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ABSTRACT

Risk-sensitive reinforcement learning (RL) with an entropic risk measure typi-
cally requires knowledge of the transition kernel or performs unstable updates
w.r.t. exponential Bellman equations. As a consequence, algorithms that optimize
this objective have been restricted to tabular or low-dimensional continuous en-
vironments. In this work we leverage the connection between the entropic risk
measure and the RL-as-inference framework to develop a risk-sensitive variational
actor-critic algorithm (rsVAC). Our work extends the variational framework to
incorporate stochastic rewards and proposes a variational model-based actor-critic
approach that modulates policy risk via a risk parameter. We consider, both, the
risk-seeking and risk-averse regimes and present rsVAC learning variants for each
setting. Our experiments demonstrate that this approach produces risk-sensitive
policies and yields improvements in both tabular and risk-aware variants of complex
continuous control tasks in MuJoCo.

1 INTRODUCTION

Deep reinforcement learning (RL) algorithms have contributed to many breakthroughs in domains
such as games (Mnih et al., 2015) and robotics (Levine et al., 2016). However, the standard objective
in RL, maximization of the expected sum of rewards, disregards the variability of the return due to
the intrinsic uncertainty in the transition dynamics and the stochasticity of the rewards which can lead
to catastrophic behavior. Such catastrophic behavior is especially common in real-world applications,
such as autonomous driving agents acting dangerously to achieve high reward (Chia et al., 2022) or
financial losses in portfolio management (Lai et al., 2011). As a consequence, risk-aware agents are
important to adapt to inherent environmental risk.

Many risk measures have been studied to introduce risk-sensitivity into RL algorithms. For instance,
value at risk (VaR) (Chow et al., 2018), conditional value at risk (CVaR) (Chow & Ghavamzadeh,
2014; Greenberg et al., 2022), mean-variance (Tamar et al., 2012; La & Ghavamzadeh, 2013), reward-
volatility risk measure (Zhang et al., 2021) and Gini-deviation (Luo et al., 2024). In this work we
focus on the entropic risk measure, an approach that incorporates risk into its objective via the
exponential utility function (Howard & Matheson, 1972; Borkar, 2002). Directly optimizing this
objective is challenging: it requires the knowledge of the transition kernel or it depends on unstable
updates w.r.t. exponential Bellman equations (Noorani et al., 2023).

We address these challenges by exploiting the connection between RL and probabilistic inference
to obtain a surrogate objective to the entropic risk measure. RL-as-inference algorithms search for
policies that maximize the probability of optimal trajectories rather than maximizing the expected
return. However, it has been observed that this objective can produce unwanted risk-seeking behaviour
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in the learned policy (Levine, 2018; O’Donoghue et al., 2019; Tarbouriech et al., 2023). Many such
methods take a variational approach that constrain the posterior dynamics to equal those of the true
environment (Haarnoja et al., 2017; 2018), but can lead to overly stochastic policies (Fellows et al.,
2019). Existing variational model-based methods allow posterior dynamics to vary (Chow et al., 2018)
but lead to risk-seeking policies that do not adapt to aleatoric risk in the environment (Eysenbach
et al., 2022). Furthermore, these methods assume a deterministic reward model that implicitly ignores
its risk contribution to the original objective.

In this work, we leverage the connection between RL and probabilistic inference to formulate a
variational lower bound on the entropic risk measure that can be optimized using only experience from
an agent. We optimize this surrogate objective using an EM-style algorithm that consists of learning
variational dynamics and reward models that account for intrinsic uncertainty in the environment
(E-step) and improve the objective w.r.t. a policy (M-step). Our comprehensive approach permits
learning of risk-seeking and risk-averse policies for which the latter has been mostly ignored in the
RL-as-inference literature. Our formulation also adapts to risk induced by stochastic rewards, a
further extension of the RL-as-inference literature which assumes deterministic rewards. Furthermore,
we demonstrate the robustness of our method to other risk-aware algorithms in risk-sensitive variants
of Mujoco tasks. Code is available at https://github.com/AlonsoGranados/rsVAC/.

2 PRELIMINARIES: RISK-SENSITIVE REINFORCEMENT LEARNING

The RL framework consists of a Markov decision process (MDP) defined by a tuple (S , A, p,R). S ,
A andR are the state, action and reward spaces, respectively. The transition probability over the next
state st+1 ∈ S given the current state st ∈ S and action at ∈ A is denoted as p(st+1 | st, at), the
initial state distribution as p(s1). A policy π specifies a probability distribution over actions given a
current state st. The reward rt ∈ R is treated as a random variable with distribution p(rt|st, at). The
distribution over trajectory τ = (s1, a1, r1, s2, a2, ..., sT , aT , rT , sT+1) for a sampling policy π is
given by pπ(τ) = p(s1)

∏
t p(st+1 | st, at)p(rt | st, at)π(at | st). The standard objective in RL is

to find a policy that maximizes expected return: π∗ = argmaxπ Epπ(τ)[
∑T
t=1 rt].

2.1 ENTROPIC RISK MEASURE

In risk-sensitive RL with the entropic risk measure the goal is to find a policy that maximizes:

max
π

β logEpπ(τ)
[
exp

(∑
t rt
β

)]
, (1)

for risk parameter β ∈ R. This objective is closely related to mean-variance RL (Mannor & Tsitsiklis,
2011) given that a Taylor expansion of Eq. (1) yields Epπ(τ)[

∑
t rt] +

1
2βVarπ(

∑
t rt) + O( 1

β2 )

(Mihatsch & Neuneier, 2002; Garcı́a & Fernández, 2015). The parameter β controls the risk-
sensitivity of the objective producing risk-seeking policies for β > 0 and risk-averse policies for
β < 0. Additionally, it reduces to the standard (risk-neutral) RL objective when |β| → ∞. Based on
this framework, we define the soft value functions as the cumulative rewards under the entropic risk:

Vπ(s) = log E
pπ

[
exp

(∑
t rt
β

)
|s1 = s

]
, Qπ(s, a) = log E

pπ

[
exp

(∑
t rt
β

)
|s1 = s, a1=a

]
. (2)

These functions are recursively associated via Bellman-style backup equations:

Vπ(st) = log E
π(·|st)

[exp(Qπ(st, at))], Qπ(st, at) = log E
p(·|st,at)

[
exp

(
rt
β

+ Vπ(st+1)

)]
. (3)

These are known as soft value functions, due to the presence of operators logE[exp(·)] that act as
soft approximations to max(·). Finally, we have the Bellman optimality equations,

V ∗(st) = max
at

Q∗(st, at), Q∗(st, at) = logEp(·|st,at)
[
exp

(
rt
β

+ V ∗(st+1)

)]
. (4)

Although these value functions can be estimated using dynamic programming, they require knowledge
of the transition dynamics and the reward model to compute the expectations, since unbiased sample-
based estimates are not available due to the nonlinear log operation. Fig. 1 illustrates the impact of
the risk-sensitivity parameter β on the optimal policy in a simple three arms MDP, and its effects in
modulating risk-seeking and risk-averse policies. We emphasize that a risk-neutral policy is recovered
for large |β| values, while small |β| values produce risk-seeking/averse policies.
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Figure 1: Three arms environment Left: MDP with three actions (left, down and right) and initial state S.
Action ’right’ produces reward 0 and 10 with probability 0.9 and 0.1, respectively. Action ’left’ produces reward
0 and 4 with probability 0.5 and 0.5, respectively. Finally, action ’down’ has a deterministic reward of 1. A risk
neutral agent would prefer action ’left’ which has the highest mean return while a risk-seeking and risk-averse
agents would prefer action ’right’ and ’down’, respectively. Middle: Soft-Q values as a function of β for β > 0.
Observe that for small β the framework learns a risky policy (red region) while for large β it recovers an optimal
risk neutral policy (green region). Right: Soft-Q values as a function of β for β < 0. Now the agent learns a
risk-averse policy when |β| is small (red region) while it recovers the neutral policy for larger |β| (green region).

2.2 RISK-SENSITIVE VARIATIONAL BOUND

In this work we leverage the well-established connection between RL and probabilistic infer-
ence (Levine, 2018). Under this formulation we incorporate the rewards into a probabilistic model
by introducing a set of binary auxiliary variables Ot ∈ {0, 1} that are independently distributed at
each time as p(Ot = 1 | rt) ∝ exp( rtβ ). The event Ot = 1 can loosely be interpreted as the agent
having acted optimally at time t1. An important motivation for using this interpretation is that we can
define a surrogate objective for the entropic risk measure via the evidence lower bound (ELBO) on
the log-marginal likelihood:

log pπ(O1:T ) = logEpπ

[
exp

(∑
t

rt
β

)]
≥ Eq

[∑
t

rt
β

]
−KL(q(τ) ∥ pπ(τ)) := Jβ(q, π), (5)

where the LHS is shorthand for the marginal likelihood of an optimal trajectory: log pπ(O1:T = 1).
The log-marginal is equivalent to the entropic risk measure, up to a multiplicative constant β which
controls risk-sensitivity and is bounded by the RHS. The bound in Eq. (5) arises from the application
of Jensen’s inequality where q(τ) is a variational distribution over trajectories. This bound is tight
when the variational distribution equals the posterior over trajectories q(τ) = p(τ | O1:T = 1) almost
everywhere. A variety of expectation-maximization (EM) style algorithms have been proposed to
optimize Jβ by alternating improvements w.r.t. q and π (Abdolmaleki et al., 2018b; Peters et al.,
2010; Levine & Koltun, 2013; Chow et al., 2021).

3 VARIATIONAL MODEL / POLICY ITERATION

Using Jβ(q, π) as a surrogate objective for the entropic risk measure we now propose two algorithms
that approximately optimize it for, both, the risk-seeking (β > 0) and risk-averse (β < 0) settings.
We consider variational distributions over trajectories of the form,

qπ(τ) = p(s1)

T∏
t=1

π(at|st)qr(rt|st, at)qd(st+1|st, at). (6)

Note that we incorporate a variational posterior distribution qr over rewards. This stochastic reward
model is an extension of existing RL-as-inference methods that are constrained to deterministic
rewards. Expanding the KL regularizer of Eq. (5) yields the variational objective,

Jβ(q, π) = Eqπ(τ)

[∑
t

rt
β
− log

qd(st+1|st, at)
p(st+1|st, at)

− log
qr(rt|st, at)
p(rt|st, at)

]
. (7)

1The optimality interpretation is a loose one stemming from the reward at time t, which increases the
probability of Ot = 1 exponentially. This interpretation has become standard in the literature (Levine, 2018).
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To optimize Eq. (7) we consider an EM-style algorithm where the E-step maximizes Jβ w.r.t. q and
the M-step optimizes w.r.t. π. Risk-sensitivity arises in Eq. (7) from the maximization w.r.t. the
variational distribution q. Although the penalty discourages deviations from the true model, the agent
is willing to pay this penalty if the increase in expected return is large enough to compensate this extra
cost. When β > 0, the variational model becomes optimistic (risk-seeking) as it aims to increase the
expected return. When β < 0, it becomes pessimistic (risk-averse), as instead, it aims to increase the
expected cost. Finally, we recover the true model when |β| → ∞ as the objective only suffers the
deviation penalty.

3.1 E-STEP

For a fixed policy π we denote the optimal variational distribution as q∗π = argmaxq Jβ(q, π).
Directly maximizing Jβ can be computationally expensive as it requires optimizing q over the full
trajectory. Instead, we consider a Bellman-like operator Tπ as a partial optimization over q for a
single transition where V is a state-value function:

Tπ[V ](s) = E
a∼π(·|s)

[
max
qr∈∆R

E
r∼qr

[
r

β
− log

qr(r|s, a)
p(r|s, a)

]
+ max
qd∈∆S

E
s′∼qd

[
V (s′)− log

qd(s
′|s, a)

p(s′|s, a)

]]
. (8)

In particular, we have the following theorem for the operator Tπ[V ](s) (see Appendix for proof):
Theorem 1. Repeated application of Tπ to any value function V such that V (sT+1) = 0 converges
to the optimal value function V ∗

k for all k, where:

V ∗
k (sk) = Eq∗π(τ)

[
T∑
t=k

rt
β
− log

q∗d(st+1|st, at)
p(st+1|st, at)

− log
q∗r (rt|st, at)
p(rt|st, at)

]
. (9)

Hence, we can obtain the optimal value function by iteratively applying Tπ to some initial value
function V0. We can recover the optimal variational distributions using the optimal value function:
Theorem 2. Let q∗r and q∗d be the solution of argmaxq Jβ(q, π). Then

q∗r (r|s, a) ∝ p(r|s, a) exp
(
r

β

)
, q∗d(s

′|s, a) ∝ p(s′|s, a) exp (V ∗
π (s

′)) . (10)

All proofs can be found in the Appendix.

3.2 M-STEP

We optimize J (q∗, π) w.r.t. the policy π using the variational distribution q∗π from the E-step:

π∗ = argmax
π

Eq∗π(τ)

∑
t

rt − β log
q∗d(st+1|st, at)
p(st+1|st, at)

− β log q
∗
r (rt|st, at)
p(rt|st, at)︸ ︷︷ ︸

:=r̂t

 . (11)

Observe that Eq. (11) is equivalent to learning the optimal policy for a standard RL problem with
transition dynamics q and augmented rewards r̂t, so any RL algorithm can be used for the M-step.
Although the expectation can now be estimated using easily-obtained samples from q we still have
the problem of needing to evaluate the dynamics and reward model in the augmented reward, which
might be unknown. In the following section we address this by providing an algorithm that can be
optimized using off-policy data. Finally, we note that in the risk-averse setting Eq. (11) corresponds
to a minimization w.r.t. the policy: argminπ J (q∗, π). See Appendix B for an extended discussion
of optimization in the risk-averse regime.

4 RSVAC: RISK SENSITIVE VARIATIONAL ACTOR-CRITIC

We now present a practical RL algorithm that approximately optimizes J (q, π) using only collected
experience by the agent. We make three design choices to approximate this objective: first, we learn
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parameterized probabilistic networks, pθ(st+1|st, at) and pθ(rt|st, at), for the unknown transition
dynamics and reward model; next, we represent the variational distributions using probabilistic
networks, qϕ(st+1|st, at) and qϕ(rt|st, at), and approximate the maximization operation in the
E-step with stochastic gradient descent; finally, we use an actor-critic architecture with function
approximators to learn the optimal value function and policy from the M-step.

4.1 VARIATIONAL REWARD AND DYNAMICS MODEL OPTIMIZATION

We model the reward and dynamics as Gaussian distributions with mean and covariance given by
neural networks and train them to minimize cross-entropy using stochastic gradient descent:

Jr(θ) =−E(st,at,rt)∼Denv [log pθ(rt|st, at)] , Jd(θ) =−E(st,at,st+1)∼Denv [log pθ(st+1|st, at)] (12)

whereDenv is an experience replay buffer that stores previously seen interactions with the environment.
We similarly parameterize the variational models using Gaussian distributions. To learn the variational
reward model we approximate the optimization w.r.t. qϕ(rt|st, at) in Eq. (8) by maximizing:

Jr(ϕ) = E(st,at)∼Denv,rt∼qϕ(rt|st,at)

[
rt
β
− log

qϕ(rt|st, at)
pθ(rt|st, at)

]
, (13)

w.r.t. its parameters ϕ. In particular, we use the reparameterization trick to obtain a lower variance
estimator that can be optimized using stochastic gradient ascent,

Jr(ϕ) = E(st,at)∼Denv,ϵ∼N

[
fϕ(ϵ; st, at)

β
− log

qϕ(fϕ(ϵ; st, at)|st, at)
pθ(fϕ(ϵ; st, at)|st, at)

]
, (14)

where fϕ(ϵ; st, at) is the reparameterized reward model and ϵ is a noise vector sampled from a
spherical Gaussian distribution. Similarly, we learn variational dynamics by approximating the
optimization w.r.t. qϕ(st+1|st, at) in Eq. (8) with:

Jd(ϕ) = E(st,at)∼Denv,ϵ∼N

[
Vψ(gϕ(ϵ; st, at)) + log

qϕ(gϕ(ϵ; st, at)|st, at)
pθ(gϕ(ϵ; st, at)|st, at)

]
, (15)

where again we use the reparameterization trick to reparameterize the dynamics model,
st+1 = gϕ(ϵ; st, at), and substitute the optimal value function with a critic Vψ that can be dif-
ferentiated so Eq. (15) can be optimized using stochastic gradient ascent.

4.2 ACTOR-CRITIC OPTIMIZATION

We now present an actor-critic algorithm to optimize the M-step. As previously stated, the opti-
mization in Eq. (11) is equivalent to the RL problem that has transition dynamics qϕ(st+1|st, at),
reward model qϕ(rt|st, at), and augmented reward r̂t = rt − β log qϕ(st+1|st,at)

pθ(st+1|st,at) − β log
qϕ(rt|st,at)
pθ(rt|st,at) .

We collect transitions from the variational model using branched rollout (Janner et al., 2019), i.e. we
sample states under the true dynamics Denv and run the policy under qϕ to generate new transitions
which we store in the model replay buffer Dmodel. We approximate the critic using a neural network
Qψ(st, at) which we train by minimizing the squared TD-error:

JQ(ψ) = E(st,at,rt,st+1)∼Dmodel

[(
Qψ(st, at)− r̂t − V ′

ψ(st+1)
)2]

, (16)

using stochastic gradient descent and samples from the model replay buffer. The optimal state-
value function V ′

ψ(st+1) is implicitly represented by Eat+1∼πθ(at+1|st+1)[Q
′
ψ(st+1, at+1)] where

Q′
ψ is a target critic network that we update using an exponentially moving average of the Qψ

weights (Lillicrap et al., 2015). We approximate this expectation using a single action sample
from the policy πθ. The policy πθ is a Gaussian distribution parameterized with neural networks
and is trained to maximize Qψ with an added entropy regularizer to improve exploration during
learning (Haarnoja et al., 2018):

Jπ(θ) = Est∼Denv,ϵ∼N [Qψ(st, fθ(ϵ; st))− log πθ(fθ(ϵ; st)|st)] (17)

where we have reparameterized the policy at = fθ(ϵ; st) and ϵ is a noise vector sampled from a
spherical Gaussian distribution. Again we learn these parameters using stochastic gradient descent.
One benefit of rsVAC is that it enjoys great flexibility so any actor-critic method can be incorporated
into framework as long as the rewards and samples come from the variational model. Pseudocode for
the rsVAC algorithm can be found in Appendix F.
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5 RELATED WORK

Entropic risk. The risk-sensitive objective with entropic risk measure was first described by the
seminal work of (Howard & Matheson, 1972). This work has inspired many methods in a variety
of settings (Borkar, 2001; 2002; 2010; Borkar & Meyn, 2002; Coraluppi & Marcus, 1999; Di Masi
& Stettner, 1999; Fleming & McEneaney, 1995; Hernández-Hernández & Marcus, 1996; Huang &
Haskell, 2020). However, these algorithms are constrained to simple environments as they require
knowledge of the transition dynamics or assume access to a simulator of the environment. In the
setting with unknown transition dynamics, TD(0) and Q-learning-style algorithms have been proposed
by applying an exponential transformation to the risk sensitive objective, but estimating these value
functions can lead to instabilities when introducing function approximators (Bäuerle & Rieder, 2014;
Borkar, 2002; Fei et al., 2021b;a; Mihatsch & Neuneier, 2002; Noorani et al., 2023).

RL-as-inference. Probabilistic inference methods for solving RL can be traced back to the Kalman-
duality in linear-quadratic systems (Kalman, 1960) and later to linearly solvable MDPs (Todorov,
2006). The variational framework can be formulated as searching for maximum likelihood policies
on an augmented MDP with exponentiated rewards treated as probabilities and is equivalent to the
risk-sensitive objective (Todorov, 2008; Levine & Koltun, 2013; Levine, 2018). These approaches
learn risk-seeking policies as they only consider β > 0. Model-free variational approaches such
as MaxEnt RL combat this behavior by removing the controller’s ability to modify the variational
dynamics, resulting in high-entropy policies. This penalization of determinism has been effective in
some high-dimensional tasks (O’Donoghue et al., 2016; Nachum et al., 2017; Haarnoja et al., 2018;
Lee et al., 2020), but has been shown to lead to undesirable behavior (Fellows et al., 2019). Closely
related KL-regularized RL methods include a proximal operator on the policy (Peters et al., 2010;
Schulman et al., 2015; Chebotar et al., 2017; Noorani & Baras, 2021). More generally, EM-style
algorithms jointly optimize their variational and prior policies (Peters & Schaal, 2007; Neumann
et al., 2011; Abdolmaleki et al., 2018b;a). Our variational formulation is most similar to the one
used in VMBPO (Chow et al., 2021), an EM-style algorithm that also learns variational dynamics.
However, their approach only considers risk-seeking policies and deterministic rewards.

Connections to other methods. The role of the risk parameter β is to limit the disagreement
between the variational and true environment dynamics and reward model through the KL penalty.
β-VAE (Higgins et al., 2016) studies a similar objective to ours, albeit in the different context of
representation learning, where β limits the capacity of the variational distribution to learn disentangled
representations. In Bayesian RL, a similar risk parameter balances the exploration-exploitation trade-
off by modulating epistemic uncertainty (O’Donoghue et al., 2019; O’Donoghue & Lattimore, 2021;
O’Donoghue, 2023).

6 EXPERIMENTS

We evaluate the ability of rsVAC to learn risk-sensitive policies in a variety of risky environments.
First, we consider a risky variation of the tabular environment discussed in Eysenbach et al. (2022),
where exact inference is possible and equality to the entropic risk can be achieved. We next evaluate
the inclusion of function approximators in a continuous 2D environment with stochastic transition
dynamics where the goal is to land proximal to the environment boundary without crossing over.
Finally, we compare rsVAC to risk-sensitive baseline methods in variations of three challenging
MuJoCo environments that incorporate risk in the manner introduced by Luo et al. (2024). In all cases
we find that rsVAC capably learns risk-sensitive policies in, both, the risk-averse and risk-seeking
regimes while simultaneously achieving high reward.

6.1 RISK IN TABULAR ENVIRONMENTS

Our motivation for using the tabular setting is that we can study the risk-sensitive behavior of
our algorithm without introducing function approximation error. We consider a risky variant of
the gridworld presented in Eysenbach et al. (2022). In this environment the agent’s goal, which
starts from the top left corner, is to reach the star goal state (See Fig. 2a). We modify the original
environment to incorporate aleatoric risk by including a cliff region (gray squares in Fig. 2a). Falling
into the cliff incurs a large negative reward and transition to the initial state. The agent can choose
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(a) Environment (b) Risk-neutral (c) Risk-seeking (d) Risk-averse

Figure 2: Risky tabular setting. (a) The modified grid environment with cliff region given by gray states. We
show the dynamics in the grid for the action ’right’ at each state, where we represent a transition probability
between two states as a vectors with its magnitude proportional to the probability. (b, c, d) To demonstrate the
risk preferences of our algorithm, we sample 1000 episodes for three policies — Q-learning (risk-neutral), β = 1
(risk-seeking) and β = −0.5 (risk-averse) — and compute histograms for the count of visited states.

(a) Performance curves (b) Convergence for β > 0 (c) Convergence for β < 0

Figure 3: Stochastic cliff performance. (a): We compare the expected return for 5 independent runs for different
algorithms. rsVAC for β > 0 performs comparably to both Q-learning and VMBPO. (b,c): We show that dual
optimization eventually converges to the same optimal value for different initial settings of β.

from four actions (up, left, down and right) which can result in a transition to the chosen direction or
moving randomly to one of the four directions with equal probability.

We demonstrate that rsVAC can produce risk-sensitive policies by training the surrogate objective
for the values of β = 1 and β = −0.5, along with the risk-neutral policy. We compare the risk
preferences of these policies by computing a histogram over states for 1000 trajectories. From
these trajectories, we observe that the risk-seeking policy (Fig. 2c) takes the shortest path to the
goal, but in the process occasionally falls into the cliff. In contrast, the risk-averse policy (Fig. 2d)
avoids entirely the cliff region resulting in longer trajectories. Finally, the risk-neutral policy takes a
middle-of-the-road approach between the two previous policies (Fig. 2b) where it rarely falls into the
cliff but on average it takes to longer to reach the final state in comparison to the risk-seeking policy.

We now compare the average return performance of rsVAC when including dual optimization w.r.t.
β discussed in Appendix C. As comparison baselines we consider Q-learning and VMBPO (Chow
et al., 2021), a model-based algorithm that also learns variational dynamics but is restricted to the
risk-seeking setting. The performance curves in Fig. 3a show that rsVAC (β > 0) is as efficient and
performs as well or better than VMBPO and Q-learning. Figs. 3b and 3c demonstrate robustness of
our dual optimization over β, which converges to the same value regardless of initialization.

6.2 STOCHASTIC CONTINUOUS 2D ENVIRONMENT

We verify that our algorithm can learn risk-sensitive policies with function approximators in a
stochastic continuous environment. An agent begins in the middle of a 2D space and the goal is
to navigate as near to the lower left-or-right corners as possible without crossing the side edges.
The agent observes its 2D coordinates (x, y), chooses a direction a (||a||2 = 1), and moves in that
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(a) Risk-Neutral (β = 100) (b) Risk-Seeking (β = 2) (c) Risk-Averse (β = −2)

Figure 4: Trajectories for stochastic 2D environment. We illustrate the learned policy by sampling 10
trajectories for different β values. (a) Policies trained with large β magnitude tend to be risk-neutral. (b) Policies
trained with small positive β are risk-seeking and try to hit high reward ignoring potentially hitting the side wall.
(c) Policies trained with negative β stay in the center part of the square.
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Figure 5: Exit regions for stochastic 2D environment. We define 3 regions depended on the agent’s X-position
when an episode ends: low-risk (|x| < 2.8), medium-risk (2.8 ≤ |x| < 5.6), and high-risk (5.6 ≤ |x| < 7). We
calculate these percentage regions as a function of environment steps over different β values.

direction with noise sampled from N (a, 0.52I). An episode terminates when the agent leaves the
square given by {(x, y) : |x| ≤ 7, |y| ≤ 7}. The agent receives −0.1 reward at every step with an
additional positive reward proportional to its X-position ((100/7) ∗ |x|) when it exits the square
through bottom, or −100 reward if it leaves through either the left-or-right side of the square.

In Fig. 4, we visualize trajectories for the different learned policies on the true environment. Observe
that small positive β values tend to produce risk-seeking policies where the agent aims to get as
much reward (close to the walls) as possible while ignoring the likelihood of hitting the sides of the
square. Policies trained with negative β produce risk-avoiding policies that stay in the center region.
We also calculate the percentage of episodes that terminate in different risk-regions (Fig. 5) which
demonstrate how β interpolates between different regions. We designate low-risk (left) as far from the
walls, medium-risk (center), and high-risk (right) as near the wall. We find that negative β primarily
terminate in the low-risk region, whereas small positive β primarily terminates in the high-risk region
and risk-neutral (β = 100) terminates in the intermediate and to a lesser extent high-risk regions. We
additionally include the visualizations for the learned variational dynamics in the Appendix (Fig. 7).

6.3 SIMULATED ROBOTIC BENCHMARKS

We use the MuJoCo physics engine (Todorov et al., 2012) in Gymnasium (Towers et al., 2023) to
evaluate our method on three continuous tasks (InvertedPendulum, HalfCheetah, and Swimmer).
We follow the modifications made to the reward function as in (Luo et al., 2024) to produce risky
regions in these environments based on the X-position of the agent. An additional stochastic reward
is sampled from N (0, 102) if X-position > 0.01 in InvertedPendulum, > −3 in HalfCheetah, or >
0.5 in Swimmer. Hence, we can test whether an agent is risk-seeking or risk-averse by calculating the
percentage of time spent in the region of stochastic reward.

We compare our method to Mean Gini deviation (MG) (Luo et al., 2024), a policy gradient algorithm
that optimizes the Gini deviation as an alternative risk measure and outperforms other mean-variance
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Figure 6: Risk-Averse MuJoCo. Top row: Average return on risky MuJoCo benchmarks. Bottom row:
Percentage of steps on an episode in risky regions. The solid curves correspond to the mean and shaded regions
to ± one standard deviation over 10 random trials.

algorithms; mean-variance policy iteration (MVPI) (Zhang et al., 2021), a highly flexible algorithm
that optimizes reward-volatility risk measure with the primary goal of reducing the performance gap
between risk-neutral and risk-averse algorithms; and exponential TD (expTD) (Noorani et al., 2023),
an actor-critic algorithm that optimizes the entropic risk-measure by using a critic that estimates the
exponentiated return. To achieve a fair comparison, we implement every actor-critic algorithm on top
of TD3 (Fujimoto et al., 2018). For MG we follow the author implementation which uses PPO-style
policy gradient to maximize the expected return (Schulman et al., 2017). For consistency we use the
same network architectures across all algorithms. We also update the policy at each environment
step for all algorithms, with the exception of MG which requires the collection of 10 episodes before
updating its model. See the Appendix for additional configuration details.

In Fig. 6, we report the total return (top-row) and percentage of timesteps visiting the noisy region
(bottom-row) for each algorithm in a risk-averse configuration. We perform 10 runs of each algorithm
with different random seeds and report average and STDEV every 10k environment steps. Agents are
tested for 20 episodes per evaluation. For rsVAC, we include both a version where the actor-critic
is given by TD3 and another given by SAC (Haarnoja et al., 2018). The results show that rsVAC is
effective at learning the stochasticity of the environment while producing better policies in terms of
learning speed and final-performance. MVPI also learns risk-averse policies in all three domains, but
results in lower overall mean returns. We also perform an ablation analysis for the parameter β to
demonstrate that our algorithm can learn both risk-seeking and risk-averse policies (Appendix Fig. 8).

7 CONCLUSION

In this work, we leveraged the connection between RL and probabilistic inference to formulate a
surrogate objective on the entropic risk measure. We proposed an EM-style algorithm that consists
of learning variational dynamics and reward model that account for aleatoric uncertainty in the
environment (E-step) and improves the objective w.r.t. a policy (M-step). Finally, we proposed
a practical algorithm (rsVAC) that permits learning of risk-seeking and risk-averse policies from
experience replay alone. Our evaluations demonstrate that rsVAC is effective in learning risk-sensitive
policies in several challenging environments. In particular we show that, compared to baseline risk-
sensitive methods, rsVAC performs capably in risky variants of challenging MuJoCo environments,
and in all cases yields superior return.
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APPENDIX

A OPERATOR Tπ PROOFS

For our formulation, we consider a finite-horizon problem for which we maximize the following
objective over variational distributions qtd(st+1|st, at) and qtr(rt|st, at):

V ∗
1 (s1) = max

q1r ,q
1
d,...,q

T
r ,q

T
d

Eqπ(τ)

[
T∑
t=1

rt
β
− log

qtd(st+1|st, at)
ptd(st+1|st, at)

− log
qtr(rt|st, at)
ptr(rt|st, at)

]
. (18)

Let {q1∗r , q1∗d , ..., qT∗
r , qT∗

d } be an optimal set of variational distributions for this problem. By the prin-
ciple of optimality, we have that the truncated set of variational distributions {qk∗r , qk∗d , ..., qT∗

r , qT∗
d }

is optimal for the subproblem where we start at sk:

V ∗
k (sk) = max

qkr ,q
k
d ,...,q

T
r ,q

T
d

Eqπ(τ)

[
T∑
t=k

rt
β
− log

qtd(st+1|st, at)
ptd(st+1|st, at)

− log
qtr(rt|st, at)
ptr(rt|st, at)

]
. (19)

Lemma 1. Define the recursive value functions as:

VT (sT ) = E
aT∼π

[
max
qTr

E
qTr

[
rT
β
− log

qTr (rT |sT , aT )
pTr (rT |sT , aT )

]
+max

qTd

E
qTd

[
− log

qTd (sT+1|sT , aT )
pTd (sT+1|sT , aT )

]]
.

Vk(sk)= E
ak∼π

[
max
qkr

E
qkr

[
rk
β
−log q

k
r (rk|sk, ak)
pkr (rk|sk, ak)

]
+max

qkd

E
qkd

[
Vk+1(sk+1)− log

qkd(sk+1|sk, aT )
pkd(sk+1|sk, ak)

]]
k = 1, ..., T − 1.

Then we have that Vk(sk) = V ∗
k (sk)

Proof. This analysis proceeds similar to the proof of Prop. 1.3.1 of Bertsekas (2020). We will show
by induction that the functions Vk are equal to the optimal value functions V ∗

k . For k = T , we have
that

V ∗
T (sT ) = max

qTr ,q
T
d

E
aT∼π

[
E
qTr

[
rT
β
− log

qTr (rT |sT , aT )
pTr (rT |sT , aT )

]
+ E
qTd

[
− log

qTd (sT+1|sT , aT )
pTd (sT+1|sT , aT )

]]

= E
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[
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β
− log
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]
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qTd

E
qTd

[
− log

qTd (sT+1|sT , aT )
pTd (sT+1|sT , aT )

]]
= VT (sT ),

where the max and expectation operators commute by the principle of optimality. Now, let us assume
that for some k and all sk+1, we have Vk+1(sk+1) = V ∗

k+1(sk+1). Then

V ∗
k (sk) = max

qkr ,q
k
d ,...,q
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r ,q
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d

Eqπ(τ)
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T∑
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− log
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where we obtain the second equality by moving the max operator inside the expectation using the
principle of optimality. For the third equality, we use the definition of V ∗

k+1, and for the fourth equality
we use the induction hypothesis. This completes our induction, and we have V ∗

k (sk) = Vk(sk) for
all k.
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The ability to commute expectation and maximization operators, used in the previous proof, deserves
additional discussion. Formal proofs of this result in the general DP setting can be found in appendix
A of Bertsekas (2012). We include a discussion specific to our setting below, beginning with the
assumption that each maximization step is finite:

Qk(sk, ak)= max
qkr ,q

k
d ,...,q
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r ,q

T
d

E
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rt
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− log
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]
<∞.

Hence, for every ϵ > 0 there exist a set of variational distributions {qkϵr , ..., qTϵd } that satisfies that
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Since ϵ > 0 is arbitrary it follows that
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On the other hand, we have that
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ptd(st+1|st, at)

− log
qtr(rt|st, at)
ptr(rt|st, at)

]]
for all sets of variational distributions {qkr , ..., qTd }. So the inequality holds when taking the maximum,

Eak∼π

[
max

qkr ,q
k
d ,...,q

T
r ,q

T
d

Eqπ(τ)

[
T∑
t=k

rt
β
− log

qtd(st+1|st, at)
ptd(st+1|st, at)

− log
qtr(rt|st, at)
ptr(rt|st, at)

]]

≥ max
qkr ,q

k
d ,...,q

T
r ,q

T
d

Eak∼π

[
Eqπ(τ)

[
T∑
t=k

rt
β
− log

qtd(st+1|st, at)
ptd(st+1|st, at)

− log
qtr(rt|st, at)
ptr(rt|st, at)

]]
.

Combining these two results we obtain the sought equality:

Eak∼π

[
max

qkr ,q
k
d ,...,q

T
r ,q

T
d

Eqπ(τ)

[
T∑
t=k

rt
β
− log

qtd(st+1|st, at)
ptd(st+1|st, at)

− log
qtr(rt|st, at)
ptr(rt|st, at)

]]

= max
qkr ,q

k
d ,...,q

T
r ,q

T
d

Eak∼π

[
Eqπ(τ)

[
T∑
t=k

rt
β
− log

qtd(st+1|st, at)
ptd(st+1|st, at)

− log
qtr(rt|st, at)
ptr(rt|st, at)

]]
.
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We now present our main result for application of the Bellman-style operator.
Theorem 1. Repeated application of Tπ to any value function V such that V (sT+1) = 0 converges
to the optimal value function V ∗

k for all k.

Proof. We demonstrate this by induction. After one application of Tπ we have that

Tπ[V ](sT ) = E
π

[
max
qTr

E
qTr

[
rT
β
− log

qTr (rT |sT , aT )
pTr (rT |sT , aT )

]
+max

qTd

E
qTd

[
V (sT+1)− log

qTd (sT+1|sT , aT )
pTd (sT+1|sT , aT )

]]
.

=E
π

[
max
qTr

E
qTr

[
rT
β
− log

qTr (rT |sT , aT )
pTr (rT |sT , aT )

]
+max

qTd

E
qTd

[
− log

qTd (sT+1|sT , aT )
pTd (sT+1|sT , aT )

]]
= VT (sT ),

where the second equality uses the fact that V (sT+1) = 0. Now, let us assume that for some k and
all sk+1, we have V (sk+1) = Vk+1(sk+1). Then

Tπ[V ](sk) = E
π

[
max
qkr

E
qkr

[
rk
β
− log

qkr (rk|sk, ak)
pkr (rk|sk, ak)

]
+max

qkd

E
qkd

[
V (sk+1)− log

qkd(sk+1|sk, ak)
pkd(sk+1|sk, ak)

]]
.

=E
π

[
max
qkr

E
qkr

[
rk
β
− log

qkr (rk|sk, ak)
pkr (rk|sk, ak)

]
+max

qkd

E
qkd

[
Vk+1(sk+1)− log

qkd(sk+1|sk, ak)
pkd(sk+1|sk, ak)

]]
= Vk(sk),

where the second equality uses the induction hypothesis. This shows that after k successive applica-
tions of Tπ we recover the optimal value function Vk.

Lemma 2. For any state s ∈ S, action a ∈ A and reward distribution p(r|s, a), we have

max
qr∈∆R

Er∼qr(r|s,a)
[
r

β
− log

qr(r|s, a)
p(r|s, a)

]
= logEr∼p(r|s,a)

[
exp

(
r

β

)]
. (20)

Analogously, for any state s ∈ S , action a ∈ A, value function V and dynamics distribution p(s′|s, a),
we have

max
qd∈∆S

Es′∼qd(s′|s,a)
[
V (s′)− log

qd(s
′|s, a)

p(s′|s, a)

]
= logEs′∼p(s′|s,a)[exp(V (s′))]. (21)

Proof. For Eq. 20, we have that

max
qr∈∆R

Er∼qr(r|s,a)
[
r

β
− log

qr(r|s, a)
p(r|s, a)

]
= max
qr∈∆R

Er∼qr(r|s,a)
[
r

β
+ log p(r|s, a)− log qr(r|s, a)

]
= log

∫
r

exp

(
r

β
+ log p(r|s, a)

)
= logEr∼p(r|s,a)

[
exp

(
r

β

)]
where the second equality follows from Lemma 4 in Nachum et al. (2017). Eq. 21 follows from
Lemma 5 in Chow et al. (2021).

Lemma 3. The operator Tπ is monotonic.

Proof. If V,W : S → R are functions such that V (s) ≤ W (s),∀s ∈ S. Then Tπ[V ](s) ≤
Tπ[W ](s),∀s ∈ S. From Lemma 2, we have that

Tπ[V ](s) = Eπ
[
log E

r∼p

[
exp

(
r

β

)]
+ log E

s′∼p
[exp(V (s′))]

]
= Eπ

[
log E

s′,r∼p

[
exp

(
r

β
+ V (s′)

)]]
,

where the second equality uses the fact that p(s′, r|s, a) = p(s′|s, a)p(r|s, a). Therefore,

Tπ[V ](s) = Eπ
[
log E

s′,r∼p

[
exp

(
r

β
+ V (s′)

)]]
≤ Eπ

[
log E

s′,r∼p

[
exp

(
r

β
+W (s′)

)]]
= Tπ[W ](s),

where we use the monotonicity of the exp, expectation and log operations.

Before proving Theorem 2, we prove the following lemma:
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Lemma 4. Let q∗r be the solution of Eq. 20. Then

q∗r (r|s, a) ∝ p(r|s, a) exp
(
r

β

)
. (22)

Analogously, let qVd be the solution of Eq. 21. Then

qVd (s
′|s, a) ∝ p(s′|s, a) exp (V (s′)) . (23)

Proof. For Eq. 22, we have that

q∗r (r|s, a) =
exp

(
r
β + log p(r|s, a)

)
∫
r
exp

(
r
β + log p(r|s, a)

) ∝ p(r|s, a) exp( r
β

)
(24)

where the first equality follows from Corollary 6 in Nachum et al. (2017). Eq. 23 follows from
Lemma 3 in Chow et al. (2021).

Theorem 2. Let q∗r and q∗d be the solution of argmaxq Jβ(q, π). Then

q∗r (r|s, a) ∝ p(r|s, a) exp
(
r

β

)
, q∗d(s

′|s, a) ∝ p(s′|s, a) exp (V ∗
π (s

′)) . (25)

Proof. We have that

Jβ(q∗, π) = V ∗
π (s) = max

qπ
Eqπ

[
r

β
− log

qr(r|s, a)
p(r|s, a)

+ V ∗
π (s

′)− log
qd(s

′|s, a)
p(s′|s, a)

]
= Ea∼π

[
max
qr∈∆R

Er∼qr
[
r

β
− log

qr(r|s, a)
p(r|s, a)

]
+ max
qd∈∆S

Es′∼qd
[
V ∗
π (s

′)− log
qd(s

′|s, a)
p(s′|s, a)

]]
.

where the second equality comes from the definition of V ∗
π . Using Lemma 4, we conclude that

q∗r (r|s, a) ∝ p(r|s, a) exp
(
r

β

)
, q∗d(s

′|s, a) ∝ p(s′|s, a) exp (V ∗
π (s

′)) .

B RISK-AVERSE M-STEP

In this section, we derive Eq. (11) for the two cases: β > 0 and β < 0. For β > 0, we have that the
M-step:

argmax
π

Jβ(q∗, π) = argmax
π

Eq∗π(τ)

[∑
t

rt
β
− log

q∗d(st+1|st, at)
p(st+1|st, at)

− log
q∗r (rt|st, at)
p(rt|st, at)

]

= argmax
π

Eqπ(τ)

[∑
t

rt − β log
q∗d(st+1|st, at)
p(st+1|st, at)

− β log q
∗
r (rt|st, at)
p(rt|st, at)

]
.

where the second equality comes from multiplying by β. For β < 0, we have that the M-step:

argmin
π

Jβ(q∗, π) = argmin
π

Eq∗π(τ)

[∑
t

rt
β
− log

q∗d(st+1|st, at)
p(st+1|st, at)

− log
q∗r (rt|st, at)
p(rt|st, at)

]

= argmax
π

Eqπ(τ)

[∑
t

rt − β log
q∗d(st+1|st, at)
p(st+1|st, at)

− β log q
∗
r (rt|st, at)
p(rt|st, at)

]
.

where the argmin becomes argmax in the second equality due to multiplying through by negative
β. Hence, for both cases the M-step is equivalent to Eq. (11). This shows that for β < 0, the overall
optimization is equivalent to the saddle-point problem: argminπ argmaxq Jβ(q, π). Thus, for the
risk-averse setting we do not have monotonic improvement on the entropic objective. Nonetheless, it
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serves as an approximation to the unconstrained objective when q(τ) = p(τ |O1:T = 1), for which
we have equality to the entropic objective (Osogami, 2012). This surrogate objective is also related to
Robust MDPs (Nilim & El Ghaoui, 2005) by treating the maximization of q as the worst choice for
an uncertain set, i.e. the set of variational distributions of the form qπ(τ). Additionally, the objective
is equivalent to the Minimax Criterion under inherent uncertainty (Garcı́a & Fernández, 2015; Heger,
1994) when β → 0.

C DUAL OPTIMIZATION

Choosing a suitable β can be a deciding factor between learning risk-sensitive policies or divergence
in practice. Hence, we propose a Langrangian formulation that automatically tunes the risk-sensitive
parameter β for, both, the risk-seeking (β > 0) and risk-averse (β < 0) settings. For β > 0, we
observe that the maximization of Jβ(q, π) w.r.t. q reflects the Lagrangian of the following constrained
optimization,

max
q

Eqπ(τ)

[∑
t

rt

]
s.t. KL(qπ(τ) ∥ pπ(τ)) ≤ ϵ, (26)

where ϵ sets a hard-constraint on the allowable divergence of the distribution qπ(τ). We recognize β
as a Lagrange multiplier and perform dual gradient descent (Boyd & Vandenberghe, 2004) via the
loss function:

J(β) = β (ϵ−KL(q(st+1, rt | st, at) ∥ p(st+1, rt | st, at))) . (27)
Although constraint in the primal problem of Eq. (26) suggests optimizing the dual parameter β
w.r.t. the entire trajectory KL(qπ(τ) ∥ pπ(τ)). This can lead to high variance for long trajectories.
We instead impose the constraint only at single transition, which yields more stable learning. This
approach most closely aligns with SAC (Haarnoja et al., 2018), which introduces a dual relaxation to
modulate its policy entropy. For β < 0, we now consider the following primal problem,

max
q

Eqπ(τ)

[∑
t

ct

]
s.t. KL(qπ(τ) ∥ pπ(τ)) ≤ ϵ. (28)

where the optimization is w.r.t. costs ct = −rt. In other words, the agent aims to find the worst-case
dynamics q that are within ϵ of the true dynamics in a KL sense. Now consider the dual problem with
Lagrange multiplier λ:

min
λ>0

max
q

Eqπ(τ)

[∑
t

ct

]
+ λ(ϵ−KL(qπ(τ) ∥ pπ(τ))). (29)

In particular, we observe that for any fixed λ the maximization w.r.t. q is equivalent to maximizing
Jβ(q, π) with β = −λ. Hence, we propose a dual gradient descent optimization with loss function:

J(λ) = λ (ϵ−KL(q(st+1, rt | st, at) ∥ p(st+1, rt | st, at))) . (30)
where we can recover β by setting it to−λ. Again, we impose the constraint only at single transitions,
which yields more stable learning.

D ADDITIONAL EXPERIMENTS

D.1 VISUALIZATION OF VARIATIONAL DYNAMICS FOR RSVAC

In Fig. 8, we visualize the learned variational dynamics on the stochastic continuous 2D environment
for a range of β values. When β < 0, we observe that the variational dynamics model is pessimistic
and moves the agent towards the horizontal sides of the square. In contrast, when β > 0 the variational
dynamics guide the agent towards the regions of high reward and ignore the potential of hitting the
walls.

D.2 ABLATION EXPERIMENTS FOR RSVAC

Ablation experiments for rsVAC using SAC as its actor-critic w.r.t. risky MuJoCo benchmarks
(InvertedPendulum, HalfCheetah and Swimmer) for a range of β values. Fig. 8 demonstrates that
rsVAC is capable of learning risk-sensitive policies in, both, the risk-averse and risk-seeking regimes
while achieving high reward.
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(a) β = −2 (b) β = −10 (c) β = −100

(d) β = 2 (e) β = 10 (f) β = 100

Figure 7: Visualizations of variational dynamics for linearly spaced coordinates in stochastic continuous 2D
environment. From each state, we draw a vector to its expected next state colored by the agent’s action: up
(black), right (green), down (blue) and left (red).
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Figure 8: Ablation analysis w.r.t risk parameter β. The solid curves correspond to the mean and shaded regions
to ± one standard deviation over 5 random trials. Top row: Average return. Bottom row: Percentage of steps on
an episode in risky regions.

D.3 ADDITIONAL MUJOCO EXPERIMENTS

Fig. 9 compares rsVAC (with TD3 as its actor-critic) to other risk-averse baselines on the MuJoCo
environment Ant-v4. Similarly to our previous experiments, we modify this environment by including
an additional stochastic reward sampled from N (0, 102) if X-position > 0.5. Again we observe that
rsVAC is effective at learning risk-sensitivity while producing better policies in terms of average
return.
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Figure 9: Risky Ant-v4. Left: Average return on Ant-v4. Right: Percentage of steps on an episode in risky
regions. The solid curves correspond to the mean and shaded regions to ± one standard deviation over 5 random
trials.

E IMPLEMENTATION DETAILS

E.1 STABILITY MODIFICATIONS

During the implementation of rsVAC, we noticed that the log-terms in the critic update have no
effects on controlling the risk-sensitivity of the algorithm, while producing instabilities that can
hurt the critic’s convergence. For this reason, we remove them during optimization of rsVAC for
the continuous experiments. Another modification that we found that can improve learning for the
variational dynamics is the introduction of a separate critic V optimized w.r.t. real environment data.
This critic is convenient as it provides information about the return in future states while remaining
independent of the variational dynamics so it doesn’t tend to become overly optimistic (or pessimistic)
for β values with small magnitude.

E.2 CONTINUOUS 2D ENVIRONMENT

Table 1 lists the hyperparameters used by rsVAC for the stochastic continuous 2D environment.

Table 1: Hyperparameters for stochastic continuous 2D environment

Schedule details
Environment steps before training 5000 steps
Environment steps per epoch 1000 steps
Model optimization every 1 steps
Number of model rollouts 128 rollouts
Rollout length 1 step

Network details
Discount factor 0.9
Soft target update 0.005
Experience buffer Denv 1,000,000
Model buffer Dmodel 128
Dynamics Network Architecture MLP with 2 hidden layers of size 256
Actor Network Architecture MLP with 2 hidden layers of size 256
Critic Network Architecture MLP with 2 hidden layers of size 256
Network optimizer Adam
Non-linear layers ReLU
Learning rate 0.0003
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E.3 MUJOCO ENVIRONMENTS HYPERPARAMETERS

For MG and MVPI, we use the implementations in Luo et al. (2024) and follow the same hyperparam-
eters suggested by the authors. We implement expTD (Noorani et al., 2023) on top of the TD3 imple-
mentation in Luo et al. (2024) and select the -10 as its risky parameter from {−1,−10,−20,−100}.
For rsVAC we select its risk parameter from {−1,−4,−8}. For SAC we use a re-implementation
of that algorithm made available by other authors2. We use the same network architectures and
learning rates for all algorithms. Table 2 lists the hyperparameters used for rsVAC and all actor-critic
algorithms in risk-aware MuJoCo benchmarks.

Table 2: Hyperparameters for risk-aware MuJoCo benchmark

Schedule details
Environment steps before training 5000 steps
Environment steps per epoch 1000 steps
Model optimization every 1 step
Number of model rollouts 256 rollouts
Rollout length 1 step

Network details
Discount factor 0.99
Soft target update 0.005
Experience buffer Denv 1,000,000
Model buffer Dmodel 256
Reward Network Architecture MLP with 2 hidden layers of size 256
Actor Network Architecture MLP with 2 hidden layers of size 256
Critic Network Architecture MLP with 2 hidden layers of size 256
Network optimizer Adam
Non-linear layers ReLU
Learning rate 0.0003
β initialization -1 (-8 for invertedPendulum with TD3)
α initialization 0.2 (for SAC implementation only)

F PSEUDOCODE OF RSVAC

This section contains the pseudocode for our algorithm, rsVAC.

2https://github.com/Xingyu-Lin/mbpo pytorch
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Algorithm 1 rsVAC

Initialize networks, parameters and replay buffers.
for each epoch do

for each environment step do
at ∼ πθ(at|st)
st+1, rt ∼ p(st+1, rt|st, at) Sample next state from environment.
Denv ← Denv ∪ {(st, at, st+1, rt)} Add tuple to experience buffer.
if model optimization then
{(sit, ait, sit+1, r

i
t)}Ni=1 ∼ Denv Sample every tuple in experience buffer.

θ ← θ −∇Jd(θ) Update prior dynamics pθ.
θ ← θ −∇Jr(θ) Update prior reward pθ.
ϕ← ϕ−∇Jd(ϕ) Update variational dynamics qϕ.
ϕ← ϕ−∇Jr(ϕ) Update variational reward qϕ.
for m = 1, 2, ...,M do

st ∼ Denv Sample state from experience buffer Denv.
at ∼ πθ(at|st) Sample action using policy.
st+1 ∼ qϕ(st+1|st, at) Sample next state using variational dynamics.
rt ∼ qϕ(rt|st, at) Sample reward using variational reward model.
Dmodel ← Dmodel ∪ {(st, at, st+1, rt)} Add tuple to model buffer.

end for
end if
for k = 1, 2, ...,K do
{(sit, ait, sit+1, r

i
t)}Bi=1 ∼ Dmodel Sample mini-batch from model buffer Dmodel.

ψ ← ψ −∇J(ψ) Update critic Qψ .
θ ← θ −∇J(θ) Update policy πθ.
ψ′ ← τψ + (1− τ)ψ′ Update target critic Q′

ψ .
end for

end for
end for
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