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Intersectional Two-sided Fairness in Recommendation
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ABSTRACT
Fairness of recommender systems (RS) has attracted increasing
attention recently. Based on the involved stakeholders, the fairness
of RS can be divided into user fairness, item fairness, and two-sided
fairness which considers both user and item fairness simultaneously.
However, we argue that the intersectional two-sided unfairness
may still exist even if the RS is two-sided fair, which is observed and
shown by empirical studies on real-world data in this paper, and
has not been well-studied previously. To mitigate this problem, we
propose a novel approach called Intersectional Two-sided Fairness
Recommendation (ITFR). Our method utilizes a sharpness-aware
loss to perceive disadvantaged groups, and then uses collaborative
loss balance to develop consistent distinguishing ability for different
intersectional groups. Additionally, predicted score normalization
is leveraged to align positive predicted scores to fairly treat posi-
tives in different intersectional groups. Extensive experiments and
analyses on three public datasets show that our proposed approach
effectively alleviates the intersectional two-sided unfairness and
consistently outperforms previous state-of-the-art methods.1

1 INTRODUCTION
As recommender systems (RS) involve the allocation of social re-
sources, the fairness of RS has attracted increasing attention [6,
37, 57]. Fairness in RS can be divided into three types based on
the involved stakeholders: user fairness, item fairness, and two-
sided fairness which aims to ensure both user and item fairness
concurrently. Presently, user fairness mainly entails consistent rec-
ommendation performance across different user groups [10, 45],
while item fairness primarily focuses on fair exposure [13, 37, 43] or
consistent recommendation performance for different item groups
[4, 57]. Two-sided fairness is achieved when both user fairness and
item fairness criteria are met simultaneously [5, 46].

However, we argue that a form of intersectional two-sided un-
fairness may still exist even when two-sided fairness is achieved. As
illustrated in Fig.1, we present a toy example. Consider a movie rec-
ommendation scenario with 200 users, comprising 100 male and 100
female users, and a movie collection consisting solely of horror and
romance genres. Suppose the RS recommends only one movie for
each user. Among the male users, 90 prefer horror movies, while the
remaining 10 favor romance. Conversely, among the female users,
90 prefer romance movies, and the remaining 10 prefer horror. Now,
let us examine a straightforward RS strategy that exclusively recom-
mends horror movies to men and romance movies to women. This
recommendation strategy adheres to current two-sided fairness cri-
teria, but the intersectional two-sided groups (Female like Horror
movies and Male prefer Romance movies) experience discrimina-
tion. While this example is simplified, it can be readily extended to
accommodate varying user counts, recommendation lengths, and
fair distribution. Such a phenomenon has been observed in the real
scenario, which is shown and discussed in Section 3.

1Our work is related to the “User Modeling and Recommendation” track as it can
improve fairness for recommendation. We will release the codes upon acceptance.
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Figure 1: Illustration of intersectional two-sided unfairness.
In this toy example, the RS strategy meets two-sided fairness
but shows unfair in an intersectional two-sided view. The
thumb-up means the recommendation fits the user interest.

Such intersectional two-sided unfairness has manifold harm.
From the user perspective, some of the user’s interests are system-
atically discriminated against, which may harm recommendation
diversity and lower user satisfaction. From the item perspective, the
RS fails to explore the potential diverse users for items, potentially
burying valuable items. From the platform perspective, this con-
strains the development of a diverse user-item ecosystem, impeding
the platform’s progress. Moreover, from a social perspective, such
unfairness may reinforce the social polarization issue [32]. Hence,
addressing intersectional two-sided unfairness is crucial for RS.

To verify the existence of such unfairness, we conduct empir-
ical experiments in real-world data. We find that intersectional
unfairness indeed exists and cannot be ignored. Unfortunately, we
further observe that current fairness methods cannot effectively
mitigate such unfairness, highlighting the importance of designing
approaches to address this problem.

To fill this gap, we design a novel method Intersectional Two-sided
Fairness Recommendation (ITFR) to mitigate such unfairness. Con-
sidering that the positives of an intersectional group compete not
only with all the negatives but also with positives from other groups
in the same recommendation list, we divide the intersectional two-
sided fairness into two goals: (i) consistently distinguishing between
positives and negatives for different intersectional groups; (ii) fairly
treating positives in different intersectional groups. To achieve the
first goal, ITFR employs loss balance, as training losses may be a
proxy of the distinguishing ability. However, low training losses do
not necessarily indicate poor distinguishing ability, and the training
losses of various groups can influence each other. Direct reweight-
ing losses based on their size may not be an effective solution. To
tackle the first challenge, ITFR incorporates a sharpness-aware
loss to improve the alignment between training losses and test per-
formance, thereby enhancing the identification of disadvantaged
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groups. To address the second challenge, ITFR leverages group
collaboration information to learn fair weights for intersectional
groups, thereby balancing their sharpness-aware losses. Addition-
ally, to achieve the second goal, predicted score normalization is
leveraged to align predicted scores for positives. To demonstrate the
effectiveness, we conduct extensive experiments on three public
datasets. Experimental results show that our method can effec-
tively alleviate the intersectional two-sided unfairness. Our main
contributions can be summarized as follows.
• To the best of our knowledge, it is the first work to study the

intersectional two-sided fairness in Top-N recommendation. We
conduct empirical experiments to show the existence of such
unfairness and inadequacy of current fairness methods.

• We propose a novel method ITFR to mitigate the intersectional
two-sided unfairness, which consists of sharpness-aware disad-
vantage group discovery, collaborative loss balance, and predicted
score normalization.

• Extensive experimental results on three public datasets demon-
strate that our method can effectively mitigate intersectional
two-sided unfairness with similar or even better accuracy.

2 RELATEDWORK
2.1 Single-sided Fairness in Recommendation
Below we introduce the two single-sided fairness in recommenda-
tion: user fairness and item fairness.

Current research on user fairness can be roughly divided into two
groups: learning fair user representations [23, 48] and producing
fair recommendation outcomes [10, 14, 21, 22, 45, 54]. The former is
related to process fairness, while the latter focuses on the fairness
of recommendation performance received by different users, which
has attracted more attention as it is more related to user satisfaction.
These fairnessmethods on outcome fairness can be roughly grouped
into three categories: (i) fairness regularization [14, 21, 54]. (ii)
distributionally robust optimization [45, 52]. (iii) re-ranking [10, 22].

Most existing item fairness studies can be divided into exposure-
based fairness (or treatment-based fairness) and performance-based
fairness (or impact-based fairness). Exposure-based item fairness
focuses on allocating fair exposure to each item [11, 12, 20, 50]. Most
of them propose integer programming-based re-ranking methods
[2, 13, 24–26, 28, 37–39, 53, 56]. Unlike exposure-based item fairness,
performance-based item fairness focuses on whether different item
groups have consistent recommendation performance (e.g., recall
of the positives), which is related to users’ true preferences. The
fairness methods on performance-based fairness can be coarsely
divided into three categories: (i) fairness regularization [1, 15]. (ii)
adversarial learning [57]. (iii) fairly negative sampling [4].

The above methods only enhance single-sided fairness. However,
since the RS is a typical two-sided platform, it is important to ensure
both user and item fairness.

2.2 Two-sided Fairness in Recommendation
Current work [5, 29, 30, 46, 47, 49] on two-sided fairness in Top-N
recommendation is aimed to ensure user and item fairness simulta-
neously. Specifically, most studies focus on ensuring performance-
based user fairness (i.e., different users receive consistent recom-
mendation performance) and exposure-based item fairness, except

for [47] focusing on purely exposure fairness in a stochastic ranking
scenario. Most work [5, 29, 30, 49] designs fair re-ranking methods
to achieve this goal as the allocation of exposure is more feasible in
the re-ranking stage, while [46] propose a multi-objective optimiza-
tion approach in the ranking stage. Unlike these studies, we focus
on performance-based fairness both for users and items, which will
be further explained in Section 3.1. A similar study is [40], which
focuses on the marketing bias in the rating prediction task and
also involves intersectional groups. However, the intersectional
unfairness in this paper may not be due to the marketing bias, and
their method is not designed for Top-N recommendation.

Unlike current work, we argue that ensuring user and item fair-
ness simultaneously is insufficient. This paper aims to alleviate
the intersectional two-sided unfairness in Top-N recommendation,
which current fairness methods may overlook.

2.3 Intersectional Fairness in Machine Learning
There have been several studies [8, 9, 16–18, 34, 41, 51] on inter-
sectional fairness in machine learning (ML), which focuses on the
intersectional groups of different attributes, such as race & gen-
der (e.g., black females). These studies argue that when multiple
fairness-aware attributes exist, each intersectional group should be
treated fairly. Multiple attribute divisions may lead to more sparse
and unbalanced subgroups compared to a single attribute, which is
the concern of these studies.

Different from these studies on intersectional fairness in ML, we
focus on the intersectional two-sided fairness in the Top-N recom-
mendation, which has a key difference: the two-sided group makes
it more challenging than the single-sided group, i.e., the single-
sided fairness methods and current two-sided fairness methods
ignoring the intersectional groups is not designed to mitigate such
intersectional two-sided unfairness effectively. However, the in-
tersectional single-sided fairness (e.g., the unfair recommendation
performance of black females) might be effectively alleviated by
current adequate single-sided fairness methods, as we can just treat
the intersectional single-sided groups as a new group division.

3 PROBLEM DEFINITION AND
EMPIRICAL STUDY

3.1 Problem Definition
Suppose there are 𝑛 users U = {𝑢1, ..., 𝑢𝑛} and 𝑚 items V =

{𝑣1, ..., 𝑣𝑚}. The collected user feedback can be represented by
Y ∈ {0, 1}𝑛×𝑚 , where 𝑦𝑢𝑖 denotes whether the user 𝑢 has inter-
acted with the item 𝑖 . The whole positives areD = {(𝑢, 𝑖) |𝑦𝑢,𝑖 = 1}.
Ideally, there exists an unobserved matrix R ∈ {0, 1}𝑛×𝑚 , where 𝑟𝑢𝑖
represents whether a user 𝑢 will interact with an item 𝑖 . The top-N
recommendation task is to recommend a list of 𝑁 uninteracted
items to each user 𝑢.

In this paper, we focus on group-level fairness. Suppose the
users and items are divided into 𝑃 and 𝑄 disjoint groups by some
predefined attributes, respectively. As each interaction belongs to a
user group and an item group simultaneously, the whole data D
consist of 𝑃 ×𝑄 disjointed intersectional two-sided groups.

To study the fairness of these intersectional two-sided groups,
we further define the utility of these groups. Specifically, the utility
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of an intersectional two-sided group should reflect the received rec-
ommendation performance of potential interactions in this group.
Formally, letU(𝑖, 𝑗) denote all users in the 𝑖-th user group who are
interested in at least one uninteracted item in the 𝑗-th item group.
The utility of the intersectional two-sided group (𝑖, 𝑗) is defined as
the average utility for these potential interests:

ITG_Utility(𝑖, 𝑗)@𝐾 =
1

|U(𝑖, 𝑗) |
∑︁

𝑢∈U(𝑖, 𝑗 )
utility(𝑢, 𝑗)@𝐾 (1)

where utility(𝑢, 𝑗)@𝐾 can be some metrics measuring recommen-
dation performance. Without loss of generality, we follow previous
work [4, 57] and use a recall-based metric, i.e., utility(𝑢, 𝑗)@𝐾 =
| {𝑖 |𝑖∈𝑙𝑢&𝑟𝑢,𝑖=1&𝑖∈V𝑗 } |
| {𝑖 |𝑦𝑢,𝑖=0&𝑟𝑢,𝑖=1&𝑖∈V𝑗 } | , here 𝑙𝑢 is the top-K recommendation list
for user 𝑢. Note that we ignore users not interested in the 𝑗-th item
group, as the utility for these users is always zero and meaningless.

Based on the utility definition, intersectional two-sided fairness
aims to provide similar utilities for different groups.

The reason to choose such a performance-based utility definition
instead of an exposure-based utility definition (e.g., the received ex-
posure for intersectional groups) is that the latter does not consider
user preferences. Specifically, for user fairness, the exposure-based
utility is inconsistent with current user fairness that focuses on
recommendation performance related to user preferences [22, 45].
For item fairness, it is also crucial to consider user preferences [4].
Only exposure-based item fairness without performance-based fair-
ness might cause some item groups to receive low recommendation
quality, i.e., recommended to the users uninterested in them [44].

3.2 Existence of Intersectional Unfairness
Belowwe investigate whether such unfairness exists in real datasets.
For brevity, we only use a classic dataset Movielens1M (ML1M) to
conduct our empirical experiments. Here we only consider the bi-
nary group setting, and in subsequent experimental sections, we
show results for more than two groups. We use gender to divide
users (Male v.s. Female) and movie genres to divide items (here we
take ‘Children’s v.s. Horror’ as an example). The processed dataset
ML1M-2 contains 4,403 users, 568 items, and 144,420 interactions.
We randomly divide all interactions into training, validation, and
test sets in the ratio of 7:1:2. We run the classic BPR [33] algo-
rithm and repeat it five times, and the results are shown in Table
1, where URecall@20 is the average Recall@20 for the user group,
and IRecall@20 is the recall at the item group level [57].

Table 1: Results of BPR (ML1M-2). Italic for the bottom two
intersectional groups and the worst single-sided group.

ITG_Utility@20 User IRecall@20Female Male

Item Children’s 0.5215 0.4669 0.4440
Horror 0.4125 0.4814 0.4101

URecall@20 0.5070 0.5018 -

From the single-sided fairness perspective, we can find that ‘Chil-
dren’s’ gets a significantly better performance in terms of item
fairness, while male and female users get very similar performance

without significant differences. Existing two-sided fairness only
requires single-sided fairness for both users and items. Therefore,
the model should improve the performance of ‘Horror’ in terms of
item fairness while keeping the current fair status on the user side.

However, the story is different from the intersectional two-sided
perspective. As shown in Table 1, these four intersectional two-
sided groups receive inconsistent recommendation quality, with
(Male & Children’s) and (Female & Horror) receiving worse per-
formance. The best group (Female & Children’s) has an about 26%
performance gap compared to the worst group (Female & Horror),
which indicates that intersectional two-sided unfairness indeed ex-
ists. Note that the two best intersectional groups are on the diagonal,
which is consistent with Fig.1.

3.3 Do Current Methods Help?
Next, we investigate the effectiveness of current fairness methods.
We use two advanced single-sided fairness methods: FairNeg [4]
for item fairness and StreamDRO [45] for user fairness, which
both are focused on performance-based fairness and applied in
the ranking stage. Although there is no performance-based two-
sided fairness method, for experimental completeness, we use an in-
processing two-sided fairnessmethodMultFR [46] which focuses on
performance-based user fairness and exposure-based item fairness.

Table 2: Results of FairNeg (item fairness) on the ML1M-2
dataset. Italic for the bottom two intersectional groups and
the worst single-sided group. The (↑/↓) means better or worse
recommendations compared with BPR in Table 1.

ITG_Utility@20 User IRecall@20Female Male

Item Children’s 0.5042(↓) 0.4490(↓) 0.4281(↓)
Horror 0.4258(↑) 0.4956(↑) 0.4266(↑)

Table 3: Results of StreamDRO (user fairness) on the ML1M-2
dataset. The notations are similar to Table 2.

ITG_Utility@20 User
Female Male

Item Children’s 0.5202(↓) 0.4696(↑)
Horror 0.4121(↓) 0.4816(↑)

URecall@20 0.5066(↓) 0.5031(↑)

As shown in Tables 2 and 3, current single-sided fairness methods
indeed improve targeted single-sided fairness. However, they do not
improve intersectional two-sided fairness very well. For item fair-
ness, FairNeg indeed narrows the overall gap between item groups,
improving item fairness in the single-sided view. However, in the
intersectional view, it improves the performance for all the Horror
groups, leading to better performance for some advantaged groups
(Male & Horror) and worse performance for some disadvantaged
groups (Male & Children’s). For user fairness, a similar phenome-
non can be found in Table 3, where some advantaged groups (Male

3
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Table 4: Results ofMultiFR (two-sided fairness) on theML1M-
2 dataset. The notations are similar to Table 2.

ITG_Utility@20 User IRecall@20Female Male

Item Children’s 0.5151(↓) 0.4671(↑) 0.4394(↓)
Horror 0.4072(↓) 0.4809(↓) 0.4086(↓)

URecall@20 0.5019(↓) 0.5016(↓) -

&Horror) receive better recommendations and some disadvantaged
groups (Female & Horror) receive worse recommendations.

The results for two-sided fairness methods are shown in Table
4. We can find that it indeed narrows the gap between different
user groups, but does not effectively improve performance-based
item fairness as it considers exposure-based fairness. It can also
be found that the worst intersectional group (Female & Horror) in
Table 1 receives worse recommendations.

As current methods cannot effectively mitigate such unfairness,
it is important to design an effective fairness method for improving
intersectional two-sided fairness.

4 INTERSECTIONAL TWO-SIDED FAIRNESS
RECOMMENDATION

4.1 Overview
The utility of an intersectional group is determined by the rank
of the positives in this group in the recommendation lists. These
positives compete with two kinds of samples: all the negatives and
other positives from distinct groups in the recommendation list.
Thus, we divide the intersectional two-sided fairness into two goals
to balance these competitions separately. As shown in Fig.2, (i) the
RS should consistently distinguish between positives and negatives
for different intersectional groups; (ii) the RS should treat positives
in different intersectional groups fairly to ensure that no positives
in a certain group have systematically low predicted scores.

To achieve the above two goals, we propose a method Intersec-
tional Two-sided Fairness Recommendation (ITFR), which consists of
three components: sharpness-aware disadvantage group discovery,
collaborative loss balance, and predicted score normalization. The
purpose of the first two components is to balance the training losses
between different intersectional groups, which reflects the ability
to distinguish between positives and negatives, corresponding to
the first goal. Nevertheless, low training losses do not necessarily
indicate poor test performance, and different intersectional groups
are related to each other. Direct reweighting losses based on their
size may not be an effective solution. To tackle the first challenge,
we introduce sharpness-aware disadvantage group discovery to en-
hance the consistency of training losses and test performance. To
address the second challenge, we leverage the group collaboration
information to learn fair weights for these intersectional groups,
i.e., collaborative loss balance.

However, only controlling the training loss may not meet the
second goal. Even if the training loss is similar between different
intersectional groups, the predicted score for positive samples in
different intersectional groups may be systematically biased as the

commonly used recommendation loss (e.g., BPR) only optimizes the
distance between positives and negatives and does not constrain
the absolute value of the predicted scores. Therefore, the third
component, predicted score normalization, is applied to achieve the
second goal by aligning positive predictions. Next, we elaborate on
our method from the above three components respectively.

4.2 Sharpness-aware Disadvantage Group
Discovery

Let us first consider the first goal, i.e., to fairly distinguish between
positives and negatives for different intersectional groups. First,
we need to perceive those intersectional groups with poor distin-
guishing ability on the test data. Since test data is not available, the
intuitive idea is to treat the training loss as a proxy for distinguish-
ing ability on the test data, as they mostly reflect the ability of RS
to distinguish positives and negatives. Higher training loss is likely
to represent poorer distinguishing ability.

Below we formalize the training loss of the intersectional groups.
Take the most commonly used recommendation loss BPR [33] as
an example. The BPR loss L𝑝,𝑞 for an intersectional group 𝑔𝑝,𝑞 is
defined as follows:

L𝑝,𝑞 (D;\ ) := 1���D̃𝑝,𝑞

��� ∑︁
(𝑢,𝑖, 𝑗 ) ∈ D̃𝑝,𝑞

BPR(𝑢, 𝑖, 𝑗) (2)

Here D̃𝑝,𝑞 = {(𝑢, 𝑖, 𝑗) |𝑢 ∈ U𝑝 , 𝑖 ∈ V𝑞, 𝑦𝑢,𝑖 = 1, 𝑦𝑢,𝑗 = 0}, BPR(·) is
the BPR loss for a triple pair. 𝑔𝑝,𝑞 is the intersectional two-sided
group corresponding to the 𝑝-th user group and the 𝑞-th item group.

Moreover, in addition to the value of training losses, the geomet-
ric properties (e.g., sharpness) of the loss around the parameters \
also impact the test performance [7]. Considering training losses
on only a single point \ is vulnerable to random perturbations if
the loss curve is sharp, which may lead to an ineffective detection
of discriminated groups. To alleviate this, inspired by related work
in machine learning [7], we use the worst training loss within a
bounded region of the current parameters \ as a proxy for the
model’s distinguishing ability. Formally, the worst loss of the model
parameter \ in the 𝜌-region (i.e., {\ + 𝜖 | ∥𝜖 ∥ ≤ 𝜌}) for the group
𝑔𝑝,𝑞 can be defined as:

L̂𝑝,𝑞 (D, \, 𝜌) := max
∥𝜖 ∥≤𝜌

L𝑝,𝑞 (D;\ + 𝜖) (3)

Comparedwith the original lossL𝑝,𝑞 (D;\ ), the loss L̂𝑝,𝑞 considers
the sharpness of the original loss around the parameters \ since a
larger sharpness will lead to a larger difference between the original
loss and the worst loss.

Practice Detail. The above definition is not feasible in practice
as solving Eq.(3) is time-costing. Following [7], we use single-step
gradient ascent to approximate the worst loss. The corresponding
solution for Eq.(3) is \∗𝑝,𝑞 = \ + 𝜖∗𝑝,𝑞 , where 𝜖∗𝑝,𝑞 = 𝜌

∇\ L𝑝,𝑞 (D;\ )
∥∇\ L𝑝,𝑞 (D;\ ) ∥ .

4.3 Collaborative Loss Balance
As the sharpness-aware loss reflects the distinguishing ability, the
next question is how to balance the sharpness-aware loss L̂𝑝,𝑞 (D, \, 𝜌)
between different intersectional groups. An intuitive idea is reweight-
ing, i.e., assigning higher training weights to groups with higher
losses. The group distributional robustly optimization (GroupDRO)
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Figure 2: Illustration for our method. 𝑑 denotes the difference in predicted scores between two interactions.

[35] in machine learning can be leveraged to achieve this goal.
Specifically, GroupDRO will assign a weight𝑤𝑖 for the 𝑖-th group,
and calculate the total loss as L𝐺𝑟𝑜𝑢𝑝𝐷𝑅𝑂 =

∑
𝑖 𝑤𝑖L𝑖 (\ ), where

L𝑖 (\ ) is the average training loss of the 𝑖-th group, and 𝑤𝑖 is up-
dated at each batch by:

𝑤𝑖 ←
𝑤𝑖 · exp([ · L𝑖 (\ ))∑
𝑗 𝑤 𝑗 · exp([ · L 𝑗 (\ ))

(4)

where [ is a hyperparameter. We can adopt the GroupDRO for
intersectional two-sided fairness by replacing 𝑤𝑖 with 𝑤𝑝,𝑞 and
L𝑖 (\ ) with L𝑝,𝑞 (D;\ ). Note that the original GroupDRO does not
consider the sharpness of losses. To capture the sharpness, we can
directly replace L𝑝,𝑞 (D;\ ) with L̂𝑝,𝑞 (D, \, 𝜌).

However, the above method has a drawback as it ignores the
collaboration between different intersectional groups, which is im-
portant for RS. Typically, there is much collaborative information in
users’ interactions, and different intersectional groups are related
to each other as they may share similar users and items. Therefore,
optimizing the loss of one group can also strongly impact the losses
of other groups. The current weight 𝑤𝑝,𝑞 only considers the cur-
rent group loss L̂𝑝,𝑞 and does not consider the influence between
different groups, which may lead to suboptimal performance.

Tomodel the relationship between different intersectional groups,
we define the contribution of a group 𝑔𝑝,𝑞 to 𝑔𝑎,𝑏 as the change of
sharpness-aware loss of 𝑔𝑎,𝑏 after updating \ using the sharpness-
aware loss 𝑔𝑝,𝑞 , where ∇\ L̂𝑝,𝑞 is the gradients of L̂𝑝,𝑞 (D, \, 𝜌):

C(𝑔𝑝,𝑞 → 𝑔𝑎,𝑏 ) := L̂𝑎,𝑏 (D, \ − 𝛼∇\ L̂𝑝,𝑞, 𝜌) − L̂𝑎,𝑏 (D, \, 𝜌)
≈ L𝑎,𝑏 (D;\∗

𝑎,𝑏
− 𝛼∇\ L̂𝑝,𝑞) − L̂𝑎,𝑏 (D, \, 𝜌)

(5)

Furthermore, the total contribution of an intersectional group is
defined as a weighted sum of its contributions to all groups:

C(𝑔𝑝,𝑞) =
𝑃∑︁

𝑎=1

𝑄∑︁
𝑏=1

𝛽𝑎,𝑏C(𝑔𝑝,𝑞 → 𝑔𝑎,𝑏 ),where 𝛽𝑎,𝑏 =
(L𝑎,𝑏 )𝛾∑
𝑝,𝑞 (L𝑝,𝑞)𝛾

(6)
Here we introduce the group weight 𝛽𝑎,𝑏 because drops in larger
losses are more valuable. 𝛾 is a hyperparameter, and a larger 𝛾
means we pay more attention to disadvantaged groups.

Given the total contribution C(𝑔𝑝,𝑞) of each group 𝑔𝑝,𝑞 , we can
calculate the group weight𝑤𝑝,𝑞 following Eq.4:

𝑤𝑝,𝑞 ←
𝑤𝑝,𝑞 · exp([ · C(𝑔𝑝,𝑞))∑
𝑎,𝑏 𝑤𝑎,𝑏 · 𝑒𝑥𝑝 ([ · C(𝑔𝑎,𝑏 ))

(7)

The final collaborative balanced loss is L𝑐𝑙𝑏 =
∑
𝑝,𝑞 𝑤𝑝,𝑞 · L̂𝑝,𝑞 .

The total procedure for the first goal can be found in the Appendix.
Practice Detail. In practice, Eq.(5) will introduce a high compu-

tational cost. Following [31], we use the first-order Taylor approx-
imation and get C(𝑔𝑝,𝑞 → 𝑔𝑎,𝑏 ) ≈ 𝛼∇\ L̂𝑇𝑝,𝑞∇\ L̂𝑎,𝑏 , the ∇\ L̂𝑝,𝑞
here is further approximated by

√︃
L̂𝑝,𝑞

∇\ L̂𝑝,𝑞

∥∇\ L̂𝑝,𝑞 ∥
to obtain a stable

optimization, and the ∇\ L̂𝑎,𝑏 is approximated similarly. Besides,
as the parameters are not shared between different users and items
in common ID-based RSs, and two groups within a batch may not
have overlapped users and items, the ∇\ L̂𝑇𝑝,𝑞∇\ L̂𝑎,𝑏 will be zero as
the gradients of two intersectional groups have no overlap in each
batch. To alleviate this problem, we use the cumulative gradients
of the last epoch as the approximation of ∇\ L̂𝑎,𝑏 .

4.4 Predicted Score Normalization
Although the proposed loss balance method can improve the first
goal, it may not necessarily satisfy the second goal, i.e., to fairly
treat positives in different intersectional groups. This is because
the commonly used BPR loss only optimizes the distance between
positives and negatives. Even if the distances between positives
and negatives are the same across intersectional groups, there may
still be systematic unfairness in their predicted scores for positives.
Note that the competition between positives occurs only between
items and that the predicted scores of positive samples are not
comparable across users, so this issue may have a more significant
impact on item fairness than user fairness.

As directly controlling predicted scores may result in a large
accuracy loss [57], we leverage an indirect approach here to alleviate
this problem. Note that the proposed loss balance method enhances
the similarity of distances between positives and negatives across
different intersectional groups. If the range of predicted scores is
bounded, then the systematic bias between different intersectional
groups may be mitigated, as this bias is restricted to a certain
bound rather than over the real number domain. Thus, given user
embedding 𝑢 and item embedding 𝑣 , we bound the commonly used
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inner product predicted scores 𝑦𝑢,𝑣 = 𝑢𝑇 𝑣 to (−𝜏, 𝜏), formally, in
an embedding normalization manner:

𝑦𝑢,𝑣 = 𝜏 ·
𝑢𝑇 𝑣

∥𝑢∥∥𝑣 ∥ . (8)

There could be other ways to normalize the predicted scores,
e.g., 𝑦𝑢,𝑣 = 𝜏 · sigmoid(𝑢𝑇 𝑣). However, the embedding normaliza-
tion manner has its unique advantages: (i) the normalization of
user embeddings makes training losses more comparable across
users, given that the magnitude of user embeddings influences the
training losses but does not affect the recommendation lists. (ii) the
normalization of item embeddings may partially alleviate the pop-
ularity bias [3], which may be one of the reasons for the predicted
score inconsistency between different item groups.

5 EXPERIMENTS
5.1 Datasets and Settings
5.1.1 Datasets. Experiments are conducted on three public datasets:
Movielens1M2, Tenrec-QBA3 [55] and LFM2B4 [36].

Movielens1M. This dataset contains 1 million movie ratings
with user and item profiles. Gender is used to divide user groups,
while movie genres are utilized to divide item groups, a commonly
used group division in fairness studies [4, 46, 57]. Specifically, we se-
lect six genres (‘Sci-Fi’, ‘Adventure’, ‘Crime’, ‘Romance’, ‘Children’s’,
‘Horror’) as previously used in [57].

Tenrec-QBA. This dataset is collected from a news recommen-
dation platform comprising 348K article clicks. The age is used to
divide user groups. Specifically, as the age attribute is grouped in
decades with a disrupted order and some decades have little data,
we choose the three most popular attribute values (‘1’, ‘7’, ‘8’). For
item, we use the article channel to divide groups and select the four
most popular attribute values (‘104’, ‘113’, ‘124’, ‘127’).

LFM2B. This dataset contains two billion listening events, some
of which include genre information. User groups are segmented
based on gender. For item, we choose four of the most popular
genres with large style differences: (‘rock’, ‘pop’, ‘jazz’, ‘ambient’).

For all datasets, we remove irrelevant users and items and then
randomly divide all interactions into training, validation, and test
sets in the ratio of 7:1:2. Statistics of datasets are shown in Table 5.

Table 5: Statistics of the processed datasets.

Dataset #Users #Items #Interactions Density

Movielens 5,977 1,200 396,207 0.0552
Tenrec 11,376 1,015 132,981 0.0115
LastFM 20,847 18,625 1,785,420 0.0046

5.1.2 Metrics. For accuracy metrics, we adopt the widely used
NDCG@K (N@K), Precision@K (P@K), and Recall@K (R@K).

For intersectional two-sided fairness metrics, given the utility
definition in Eq.1, let𝑈𝑡𝑖𝑙 denotes the set of all the intersectional
group utilities,𝑈𝑡𝑖𝑙𝑖,: denotes the set of all the intersectional group
2https://grouplens.org/datasets/movielens/1m/
3https://static.qblv.qq.com/qblv/h5/algo-frontend/tenrec_dataset.html
4http://www.cp.jku.at/datasets/LFM-2b/

utilities in 𝑖-th user group, and similarly, 𝑈𝑡𝑖𝑙:, 𝑗 denotes the set
of all the utilities in 𝑗-th item group. We use the coefficients of
variation [4, 57] to measure unfairness between different groups,
i.e.,𝐶𝑉@𝐾 =

std(𝑈𝑡𝑖𝑙 )
mean(𝑈𝑡𝑖𝑙 ) , where std(·) is the standard deviation and

mean(·) is the average value. We also adopt a metric 𝑀𝐼𝑁@𝐾 to
measure theworst group utility. As theworst utilitymay be unstable
[21], the average utility of the worst 25% groups is measured.

To evaluate single-sided fairness, we also use the coefficients
of variation to measure the average unfairness of utilities at the
targeted single side: 𝐼𝐶𝑉@𝐾 = 1

𝑃

∑𝑃
𝑖=1

std(𝑈𝑡𝑖𝑙𝑖,:)
mean(𝑈𝑡𝑖𝑙𝑖,:) and𝑈𝐶𝑉@𝐾 =

1
𝑄

∑𝑄

𝑖=1
std(𝑈𝑡𝑖𝑙:,𝑖 )

mean(𝑈𝑡𝑖𝑙:,𝑖 ) , measuring item and user fairness, respectively.

5.1.3 Baselines. We compare with the following baselines:
• BPR [33]: The classic Bayesian personalized ranking method,

which does not consider fairness.
• StreamDRO [45]: An advanced performance-based user fairness

method using a streaming distributionally robust optimization.
• DPR-REO [57]: A method for performance-based item fairness

using adversarial learning.
• FairNeg [4]: An advanced performance-based item fairness

method using adaptive fair negative sampling.
• MultiFR [46]: An in-processing two-sided fairness method using

multi-objective optimization.
• GroupDRO [35]: A reweighting method adopted to this problem

as Eq.4, which is not originally designed for recommendation. It
is a strong baseline as it is aware of intersectional groups.

• ITFR (ours): Our proposed method which uses sharpness-aware
collaborative loss balance and predicted score normalization to
improve intersectional two-sided fairness.
All the above methods are applied to the ranking phase in RS,

and their comparative results are shown in Section 5.2. We also
compare with the following two-sided reranking methods:
• TFROM [49]: A reranking method to improve exposure fairness

for items and balance the performance losses for users.
• PCT [42]: An advanced reranking method to improve exposure

fairness for items and reduce exposure miscalibration for users.
As these two-sided reranking methods are applied in reranking

stage without conflict with our method, we evaluate the compat-
ibility of our method with these methods in Section 5.5. [29] is
excluded due to its limited applicability to two-group settings while
we are handling multi-group settings.

5.1.4 Implement Details. Due to the limited space, more implemen-
tation details can be found in the Appendix.

5.2 Overall Performance: RQ1
As shown in Table 6, our proposed method ITFR significantly en-
hances the intersectional two-sided fairness compared to all the
baselines, while also maintaining a comparable or even better ac-
curacy. There are some further observations: (i) Firstly, current
single-sided fairness methods indeed improve their respective tar-
geted single-sided fairness, even when using more fine-grained
fairness metrics, which enables them to alleviate intersectional two-
sided unfairness partially. However, it is worth noting that they
occasionally exhibit fairness compromises on the other side (e.g.,

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Intersectional Two-sided Fairness in Recommendation WWW’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 6: Performance comparisons. Bold for the best and underline for the second best. */** indicate 𝑝 ≤ 0.05/0.01 for the t-test
of ITFR vs. the best baseline. ↑/↓means the higher/lower the better. The improvements are calculated based on the best baseline.

Dataset Method P@20 ↑ R@20 ↑ N@20 ↑ MIN@20 ↑ CV@20 ↓ UCV@20 ↓ ICV@20 ↓

Movielens

BPR 0.2044 0.3793 0.3611 0.2398 0.2026 0.0892 0.1925
DPR-REO 0.2013 0.3673 0.3502 0.2593 0.1567 0.0906 0.1480
FairNeg 0.2034 0.3761 0.359 0.2626 0.1302 0.0953 0.1214
StreamDRO 0.2043 0.3794 0.3607 0.2389 0.204 0.0859 0.1923
MultiFR 0.2033 0.3768 0.3594 0.2403 0.1982 0.0887 0.1876
GroupDRO 0.2016 0.3757 0.3558 0.2737 0.1145 0.0604 0.1096
ITFR(ours) 0.2074∗(+1.4%) 0.3790(-0.1%) 0.3605 (-0.1%) 0.3023∗∗(+10.4%) 0.0646∗∗(-43.5%) 0.0433∗∗(-28.3%) 0.0578∗∗(-47.2%)

Tenrec

BPR 0.0381 0.3493 0.175 0.2703 0.1269 0.0453 0.1194
DPR-REO 0.0378 0.3488 0.1744 0.2764 0.1126 0.0439 0.1048
FairNeg 0.0385 0.3517 0.1756 0.2789 0.1138 0.0445 0.1039
StreamDRO 0.0382 0.3501 0.1759 0.2721 0.1223 0.0372 0.1154
MultiFR 0.0376 0.3471 0.1735 0.2733 0.1180 0.0429 0.1120
GroupDRO 0.0378 0.3471 0.1738 0.2711 0.1342 0.0460 0.1248
ITFR(ours) 0.0401∗∗(+4.1%) 0.3647∗∗(+3.6%) 0.1818∗∗(+3.3%) 0.3075∗∗(+10.2%) 0.0793∗∗(-29.5%) 0.0319∗(-14.2%) 0.0713∗∗(-31.3%)

LastFM

BPR 0.1090 0.1475 0.1655 0.0538 0.3398 0.0762 0.3369
DPR-REO 0.1078 0.1426 0.1617 0.0615 0.2989 0.0783 0.2960
FairNeg 0.1095 0.1485 0.1662 0.0694 0.2896 0.0794 0.2866
StreamDRO 0.1092 0.1478 0.1655 0.0537 0.339 0.0704 0.3362
MultiFR 0.1079 0.1462 0.1634 0.0473 0.3687 0.0720 0.3658
GroupDRO 0.1082 0.1466 0.1642 0.0896 0.1923 0.0650 0.1851
ITFR(ours) 0.1114∗∗(+1.7%) 0.1577∗∗(+6.1%) 0.1704∗∗(+2.5%) 0.0956∗∗(+6.6%) 0.1772∗∗(-7.8%) 0.0648(-0.3%) 0.1680∗∗(-9.8%)

Movielens), a phenomenon discussed in previous work [49]. (ii)
Secondly, the two-sided fairness method MultiFR also partially mit-
igates intersectional two-sided unfairness. Nevertheless, it exhibits
instability and does not consistently improve fairness across all
datasets, primarily due to its lack of consideration for intersectional
groups and its primary focus on optimizing item exposure fairness
rather than performance-based fairness. (iii) Thirdly, GroupDRO
achieves notably higher fairness compared to the aforementioned
fairness methods on the Movielens and LastFM datasets. However,
its performance is less satisfactory on the Tenrec dataset. The for-
mer can be attributed to its explicit consideration of intersectional
groups. The latter observation suggests that focusing solely on
loss balance does not necessarily guarantee fairness, as discussed
in the method section. (iv) Fourthly, our proposed method consis-
tently outperforms all others in terms of fairness across all datasets,
which demonstrates its effectiveness. This superior performance
is attributed to its consideration of intersectional groups and its
simultaneous pursuit of both two fairness goals. Furthermore, our
method incurs only a negligible loss of accuracy on the Movielens
dataset and even attains the best accuracy on the Tenrec and LastFM
datasets. To conclude, these results validate that our method ITFR
can effectively mitigate intersectional two-sided unfairness while
maintaining similar or even better accuracy.

5.3 Ablation Study: RQ2
5.3.1 Ablation for three components. We conduct ablation stud-
ies to assess the effectiveness of the three components within
our method. Specifically, three variants are examined: ITFR w/o
sharpness-aware loss (SA), ITFR w/o collaborative loss balance (CB)
and ITFR w/o predicted score normalization (PN).

As shown in Fig.3, each module demonstrates efficacy in en-
hancing fairness. The effectiveness of these modules exhibits some

variation contingent upon dataset characteristics. For instance, SA
noticeably enhances fairness in the Tenrec dataset, CB is particu-
larly effective in the LastFM dataset, and PN exhibits substantial
effectiveness in both the Movielens and Tenrec datasets. As for
accuracy, we observe a consistent enhancement across all three
datasets with the inclusion of PN, which may be owed to its ability
to alleviate popularity bias [3].
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Figure 3: Ablation for three components in our method. "SA":
sharpness-aware disadvantage group discovery. "CB": collab-
orative loss balance. "PN": predicted score normalization.

5.3.2 Ablation for two goals. We further conduct ablation studies
to assess the effectiveness of two fairness goals: consistent distin-
guishing ability (Goal 1) and treating positives fairly (Goal 2). In
addition to BPR (None) and ITFR (Goal 1 & Goal 2), we explore two
variants: ITFR w/o PN (Goal 1) and BPR w. PN (Goal 2).

The results are depicted in Fig.4. We can find that both goals
are important for intersectional two-sided fairness, particularly on
the Tenrec dataset, where neither goal in isolation can improve
fairness. Besides, Goal 2 alone yields the best accuracy, but it is
not effective in improving fairness. Moreover, it enhances overall
fairness less effectively than Goal 1, possibly due to the indirect
way to improving Goal 2. We leave the exploration of more effective
methods to achieve Goal 2 for future work.
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Figure 4: Ablation for two goals in our method.

5.4 Hyperparameter Analysis: RQ3
We further analyze the influence of the hyperparameters involved
in our method, specifically 𝜌 in SA, [ and 𝛾 in CB, and 𝜏 in PN.
The results are presented in Fig.5. For all parameters, fairness tends
to initially improve and subsequently decline as the parameter
value increases. A similar pattern is observed in accuracy, though
with some variations in magnitude. For 𝜌, [,𝛾 , increasing the value
within a specific range amplifies the impact of the corresponding
component, resulting in further improvements in fairness. However,
excessively large values can compromise optimization stability and
result in a rapid decline in performance. Regarding 𝜏 , it influences
the gradient magnitude at each update to some extent; thus, too
large or too small values are not suitable.
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Figure 5: Hyperparameter analysis on the Tenrec dataset.
Results on other datasets are similar and omitted.

5.5 Compatibility with Reranking Alg.: RQ4
Most current two-sided fairness methods [29, 42, 49] are reranking-
based and focus on exposure fairness for items. Since our method is
applied to the ranking phase without conflicting with these rerank-
ing methods, we next verify its compatibility with these methods.
We consider two advanced two-sided fairness-aware reranking
methods: TFROM [49] and PCT [42]. Exposure fairness requires
a definition of a fair exposure distribution. We follow the previ-
ous work [42] that each item group should have equal exposure.
For metrics, we utilize the KL-divergence [13, 40] between the fair
distribution and the system distribution to measure item expo-
sure unfairness, denoted as 𝑆𝑦𝑠𝑡𝑒𝑚𝐾𝐿. In addition, following [42],
miscalibration (𝑈𝑠𝑒𝑟𝐾𝐿) is used to measure whether users receive
recommendations that fairly reflect their historical interests, which
can be regarded as exposure fairness at the user level.

As depicted in Fig.6, the results indicate that our method is
compatible with these reranking methods. For exposure fairness,
utilizing ITFR as inputs can achieve similar or even better fairness,
which shows that our method does not disrupt the efficacy of these
reranking methods. In addition, for intersectional two-sided fair-
ness, it can be found that reranking has a notable detrimental effect
on fairness, but ITFR still exhibits an improvement compared to
BPR, underscoring its utility even in the presence of disturbances
during the reranking phase.
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Figure 6: Reranking results on the Tenrec dataset. Results on
other datasets are similar and omitted. All metrics are the
lower the better except for NDCG@20.

6 CONCLUSIONS AND FUTUREWORK
This paper aims to mitigate the intersectional two-sided unfair-
ness in Top-N recommendation, which current fairness methods
may overlook. We first formally define the intersectional two-sided
fairness and conduct empirical experiments to demonstrate the
existence of such unfairness and inadequacy of current fairness
methods in addressing this problem. To address this problem, we
divide the intersectional two-sided fairness into two goals: (i) consis-
tently distinguishing between positives and negatives for different
intersectional groups; (ii) fairly treating positives in different in-
tersectional groups. Then, a novel method, ITFR, is proposed to
achieve these goals, which consists of sharpness-aware disadvan-
tage group discovery, collaborative loss balance, and predicted score
normalization. The first two components aim to achieve the first
goal, while predicted score normalization is leveraged to achieve the
second objective. Extensive experiments on three public datasets
show that ITFR effectively alleviates the intersectional two-sided
unfairness and consistently outperforms the previous state-of-the-
art methods. Further experiments show that our method is also
compatible with fairness-aware re-ranking methods. Additionally,
to the best of our knowledge, our method is also the first to improve
performance-based fairness for both user and item sides.

For future work, we are interested in exploring such intersec-
tional two-sided unfairness at the individual level and exploring
better ways to improve the compatibility of fairness methods in the
ranking and re-ranking phases.
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A APPENDIX
A.1 Learning Algorithm of Sharpness-aware

Collaborative Loss Balance
Algorithm 1 shows the algorithm of sharpness-aware collaborative
loss balance.

Algorithm 1 Sharpness-aware Collaborative Loss Balance
Input: training data D, number of intersectional groups 𝑃 × 𝑄 ,

learning rate 𝑙𝑟 , hyperparameters [,𝛾, 𝜌
Output: recommendation model 𝑓 (\ )
1: initialize recommendation model 𝑓 (\ ) and group weights
𝑤𝑝,𝑞 = 1

𝑃×𝑄 for 𝑝 = 1, ..., 𝑃 and for 𝑞 = 1, ..., 𝑄 .
2: for 𝑡 = 1 to 𝑇𝑒𝑝𝑜𝑐ℎ do
3: for batch data D𝑏𝑎𝑡𝑐ℎ in D do
4: for 𝑝 = 1 to 𝑃 do
5: for 𝑞 = 1 to 𝑄 do
6: calculate gradients ∇\L𝑝,𝑞 (D;\ ) of 𝑔𝑝,𝑞
7: calculate sharpness-aware loss L̂𝑝,𝑞 based on Eq.(3)
8: calculate sharpness-aware gradients ∇\ L̂𝑝,𝑞
9: end for
10: end for
11: calculate group weight 𝛽𝑝,𝑞 for any 𝑝, 𝑞 based on Eq.(??)
12: calculate C(𝑔𝑝,𝑞 → 𝑔𝑎,𝑏 ) for any 𝑝, 𝑞, 𝑎, 𝑏 (Eq.(5))
13: calculate C(𝑔𝑝,𝑞) for any 𝑝, 𝑞 based on Eq.(6)
14: update group weights𝑤𝑝,𝑞 for any 𝑝, 𝑞 based on Eq.(7)
15: update \ ← \ − 𝑙𝑟 ∗

(∑
𝑝,𝑞 𝑤𝑝,𝑞 · ∇\ L̂𝑝,𝑞

)
16: end for
17: end for
18: return recommendation model 𝑓 (\ )

A.2 Implement Details
We use the classic MF [27] as user and item encoders for all the
methods. The embedding size is set to 64 for all the methods. Adam
[19] is used as the optimizer. The learning rate is set to 1e-3 with the
L2 regularization tuned in [0, 1e-7, 1e-6, 1e-5, 1e-4]. The batch size is
set to 1024. For fair comparisons, the uniform negative sampling is
applied to all the models during training, except for FairNeg mixed
with a fair negative distribution. The negative sampling number for
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training is set to 1. The additional hyperparameters for the baselines
are fine-tuned following their original paper. The best models are
selected based on the performance of the validation set within 200

epochs. We repeat each experiment 5 times and report the average
results, and perform statistical tests (i.e., t-test).
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