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Abstract

Large language models (LLMs) have demon-001
strated impressive adaptability to diverse tasks,002
by relying only on context prompts contain-003
ing instructions, or minimal input-output ex-004
amples. However, recent work revealed they005
also exhibit label bias—an undesirable pref-006
erence toward predicting certain answers over007
others. Still, detecting and measuring this bias008
reliably and at scale has remained relatively009
unexplored. In this study, we evaluate differ-010
ent approaches to quantifying label bias in a011
model’s predictions, conducting a comprehen-012
sive investigation across 279 classification tasks013
and ten LLMs. Our investigation reveals sub-014
stantial label bias in models both before and af-015
ter debiasing attempts, as well as highlights the016
importance of outcomes-based evaluation met-017
rics, which were not previously used in this re-018
gard. We further propose a novel label bias cal-019
ibration method tailored for few-shot prompt-020
ing, which outperforms recent calibration ap-021
proaches for both improving performance and022
mitigating label bias. Nevertheless, our results023
emphasize that label bias in the predictions of024
LLMs remains a barrier to their reliability.1025

1 Introduction026

Large language models (LLMs) have shown re-027

markable abilities in adapting to new tasks when028

conditioned on a context prompt, containing task029

solving instructions (Wei et al., 2022) or few exam-030

ples of input-output pairs (Brown et al., 2020). Still,031

recent work has shown that predictions of LLMs032

exhibit label bias—a strong, undesirable prefer-033

ence towards predicting certain answers over oth-034

ers (Zhao et al., 2021; Chen et al., 2022; Fei et al.,035

2023, see Fig. 1). Such preferences were shown to036

be affected by the choice and order of in-context037

demonstrations (Liu et al., 2022; Lu et al., 2022),038

the model’s pretraining data (Dong et al., 2022), or039

1We will release our code upon publication.

Figure 1: LLMs exhibit label bias—a tendency to output
a given label regardless of the context (in this example,
‘yes’ over ‘no’). In this work we evaluate LLM label bias
across ten LLMs and 279 classification tasks, showing
label bias is a major problem in LLMs.

textual features of the task data (Fei et al., 2023). 040

Consequently, several approaches were proposed 041

to address this problem, mostly by calibrating the 042

model’s output probabilities to compensate for this 043

bias (Zhao et al., 2021; Fei et al., 2023). 044

Despite these efforts, label bias evaluation relies 045

on performance metrics such as accuracy, rather 046

than metrics designed to directly measure the bias. 047

In doing so, we might inadvertently overlook cru- 048

cial aspects of model behavior. Indeed, although 049

a given method could effectively improve perfor- 050

mance, substantial bias might still persist in the 051

model’s predictions—deeming the method insuffi- 052

cient and the model unreliable. Alternatively, per- 053

formance could remain relatively unchanged, but 054

with the bias mostly removed. 055

In this work, we take a step towards a more com- 056

prehensive understanding of the extent of label bias 057

in LLMs and the effects of mitigation approaches. 058

Using metrics to quantify label bias in model pre- 059

dictions, which we derive from previous work on 060

fairness and label bias estimation, we evaluate ten 061

LLMs on 279 diverse classification tasks from 062

SUPER-NATURALINSTRUCTIONS (Wang et al., 063

2022). We examine both performance and bias 064

along axes such as scale and number of in-context 065
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demonstrations. We also evaluate the impact of066

label bias mitigation methods, such as calibration067

and few-shot LoRA fine-tuning (Hu et al., 2022).068

Our investigation reveals substantial label bias069

in the predictions of LLMs across all evaluated070

settings, indicating that raw LLM output scores071

often represent simple, heuristic solutions. While072

increasing model size, providing in-context demon-073

strations, and instruction-tuning all contribute to074

reducing bias, ample bias persists, even after apply-075

ing mitigation methods. Surprisingly, these results076

also hold for tasks where the labels are all seman-077

tically equivalent (e.g., in multi-choice question078

answering). Further, although the examined cali-079

bration methods can reduce bias and improve per-080

formance, we also find cases where they negatively081

impact both bias and overall performance.082

Motivated by these findings, we propose a novel083

calibration method for few-shot prompting that ac-084

curately estimates a model’s label bias using only085

its predictions on the prompt’s in-context demon-086

strations. Compared to existing LLM calibration087

methods, our method improves performance while088

also removing considerably more bias.089

Our findings highlight the necessity of con-090

sidering and measuring biases in the predictions091

of LLMs whenever benchmarking their perfor-092

mance. Furthermore, adapting models to their tasks093

through more accurate and effective estimation of094

biases, as demonstrated by our proposed method095

for calibrating few-shot prompting, offers a promis-096

ing avenue for improving the reliability of LLMs097

and their applications.098

2 LLM Label Bias099

Our objective is to broaden the understanding of100

label bias in LLMs and the effectiveness of miti-101

gation strategies, focusing on classification tasks.102

In this section, we define metrics designed to quan-103

tify bias in model predictions, aiming to provide104

a nuanced examination of label bias that extends105

beyond traditional performance metrics. We de-106

scribe the setting of label bias in in-context learn-107

ing (§2.1), and then review approaches to eval-108

uating it and define the metrics we use in this109

work (§2.2).110

2.1 Label Bias111

When employing LLMs for classification tasks112

through prompting, the model is given a test113

example x, preceded by a context C. This114

context can contain a (potentially empty) set 115

of examples of the task’s input-output map- 116

ping rpx1, y1q, . . . , pxk, ykqs, henceforth demon- 117

strations, and may also include task instructions. 118

To determine the model’s prediction from a set of 119

answer choices Y , the likelihood it assigns to each 120

continuation y P Y is computed, and the highest 121

probability option is taken as the model prediction: 122

argmax
yPY

ppy | x,Cq 123

These output probabilities often exhibit label bias, 124

where the model tends to assign higher probability 125

to certain answers regardless of the input test ex- 126

ample x (Fig. 1). Multiple factors were posited to 127

influence this bias, including the choice of verbaliz- 128

ers Y , the choice and order of in-context examples 129

in C, and the overall textual features of task in- 130

put x (Zhao et al., 2021; Fei et al., 2023). 131

2.2 Evaluation Measures 132

Most analyses of LLM label bias rely on indirect 133

assessments, based on inspecting improvements 134

in overall performance gained after applying tech- 135

niques to mitigate it (Fei et al., 2023; Holtzman 136

et al., 2021; Zhao et al., 2021). However, these do 137

not indicate the extent of bias originally present, 138

or that remains after mitigation. We next exam- 139

ine approaches to measure this bias more directly, 140

and define the metrics we use in this work. Impor- 141

tantly, we focus on label bias measures that could 142

be used effectively both before and after applying 143

mitigation techniques such as calibration. 144

Drawing from previous research on fairness and 145

bias in machine learning, we observe that there 146

are two distinct yet related aspects in which label 147

bias can be measured in LLM predictions: through 148

the probabilities assigned by the model to different 149

answers; and through the model’s final predictions 150

compared to the gold labels (Mehrabi et al., 2021). 151

Probabilistic approach To assess the first, prob- 152

abilistic aspect, previous work used qualitative as- 153

sessments to visualize model output distributions 154

on selected datasets (Zhao et al., 2021; Han et al., 155

2023). However, these cannot be used to rigorously 156

evaluate model behavior on larger scales. Recently, 157

Fei et al. (2023) proposed to measure the model’s 158

label bias by comparing its mean output probabili- 159

ties p̂cf on synthetic and “content-free” task inputs 160

X̂cf, built by concatenating random words from the 161

task’s test data, against the model’s output prob- 162

abilities p̂rand on inputs consisting of random vo- 163
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cabulary words X̂rand. These output distributions164

are computed over the set of answer choices Y , by165

taking the model’s average output probabilities for166

each label y P Y across the two sets of inputs:167

p̂˚pyq “
1

|X̂˚|

ÿ

xPX̂˚

ppy | x,Cq168

The model’s bias is then defined to be the total169

variation distance dTV between both distributions:170

dTV pp̂cf, p̂randq “
1

2

ÿ

yPY

| p̂cfpyq ´ p̂randpyq |171

Importantly, since Fei et al. (2023) also use the172

model’s predictions on X̂cf for calibration, this173

metric cannot be used to quantify the label bias174

remaining after calibration.175

In this work, we simplify the computation of176

this metric and adapt it to be used after calibra-177

tion. First, we hold-out a set of inputs to be used178

exclusively for measuring bias. Second, when es-179

timating the model’s average output probabilities,180

instead of using randomly concatenated words, we181

use in-distribution examples extracted from the test182

set, X̂i.d. “ ppx1, y1q, . . . , pxm, ymqq. This setup183

allows to account for label imbalance in the data184

used for bias estimation X̂i.d., as the instances in185

the test set are all labeled. To do so, we first esti-186

mate the model’s output distribution individually187

on each subset of examples with gold label ℓ P Y ,188

X̂ℓ
i.d. “ tpx, yq P X̂i.d. | y “ ℓu, by computing:189

p̂ℓi.d.pyq “
1

|X̂ℓ
i.d.|

ÿ

xPX̂ℓ
i.d.

ppy | x,Cq190

and then set p̂i.d. to be the average of these esti-191

mates.2 Instead of p̂rand, we use the uniform dis-192

tribution over all answer choices p 1
|Y |

, . . . , 1
|Y |

q,193

which recent mitigation approaches consider as the194

“ideal”, unbiased output distribution (Zhao et al.,195

2021). Finally, we define the model’s bias score196

as the total variation distance between these two197

distributions:198

BiasScore “
1

2

ÿ

yPY

∣∣∣∣ p̂i.d.pyq ´
1

|Y |

∣∣∣∣199

2In cases where examples for an infrequent label ℓ P Y

are not found in X̂i.d., we do not take it into account when
computing p̂i.d..

Outcome-based approach When considering 200

the effects of label bias on model predictions, 201

strong label bias will likely result in disparities in 202

task performance on instances of different classes. 203

However, metrics to assess such disparities were 204

not used in previous analyses of label bias. 205

We propose to use the Relative Standard De- 206

viation of class-wise accuracy (RSD ; Croce et al. 207

2021; Benz et al. 2021), a metric used for study- 208

ing fairness in classification. RSD is defined as 209

the standard deviation of the model’s accuracy per 210

class pacc1, . . . , acc|Y |q, divided by its mean accu- 211

racy acc on the entire evaluation data:3 212

RSD “

b

1
|Y |

ř|Y |

i“1pacci ´ accq2

acc
213

Intuitively, RSD is low when model performance is 214

similar on all classes, and high when it performs 215

well on some classes but poorly on others. 216

Discussion We note that each evaluation ap- 217

proach could detect biases that the other does not. 218

For example, a slight bias in the model’s average 219

output probabilities (e.g., 55% vs. 45%) could ren- 220

der dramatic bias in actual outcomes if the model al- 221

ways assigns higher probability to some label. Con- 222

versely, when the output probabilities are biased 223

on average but the model’s class-wise performance 224

is balanced, this hidden bias could result in actual 225

performance disparities in more difficult cases. We 226

therefore report both metrics in this work. 227

3 Experimental Setting 228

3.1 Datasets 229

We evaluate models on 279 diverse tasks 230

from the SUPER-NATURALINSTRUCTIONS bench- 231

mark (Wang et al., 2022). We select all available 232

classification and multi-choice question answering 233

tasks where the output space is a set of predefined 234

labels, such as “A/B/C” or “positive/negative”. We 235

sample 1,000 examples for evaluation for all tasks 236

with larger data sizes, and additionally sample 32 237

held-out examples for computing the bias score 238

metric (§2.2), and 64 more examples to be used as 239

a pool of instances for choosing in-context demon- 240

strations and LoRA fine-tuning examples. We only 241

include tasks with at least 300 evaluation examples 242

in our experiments. 243

3The goal of this normalization is to enhance the metric’s
interpretability across tasks of varying difficulty.
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3.2 Models and Evaluation Setup244

We experiment with models of different sizes from245

three LLMs families: LlaMA-2 7B and 13B (Tou-246

vron et al., 2023), Mistral 7B (Jiang et al., 2023a),247

and Falcon 7B and 40B (Penedo et al., 2023). We248

use both the base and instruction fine-tuned ver-249

sions of each model. We evaluate models using con-250

text prompts with k P t0, 2, 4, 8, 16u demonstra-251

tions, and average the results across 3 different sets252

of demonstrations for each k. To control the eval-253

uation budget, we run the more expensive LoRA254

and Falcon 40B experiments with k P t0, 8, 16u255

averaged across 2 sets of demonstrations.256

We use the task instructions and prompt tem-257

plate defined in SUPER-NATURALINSTRUCTIONS.258

For tasks where the answer choices y P Y have259

unequal token lengths, we use length-normalized260

log-likelihood when computing the model’s output261

probabilities (Holtzman et al., 2021). For further262

implementation details, see App. A.1.263

Data contamination During their instruction264

tuning, Llama-2 chat models were initially fine-265

tuned on the Flan data collection (Chung et al.,266

2022; Longpre et al., 2023), approximately 20% of267

which is comprised of examples from the SUPER-268

NATURALINSTRUCTIONS benchmark. There-269

fore, our evaluation of the Llama-2 instruction-270

tuned models is likely effected by data contam-271

ination (Magar and Schwartz, 2022). Still, our272

results show both models exhibit extensive label273

bias, possibly due to later fine-tuning on other data.274

As it is unclear from the implementation details275

of Touvron et al. (2023) which examples in SUPER-276

NATURALINSTRUCTIONS were included in train-277

ing, we do not take extra steps in attempt to reduce278

possible overlap and contamination.279

3.3 Bias Mitigation Techniques280

We evaluate the effects of three label bias mitiga-281

tion methods: two calibration methods designed to282

correct a model’s label bias by adjusting its output283

scores; and few-shot LoRA fine-tuning (Hu et al.,284

2022), which adapts the model to the task and its285

label distribution. We describe each method below.286

Contextual calibration (CC) Zhao et al. (2021)287

proposed to use calibration in order to remove the288

label bias arising from the context prompt C and289

the model’s pretraining. Inspired by confidence290

calibration methods (Guo et al., 2017), they define291

a matrix W that is applied to the model’s origi-292

nal output probabilities p to obtain calibrated, de- 293

biased probabilities q “ softmaxpWpq. To de- 294

termine the calibration parameters W , they first 295

compute the model’s average predicted probabil- 296

ities p̂ on a small set of “placeholder”, content- 297

free input strings such as “[MASK]”, which re- 298

place the task input that follows C.4 They then set 299

W “ diagpp̂q´1, so that the class probabilities for 300

the average content-free input would be uniform, 301

aiming to remove the model’s underlying bias. 302

Domain-context calibration (DC) Following 303

the CC method, Fei et al. (2023) proposed to cap- 304

ture the label bias resulting from the word dis- 305

tribution of the task dataset when estimating p̂. 306

They constructed in-domain yet content-free in- 307

puts by sampling and concatenating L random 308

words from the test set, where L is the average 309

instance input length in the data. They repeat this 310

process M “ 20 times, and set p̂ to be the av- 311

erage output probabilities over all M examples. 312

Given a test example with original output proba- 313

bilities p, they then use the calibrated probabilities 314

q “ softmaxpp{p̂q for prediction. 315

Few-shot fine-tuning Finally, we also experi- 316

ment with few-shot, parameter-efficient fine-tuning 317

as an effective approach for adapting LLMs to a 318

given task’s label distribution, thus potentially miti- 319

gating label bias. We fine-tune task-specific models 320

for each context prompt using Low-Rank Adapa- 321

tion (LoRA; Hu et al., 2022), training adapters on 322

16 held-out training examples for 5 epochs. Im- 323

portantly, we use the same context C during both 324

fine-tuning and evaluation. Due to computational 325

constraints, we only run this method on Llama-2 326

7B and Mistral 7B. See App. A.3 for additional 327

details. 328

4 Quantifying Label Bias in LLMs 329

4.1 LLMs are Label-Biased 330

We begin by examining the performance and label 331

bias of models with and without instruction-tuning. 332

We report averaged results across all tasks for 333

Llama-2 models in Fig. 2. Results for other models 334

show similar trends, and are found in App. B.1. 335

We first verify that, as expected, model perfor- 336

mance (Fig. 2a) substantially improves with scale, 337

with instruction tuning and with the number of 338

demonstrations. We then consider the two bias 339

4As in the original implementation, we use “N/A”,
“[MASK]” and the empty string.
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(a) Performance (Macro-F1) (b) Label bias (RSD ) (c) Label bias (BiasScore)

Figure 2: Performance (higher is better) and label bias metrics (lower is better) for Llama-2 pretrained and
instruction-tuned models (7B/13B). Both performance and RSD improve with scale, instruction tuning, and number
of demonstrations. In contrast, BiasScore does not improve with scaling, and is worse after instruction-tuning.

metrics—RSD (Fig. 2b) and BiasScore (Fig. 2c).340

We observe that label bias is substantial across341

most evaluation settings: All models obtain RSD342

of around 0.40 at their best evaluated setting, and343

reach values close to 1 at their worst. This implies a344

widespread disparity in model performance across345

classes in many of the evaluated tasks, indicating346

that, for most tasks, they succeed only on instances347

of certain classes, while consistently failing on in-348

stances from others.349

Conversely, while BiasScore is relatively high350

for some, most models obtain values around 0.1.351

This indicates that the averaged output probabilities352

are relatively close to uniform. Taken together with353

RSD , this hints that LLM label bias is often not the354

result of a highly skewed output distribution that355

automatically assigns high probability to preferred356

classes. Rather, it stems from close-to-uniform357

probability in cases of uncertainty, failing to cap-358

ture the correct answer for less favored classes.359

4.2 Differences between the Bias Measures360

We further note that, interestingly, both bias met-361

rics show divergent trends. Although RSD values,362

much like model performance, sharply improve af-363

ter instruction-tuning, the resulting models’ BiasS-364

core is often higher than their vanilla counterparts.365

Similarly, while RSD improves substantially with366

scaling, BiasScore of smaller models are lower.5367

We note that higher performance together with368

lower RSD means that the model’s performance369

has improved across most classes. In contrast,370

higher BiasScore implies that its average predicted371

probabilities grew farther than uniform. As a re-372

5Still, we note that BiasScore is not inversely correlated
with model performance, as some models with high perfor-
mance like Mistral-7B also have relatively low BiasScore
(App. B.2).

sult, the discrepancy between the metrics indicates 373

that the scaled-up and instruction-tuned models 374

are making more confident predictions on some 375

classes, but not on others. This could either mean 376

more confident correct predictions on the preferred 377

classes, or more confidently wrong predictions on 378

others (or both). Altogether, this suggests that more 379

subtle forms of bias persist after instruction-tuning 380

or scaling up (Tal et al., 2022). 381

Overall, we find the two metrics to be compli- 382

mentary due to their measuring of different aspects 383

of label bias. We hence use both in further exper- 384

iments to provide a more comprehensive under- 385

standing of such bias in model predictions. 386

4.3 Label Bias Persists after Mitigation 387

We have seen that LLMs demonstrate extensive 388

label bias across different models, scales and 389

tasks (§4.1). We next examine techniques aimed at 390

mitigating such bias, and assess the extent of label 391

bias remaining after their application. We report 392

our results for Llama-2 models in Fig. 3. We ob- 393

serve similar trends for other models, and report 394

their results in App. B.2. 395

We first consider the effect of bias mitigation 396

on model performance (Fig. 3a) using the three 397

methods described in §3.3: contextual calibration 398

(CC), domain-context calibration (DC), and few- 399

shot fine-tuning with LoRA. Compared to stan- 400

dard prompting (black lines), we find that applying 401

CC (orange) provides little to no gains. More- 402

over, it can even undermine model performance, 403

especially for instruction-tuned models, as previ- 404

ously observed by Fei et al. (2023). In contrast, 405

DC (purple) can provide substantial performance 406

gains, specifically when using few or no in-context 407

demonstrations, where baseline performance is rel- 408

atively low. However, when calibrating instruction- 409
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7B
13

B

(a) Macro-F1 (b) RSD (c) Bias Score

Figure 3: The effect of label bias mitigation methods on performance and bias for Llama-2 models. CC improves
neither performance nor bias; DC and LoRA fine-tuning improve both; our Leave-One-Out Calibration (LOOC)
method leads to the best performance among the calibration methods, and the overall lowest RSD values with 8 or
16 demonstrations.

tuned models prompted with higher number of410

demonstrations, we find that DC mostly fails to411

improve performance. Finally, LoRA considerably412

improves performance in all cases (green in Fig. 3,413

upper row), vastly outperforming both CC and DC.414

We next turn to measure label bias (Fig. 3b415

and 3c). Notably, unlike for scale and instruction-416

tuning, here BiasScore also roughly mirrors the417

changes in model performance due to calibration,418

though this is not the case for LoRA.6 In con-419

sequence, both calibration methods fail to miti-420

gate label bias in the cases mentioned above. As421

for LoRA, the best RSD results are still around422

0.3, and BiasScore noticeably increases after fine-423

tuning, indicating that more subtle bias persists.424

Overall, our results indicate that existing bias425

calibration approaches are insufficient for dimin-426

ishing label bias in essential cases, particularly for427

instruction-tuned models. Further, while LoRA428

fine-tuning is effective in both improving per-429

formance and mitigating certain aspects of bias430

(though not others), it is also substantially more431

computationally expensive than calibration.432

6In other words, changes in BiasScore are generally suffi-
cient to determine changes in performance.

5 Mitigating Label Bias by Calibrating on 433

Demonstrations 434

Motivated the failures of existing calibration ap- 435

proaches on instruction-tuned models (§4.3), we 436

aim to develop an effective calibration method for 437

such scenarios. We hypothesize a possible cause 438

for the observed failures is that the inputs used for 439

calibrating label bias in these methods are very dis- 440

tinct from the more curated, high-quality inputs 441

models observe during instruction-tuning (Touvron 442

et al., 2023).7 Similarly, although pretraining cor- 443

pora are known to contain lower quality data (Mar- 444

ion et al., 2023), the unusual qualities of inputs 445

used in these methods could also hinder potential 446

further gains on pretrained models. 447

Seeking to use more naturally-occurring inputs, 448

yet aiming to avoid reliance on additional test set 449

examples, we propose to calibrate models using 450

the in-context demonstrations used in few-shot 451

prompting. However, since these examples appear 452

alongside their labels in the context, naively obtain- 453

ing the model’s output probabilities for calibration 454

would result in unreliable bias estimates. We next 455

introduce a simple method to alleviate this concern. 456

7Specifically, nonsensical task inputs made up of random
words as in DC, or placeholder-like strings as in CC, are less
likely to be observed during instruction tuning.
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Leave-One-Out Calibration (LOOC) Our goal457

is to estimate the model’s average output probabil-458

ities p̂ at test-time by using the k demonstrations459

rpx1, y1q, . . . , pxk, ykqs provided in the context C,460

and then use this estimate for calibration. Drawing461

from leave-one-out cross-validation, when evaluat-462

ing the model on the i-th demonstration’s input xi,463

we prompt it with an edited context Ci comprised464

of the original context C after removing the current465

demonstration pxi, yiq.8 We thus obtain model out-466

put probabilities p1, . . . , pk, each prompted with467

k ´ 1 labeled demonstrations.468

To reliably estimate p̂, we further need to ac-469

count for the demonstrations’ labels yi: for imbal-470

anced choices of demonstrations (e.g., for tasks471

with imbalanced classes), using the average of pi’s472

could lead to an underestimation of the probability473

assigned to infrequent labels. We therefore com-474

pute the average output probabilities p̂ by taking475

into account the labels yi, as we do for computing476

BiasScore (§2.2). We first average pi’s associated477

with the same label, and then set p̂ as the simple av-478

erage of these intra-label averages. Finally, we use479

the estimate p̂ to compute calibration parameters480

and score new examples using the same method-481

ology as Zhao et al., 2021 (§3.3). We refer to our482

method as Leave-One-Out Calibration (LOOC).483

Results We use LOOC to calibrate models in484

the same setup used for other bias mitigation ap-485

proaches (§3). We report our results for Llama-486

2 models in Fig. 3 (cyan lines), finding similar487

trends in other models (App. B.2). Comparing our488

method to other calibration approaches, we find489

LOOC surpasses both CC and DC by a wide mar-490

gin in performance and bias metrics for context491

prompts with k “ 8, 16. Importantly, using LOOC492

to calibrate instruction-tuned models in this set-493

ting dramatically improves upon the uncalibrated494

model, whereas other methods fail to achieve mean-495

ingful gains (§4.3). Further, LOOC nearly closes496

the gap with LoRA-level performance, as well as497

improves upon it in both bias metrics, while requir-498

ing substantially less computational resources.499

As LOOC relies on the in-context demonstra-500

tions for bias estimation, k needs to be sufficiently501

large for calibration to succeed. Surprisingly, we502

find that with as few as k “ 4 demonstrations, our503

method is often comparable to the next best cali-504

bration method on all metrics. Finally, we note that505

although our method can substantially reduce label506

8We leave all other demonstrations in their original order.

(a) BiasScore

(b) RSD

Figure 4: Label bias metrics for Llama-2 models
(7B/13B), when evaluated on all tasks in our evalua-
tion suite (All) vs. a subset of tasks with semantically
equivalent labels (Sem.Eq. Labels). LLMs exhibit label
bias even on tasks with semantically equivalent labels,
such as multi-choice question answering.

bias compared to other approaches, the remaining 507

RSD is non-negligible and indicates that model 508

performance could still be biased on some tasks. 509

6 Label Bias for Semantically Equivalent 510

Labels 511

The output space for classification tasks often con- 512

sists of labels with strong semantic meanings (e.g., 513

“Positive” vs. “Negative”). Recent work has indi- 514

cated that when such labels are used for classifica- 515

tion tasks, the model’s decision could be affected 516

by biases from their pretraining (Zhao et al., 2021), 517

and that replacing the verbalizers used to denote 518

labels often impacts model performance (Wei et al., 519

2023; Cui et al., 2022; Fei et al., 2023). 520

We next examine whether models exhibit less 521

label bias when the task’s labels are semantically 522

equivalent and interchangeable,9 and are thus less 523

likely to be affected by model biases from pretrain- 524

ing. Most of the tasks in our evaluation suite (§3.1) 525

have labels with meaningful and often opposed se- 526

mantic meanings. We therefore extract a subset of 527

9E.g., the answers 1 and 2 represent other concepts in-
troduced in the prompt, and their order could essentially be
changed if we modify the prompt accordingly.
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tasks with semantically equivalent labels. We ex-528

tract all multi-choice QA tasks—with label spaces529

such as “A/B/C/D” or “1/2/3”—and all sentence530

completion tasks, where the model is tasked with531

choosing the more logical continuation for an input532

sentence between two provided options, usually533

labeled A and B. This results in 18 tasks with se-534

mantically equivalent labels.535

We compare each model’s label bias on this536

subset of tasks and the entire evaluation suite for537

Llama2 models in Fig. 4, with results for other538

models largely following similar trends. We find539

that models exhibit extensive bias in terms of RSD540

on tasks with semantically equivalent labels, and541

in similar magnitude to their overall RSD across542

all tasks. We note that for pretrained models, Bi-543

asScore decreases on semantically equivalent tasks,544

but RSD remains high. Overall, this indicates that545

LLMs exhibit considerable label bias even when546

all labels are semantically equivalent in the context547

of their tasks.548

7 Related Work549

Biases in LLM predictions Recent work has re-550

vealed various biases in the predictions of LLMs.551

Wang et al. (2023a) showed that models are biased552

towards certain positions when presented with sev-553

eral texts for evaluation and ranking. Pezeshkpour554

and Hruschka (2023) showed that models are bi-555

ased towards choosing answers in specific positions556

when tasked with multi-choice QA, while Zheng557

et al. (2023) propose a method to mitigate this de-558

bias. Si et al. (2023) exposed inductive biases of559

models during in-context learning. Lu et al. (2022)560

showed that the order of demonstrations in the con-561

text can greatly effect model predictions. Compli-562

mentary to these works, we focus on studying label563

bias in LLMs (Fei et al., 2023; Zhao et al., 2021)564

and seek to improve its evaluation.565

Calibrating Bias in LLMs Recent work pro-566

posed methods to calibrate bias in LLMs, among567

which Zhao et al. (2021) and Fei et al. (2023) are568

included in our studies. Han et al. (2023) proposed569

to calibrate models by fitting a Gaussian mixture570

distribution to the model’s output probabilities, us-571

ing this mixture for inference on new examples.572

However, they require several hundred labeled ex-573

amples for calibration. Concurrently to our work,574

Jiang et al. (2023b) proposed to generate inputs for575

model calibration by prompting models with the576

context prompt, and Zhou et al. (2023) proposed577

to calibrate models by using their output probabili- 578

ties on the entire test set. While the motivation for 579

these methods is similar to our proposed calibration 580

method, i.e., calibrating models by using inputs that 581

are more naturally-occurring, our method does not 582

require access to the test set, or additional compu- 583

tation to obtain inputs for calibration. Importantly, 584

unlike previous work on bias calibration, our main 585

focus is the evaluation of label bias and of bias 586

mitigation methods in LLMs. 587

8 Conclusion 588

The label bias of LLMs substantially hinders their 589

reliability. We considered different approaches to 590

quantifying this bias. Through extensive experi- 591

ments with ten LLMs and across 279 classification 592

tasks, we found that substantial amounts of label 593

bias exist in LLMs. Moreover, we showed that this 594

bias persists even as LLMs increase in scale, are 595

instruction-tuned, are provided in-context demon- 596

strations, and even when they are calibrated against 597

such bias. We proposed a novel calibration method, 598

which outperforms existing calibration approaches, 599

and reduces label bias dramatically. Our results 600

highlight the need to both better estimate and miti- 601

gate LLM label bias. 602

Limitations 603

Model sizes Although we experiment with mod- 604

els of several sizes, the models we use are all in 605

the 7B-40B range. We chose not to include rel- 606

atively small models as these often exhibit poor 607

performance in prompt-based settings. While re- 608

cent efforts have released better and more efficient 609

models, we leave those for future work. We chose 610

not to experiment with very large LLMs such as 611

Llama 70B due to limitations in computational re- 612

sources, and as many of them (e.g., GPT-4) are 613

closed (Rogers et al., 2023). It is therefore unclear 614

whether our findings apply to such models. 615

Prompt format Our evaluations are performed 616

on a large and diverse set of tasks extracted from 617

SUPER-NATURALINSTRUCTIONS. Still, all tasks 618

contain similar prefixes before introducing instruc- 619

tions, demonstrations and task inputs. Furthermore, 620

each task only has one human-written instruction. 621

We leave experimentation with more varied formats 622

and examination of bias across different instruction 623

phrasings to future work. 624
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Evaluating multilingual tasks To build our eval-625

uation suite, we extracted tasks from SUPER-626

NATURALINSTRUCTIONS, focusing only on En-627

glish tasks. We leave analysis on label bias for628

multilingual tasks to future work.629
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A Experimental Setting843

A.1 Additional Implementation Details844

Our implementation and pretrained model check-845

points use the Huggingface Transformers li-846

brary (Wolf et al., 2020). When running inference,847

we load all models using bf16, except for Falcon-848

40B, which we load using 8bit inference, follow-849

ing Wang et al. (2023b). We run all experiments850

on Quadro RTX 6000 (24GB) and RTX A6000851

(48GB) GPUs, except for Falcon-40B experiments,852

which we run on A100 GPUs. Average inference853

run-times on our entire evaluation suite is 18 hours854

for 7B models, 24 hours for 13B models, and 24855

hours for 40B models. Running LoRA fine-tuning856

along with inference for 7B models task 26 hours.857

Computing calibration parameters takes around 30858

minutes to 2 hours for each method.859

A.2 SUPER-NATURALINSTRUCTIONS860

We evaluate models on a subset of 279 tasks from861

the SUPER-NATURALINSTRUCTIONS bench-862

mark (Wang et al., 2022), obtained from https://863

github.com/allenai/natural-instructions.864

We use up to 1000 evaluation examples for each865

task. Altogether, our evaluation set consists of866

264,176 examples.867

SUPER-NATURALINSTRUCTIONS is a bench-868

mark containing instances from many individual869

datasets, the license of each is detailed in https://870

github.com/allenai/natural-instructions871

next to the task’s files.872

A.3 LoRA Hyperparameters873

We use the same LoRA hyperparamets used by874

Dettmers et al. (2023) for fine-tuning on SUPER-875

NATURALINSTRUCTIONS, except we use bf16876

training instead of 8bit, a warmup rate of 0.0, and877

5 epochs. Specifically, we use a learning rate of878

0.002, LoRA r “ 64 and LoRA α “ 16.879

B Additional Results880

B.1 Label Bias in LLMs881

For results on Mistral and Falcon models before882

the application of any mitigation approaches, see883

Fig. 5 and Fig. 6 respectively.884

B.2 Mitigation Approaches885

For full results on Mistral and Falcon models in-886

cluding all mitigation methods, see Fig. 7 and Fig. 8887

respectively.888
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(a) Performance (Macro-F1) (b) Label bias (RSD ) (c) Label bias (BiasScore)

Figure 5: Performance and label bias metrics for Mistral 7B pretrained and instruction-tuned models.

(a) Performance (Macro-F1) (b) Label bias (RSD ) (c) Label bias (BiasScore)

Figure 6: Performance and label bias metrics for Falcon pretrained and instruction-tuned models (7B/40B).

7B

(a) Macro-F1 (b) RSD (c) Bias Score

Figure 7: The effect of label bias mitigation methods on performance and bias for Mistral models.
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7B
40

B

(a) Macro-F1 (b) RSD (c) Bias Score

Figure 8: The effect of label bias mitigation methods on performance and bias for Falcon models.
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