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Abstract

Large language models (LLMs) have demon-
strated impressive adaptability to diverse tasks,
by relying only on context prompts contain-
ing instructions, or minimal input-output ex-
amples. However, recent work revealed they
also exhibit /label bias—an undesirable pref-
erence toward predicting certain answers over
others. Still, detecting and measuring this bias
reliably and at scale has remained relatively
unexplored. In this study, we evaluate differ-
ent approaches to quantifying label bias in a
model’s predictions, conducting a comprehen-
sive investigation across 279 classification tasks
and ten LLMs. Our investigation reveals sub-
stantial label bias in models both before and af-
ter debiasing attempts, as well as highlights the
importance of outcomes-based evaluation met-
rics, which were not previously used in this re-
gard. We further propose a novel label bias cal-
ibration method tailored for few-shot prompt-
ing, which outperforms recent calibration ap-
proaches for both improving performance and
mitigating label bias. Nevertheless, our results
emphasize that label bias in the predictions of
LLMs remains a barrier to their reliability.!

1 Introduction

Large language models (LLMs) have shown re-
markable abilities in adapting to new tasks when
conditioned on a context prompt, containing task
solving instructions (Wei et al., 2022) or few exam-
ples of input-output pairs (Brown et al., 2020). Still,
recent work has shown that predictions of LLMs
exhibit label bias—a strong, undesirable prefer-
ence towards predicting certain answers over oth-
ers (Zhao et al., 2021; Chen et al., 2022; Fei et al.,
2023, see Fig. 1). Such preferences were shown to
be affected by the choice and order of in-context
demonstrations (Liu et al., 2022; Lu et al., 2022),
the model’s pretraining data (Dong et al., 2022), or

'We will release our code upon publication.

Context:
Please answer ‘yes’ or ‘no’.
< some question >

Output:
yes

Figure 1: LLMs exhibit label bias—a tendency to output
a given label regardless of the context (in this example,
‘yes’ over ‘no’). In this work we evaluate LLM label bias
across ten LLMs and 279 classification tasks, showing
label bias is a major problem in LLMs.

textual features of the task data (Fei et al., 2023).
Consequently, several approaches were proposed
to address this problem, mostly by calibrating the
model’s output probabilities to compensate for this
bias (Zhao et al., 2021; Fei et al., 2023).

Despite these efforts, label bias evaluation relies
on performance metrics such as accuracy, rather
than metrics designed to directly measure the bias.
In doing so, we might inadvertently overlook cru-
cial aspects of model behavior. Indeed, although
a given method could effectively improve perfor-
mance, substantial bias might still persist in the
model’s predictions—deeming the method insuffi-
cient and the model unreliable. Alternatively, per-
formance could remain relatively unchanged, but
with the bias mostly removed.

In this work, we take a step towards a more com-
prehensive understanding of the extent of label bias
in LL.Ms and the effects of mitigation approaches.
Using metrics to quantify label bias in model pre-
dictions, which we derive from previous work on
fairness and label bias estimation, we evaluate ten
LLMs on 279 diverse classification tasks from
SUPER-NATURALINSTRUCTIONS (Wang et al.,
2022). We examine both performance and bias
along axes such as scale and number of in-context



demonstrations. We also evaluate the impact of
label bias mitigation methods, such as calibration
and few-shot LoRA fine-tuning (Hu et al., 2022).

Our investigation reveals substantial label bias
in the predictions of LLMs across all evaluated
settings, indicating that raw LLM output scores
often represent simple, heuristic solutions. While
increasing model size, providing in-context demon-
strations, and instruction-tuning all contribute to
reducing bias, ample bias persists, even after apply-
ing mitigation methods. Surprisingly, these results
also hold for tasks where the labels are all seman-
tically equivalent (e.g., in multi-choice question
answering). Further, although the examined cali-
bration methods can reduce bias and improve per-
formance, we also find cases where they negatively
impact both bias and overall performance.

Motivated by these findings, we propose a novel
calibration method for few-shot prompting that ac-
curately estimates a model’s label bias using only
its predictions on the prompt’s in-context demon-
strations. Compared to existing LLM calibration
methods, our method improves performance while
also removing considerably more bias.

Our findings highlight the necessity of con-
sidering and measuring biases in the predictions
of LLMs whenever benchmarking their perfor-
mance. Furthermore, adapting models to their tasks
through more accurate and effective estimation of
biases, as demonstrated by our proposed method
for calibrating few-shot prompting, offers a promis-
ing avenue for improving the reliability of LLMs
and their applications.

2 LLM Label Bias

Our objective is to broaden the understanding of
label bias in LLMs and the effectiveness of miti-
gation strategies, focusing on classification tasks.
In this section, we define metrics designed to quan-
tify bias in model predictions, aiming to provide
a nuanced examination of label bias that extends
beyond traditional performance metrics. We de-
scribe the setting of label bias in in-context learn-
ing (§2.1), and then review approaches to eval-
uating it and define the metrics we use in this
work (§2.2).

2.1 Label Bias

When employing LLMs for classification tasks
through prompting, the model is given a test
example x, preceded by a context C. This

context can contain a (potentially empty) set
of examples of the task’s input-output map-
ping [(z%, "), ..., (z*, y*)], henceforth demon-
strations, and may also include task instructions.
To determine the model’s prediction from a set of
answer choices Y, the likelihood it assigns to each
continuation y € Y is computed, and the highest
probability option is taken as the model prediction:

arg max p(y | , C)
yeY

These output probabilities often exhibit label bias,
where the model tends to assign higher probability
to certain answers regardless of the input test ex-
ample = (Fig. 1). Multiple factors were posited to
influence this bias, including the choice of verbaliz-
ers Y, the choice and order of in-context examples
in C, and the overall textual features of task in-
put z (Zhao et al., 2021; Fei et al., 2023).

2.2 Evaluation Measures

Most analyses of LLM label bias rely on indirect
assessments, based on inspecting improvements
in overall performance gained after applying tech-
niques to mitigate it (Fei et al., 2023; Holtzman
et al., 2021; Zhao et al., 2021). However, these do
not indicate the extent of bias originally present,
or that remains after mitigation. We next exam-
ine approaches to measure this bias more directly,
and define the metrics we use in this work. Impor-
tantly, we focus on label bias measures that could
be used effectively both before and after applying
mitigation techniques such as calibration.
Drawing from previous research on fairness and
bias in machine learning, we observe that there
are two distinct yet related aspects in which label
bias can be measured in LLM predictions: through
the probabilities assigned by the model to different
answers; and through the model’s final predictions
compared to the gold labels (Mehrabi et al., 2021).

Probabilistic approach To assess the first, prob-
abilistic aspect, previous work used qualitative as-
sessments to visualize model output distributions
on selected datasets (Zhao et al., 2021; Han et al.,
2023). However, these cannot be used to rigorously
evaluate model behavior on larger scales. Recently,
Fei et al. (2023) proposed to measure the model’s
label bias by comparing its mean output probabili-
ties pcr on synthetic and “content-free” task inputs
X of, built by concatenating random words from the
task’s test data, against the model’s output prob-
abilities pppg On inputs consisting of random vo-



cabulary words X rand- Lhese output distributions
are computed over the set of answer choices Y, by
taking the model’s average output probabilities for
each label y € Y across the two sets of inputs:

Pe(y) = == > ply |, C)

| *| IEEX*
The model’s bias is then defined to be the total
variation distance dpy between both distributions:

A 1 . .
dTV(pCf7 prand) = 5 Z ‘ pcf(y) _prand(y) ’
yeyY

Importantly, since Fei et al. (2023) also use the
model’s predictions on ch for calibration, this
metric cannot be used to quantify the label bias
remaining after calibration.

In this work, we simplify the computation of
this metric and adapt it to be used after calibra-
tion. First, we hold-out a set of inputs to be used
exclusively for measuring bias. Second, when es-
timating the model’s average output probabilities,
instead of using randomly concatenated words, we
use in-distribution examples extracted from the test
set, Xig = ((z1,91),- -, (Tm,Ym)). This setup
allows to account for label imbalance in the data
used for bias estimation X id., as the instances in
the test set are all labeled. To do so, we first esti-
mate the model’s output distribution individually
on each subset of examples with gold label leY,
X!, ={(z,y) € Xia | y = £}, by computing:

1

m Z p(y | z,C)

oo
€eXia

¢
pi.d.(y) =

and then set p; g4 to be the average of these esti-
mates.” Instead of Prang, We use the uniform dis-
tribution over all answer choices (ﬁ, e ﬁ),
which recent mitigation approaches consider as the
“ideal”, unbiased output distribution (Zhao et al.,
2021). Finally, we define the model’s bias score
as the total variation distance between these two

distributions:

A

1 1
BiasScore = 3 Z Pid(y) — m ‘

yey

In cases where examples for an infrequent label £ € Y’

are not found in X, i.d., we do not take it into account when
computing Pi.d..

Outcome-based approach When considering
the effects of label bias on model predictions,
strong label bias will likely result in disparities in
task performance on instances of different classes.
However, metrics to assess such disparities were
not used in previous analyses of label bias.

We propose to use the Relative Standard De-
viation of class-wise accuracy (RSD; Croce et al.
2021; Benz et al. 2021), a metric used for study-
ing fairness in classification. RSD is defined as
the standard deviation of the model’s accuracy per
class (accy, . . ., accjy|), divided by its mean accu-
racy acc on the entire evaluation data:’

Y
RSD = \/ﬁ ZL:&(aCCi — acc)?

acce

Intuitively, RSD is low when model performance is
similar on all classes, and high when it performs
well on some classes but poorly on others.

Discussion We note that each evaluation ap-
proach could detect biases that the other does not.
For example, a slight bias in the model’s average
output probabilities (e.g., 55% vs. 45%) could ren-
der dramatic bias in actual outcomes if the model al-
ways assigns higher probability to some label. Con-
versely, when the output probabilities are biased
on average but the model’s class-wise performance
1s balanced, this hidden bias could result in actual
performance disparities in more difficult cases. We
therefore report both metrics in this work.

3 Experimental Setting

3.1 Datasets

We evaluate models on 279 diverse tasks
from the SUPER-NATURALINSTRUCTIONS bench-
mark (Wang et al., 2022). We select all available
classification and multi-choice question answering
tasks where the output space is a set of predefined
labels, such as “A/B/C” or “positive/negative”. We
sample 1,000 examples for evaluation for all tasks
with larger data sizes, and additionally sample 32
held-out examples for computing the bias score
metric (§2.2), and 64 more examples to be used as
a pool of instances for choosing in-context demon-
strations and LoRA fine-tuning examples. We only
include tasks with at least 300 evaluation examples
in our experiments.

3The goal of this normalization is to enhance the metric’s
interpretability across tasks of varying difficulty.



3.2 Models and Evaluation Setup

We experiment with models of different sizes from
three LLMs families: LIaMA-2 7B and 13B (Tou-
vron et al., 2023), Mistral 7B (Jiang et al., 2023a),
and Falcon 7B and 40B (Penedo et al., 2023). We
use both the base and instruction fine-tuned ver-
sions of each model. We evaluate models using con-
text prompts with k& € {0,2,4,8,16} demonstra-
tions, and average the results across 3 different sets
of demonstrations for each k. To control the eval-
uation budget, we run the more expensive LoORA
and Falcon 40B experiments with k& € {0, 8,16}
averaged across 2 sets of demonstrations.

We use the task instructions and prompt tem-
plate defined in SUPER-NATURALINSTRUCTIONS.
For tasks where the answer choices y € Y have
unequal token lengths, we use length-normalized
log-likelihood when computing the model’s output
probabilities (Holtzman et al., 2021). For further
implementation details, see App. A.1.

Data contamination During their instruction
tuning, Llama-2 chat models were initially fine-
tuned on the Flan data collection (Chung et al.,
2022; Longpre et al., 2023), approximately 20% of
which is comprised of examples from the SUPER-
NATURALINSTRUCTIONS benchmark. There-
fore, our evaluation of the Llama-2 instruction-
tuned models is likely effected by data contam-
ination (Magar and Schwartz, 2022). Still, our
results show both models exhibit extensive label
bias, possibly due to later fine-tuning on other data.
As it is unclear from the implementation details
of Touvron et al. (2023) which examples in SUPER-
NATURALINSTRUCTIONS were included in train-
ing, we do not take extra steps in attempt to reduce
possible overlap and contamination.

3.3 Bias Mitigation Techniques

We evaluate the effects of three label bias mitiga-
tion methods: two calibration methods designed to
correct a model’s label bias by adjusting its output
scores; and few-shot LoRA fine-tuning (Hu et al.,
2022), which adapts the model to the task and its
label distribution. We describe each method below.

Contextual calibration (CC) Zhao et al. (2021)
proposed to use calibration in order to remove the
label bias arising from the context prompt C' and
the model’s pretraining. Inspired by confidence
calibration methods (Guo et al., 2017), they define
a matrix W that is applied to the model’s origi-

nal output probabilities p to obtain calibrated, de-
biased probabilities ¢ = softmax(WWp). To de-
termine the calibration parameters W, they first
compute the model’s average predicted probabil-
ities p on a small set of “placeholder”, content-
free input strings such as “[MASK]”, which re-
place the task input that follows C.* They then set
W = diag(p)~!, so that the class probabilities for
the average content-free input would be uniform,
aiming to remove the model’s underlying bias.

Domain-context calibration (DC) Following
the CC method, Fei et al. (2023) proposed to cap-
ture the label bias resulting from the word dis-
tribution of the task dataset when estimating p.
They constructed in-domain yet content-free in-
puts by sampling and concatenating L random
words from the test set, where L is the average
instance input length in the data. They repeat this
process M = 20 times, and set p to be the av-
erage output probabilities over all M examples.
Given a test example with original output proba-
bilities p, they then use the calibrated probabilities
q = softmax(p/p) for prediction.

Few-shot fine-tuning Finally, we also experi-
ment with few-shot, parameter-efficient fine-tuning
as an effective approach for adapting LLMs to a
given task’s label distribution, thus potentially miti-
gating label bias. We fine-tune task-specific models
for each context prompt using Low-Rank Adapa-
tion (LoRA; Hu et al., 2022), training adapters on
16 held-out training examples for 5 epochs. Im-
portantly, we use the same context C' during both
fine-tuning and evaluation. Due to computational
constraints, we only run this method on Llama-2
7B and Mistral 7B. See App. A.3 for additional
details.

4 Quantifying Label Bias in LLMs
4.1 LLMs are Label-Biased

We begin by examining the performance and label
bias of models with and without instruction-tuning.
We report averaged results across all tasks for
Llama-2 models in Fig. 2. Results for other models
show similar trends, and are found in App. B.1.
We first verify that, as expected, model perfor-
mance (Fig. 2a) substantially improves with scale,
with instruction tuning and with the number of
demonstrations. We then consider the two bias

“As in the original implementation, we use “N/A”,
“[MASK]” and the empty string.
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Figure 2: Performance (higher is better) and label bias metrics (lower is better) for Llama-2 pretrained and
instruction-tuned models (7B/13B). Both performance and RSD improve with scale, instruction tuning, and number
of demonstrations. In contrast, BiasScore does not improve with scaling, and is worse after instruction-tuning.

metrics—RSD (Fig. 2b) and BiasScore (Fig. 2c¢).
We observe that label bias is substantial across
most evaluation settings: All models obtain RSD
of around 0.40 at their best evaluated setting, and
reach values close to 1 at their worst. This implies a
widespread disparity in model performance across
classes in many of the evaluated tasks, indicating
that, for most tasks, they succeed only on instances
of certain classes, while consistently failing on in-
stances from others.

Conversely, while BiasScore is relatively high
for some, most models obtain values around 0.1.
This indicates that the averaged output probabilities
are relatively close to uniform. Taken together with
RSD, this hints that LLM label bias is often not the
result of a highly skewed output distribution that
automatically assigns high probability to preferred
classes. Rather, it stems from close-to-uniform
probability in cases of uncertainty, failing to cap-
ture the correct answer for less favored classes.

4.2 Differences between the Bias Measures

We further note that, interestingly, both bias met-
rics show divergent trends. Although RSD values,
much like model performance, sharply improve af-
ter instruction-tuning, the resulting models’ BiasS-
core is often higher than their vanilla counterparts.
Similarly, while RSD improves substantially with
scaling, BiasScore of smaller models are lower.
We note that higher performance together with
lower RSD means that the model’s performance
has improved across most classes. In contrast,
higher BiasScore implies that its average predicted
probabilities grew farther than uniform. As a re-

3Still, we note that BiasScore is not inversely correlated
with model performance, as some models with high perfor-
mance like Mistral-7B also have relatively low BiasScore
(App. B.2).

sult, the discrepancy between the metrics indicates
that the scaled-up and instruction-tuned models
are making more confident predictions on some
classes, but not on others. This could either mean
more confident correct predictions on the preferred
classes, or more confidently wrong predictions on
others (or both). Altogether, this suggests that more
subtle forms of bias persist after instruction-tuning
or scaling up (Tal et al., 2022).

Overall, we find the two metrics to be compli-
mentary due to their measuring of different aspects
of label bias. We hence use both in further exper-
iments to provide a more comprehensive under-
standing of such bias in model predictions.

4.3 Label Bias Persists after Mitigation

We have seen that LLMs demonstrate extensive
label bias across different models, scales and
tasks (§4.1). We next examine techniques aimed at
mitigating such bias, and assess the extent of label
bias remaining after their application. We report
our results for Llama-2 models in Fig. 3. We ob-
serve similar trends for other models, and report
their results in App. B.2.

We first consider the effect of bias mitigation
on model performance (Fig. 3a) using the three
methods described in §3.3: contextual calibration
(CC), domain-context calibration (DC), and few-
shot fine-tuning with LoRA. Compared to stan-
dard prompting (black lines), we find that applying
CC ( ) provides little to no gains. More-
over, it can even undermine model performance,
especially for instruction-tuned models, as previ-
ously observed by Fei et al. (2023). In contrast,
DC ( ) can provide substantial performance
gains, specifically when using few or no in-context
demonstrations, where baseline performance is rel-
atively low. However, when calibrating instruction-
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Figure 3: The effect of label bias mitigation methods on performance and bias for Llama-2 models. CC improves
neither performance nor bias; DC and LoRA fine-tuning improve both; our Leave-One-Out Calibration (LOOC)
method leads to the best performance among the calibration methods, and the overall lowest RSD values with 8 or

16 demonstrations.

tuned models prompted with higher number of
demonstrations, we find that DC mostly fails to
improve performance. Finally, LoRA considerably
improves performance in all cases (green in Fig. 3,
upper row), vastly outperforming both CC and DC.

We next turn to measure label bias (Fig. 3b
and 3c). Notably, unlike for scale and instruction-
tuning, here BiasScore also roughly mirrors the
changes in model performance due to calibration,
though this is not the case for LoRA.® In con-
sequence, both calibration methods fail to miti-
gate label bias in the cases mentioned above. As
for LoRA, the best RSD results are still around
0.3, and BiasScore noticeably increases after fine-
tuning, indicating that more subtle bias persists.

Overall, our results indicate that existing bias
calibration approaches are insufficient for dimin-
ishing label bias in essential cases, particularly for
instruction-tuned models. Further, while LoRA
fine-tuning is effective in both improving per-
formance and mitigating certain aspects of bias
(though not others), it is also substantially more
computationally expensive than calibration.

®1n other words, changes in BiasScore are generally suffi-
cient to determine changes in performance.

5 Mitigating Label Bias by Calibrating on
Demonstrations

Motivated the failures of existing calibration ap-
proaches on instruction-tuned models (§4.3), we
aim to develop an effective calibration method for
such scenarios. We hypothesize a possible cause
for the observed failures is that the inputs used for
calibrating label bias in these methods are very dis-
tinct from the more curated, high-quality inputs
models observe during instruction-tuning (Touvron
et al., 2023).” Similarly, although pretraining cor-
pora are known to contain lower quality data (Mar-
ion et al., 2023), the unusual qualities of inputs
used in these methods could also hinder potential
further gains on pretrained models.

Seeking to use more naturally-occurring inputs,
yet aiming to avoid reliance on additional test set
examples, we propose to calibrate models using
the in-context demonstrations used in few-shot
prompting. However, since these examples appear
alongside their labels in the context, naively obtain-
ing the model’s output probabilities for calibration
would result in unreliable bias estimates. We next
introduce a simple method to alleviate this concern.

"Specifically, nonsensical task inputs made up of random
words as in DC, or placeholder-like strings as in CC, are less
likely to be observed during instruction tuning.



Leave-One-Out Calibration (LOOC) Our goal
is to estimate the model’s average output probabil-
ities p at test-time by using the & demonstrations
[(z',y),..., (2%, y*)] provided in the context C,
and then use this estimate for calibration. Drawing
from leave-one-out cross-validation, when evaluat-
ing the model on the i-th demonstration’s input z*,
we prompt it with an edited context C; comprised
of the original context C' after removing the current
demonstration (¢, y%).® We thus obtain model out-
put probabilities p', ..., p"*, each prompted with
k — 1 labeled demonstrations.

To reliably estimate p, we further need to ac-
count for the demonstrations’ labels y*: for imbal-
anced choices of demonstrations (e.g., for tasks
with imbalanced classes), using the average of p*’s
could lead to an underestimation of the probability
assigned to infrequent labels. We therefore com-
pute the average output probabilities p by taking
into account the labels 3, as we do for computing
BiasScore (§2.2). We first average p'’s associated
with the same label, and then set p as the simple av-
erage of these intra-label averages. Finally, we use
the estimate p to compute calibration parameters
and score new examples using the same method-
ology as Zhao et al., 2021 (§3.3). We refer to our
method as Leave-One-Out Calibration (LOOC).

Results We use LOOC to calibrate models in
the same setup used for other bias mitigation ap-
proaches (§3). We report our results for Llama-
2 models in Fig. 3 (cyan lines), finding similar
trends in other models (App. B.2). Comparing our
method to other calibration approaches, we find
LOOC surpasses both CC and DC by a wide mar-
gin in performance and bias metrics for context
prompts with k£ = 8, 16. Importantly, using LOOC
to calibrate instruction-tuned models in this set-
ting dramatically improves upon the uncalibrated
model, whereas other methods fail to achieve mean-
ingful gains (§4.3). Further, LOOC nearly closes
the gap with LoRA-level performance, as well as
improves upon it in both bias metrics, while requir-
ing substantially less computational resources.

As LOOC relies on the in-context demonstra-
tions for bias estimation, k needs to be sufficiently
large for calibration to succeed. Surprisingly, we
find that with as few as £ = 4 demonstrations, our
method is often comparable to the next best cali-
bration method on all metrics. Finally, we note that
although our method can substantially reduce label

$We leave all other demonstrations in their original order.
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Figure 4: Label bias metrics for Llama-2 models
(7B/13B), when evaluated on all tasks in our evalua-
tion suite (All) vs. a subset of tasks with semantically
equivalent labels (Sem.Eq. Labels). LLMs exhibit label
bias even on tasks with semantically equivalent labels,
such as multi-choice question answering.

bias compared to other approaches, the remaining
RSD is non-negligible and indicates that model
performance could still be biased on some tasks.

6 Label Bias for Semantically Equivalent
Labels

The output space for classification tasks often con-
sists of labels with strong semantic meanings (e.g.,
“Positive” vs. “Negative”). Recent work has indi-
cated that when such labels are used for classifica-
tion tasks, the model’s decision could be affected
by biases from their pretraining (Zhao et al., 2021),
and that replacing the verbalizers used to denote
labels often impacts model performance (Wei et al.,
2023; Cui et al., 2022; Fei et al., 2023).

We next examine whether models exhibit less
label bias when the task’s labels are semantically
equivalent and interchangeable,” and are thus less
likely to be affected by model biases from pretrain-
ing. Most of the tasks in our evaluation suite (§3.1)
have labels with meaningful and often opposed se-
mantic meanings. We therefore extract a subset of

%E.g., the answers 1 and 2 represent other concepts in-

troduced in the prompt, and their order could essentially be
changed if we modify the prompt accordingly.



tasks with semantically equivalent labels. We ex-
tract all multi-choice QA tasks—with label spaces
such as “A/B/C/D” or “1/2/3”—and all sentence
completion tasks, where the model is tasked with
choosing the more logical continuation for an input
sentence between two provided options, usually
labeled A and B. This results in 18 tasks with se-
mantically equivalent labels.

We compare each model’s label bias on this
subset of tasks and the entire evaluation suite for
Llama2 models in Fig. 4, with results for other
models largely following similar trends. We find
that models exhibit extensive bias in terms of RSD
on tasks with semantically equivalent labels, and
in similar magnitude to their overall RSD across
all tasks. We note that for pretrained models, Bi-
asScore decreases on semantically equivalent tasks,
but RSD remains high. Overall, this indicates that
LLMs exhibit considerable label bias even when
all labels are semantically equivalent in the context
of their tasks.

7 Related Work

Biases in LLM predictions Recent work has re-
vealed various biases in the predictions of LLMs.
Wang et al. (2023a) showed that models are biased
towards certain positions when presented with sev-
eral texts for evaluation and ranking. Pezeshkpour
and Hruschka (2023) showed that models are bi-
ased towards choosing answers in specific positions
when tasked with multi-choice QA, while Zheng
et al. (2023) propose a method to mitigate this de-
bias. Si et al. (2023) exposed inductive biases of
models during in-context learning. Lu et al. (2022)
showed that the order of demonstrations in the con-
text can greatly effect model predictions. Compli-
mentary to these works, we focus on studying label
bias in LLMs (Fei et al., 2023; Zhao et al., 2021)
and seek to improve its evaluation.

Calibrating Bias in LLMs Recent work pro-
posed methods to calibrate bias in LL.Ms, among
which Zhao et al. (2021) and Fei et al. (2023) are
included in our studies. Han et al. (2023) proposed
to calibrate models by fitting a Gaussian mixture
distribution to the model’s output probabilities, us-
ing this mixture for inference on new examples.
However, they require several hundred labeled ex-
amples for calibration. Concurrently to our work,
Jiang et al. (2023b) proposed to generate inputs for
model calibration by prompting models with the
context prompt, and Zhou et al. (2023) proposed

to calibrate models by using their output probabili-
ties on the entire test set. While the motivation for
these methods is similar to our proposed calibration
method, i.e., calibrating models by using inputs that
are more naturally-occurring, our method does not
require access to the test set, or additional compu-
tation to obtain inputs for calibration. Importantly,
unlike previous work on bias calibration, our main
focus is the evaluation of label bias and of bias
mitigation methods in LLMs.

8 Conclusion

The label bias of LLMs substantially hinders their
reliability. We considered different approaches to
quantifying this bias. Through extensive experi-
ments with ten LLMs and across 279 classification
tasks, we found that substantial amounts of label
bias exist in LLMs. Moreover, we showed that this
bias persists even as LLMs increase in scale, are
instruction-tuned, are provided in-context demon-
strations, and even when they are calibrated against
such bias. We proposed a novel calibration method,
which outperforms existing calibration approaches,
and reduces label bias dramatically. Our results
highlight the need to both better estimate and miti-
gate LLM label bias.

Limitations

Model sizes Although we experiment with mod-
els of several sizes, the models we use are all in
the 7B-40B range. We chose not to include rel-
atively small models as these often exhibit poor
performance in prompt-based settings. While re-
cent efforts have released better and more efficient
models, we leave those for future work. We chose
not to experiment with very large LLMs such as
Llama 70B due to limitations in computational re-
sources, and as many of them (e.g., GPT-4) are
closed (Rogers et al., 2023). It is therefore unclear
whether our findings apply to such models.

Prompt format Our evaluations are performed
on a large and diverse set of tasks extracted from
SUPER-NATURALINSTRUCTIONS. Still, all tasks
contain similar prefixes before introducing instruc-
tions, demonstrations and task inputs. Furthermore,
each task only has one human-written instruction.
We leave experimentation with more varied formats
and examination of bias across different instruction
phrasings to future work.



Evaluating multilingual tasks To build our eval-
uation suite, we extracted tasks from SUPER-
NATURALINSTRUCTIONS, focusing only on En-
glish tasks. We leave analysis on label bias for
multilingual tasks to future work.
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A Experimental Setting
A.1 Additional Implementation Details

Our implementation and pretrained model check-
points use the Huggingface Transformers li-
brary (Wolf et al., 2020). When running inference,
we load all models using bf16, except for Falcon-
40B, which we load using 8bit inference, follow-
ing Wang et al. (2023b). We run all experiments
on Quadro RTX 6000 (24GB) and RTX A6000
(48GB) GPUs, except for Falcon-40B experiments,
which we run on A100 GPUs. Average inference
run-times on our entire evaluation suite is 18 hours
for 7B models, 24 hours for 13B models, and 24
hours for 40B models. Running LoRA fine-tuning
along with inference for 7B models task 26 hours.
Computing calibration parameters takes around 30
minutes to 2 hours for each method.

A.2 SUPER-NATURALINSTRUCTIONS

We evaluate models on a subset of 279 tasks from
the SUPER-NATURALINSTRUCTIONS bench-
mark (Wang et al., 2022), obtained from https://
github.com/allenai/natural-instructions.
We use up to 1000 evaluation examples for each
task. Altogether, our evaluation set consists of
264,176 examples.

SUPER-NATURALINSTRUCTIONS is a bench-
mark containing instances from many individual
datasets, the license of each is detailed in https://
github.com/allenai/natural-instructions
next to the task’s files.

A.3 LoRA Hyperparameters

We use the same LoRA hyperparamets used by
Dettmers et al. (2023) for fine-tuning on SUPER-
NATURALINSTRUCTIONS, except we use bfl6
training instead of 8bit, a warmup rate of 0.0, and
5 epochs. Specifically, we use a learning rate of
0.002, LoRA r = 64 and LoRA o = 16.

B Additional Results
B.1 Label Bias in LLMs

For results on Mistral and Falcon models before
the application of any mitigation approaches, see
Fig. 5 and Fig. 6 respectively.

B.2 Mitigation Approaches

For full results on Mistral and Falcon models in-
cluding all mitigation methods, see Fig. 7 and Fig. 8
respectively.
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Figure 5: Performance and label bias metrics for Mistral 7B pretrained and instruction-tuned models.
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Figure 6: Performance and label bias metrics for Falcon pretrained and instruction-tuned models (7B/40B).
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