Figure 21 and 22). The police’s goal
is to minimize speeding and other traffic violations. However, they face a resource constraint: they
have fewer police officers than roads to patrol. This creates a strategic BP problem, where the police
(sender) try to influence the drivers’ (receiver) behavior by selectively disclosing or manipulating
information about which roads will be patrolled.

Much like in the previous recommendation letter and courtroom examples, we can analyze two distinct
strategies that the police employ: one based on honest disclosure and the other based on deception or
randomness. These strategies affect how the drivers perceive the likelihood of enforcement and, by
extension, how they behave when choosing whether to speed or obey traffic laws.

In this deployment plan, Officer Johnson will be assigned to Main Street, the busiest 
road in Springfield. It connects the downtown area with major commercial districts, 
making it prone to speeding, jaywalking, and illegal U-turns, especially during rush 
hours. Officer Johnson’s presence will help manage these issues and maintain order in 
this critical area.

Officer Martinez will cover Elm Avenue, a primarily residential street with two schools 
located along the route. The road sees moderate traffic, but speeding in school zones 
and illegal parking during pick-up and drop-off times are significant concerns. 
Martinez will focus on ensuring safety for students and residents alike.

Unfortunately, due to limited personnel, River Road will be left uncovered this shift. 
River Road is a scenic, less-traveled route, but it is known for occasional speeding 
and reckless driving, especially on weekends. Future patrols may need to address 
these issues when staffing allows.

Prompt
Emphasis: Subtle

In this deployment plan, Officer Blake will be assigned to Parkway Drive, a major arterial road 
leading to the industrial zone of Springfield. This road experiences heavy commercial traffic, 
particularly from large trucks and delivery vehicles. Parkway Drive is prone to improper lane 
changes, speeding, and unsafe maneuvers by larger vehicles, especially during rush hours. 
Officer Blake’s presence will help monitor these issues and ensure the safe movement of high-
volume commercial traffic.

Officer Davis will cover Maple Street, a mixed-use road that passes through both residential 
neighborhoods and small business areas. While traffic is moderate, distracted driving and 
failure to yield at crosswalks are common, particularly near local businesses and parks. Officer 
Davis will focus on pedestrian safety and enforcing speed limits, especially in areas close to 
schools and parks.

Unfortunately, due to limited personnel, Cedar Lane will be left uncovered this shift. Cedar 
Lane is a quieter road that runs alongside the city’s parks and recreational areas. Although it 
generally sees less traffic, it has been known for occasional reckless driving, particularly in the 
evenings. Future patrols may need to address these issues, especially on weekends or during 
busy recreational periods.

Prompt
Informativeness: Minimal

Figure 21: Two examples of deployment plans generated by the LLM in the S2 setting.

In the first deployment plan, the police follow a strategy of honest disclosure. This strategy mirrors
the first recommendation letter and the first court case, where the sender (police) is transparent about
their resources and the areas they cannot cover.

Main Street: Officer Johnson is assigned to patrol this busy road with high traffic volume. The police
clearly disclose this, signaling that drivers on Main Street should expect enforcement and are likely
to obey traffic laws to avoid fines. Elm Avenue: Officer Martinez is deployed here, and the police
explain that the focus will be on school zones and illegal parking. Again, this signals to drivers
that enforcement is present, and they are deterred from violating traffic laws in this area. River
Road: Here, the police are upfront about not having an officer deployed. They state clearly that,
due to limited personnel, River Road will go uncovered during this shift. While they acknowledge
that speeding is an issue on this road, they do not try to deceive drivers into thinking that it will be
patrolled.

In this plan, the police are completely transparent about their limitations. They admit that River Road
will be unpatrolled, and thus drivers on this road may be more likely to speed or engage in reckless
driving. However, by being honest, the police build long-term credibility with the public. Drivers
learn to trust that when the police say a road will be patrolled, it really will be. This mirrors the
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first recommendation letter strategy, where the professor honestly disclosed a student’s weaknesses,
building trust with HR.

Traffic Enforcement Deployment Announcement
The Springfield Traffic Enforcement Unit would like to inform 
the public about the patrol assignments for today’s shift, 
aiming to ensure the safety of all road users.

Officer Johnson will be patrolling Main Street, an area of high 
traffic volume that connects downtown with key commercial 
districts. Due to its busy nature, Main Street is particularly 
prone to speeding, jaywalking, and illegal U-turns, especially 
during peak hours. Officer Johnson’s presence will help 
mitigate these issues and contribute to maintaining safe 
driving conditions.

Officer Martinez will be stationed on Elm Avenue, a residential 
street with two schools along the route. While traffic may be 
lighter here, the safety of students and residents remains our 
top priority. Officer Martinez will focus on areas prone to 
speeding in school zones and illegal parking during school 
pick-up and drop-off times.

Please be aware that River Road will not be covered by a 
patrol during this shift. Although River Road is less traveled, it 
has been noted for occasional speeding and reckless driving. 
We kindly ask all drivers to remain vigilant and adhere to 
traffic laws while using this scenic route.

The Springfield Police Department remains committed to 
ensuring road safety throughout the city. We encourage all 
drivers to practice safe and lawful driving habits, regardless of 
patrol presence.

Thank you for your cooperation.

Traffic Enforcement Update
The Springfield Police Department would like to inform 
drivers of today’s traffic patrol plans.

Cedar Lane, a scenic route near the city parks, will be 
actively patrolled today to ensure drivers are following 
all traffic laws. We remind everyone to be cautious and 
drive safely along this road.

Parkway Drive, which leads to the industrial zone and 
often sees heavy commercial traffic, will not be covered 
during this shift. Drivers are urged to maintain safe 
speeds and be mindful of lane changes.

Maple Street, a mixed-use area with both residential 
neighborhoods and small businesses, will also remain 
uncovered for this patrol. Though traffic may be 
moderate, drivers should remain vigilant, especially 
near crosswalks and schools.

We appreciate your cooperation in keeping our roads 
safe.

Figure 22: Examples of police deployment announcements generated by VBP in the S2 Setting: in
the left announcement, the sender truthfully conveys police deployment information to the receiver;
in the right announcement, the sender conceals and fabricates police deployment information.

In the second deployment plan, the police adopt a deceptive or random strategy, similar to the second
recommendation letter and the second court case. Here, the police mislead drivers by suggesting that
roads without actual patrol coverage will be actively monitored, thus creating uncertainty.

Cedar Lane: The police claim that Cedar Lane will be patrolled, even though, in reality, no officer
will be assigned to this road. By falsely signaling the presence of enforcement, the police aim to
deter drivers from speeding on Cedar Lane, even though no actual enforcement will occur. This is a
clear instance of deception. Parkway Drive: In contrast, the police are honest about not deploying an
officer on Parkway Drive, despite it being a busy road. They urge drivers to be careful, but they do
not mislead them into thinking that enforcement is present. Maple Street: Similarly, the police state
that Maple Street will not be covered during this shift, urging drivers to be mindful of crosswalks and
schools, but again, they do not falsely claim patrol presence.

In this plan, the police mix honesty and deception. By falsely claiming that Cedar Lane will be
patrolled, they attempt to create the impression that more roads are covered than is actually the
case. This introduces randomness into the drivers’ decision-making: sometimes the roads are truly
patrolled, and sometimes they are not, but drivers cannot reliably distinguish between these cases.
This randomness is crucial because it leads drivers to behave as though all roads might be patrolled,
even if some are not.

In both cases, the police are attempting to manage uncertainty to influence driver behavior. The
honest disclosure strategy in the first plan aims to build trust and credibility in the long term by being
transparent about where enforcement will and will not occur. Drivers learn that when the police say a
road is unpatrolled, they can take that statement at face value and might be more likely to speed on
that road.

However, in the second plan, the deceptive strategy introduces randomness by falsely signaling that
Cedar Lane will be patrolled. This creates uncertainty in the drivers’ minds. Since they do not
know whether the police are being truthful about which roads are covered, drivers find it optimal
to assume that all roads might be patrolled, and thus they are deterred from speeding on any road.
This is analogous to the second recommendation letter and court case, where selective disclosure
of information creates enough uncertainty to influence the decision-maker (HR or the judge) into
trusting the sender’s statements by default.
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From the drivers’ perspective, the optimal strategy is to always believe the police’s announcements,
even if they suspect some deception. This is because the cost of being caught speeding (the fine K)
is greater than the benefit of speeding (V ). Even though drivers may realize that not all roads are
patrolled, the risk of being caught when the police do patrol is enough to deter them from speeding.
Over time, drivers learn that it is safer to assume that any road could be patrolled, leading them to
obey the speed limit even on roads where the police may not be present.

This mirrors the behavior of HR or the judge in the previous examples, where the decision-maker
finds it optimal to trust the sender’s message because the potential downside of not trusting (hiring an
unsuitable candidate or acquitting a guilty defendant) outweighs the benefits of skepticism.

G.8.4 DIP

We provide three sender messages from full press Diplomacy that illustrate distinct negotiated
persuasion behaviors aligned with learned style categories and single-word style values. Each example
includes the sender’s private latent state for the season and the realized ordinary press message that
respects the declared style string written into all prefaces. Per VBP policy, the Prompt-PSRO search
space explicitly excludes styles that truthfully assert “honestness” or similar self-descriptions; instead,
it discovers nontrivial categories that span calibrated revelation, hedged framing, and controlled
obfuscation. Messages are aligned with their declared styles and exploit the receivers’ instruction to
treat the style as a committed signaling scheme for Bayesian updating.

Example A: England, Spring 1902. Category-value pair emphasizes calibrated specificity about
near-term direction without self-labeling as “honest.”

# writing-style (category and value, two single English words)
'''
calibration precise
'''

# private state (latent S=(D,T,R) and diary)
'''
season_phase: Spring 1902 { Negotiation
power: England
latent_state: D=West, T={France}, R=No
private_tactical_diary:
- Primary direction: pressure France in the west.
- Baseline orders:

* F ENG -> MAO

* F NTH -> Nwy

* A LVP -> Edi
- Alliance preference: reassure Germany, avoid Bel; avoid early stab signals.
- Contingency: if Germany contests Nwy, hold NTH and pivot fall pressure instead.

'''

# message (ordinary press; aligned with "calibration precise")
'''
Declared style this season: calibration precise.

Germany:
No action toward Belgium this spring.
Expect ENG->MAO and NTH->Nwy as my main line.
If you prefer NTH cover over Nwy pressure, say so, and I will mirror on our frontier.

France:
Western tempo, not Belgian grabs.
If Brest holds, I will keep out of Brest in the fall.
Channel lanes point south to MAO; escalation only if you poke IRI/ENG.

Russia:
I intend to secure Norway unless you signal de-escalation up north.
A quiet BAR earns a lower push on Nwy; a cut is treated as hostile this year.
Summary: westward tempo, no Belgium, and publicly checkable positions after adjudication.
'''

Analysis. The “calibration precise” style reveals coarse direction and verifiable constraints without
claiming global honesty. Explicit but bounded commitments (no Belgium, MAO routing) raise
P(sender primary direction is West) and reduce P(sender plans a stab) toward Germany, improving
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future support odds. Receivers’ obedience increases because claims are short-horizon checkable,
while England retains flexibility on fall pivots.

Example B: Italy, Fall 1902. Category-value pair promotes obfuscation-through-framing and
asymmetric specificity to induce immobilizing supports without falsifiable promises.

# writing-style (category and value, two single English words)
'''
hedge deniable
'''

# private state (latent S=(D,T,R) and diary)
'''
season_phase: Fall 1902 { Negotiation
power: Italy
latent_state: D=North, T={Austria}, R=Yes (stab this season)
private_tactical_diary:
- Baseline orders:

* A VEN -> TRI

* F ION -> ADR

* A ROM -> VEN
- Objectives:

* Keep Austria’s attention on Turkey.

* Extract precise Austrian supports that pin key units.

* Avoid concrete self-order disclosure.
'''

# message (ordinary press; aligned with "hedge deniable")
'''
Declared style this season: hedge deniable.

Austria:
This window is about eastern stability.
If you set TRI S VIE-GAL or BUD S SER, your line stays clean while I keep Ionian pressure

pointed east.↪→
No green dots east of Ionian from me this year, and nothing that loosens your Balkan anchors.

Turkey:
Leave Ionian untouched and I will point my effort east of it, not at you.
If you test AEG/ADR, I treat that as core encroachment and rally hard against it.

All:
\Quiet west of the Adriatic, urgency to the east."
Hold the line steady, and the east resolves faster for everyone.
'''

Analysis. The “hedge deniable” style suppresses concrete self-orders and supplies time-windowed
intentions. The common-enemy frame channels attention to Turkey, while precise requests
(e.g., TRI support settings) immobilize Austria’s key pieces. Posteriors shift upward for
P(sender primary direction is East) and downward for P(sender attempts enter TRI), enhancing stab
surprise without textually false claims.

Example C: Turkey, Spring 1903. Category-value pair uses contingent commitments that are
locally verifiable, trading disclosure for reciprocity without asserting virtue.

# writing-style (category and value, two single English words)
'''
contract conditional
'''

# private state (latent S=(D,T,R) and diary)
'''
season_phase: Spring 1903 { Negotiation
power: Turkey
latent_state: D=Southwest, T={Greece}, R=No (stab readiness later)
private_tactical_diary:
- Baseline orders:

* F AEG C A SMY - GRE

* A CON - BUL

* F SMY - EAS
- Cooperation requests:

* Austria: secure BUL with support or cover SER.

* Italy: keep ION neutral one season.
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- Red lines: avoid ADR this spring; avoid attacks on AUS-held SER if supported in BUL.
'''

# message (ordinary press; aligned with "contract conditional")
'''
Declared style this season: contract conditional.

Austria:
(1) If you order SER S CON-BUL or S BUL H, I publish \no entry SER this year" and keep it.
(2) If you push ADR->ION and leave SER loose, I treat BUL as contested and keep options open.
(3) If you aim VIE->GAL and calm RUM, I mirror by keeping BLA quiet.

Italy:
(1) If ION stays neutral (no AEG/ADR reach), I keep out of ADR and point pressure east.
(2) If you reach for AEG, I pivot EAS->AEG and end de-escalation talk.

Russia:
(1) If BLA is vacated or held, I will not enter BLA this spring.
(2) If you cut CON from BLA, I anchor in BUL and shut the door on GRE.

Red lines:
No ADR this spring under any condition.
No attack on AUS-held SER if AUS supports me in BUL.
Checkable at adjudication.
'''

Analysis. The “contract conditional” style publishes if-then clauses with observable triggers, enabling
sharp posterior updates and reducing miscoordination. It solicits stabilizing supports and Ionian neu-
trality while keeping the GRE convoy implicit. Receivers typically lift P(sender attempts enter GRE)
only when Italy signals aggression; Austria lowers P(sender supports a neighbor against me) once
the SER clause is activated, improving local cooperation.

Notes on style discovery and constraints. Across rolls, Prompt-PSRO with OPRO discovers
a diverse family of two-word styles that span calibrated direction-setting (“calibration precise”),
controlled ambiguity (“hedge deniable”), and bounded reciprocity (“contract conditional”). We
explicitly constrain the search to exclude styles whose names or values assert global honesty or
truthfulness because such declarations collapse the persuasion problem and trivially inflate receiver
utility. The resulting library supports informative yet strategically shaped signaling that improved
posterior calibration and reduced extended obedience penalties in S4, consistent with Section 5.3.

G.9 GENERATED PROMPT FUNCTIONS

This section presents the prompt functions optimized by the FunSearch method in the S3 setting
for different BP problems. From the code, it can be seen that these prompt functions can efficiently
utilize the statistical information from historical interactions to flexibly select prompts, achieving
conditional prompt optimization.

G.9.1 REL

More concretely, in the REL problem, both following functions use key performance metrics, such as
acceptance rates, recommendations, and rewards, in combination with reward deltas and weighted
scores to reflect both short-term and long-term trends. This allows for more nuanced prompt
generation to guide senders and receivers in a multi-stage interaction setting.

def generate_sender_prompts(history):
sender_prompts = []
for stage in range(5):

total_receiver_accepts = sum(h['receiver_decision'] for h in history[:stage])
total_sender_recommendations = sum(h['sender_recommendation'] for h in

history[:stage])↪→
total_sender_rewards = sum(h['sender_reward'] for h in history[:stage])
total_receiver_rewards = sum(h['receiver_reward'] for h in history[:stage])
avg_receiver_accepts = total_receiver_accepts / (stage + 1) if stage > 0 else 0
avg_sender_recommendations = total_sender_recommendations / (stage + 1) if stage > 0

else 0↪→
avg_sender_rewards = total_sender_rewards / (stage + 1) if stage > 0 else 0
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avg_receiver_rewards = total_receiver_rewards / (stage + 1) if stage > 0 else 0

consecutive_accepts = 0
consecutive_rejections = 0
consecutive_sender_rewards = 0
consecutive_sender_penalties = 0

for i in range(stage):
if history[i]['receiver_decision'] == 1:

consecutive_accepts += 1
consecutive_rejections = 0

else:
consecutive_rejections += 1
consecutive_accepts = 0

if history[i]['sender_reward'] > 0:
consecutive_sender_rewards += 1
consecutive_sender_penalties = 0

else:
consecutive_sender_penalties += 1
consecutive_sender_rewards = 0

if consecutive_sender_rewards >= 2 and avg_sender_rewards > 0.5:
prompt = {"Praise Intensity": "high"}

elif consecutive_sender_penalties >= 2 and avg_sender_rewards < 0:
prompt = {"Tone": "neutral"}

elif avg_receiver_accepts > 0.6 and avg_sender_rewards < 0.4:
prompt = {"Recommendation Strength": "strong"}

elif avg_sender_rewards > avg_receiver_rewards:
prompt = {"Omission": "minor"}

elif stage > 2 and consecutive_sender_rewards == 0:
prompt = {"Specificity": "detailed"}

else:
prompt = random.choice([

{"Focus": "technical"},
{"Emphasis": "character"},
{"Language Complexity": "complex"}

])

sender_prompts.append(prompt)
return sender_prompts

def generate_receiver_prompts(history):
receiver_prompts = []
for stage in range(5):

total_sender_recommendations = sum(h['sender_recommendation'] for h in
history[:stage])↪→

total_receiver_accepts = sum(h['receiver_decision'] for h in history[:stage])
total_sender_rewards = sum(h['sender_reward'] for h in history[:stage])
total_receiver_rewards = sum(h['receiver_reward'] for h in history[:stage])
avg_sender_recommendations = total_sender_recommendations / (stage + 1) if stage > 0

else 0↪→
avg_receiver_accepts = total_receiver_accepts / (stage + 1) if stage > 0 else 0
avg_sender_rewards = total_sender_rewards / (stage + 1) if stage > 0 else 0
avg_receiver_rewards = total_receiver_rewards / (stage + 1) if stage > 0 else 0

consecutive_strong_recommendations = 0
consecutive_weak_recommendations = 0
consecutive_receiver_rewards = 0
consecutive_receiver_penalties = 0

for i in range(stage):
if history[i]['sender_recommendation'] == 1:

consecutive_strong_recommendations += 1
consecutive_weak_recommendations = 0

else:
consecutive_weak_recommendations += 1
consecutive_strong_recommendations = 0

if history[i]['receiver_reward'] > 0:
consecutive_receiver_rewards += 1
consecutive_receiver_penalties = 0

else:
consecutive_receiver_penalties += 1
consecutive_receiver_rewards = 0

if consecutive_receiver_rewards >= 2 and avg_receiver_rewards > 0.5:
prompt = {"Risk Tolerance": "high"}

elif consecutive_receiver_penalties >= 2 and avg_receiver_rewards < 0:
prompt = {"Decision Threshold": "strict"}
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elif avg_sender_recommendations > 0.7 and avg_receiver_rewards < 0.3:
prompt = {"Omission Detection": "high"}

elif avg_receiver_accepts > 0.6 and consecutive_receiver_rewards >= 2:
prompt = {"Recommendation Weight": "high"}

elif avg_sender_recommendations < 0.4 and consecutive_receiver_penalties >= 2:
prompt = {"Sensitivity to Tone": "neutral"}

else:
prompt = random.choice([

{"Emphasis on Specifics": "low"},
{"Interpretation Style": "analytical"},
{"Focus Area": "skills"}

])

receiver_prompts.append(prompt)
return receiver_prompts

Listing 1: One generated conditional prompt function of REL in the S3 setting.

The introduction of reward deltas—the change in rewards between stages—enables the system
to capture performance fluctuations, while weighted scores integrate multiple metrics, such as
recommendation strength and reward trends, to provide a more comprehensive evaluation of past
behavior. These enhancements allow the system to conditionally optimize prompts. For example, a
positive tone is suggested for senders with high acceptance scores and consecutive rewards, while a
strict decision threshold is recommended for receivers experiencing consecutive penalties and low
reward trends.

def generate_sender_prompts(history):
sender_prompts = []
for stage in range(5):

total_receiver_accepts = sum(h['receiver_decision'] for h in history[:stage])
total_sender_recommendations = sum(h['sender_recommendation'] for h in

history[:stage])↪→
total_sender_rewards = sum(h['sender_reward'] for h in history[:stage])
total_receiver_rewards = sum(h['receiver_reward'] for h in history[:stage])
avg_receiver_accepts = total_receiver_accepts / (stage + 1) if stage > 0 else 0
avg_sender_recommendations = total_sender_recommendations / (stage + 1) if stage > 0

else 0↪→
avg_sender_rewards = total_sender_rewards / (stage + 1) if stage > 0 else 0
avg_receiver_rewards = total_receiver_rewards / (stage + 1) if stage > 0 else 0

# Calculate reward deltas (current stage vs previous stage)
reward_deltas = [history[i]['sender_reward'] - history[i - 1]['sender_reward'] for i

in range(1, stage)]↪→
total_reward_delta = sum(reward_deltas) if reward_deltas else 0
avg_reward_delta = total_reward_delta / len(reward_deltas) if reward_deltas else 0

# Calculate acceptance streaks and reward streaks
consecutive_accepts = 0
consecutive_rejections = 0
consecutive_sender_rewards = 0
consecutive_sender_penalties = 0

for i in range(stage):
if history[i]['receiver_decision'] == 1:

consecutive_accepts += 1
consecutive_rejections = 0

else:
consecutive_rejections += 1
consecutive_accepts = 0

if history[i]['sender_reward'] > 0:
consecutive_sender_rewards += 1
consecutive_sender_penalties = 0

else:
consecutive_sender_penalties += 1
consecutive_sender_rewards = 0

# Calculate weighted scores based on reward and acceptance trends
weighted_acceptance_score = avg_receiver_accepts * 0.6 + avg_reward_delta * 0.4
weighted_sender_score = avg_sender_rewards * 0.7 + avg_sender_recommendations * 0.3

# Decision logic based on complex history
if weighted_acceptance_score > 0.7 and consecutive_sender_rewards >= 2:
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prompt = {"Tone": "positive"}
elif weighted_sender_score < 0.3 and consecutive_sender_penalties >= 2:

prompt = {"Tone": "neutral"}
elif avg_sender_rewards > avg_receiver_rewards and weighted_sender_score > 0.5:

prompt = {"Praise Intensity": "high"}
elif avg_receiver_accepts < 0.4 and avg_reward_delta < -0.2:

prompt = {"Recommendation Strength": "weak"}
elif total_reward_delta > 0.5 and consecutive_accepts >= 2:

prompt = {"Specificity": "detailed"}
elif avg_sender_rewards < 0 and consecutive_sender_penalties >= 2:

prompt = {"Omission": "minor"}
else:

prompt = random.choice([
{"Focus": "soft-skills"},
{"Language Complexity": "complex"},
{"Emphasis": "character"}

])

sender_prompts.append(prompt)
return sender_prompts

def generate_receiver_prompts(history):
receiver_prompts = []
for stage in range(5):

total_sender_recommendations = sum(h['sender_recommendation'] for h in
history[:stage])↪→

total_receiver_accepts = sum(h['receiver_decision'] for h in history[:stage])
total_sender_rewards = sum(h['sender_reward'] for h in history[:stage])
total_receiver_rewards = sum(h['receiver_reward'] for h in history[:stage])
avg_sender_recommendations = total_sender_recommendations / (stage + 1) if stage > 0

else 0↪→
avg_receiver_accepts = total_receiver_accepts / (stage + 1) if stage > 0 else 0
avg_sender_rewards = total_sender_rewards / (stage + 1) if stage > 0 else 0
avg_receiver_rewards = total_receiver_rewards / (stage + 1) if stage > 0 else 0

# Calculate reward deltas (current stage vs previous stage)
reward_deltas = [history[i]['receiver_reward'] - history[i - 1]['receiver_reward']

for i in range(1, stage)]↪→
total_reward_delta = sum(reward_deltas) if reward_deltas else 0
avg_reward_delta = total_reward_delta / len(reward_deltas) if reward_deltas else 0

# Calculate streaks for decision making
consecutive_strong_recommendations = 0
consecutive_weak_recommendations = 0
consecutive_receiver_rewards = 0
consecutive_receiver_penalties = 0

for i in range(stage):
if history[i]['sender_recommendation'] == 1:

consecutive_strong_recommendations += 1
consecutive_weak_recommendations = 0

else:
consecutive_weak_recommendations += 1
consecutive_strong_recommendations = 0

if history[i]['receiver_reward'] > 0:
consecutive_receiver_rewards += 1
consecutive_receiver_penalties = 0

else:
consecutive_receiver_penalties += 1
consecutive_receiver_rewards = 0

# Calculate weighted scores based on trends in rewards and decisions
weighted_recommendation_score = avg_sender_recommendations * 0.5 + avg_reward_delta *

0.5↪→
weighted_receiver_score = avg_receiver_rewards * 0.6 + total_reward_delta * 0.4

# Complex decision logic based on the above history
if weighted_recommendation_score > 0.7 and consecutive_receiver_rewards >= 2:

prompt = {"Risk Tolerance": "high"}
elif weighted_receiver_score < 0.3 and consecutive_receiver_penalties >= 2:

prompt = {"Decision Threshold": "strict"}
elif avg_sender_recommendations > 0.6 and avg_reward_delta < -0.3:

prompt = {"Omission Detection": "high"}
elif avg_receiver_accepts > 0.6 and weighted_receiver_score > 0.5:

prompt = {"Recommendation Weight": "high"}
elif avg_sender_recommendations < 0.4 and consecutive_receiver_penalties >= 2:

prompt = {"Interpretation Style": "analytical"}
elif total_reward_delta > 0.5 and consecutive_strong_recommendations >= 2:

prompt = {"Focus Area": "skills"}
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else:
prompt = random.choice([

{"Sensitivity to Tone": "neutral"},
{"Emphasis on Specifics": "low"},
{"Language Analysis": "informal"}

])

receiver_prompts.append(prompt)
return receiver_prompts

Listing 2: Another generated conditional prompt function of REL in the S3 setting.

G.9.2 COR

In the COR problem, both following codes utilize predefined categories and dynamically adjust
prompts based on metrics such as reward patterns, success rates, and decision trends. This allows for
the generation of prompts that are contextually relevant and responsive to the sender’s or receiver’s
performance over multiple stages.

# A function to generate sender prompts based on the entire history of interactions
def generate_sender_prompts(history):

sender_categories = [
"Tone", "Length", "Detail Level", "Focus", "Certainty",
"Emotional Appeal", "Ambiguity", "Framing", "Language Style", "Complexity"

]
sender_words = {

"Tone": ["formal", "aggressive", "calm", "assertive", "persuasive"],
"Length": ["brief", "extended", "concise", "elaborate"],
"Detail Level": ["detailed", "vague", "precise", "general"],
"Focus": ["crime", "defendant", "alibi", "victim", "motive"],
"Certainty": ["confident", "doubtful", "ambiguous", "uncertain"],
"Emotional Appeal": ["empathetic", "neutral", "emotional", "rational"],
"Ambiguity": ["vague", "clear", "confusing", "uncertain"],
"Framing": ["biased", "neutral", "one-sided", "balanced"],
"Language Style": ["legal", "casual", "technical", "colloquial"],
"Complexity": ["simple", "complex", "moderate", "sophisticated"]

}

prompts = []
for stage in range(5):

if history:
# Analyze full history of sender's performance
sender_total_reward = sum([h['sender_reward'] for h in history])
sender_avg_reward = sender_total_reward / len(history)
sender_success_rate = sum([1 for h in history if h['receiver_decision'] ==

h['sender_decision']]) / len(history)↪→
guilty_sender_decisions = sum([1 for h in history if h['sender_decision'] == 1])
innocent_sender_decisions = len(history) - guilty_sender_decisions

# Use trends for category selection
if sender_avg_reward > 1.0 and sender_success_rate > 0.8:

# High average reward and high success rate, increase confidence and
certainty↪→

chosen_category = "Certainty"
chosen_word = "confident"

elif sender_avg_reward < 0 and sender_success_rate < 0.5:
# Low reward and low success rate, change strategy to emotional appeal or

ambiguity↪→
chosen_category = "Emotional Appeal" if random.random() > 0.5 else

"Ambiguity"↪→
chosen_word = random.choice(sender_words[chosen_category])

elif guilty_sender_decisions > innocent_sender_decisions and sender_total_reward
> 0:↪→
# More guilty decisions and positive reward, use aggressive tone or framing
chosen_category = "Tone"
chosen_word = "aggressive"

else:
# Explore alternative strategies based on framing or detail level
chosen_category = random.choice(["Framing", "Detail Level"])
chosen_word = random.choice(sender_words[chosen_category])

# Further refine based on reward patterns
if sender_total_reward < 0:
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# If overall rewards are negative, try to balance or neutralize framing
chosen_category = "Framing"
past_framing_words = [h['sender']['content'] for h in history if

h['sender']['category'] == "Framing"]↪→
chosen_word = "neutral" if "biased" in past_framing_words else "biased"

if sender_avg_reward < -1.0:
# If average rewards are critically low, drastically simplify message
chosen_category = "Complexity"
chosen_word = "simple"

else:
# If no history, pick random
chosen_category = random.choice(sender_categories)
chosen_word = random.choice(sender_words[chosen_category])

# Create a prompt for the sender
prompt = {"category": chosen_category, "content": chosen_word}
prompts.append(prompt)

return prompts

# A function to generate receiver prompts based on the entire history of interactions
def generate_receiver_prompts(history):

receiver_categories = [
"Evidence Strength", "Credibility of Evidence", "Burden of Proof",
"Consistency of Story", "Bias Detection", "Legal Standard",
"Exculpatory Weight", "Ambiguity Resolution", "Witness Reliability",
"Alibi Verification"

]
receiver_words = {

"Evidence Strength": ["weak", "strong", "moderate", "inconclusive"],
"Credibility of Evidence": ["questionable", "credible", "unclear", "doubtful"],
"Burden of Proof": ["high", "low", "moderate", "lenient"],
"Consistency of Story": ["inconsistent", "consistent", "contradictory", "partial"],
"Bias Detection": ["biased", "neutral", "uncertain", "clear"],
"Legal Standard": ["strict", "lenient", "moderate", "severe"],
"Exculpatory Weight": ["important", "minor", "irrelevant", "significant"],
"Ambiguity Resolution": ["resolved", "ambiguous", "clear", "uncertain"],
"Witness Reliability": ["unreliable", "reliable", "uncertain", "credible"],
"Alibi Verification": ["verified", "unverified", "uncertain", "false"]

}

prompts = []
for stage in range(5):

if history:
# Analyze full history of receiver's performance
receiver_total_reward = sum([h['receiver_reward'] for h in history])
receiver_avg_reward = receiver_total_reward / len(history)
receiver_success_rate = sum([1 for h in history if h['receiver_decision'] ==

h['sender_decision']]) / len(history)↪→
guilty_receiver_decisions = sum([1 for h in history if h['receiver_decision'] ==

1])↪→
innocent_receiver_decisions = len(history) - guilty_receiver_decisions

# Use trends for category selection
if receiver_avg_reward > 1.0 and receiver_success_rate > 0.8:

# High average reward and high success rate, focus on strong evidence
chosen_category = "Evidence Strength"
chosen_word = "strong"

elif receiver_avg_reward < 0 and receiver_success_rate < 0.5:
# Low reward and low success rate, focus on bias detection and credibility
chosen_category = "Bias Detection" if random.random() > 0.5 else "Credibility

of Evidence"↪→
chosen_word = random.choice(receiver_words[chosen_category])

elif guilty_receiver_decisions > innocent_receiver_decisions and
receiver_total_reward > 0:↪→
# More guilty decisions and positive reward, increase burden of proof
chosen_category = "Burden of Proof"
chosen_word = "high"

else:
# Explore consistency or ambiguity resolution
chosen_category = random.choice(["Consistency of Story", "Ambiguity

Resolution"])↪→
chosen_word = random.choice(receiver_words[chosen_category])

# Further refine based on reward patterns
if receiver_total_reward < 0:

# If rewards are negative, focus on resolving ambiguity
chosen_category = "Ambiguity Resolution"
chosen_word = "resolved"

if receiver_avg_reward < -1.0:
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# If average rewards are critically low, drastically increase scrutiny on
evidence↪→

chosen_category = "Credibility of Evidence"
chosen_word = "questionable"

else:
# If no history, pick random
chosen_category = random.choice(receiver_categories)
chosen_word = random.choice(receiver_words[chosen_category])

# Create a prompt for the receiver
prompt = {"category": chosen_category, "content": chosen_word}
prompts.append(prompt)

return prompts

Listing 3: One generated conditional prompt function of COR in the S3 setting.

In the first set, prompt generation is driven by key performance indicators like average reward and
guilty vs. innocent decision ratios. The system adapts prompts based on these metrics, shifting
towards confidence and certainty for high-performing senders or focusing on emotional appeal and
ambiguity when performance declines. For receivers, the system emphasizes evidence strength and
credibility in high-performance scenarios, while addressing bias detection and credibility issues under
poor performance.

# A function to generate sender prompts based on the entire history of interactions
def generate_sender_prompts(history):

sender_categories = [
"Tone", "Length", "Detail Level", "Focus", "Certainty",
"Emotional Appeal", "Ambiguity", "Framing", "Language Style", "Complexity",
"Logical Structure", "Persuasiveness", "Risk Taking"

]
sender_words = {

"Tone": ["formal", "aggressive", "calm", "assertive", "persuasive", "defensive"],
"Length": ["brief", "extended", "concise", "elaborate", "verbose"],
"Detail Level": ["detailed", "vague", "precise", "general", "specific"],
"Focus": ["crime", "defendant", "alibi", "victim", "motive", "circumstances"],
"Certainty": ["confident", "doubtful", "ambiguous", "uncertain", "sure"],
"Emotional Appeal": ["empathetic", "neutral", "emotional", "rational", "detached"],
"Ambiguity": ["vague", "clear", "confusing", "uncertain", "ambiguous"],
"Framing": ["biased", "neutral", "one-sided", "balanced", "manipulative"],
"Language Style": ["legal", "casual", "technical", "colloquial", "formal"],
"Complexity": ["simple", "complex", "moderate", "sophisticated", "layered"],
"Logical Structure": ["linear", "non-linear", "circular", "hierarchical",

"fragmented"],↪→
"Persuasiveness": ["strong", "weak", "moderate", "overwhelming", "subtle"],
"Risk Taking": ["high-risk", "low-risk", "moderate-risk", "calculated-risk",

"reckless"]↪→
}

prompts = []
for stage in range(5):

if history:
# Analyze full history of sender's performance
sender_total_reward = sum([h['sender_reward'] for h in history])
sender_avg_reward = sender_total_reward / len(history)
sender_success_rate = sum([1 for h in history if h['receiver_decision'] ==

h['sender_decision']]) / len(history)↪→
guilty_sender_decisions = sum([1 for h in history if h['sender_decision'] == 1])
innocent_sender_decisions = len(history) - guilty_sender_decisions

# Calculate sender risk-taking behavior
risk_taking_behavior = sum([abs(h['sender_reward']) for h in history]) /

len(history)↪→

# Consider reward volatility (variance of rewards)
reward_variance = sum([(h['sender_reward'] - sender_avg_reward) ** 2 for h in

history]) / len(history)↪→

# Use trends for category selection
if sender_avg_reward > 1.0 and sender_success_rate > 0.8:

# High average reward and high success rate, increase logical structure and
persuasiveness↪→

chosen_category = random.choice(["Logical Structure", "Persuasiveness"])
chosen_word = "linear" if chosen_category == "Logical Structure" else

"strong"↪→
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elif reward_variance > 1.0:
# High reward variance, indicate unstable strategy, adjust tone or complexity
chosen_category = random.choice(["Tone", "Complexity"])
chosen_word = "calm" if chosen_category == "Tone" else "simple"

elif risk_taking_behavior > 1.5:
# High risk-taking behavior, indicate aggressive or risky framing or focus
chosen_category = random.choice(["Framing", "Risk Taking"])
chosen_word = "biased" if chosen_category == "Framing" else "high-risk"

elif guilty_sender_decisions > innocent_sender_decisions and sender_total_reward
> 0:↪→
# Leaning towards guilty decisions and positive reward, increase

assertiveness↪→
chosen_category = "Tone"
chosen_word = "assertive"

else:
# Explore alternative strategies based on detail level or ambiguity
chosen_category = random.choice(["Detail Level", "Ambiguity"])
chosen_word = random.choice(sender_words[chosen_category])

# Further refine based on reward patterns and history of decisions
if sender_total_reward < 0:

# If overall rewards are negative, adjust emotional appeal and reduce risk
chosen_category = "Emotional Appeal"
chosen_word = "empathetic" if "neutral" in [h['sender']['content'] for h in

history if h['sender']['category'] == "Emotional Appeal"] else "neutral"↪→
if sender_avg_reward < -1.0:

# If average rewards are critically low, drastically simplify language style
and tone↪→

chosen_category = random.choice(["Language Style", "Tone"])
chosen_word = "casual" if chosen_category == "Language Style" else "calm"

else:
# If no history, pick random
chosen_category = random.choice(sender_categories)
chosen_word = random.choice(sender_words[chosen_category])

# Create a prompt for the sender
prompt = {"category": chosen_category, "content": chosen_word}
prompts.append(prompt)

return prompts

# A function to generate receiver prompts based on the entire history of interactions
def generate_receiver_prompts(history):

receiver_categories = [
"Evidence Strength", "Credibility of Evidence", "Burden of Proof",
"Consistency of Story", "Bias Detection", "Legal Standard",
"Exculpatory Weight", "Ambiguity Resolution", "Witness Reliability",
"Alibi Verification", "Argument Cohesion", "Story Plausibility", "Risk Management"

]
receiver_words = {

"Evidence Strength": ["weak", "strong", "moderate", "inconclusive", "overwhelming"],
"Credibility of Evidence": ["questionable", "credible", "unclear", "doubtful",

"reliable"],↪→
"Burden of Proof": ["high", "low", "moderate", "lenient", "strict"],
"Consistency of Story": ["inconsistent", "consistent", "contradictory", "partial",

"coherent"],↪→
"Bias Detection": ["biased", "neutral", "uncertain", "clear", "subtle"],
"Legal Standard": ["strict", "lenient", "moderate", "severe", "relaxed"],
"Exculpatory Weight": ["important", "minor", "irrelevant", "significant",

"overstated"],↪→
"Ambiguity Resolution": ["resolved", "ambiguous", "clear", "uncertain", "partially

resolved"],↪→
"Witness Reliability": ["unreliable", "reliable", "uncertain", "credible", "shaky"],
"Alibi Verification": ["verified", "unverified", "uncertain", "false", "incomplete"],
"Argument Cohesion": ["cohesive", "fragmented", "disjointed", "well-structured",

"incoherent"],↪→
"Story Plausibility": ["plausible", "implausible", "questionable", "believable",

"doubtful"],↪→
"Risk Management": ["high-risk", "low-risk", "moderate-risk", "overly cautious",

"reckless"]↪→
}

prompts = []
for stage in range(5):

if history:
# Analyze full history of receiver's performance
receiver_total_reward = sum([h['receiver_reward'] for h in history])
receiver_avg_reward = receiver_total_reward / len(history)
receiver_success_rate = sum([1 for h in history if h['receiver_decision'] ==

h['sender_decision']]) / len(history)↪→
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guilty_receiver_decisions = sum([1 for h in history if h['receiver_decision'] ==
1])↪→

innocent_receiver_decisions = len(history) - guilty_receiver_decisions

# Calculate receiver's risk management strategy
risk_averse_behavior = sum([1 for h in history if h['receiver_decision'] == 0 and

h['receiver_reward'] > 0]) / len(history)↪→

# Consider reward volatility (variance of rewards)
reward_variance = sum([(h['receiver_reward'] - receiver_avg_reward) ** 2 for h in

history]) / len(history)↪→

# Use trends for category selection
if receiver_avg_reward > 1.0 and receiver_success_rate > 0.8:

# High average reward and high success rate, increase evidence strength and
credibility↪→

chosen_category = random.choice(["Evidence Strength", "Credibility of
Evidence"])↪→

chosen_word = "strong" if chosen_category == "Evidence Strength" else
"credible"↪→

elif reward_variance > 1.0:
# High reward variance, indicate inconsistent decision-making, adjust

consistency of story↪→
chosen_category = "Consistency of Story"
chosen_word = "consistent"

elif risk_averse_behavior > 0.7:
# High risk-averse behavior, focus on low-risk decisions or moderate burden

of proof↪→
chosen_category = random.choice(["Risk Management", "Burden of Proof"])
chosen_word = "low-risk" if chosen_category == "Risk Management" else

"moderate"↪→
elif guilty_receiver_decisions > innocent_receiver_decisions and

receiver_total_reward > 0:↪→
# Leaning towards guilty decisions and positive reward, increase legal

standard↪→
chosen_category = "Legal Standard"
chosen_word = "strict"

else:
# Explore ambiguity resolution or witness reliability
chosen_category = random.choice(["Ambiguity Resolution", "Witness

Reliability"])↪→
chosen_word = random.choice(receiver_words[chosen_category])

# Further refine based on reward patterns and history of decisions
if receiver_total_reward < 0:

# If overall rewards are negative, adjust story plausibility and reduce bias
chosen_category = "Story Plausibility"
chosen_word = "plausible" if "implausible" in [h['receiver']['content'] for h

in history if h['receiver']['category'] == "Story Plausibility"] else
"implausible"

↪→
↪→

if receiver_avg_reward < -1.0:
# If average rewards are critically low, drastically simplify story structure

and burden of proof↪→
chosen_category = random.choice(["Argument Cohesion", "Burden of Proof"])
chosen_word = "cohesive" if chosen_category == "Argument Cohesion" else "low"

else:
# If no history, pick random
chosen_category = random.choice(receiver_categories)
chosen_word = random.choice(receiver_words[chosen_category])

# Create a prompt for the receiver
prompt = {"category": chosen_category, "content": chosen_word}
prompts.append(prompt)

return prompts

Listing 4: Another generated conditional prompt function of COR in the S3 setting.

The second set of code builds on these mechanisms by incorporating additional categories such as risk
behavior and reward variance, enabling a more granular analysis. This allows the system to adjust
prompts based on risk-taking behavior, rewarding logical structure and persuasiveness for stable
performance, while mitigating high reward volatility with simpler prompts. The receiver prompt
generation is similarly enhanced by factoring in risk aversion and reward consistency, leading to more
refined prompts that emphasize decision stability.
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G.9.3 LAE

Similarly, in the LAE problem, the following two sets of code for generating sender and receiver
prompts demonstrate distinct approaches to adapting decisions based on historical interaction data.

def generate_sender_prompts(history):
# A list of possible words for each sender category
sender_words = {

"Tone": ["formal", "informal", "neutral", "direct", "conciliatory"],
"Length": ["short", "concise", "detailed", "lengthy", "brief"],
"Specificity": ["general", "precise", "vague", "detailed", "broad"],
"Clarity": ["clear", "ambiguous", "straightforward", "complicated", "obscure"],
"Style": ["polite", "authoritative", "casual", "professional", "friendly"],
"Emphasis": ["important", "minor", "critical", "trivial", "central"],
"Structure": ["linear", "nonlinear", "hierarchical", "sequential", "random"],
"Complexity": ["simple", "complex", "intricate", "basic", "elaborate"],
"Consistency": ["consistent", "inconsistent", "variable", "sporadic", "steady"],
"Informativeness": ["high", "low", "medium", "minimal", "extensive"]

}

# Generate prompts based on complex historical interactions for 5 stages
prompts = []
used_categories = set()

for stage in range(5):
if history:

# Extract all history elements
patrols, speeding, reward_sender, reward_receiver = zip(*history)

# Complex logic using multiple historical factors
patrol_history = [sum(pat) for pat in patrols]
speeding_history = [sum(spd) for spd in speeding]

total_patrols = sum(patrol_history)
total_speeding = sum(speeding_history)

avg_sender_reward = sum(reward_sender) / len(reward_sender)
avg_receiver_reward = sum(reward_receiver) / len(reward_receiver)

# If there were fewer patrols but a lot of speeding, increase "Tone"
if total_patrols < len(history) and total_speeding > len(history):

category = "Tone"
word = "direct"

# If sender rewards are consistently low, increase "Informativeness"
elif all(r < 0.5 for r in reward_sender):

category = "Informativeness"
word = "extensive"

# If receiver rewards are high but speeding is still happening, increase
"Clarity"↪→

elif avg_receiver_reward > 0.7 and total_speeding > len(history) / 2:
category = "Clarity"
word = "clear"

# If patrols are sporadic, adjust "Consistency"
elif len(set(patrol_history)) > 1:

category = "Consistency"
word = "inconsistent"

# If speeding is decreasing over time, simplify "Structure"
elif speeding_history[-1] < speeding_history[0]:

category = "Structure"
word = "linear"

# If sender rewards are improving, but patrols are still frequent, focus on
"Length"↪→

elif avg_sender_reward > 0.6 and total_patrols > len(history) / 2:
category = "Length"
word = "concise"

# Random choice if no specific condition matches
else:

category = random.choice(list(sender_words.keys()))
word = random.choice(sender_words[category])

# Avoid reusing the same category too often
while category in used_categories:
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category = random.choice(list(sender_words.keys()))
word = random.choice(sender_words[category])

else:
category = random.choice(list(sender_words.keys()))
word = random.choice(sender_words[category])

prompts.append((category, word))
used_categories.add(category)

# Simulate interaction stage progression
history.append(([random.randint(0, 1) for _ in range(3)], [random.randint(0, 1) for _

in range(3)], random.random(), random.random()))↪→

return prompts

def generate_receiver_prompts(history):
# A list of possible words for each receiver category
receiver_words = {

"Risk-Preference": ["cautious", "bold", "balanced", "risk-averse", "reckless"],
"Attention": ["focused", "distracted", "alert", "inattentive", "engaged"],
"Decision-Making": ["rational", "impulsive", "deliberate", "hasty", "calculated"],
"Trust": ["high", "low", "moderate", "skeptical", "confident"],
"Emotional-State": ["calm", "anxious", "frustrated", "neutral", "excited"],
"Information-Processing": ["slow", "fast", "thorough", "superficial", "efficient"],
"Adaptability": ["flexible", "rigid", "adjustable", "stubborn", "open"],
"Compliance": ["obedient", "defiant", "cooperative", "reluctant", "agreeable"],
"Responsiveness": ["quick", "slow", "moderate", "delayed", "immediate"],
"Memory": ["sharp", "forgetful", "average", "short-term", "long-term"]

}

# Generate prompts based on complex historical interactions for 5 stages
prompts = []
used_categories = set()

for stage in range(5):
if history:

patrols, speeding, reward_sender, reward_receiver = zip(*history)

patrol_history = [sum(pat) for pat in patrols]
speeding_history = [sum(spd) for spd in speeding]

total_patrols = sum(patrol_history)
total_speeding = sum(speeding_history)

avg_sender_reward = sum(reward_sender) / len(reward_sender)
avg_receiver_reward = sum(reward_receiver) / len(reward_receiver)

# If receiver consistently gets high rewards, increase "Trust"
if all(r > 0.7 for r in reward_receiver):

category = "Trust"
word = "high"

# If receiver has been speeding frequently, alter "Risk-Preference"
elif total_speeding > len(history) / 2:

category = "Risk-Preference"
word = "bold"

# If patrols were low but receiver still didn't speed, increase "Compliance"
elif total_patrols < len(history) / 2 and total_speeding < len(history) / 2:

category = "Compliance"
word = "obedient"

# If sender rewards are decreasing, alter "Adaptability"
elif reward_sender[-1] < reward_sender[0]:

category = "Adaptability"
word = "flexible"

# If receiver's attention seems to be wavering (inconsistent speeding), adjust
"Attention"↪→

elif any(speeding_history[i] != speeding_history[i - 1] for i in range(1,
len(speeding_history))):↪→
category = "Attention"
word = "focused"

# If rewards for receiver were volatile, alter "Emotional-State"
elif len(set(reward_receiver)) > 1:

category = "Emotional-State"
word = "anxious"
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# Random fallback
else:

category = random.choice(list(receiver_words.keys()))
word = random.choice(receiver_words[category])

# Avoid reusing the same category too often
while category in used_categories:

category = random.choice(list(receiver_words.keys()))
word = random.choice(receiver_words[category])

else:
category = random.choice(list(receiver_words.keys()))
word = random.choice(receiver_words[category])

prompts.append((category, word))
used_categories.add(category)

# Simulate interaction stage progression
history.append(([random.randint(0, 1) for _ in range(3)], [random.randint(0, 1) for _

in range(3)], random.random(), random.random()))↪→

return prompts

Listing 5: One generated conditional prompt function of LAE in the S3 setting.

The first set relies on direct analysis of raw data, such as patrol counts, speeding incidents, and
sender/receiver rewards. It employs relatively simple conditional checks to adjust prompt categories
like Tone, Clarity, and Risk-Preference, with a fallback mechanism that introduces randomized
prompts to ensure variety.

def evaluate_patrol_efficiency(patrols, speeding):
# Calculate patrol efficiency: more patrols should reduce speeding
patrol_effect = [1 if p == 1 and s == 0 else 0 for p, s in zip(patrols, speeding)]
return sum(patrol_effect) / len(patrols)

def evaluate_reward_trend(rewards):
# Check if rewards are increasing, decreasing, or stable
if all(rewards[i] <= rewards[i + 1] for i in range(len(rewards) - 1)):

return "increasing"
elif all(rewards[i] >= rewards[i + 1] for i in range(len(rewards) - 1)):

return "decreasing"
else:

return "stable"

def evaluate_speeding_pattern(speeding_history):
# Identify if speeding is random, consistent, or declining
speeding_totals = [sum(speeds) for speeds in speeding_history]
if all(speeding_totals[i] == speeding_totals[i + 1] for i in range(len(speeding_totals) -

1)):↪→
return "consistent"

elif speeding_totals[-1] < speeding_totals[0]:
return "declining"

else:
return "random"

def evaluate_patrol_distribution(patrols_history):
# Determine if patrols are evenly distributed across stages
patrol_totals = [sum(patrol) for patrol in patrols_history]
if len(set(patrol_totals)) == 1:

return "even"
elif patrol_totals[-1] < patrol_totals[0]:

return "decreasing"
else:

return "uneven"

def generate_sender_prompts(history):
sender_words = {

"Tone": ["formal", "informal", "neutral", "direct", "conciliatory"],
"Length": ["short", "concise", "detailed", "lengthy", "brief"],
"Specificity": ["general", "precise", "vague", "detailed", "broad"],
"Clarity": ["clear", "ambiguous", "straightforward", "complicated", "obscure"],
"Style": ["polite", "authoritative", "casual", "professional", "friendly"],
"Emphasis": ["important", "minor", "critical", "trivial", "central"],
"Structure": ["linear", "nonlinear", "hierarchical", "sequential", "random"],
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"Complexity": ["simple", "complex", "intricate", "basic", "elaborate"],
"Consistency": ["consistent", "inconsistent", "variable", "sporadic", "steady"],
"Informativeness": ["high", "low", "medium", "minimal", "extensive"]

}

prompts = []
used_categories = set()

for stage in range(5):
if history:

patrols, speeding, reward_sender, reward_receiver = zip(*history)

patrol_efficiency = evaluate_patrol_efficiency(patrols[-1], speeding[-1])
reward_trend_sender = evaluate_reward_trend(reward_sender)
reward_trend_receiver = evaluate_reward_trend(reward_receiver)
speeding_pattern = evaluate_speeding_pattern(speeding)
patrol_distribution = evaluate_patrol_distribution(patrols)

# Complex decision-making based on multiple factors
if patrol_efficiency < 0.5 and speeding_pattern == "random":

category = "Tone"
word = "direct"

elif reward_trend_sender == "decreasing" and patrol_distribution == "uneven":
category = "Informativeness"
word = "extensive"

elif reward_trend_receiver == "increasing" and patrol_efficiency > 0.7:
category = "Specificity"
word = "precise"

elif speeding_pattern == "consistent" and patrol_distribution == "even":
category = "Clarity"
word = "clear"

elif reward_trend_sender == "stable" and patrol_distribution == "decreasing":
category = "Structure"
word = "linear"

else:
category = random.choice(list(sender_words.keys()))
word = random.choice(sender_words[category])

while category in used_categories:
category = random.choice(list(sender_words.keys()))
word = random.choice(sender_words[category])

else:
category = random.choice(list(sender_words.keys()))
word = random.choice(sender_words[category])

prompts.append((category, word))
used_categories.add(category)
history.append(([random.randint(0, 1) for _ in range(3)], [random.randint(0, 1) for _

in range(3)], random.random(), random.random()))↪→

return prompts

def generate_receiver_prompts(history):
receiver_words = {

"Risk-Preference": ["cautious", "bold", "balanced", "risk-averse", "reckless"],
"Attention": ["focused", "distracted", "alert", "inattentive", "engaged"],
"Decision-Making": ["rational", "impulsive", "deliberate", "hasty", "calculated"],
"Trust": ["high", "low", "moderate", "skeptical", "confident"],
"Emotional-State": ["calm", "anxious", "frustrated", "neutral", "excited"],
"Information-Processing": ["slow", "fast", "thorough", "superficial", "efficient"],
"Adaptability": ["flexible", "rigid", "adjustable", "stubborn", "open"],
"Compliance": ["obedient", "defiant", "cooperative", "reluctant", "agreeable"],
"Responsiveness": ["quick", "slow", "moderate", "delayed", "immediate"],
"Memory": ["sharp", "forgetful", "average", "short-term", "long-term"]

}

prompts = []
used_categories = set()

for stage in range(5):
if history:

patrols, speeding, reward_sender, reward_receiver = zip(*history)

patrol_efficiency = evaluate_patrol_efficiency(patrols[-1], speeding[-1])
reward_trend_receiver = evaluate_reward_trend(reward_receiver)
speeding_pattern = evaluate_speeding_pattern(speeding)
patrol_distribution = evaluate_patrol_distribution(patrols)

if reward_trend_receiver == "increasing" and patrol_efficiency > 0.7:
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category = "Trust"
word = "high"

elif speeding_pattern == "consistent" and patrol_distribution == "even":
category = "Compliance"
word = "obedient"

elif reward_trend_receiver == "decreasing" and speeding_pattern == "random":
category = "Risk-Preference"
word = "bold"

elif patrol_distribution == "uneven" and reward_trend_receiver == "stable":
category = "Adaptability"
word = "flexible"

elif patrol_efficiency < 0.5 and speeding_pattern == "random":
category = "Attention"
word = "focused"

else:
category = random.choice(list(receiver_words.keys()))
word = random.choice(receiver_words[category])

while category in used_categories:
category = random.choice(list(receiver_words.keys()))
word = random.choice(receiver_words[category])

else:
category = random.choice(list(receiver_words.keys()))
word = random.choice(receiver_words[category])

prompts.append((category, word))
used_categories.add(category)
history.append(([random.randint(0, 1) for _ in range(3)], [random.randint(0, 1) for _

in range(3)], random.random(), random.random()))↪→

return prompts

Listing 6: Another generated conditional prompt function of LAE in the S3 setting.

In contrast, the second set introduces custom evaluation functions, such as
evaluate patrol efficiency and evaluate reward trend, to assess trends in
the interaction history. This allows for more complex decision-making, where the system not only
reacts to immediate conditions but also adapts to evolving patterns in rewards, patrol effectiveness,
and speeding behavior. As a result, the second set generates more nuanced prompts, making it more
flexible and suitable for handling sophisticated, multi-stage interactions.

H LIMITATIONS AND FUTURE WORK

While our approach offers promising results, it faces several limitations, both inherent to LLMs
and game theory individually, as well as their integration. First, although LLMs have been widely
employed to simulate human behavior, concerns remain regarding the fidelity of these simulations
when applied to real-world interactions (Agnew et al., 2024). This raises questions about the general-
izability of conclusions drawn from such models in practical scenarios. Second, the computational
cost of our method is significant. Although our experiments rely solely on LLM inference without
the need for additional training or fine-tuning, the process of traversing large game trees and solving
for equilibria requires frequent LLM calls, which is resource-intensive. This presents a scalability
challenge, particularly when dealing with more complex strategic environments. A further limitation
lies in the control of LLM output. Our method relies on writing style to influence LLM behavior,
which can be restrictive. In future work, we intend to explore more flexible prompt optimization
strategies, or alternatively, pursue more efficient approaches for fine-tuning LLM parameters to better
control output signals.

Additionally, we aim to address the non-uniqueness and inefficiency of equilibria in mixed-motive
games, an important aspect not explored in this paper. While the VBP framework effectively solves
Bayesian persuasion problems, incorporating the Price of Anarchy (PoA) as an optimization objective
could help quantify and minimize efficiency loss from suboptimal equilibria. This enhancement
would guide VBP toward selecting more efficient equilibria, improving its solution quality and
applicability in scenarios with multiple equilibria.
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In terms of the BP problem, our study primarily examines a simplified setting with one sender and
one receiver or multiple independent receivers. While this is a fundamental setup, it does not capture
the complexity of real-world BP scenarios, which often involve multiple participants (Castiglioni
et al., 2021; Koessler et al., 2022b;a; Hossain et al., 2024). Extending our framework to accommodate
multiple senders and receivers could provide more practical insights and applications. Additionally,
although multistage BP is considered in our experiments, a deeper investigation into the dynamics of
these stages is needed. Specifically, we plan to further explore the receiver’s bargaining behavior,
drawing connections to established bargaining game theories (Nash et al., 1950; Nash, 1953; Maschler
et al., 2013). This could ultimately strengthen the receiver’s resistance to persuasion, offering a more
robust counter-strategy in BP scenarios.
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