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A B S T R A C T

In this work, we tackle the following question: Can neural networks trained with
gradient-based methods achieve the optimal statistical-computational tradeoff
in learning Gaussian single-index models? Prior research has shown that any
polynomial-time algorithm under the statistical query (SQ) framework requires
Ω(ds

⋆/2∨d) samples, where s⋆ is the generative exponent representing the intrinsic
difficulty of learning the underlying model. However, it remains unknown whether
neural networks can achieve this sample complexity. Inspired by prior techniques
such as label transformation and landscape smoothing for learning single-index
models, we propose a unified gradient-based algorithm for training a two-layer
neural network in polynomial time. Our method is adaptable to a variety of loss and
activation functions, covering a broad class of existing approaches. We show that
our algorithm learns a feature representation that strongly aligns with the unknown
signal θ⋆, with sample complexity rO(ds

⋆/2 ∨ d), matching the SQ lower bound up
to a polylogarithmic factor for all generative exponents s⋆ ≥ 1. Furthermore, we
extend our approach to the setting where θ⋆ is k-sparse for k = o(

√
d) by introduc-

ing a novel weight perturbation technique that leverages the sparsity structure. We
derive a corresponding SQ lower bound of order rΩ(ks

⋆

), matched by our method
up to a polylogarithmic factor. Our framework, especially the weight perturba-
tion technique, is of independent interest, and suggests potential gradient-based
solutions to other problems such as sparse tensor PCA.

1 I N T R O D U C T I O N

The success of neural networks is largely attributed to their remarkable ability to learn rich and
useful features from data during gradient-based training (Girshick et al., 2014). This feature-learning
capability allows them to outperform traditional methods like kernel-based approaches, which rely
on predefined features (Allen-Zhu & Li, 2019; Ghorbani et al., 2019; Refinetti et al., 2021). However,
when trained using (stochastic) gradient descent, neural networks can sometimes fall into a “kernel
regime”, where their behavior resembles that of a fixed kernel method, constrained by their random
initialization (Jacot et al., 2018; Chizat et al., 2019). In this regime, the ability of the network to learn
complex representations is severely limited, undermining the primary advantage of deep learning.
Therefore, it is crucial to understand when and how neural networks trained with gradient-based
method can perform effective feature learning to unlock their full potential, particularly in scenarios
where a balance between computational efficiency and statistical performance is essential.

In this work, we approach this question in the context of Gaussian single-index models, a canonical
class of problems in statistics and learning (MacCullagh & Nelder, 1989; Ichimura, 1993; Hristache
et al., 2001; Härdle et al., 2004). The model is defined as follows: for covariates z ∼ N (0, Id), the out-
put y depends on the inner product ⟨θ⋆, z⟩ with an unknown signal θ⋆ ∈ Rd through a link distribution
p, i.e., y ∼ p(· | ⟨θ⋆, z⟩). The goal is to recover θ⋆ using i.i.d. samples (z1, y1), . . . , (zn, yn) gener-
ated by the underlying model. While n = Ω(d) samples suffice to recover θ⋆ information-theoretically
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Figure 1: (a) The contour plots of (log d, log n,acc(d, n)) for Algorithm 1 under model y =
⟨z, θ⋆⟩2 exp(−⟨z, θ⋆⟩2), which has generative exponent s⋆ = 4 (Example 2.2). Here acc(d, n)
is the average of the largest 8 values of the alignment between the neuron weights and the unknown
signal θ⋆. The slopes of these contour lines are all close to 2, indicating a sample complexity n ≈ d2
for s⋆ = 4. (b) The paradigm of sample complexity achieved by our algorithm for different generative
exponent s⋆ and sparsity level k, illustrating the success of achiving computational-statistical tradeoff.

(Bach, 2017; Damian et al., 2024), achieving this efficiently is difficult for polynomial-time algo-
rithms, where the required sample size also depends on properties of the link distribution p, creating
a computational-statistical gap. For example, when y is a polynomial of ⟨θ⋆, z⟩, it has been shown
that two-layer neural networks with square loss need dΘ(q⋆) samples (Arous et al., 2021; Bietti et al.,
2022; Damian et al., 2023), where q⋆ is the information exponent of the polynomial link function
(Arous et al., 2021; Dudeja & Hsu, 2018). Such sample complexity is indeed inevitable under the
correlational statistical query (CSQ) framework, leading to a computational-statistical gap for q⋆ ≥ 2.

However, the CSQ framework does not capture the fundamental limits of all gradient-based algorithms.
Recent works have shown that by leveraging higher-order terms in the gradient, neural networks can
learn polynomials with as few as rO(d) samples (Lee et al., 2024; Arnaboldi et al., 2024). It turns out
that the intrinsic learning difficulty is captured by another quantity called the generative exponent s⋆,
which is at most 2 for polynomial link functions, and the corresponding SQ lower bound on the sample
complexity is n = Ω(ds

⋆/2)1 (Damian et al., 2024). Thus, there is no computational-statistical gap up
to poly-log factors for learning polynomial single-index models. However, for general single-index
models with s⋆ ≥ 3, no gradient-based algorithm for neural networks has been shown to match the
SQ lower bound, leaving it an open problem (Arnaboldi et al., 2024; Lee et al., 2024).

Furthermore, learning the Gaussian single-index model can benefit from additional structures in the
signal θ⋆, such as sparsity, which can significantly reduce the sample complexity compared to those
depending on the ambient dimension d (Candès et al., 2006; Donoho et al., 2009; Raskutti et al.,
2012). Recent work by Vural & Erdogdu (2024) examines the effectiveness of pruning in learning
sparse features, demonstrating that it matches the correlated statistical query (CSQ) lower bound dq

⋆

for k ≪
√
d. However, the method fails to achieve the CSQ lower bound in non-sparse settings. For

sparse single-index models with information exponent q⋆ = 1, gradient descent on diagonal linear
networks nearly achieves the information-theoretic lower bound thanks to its implicit regularization
effect (Fan et al., 2023). Nonetheless, how to achieve the optimal sample complexity for general
s⋆ ≥ 1 is also unknown under the sparse setting.

Contributions. Towards characterizing the fundamental feature learning capability of neural networks
in the Gaussian single-index model, our main contributions are as follows:

1. We propose a unified recipe of gradient-based algorithms for training a two-layer neural network
to learn the Gaussian single-index model. Our method integrates a general gradient oracle with
a weight perturbation technique, carefully designed to exploit the underlying structure of the

1This Ω(ds
⋆/2) sample complexity lower bound is essentially for the detection problem. Dudeja & Hsu

(2021) shows that there is an estimation-detection gap for tensor PCA under the SQ framework, though it is
unclear whether such gap exists universally. Throughout the paper, we always refer to the SQ lower bound as the
detection lower bound, since detection in general is assumed to be easier than estimation.
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Gaussian single-index model. This allows the neural network to perform feature learning of the
unknown signal θ⋆ in a computationally efficient manner. Our framework encompasses many
existing approaches as special cases, such as batch reusing (Dandi et al., 2024; Lee et al., 2024),
label transformation (Chen & Meka, 2020), and landscape smoothing (Damian et al., 2023).

2. We show that for an unknown link distribution p with any generative exponent s⋆ ≥ 1, the
weights of the neural network achieve strong recovery of the true signal θ⋆ after training by our
algorithm using rO(ds

⋆/2 ∨ d) samples and polynomial running time. Our method achieves the SQ
lower bound up to a polylogarithmic factor, and is the first gradient-based algorithm for training
two-layer neural networks that attains the nearly optimal computational-statistical tradeoff for
Gaussian single-index models with any s⋆ ≥ 1. Figure 1 (a) illustrates an example for s⋆ = 4.

3. Furthermore, our method is able to take advantage of additional structural information of the true
signal θ⋆. Specifically, we consider the case where θ⋆ is k-sparse for k = o(

√
d), and develop

a novel weight perturbation procedure tailored to the sparsity of θ⋆. Equipped with this, we
show that the weights of the neural network can achieve strong recovery of the sparse signal θ⋆

after training with rO(ks
⋆

) samples in polynomial time for any generative exponent s⋆ ≥ 1. This
sample complexity is also nearly optimal according to the sample complexity lower bound we
establish for SQ algorithms, which might be of independent interest. Also, our method suggests a
new approach to achieve the computational-statistical tradeoff for sparse tensor PCA.

In summary, our work provides a unified framework for training neural networks that can achieve
the nearly optimal computational-statistical tradeoff for the Gaussian single-index model with any
generative exponent s⋆ ≥ 1. Our method not only tackles the intrinsic difficulty of learning the under-
lying model posed by the link distribution p, but also leverages the additional structural information
of the true singal θ⋆ that benefits the learning process. Integrating these results, our method attains
nearly optimal balance between computational efficienty and statistical performance across almost all
regimes of sparsity levels and generative exponent s⋆ ≥ 1, as illustrated in Figure 1 (b).

2 P R O B L E M S E T U P

We begin by introducing the notation used in the paper, and then describe the problem setup. For a
probability distribution P, we denote by L2(P) the space of square-integrable functions with respect to

P, and
L2(P)
= means equality in L2(P). We denote the normalized probabilist’s Hermite polynomials by

{hs(·)}s≥0, where each hs(x) :=
(−1)s√
s!
· ex2/2 · ds

dxs e
−x2/2. These polynomials form an orthonormal

basis for L2(N (0, 1)), i.e., the space of square-integrable functions under the Gaussian measure.

Gaussian single-index model. We study the following Gaussian single-index model: The environment
first samples an unobservable signal θ⋆ ∼ π from some known prior π ∈P(Sd−1). Then i.i.d. data
(z1, y1), . . . , (zn, yn) ∈ Rd × R are generated according to the following distribution Pθ⋆ given θ⋆:

Pθ⋆ : z ∼ N (0, Id), y ∼ p(· | ⟨θ⋆, z⟩). (2.1)

Here p(· | ·) : R 7→P(R) is referred to as the link distribution. A canonical example is the additive
model where y = ϕ(⟨θ⋆, z⟩) + ϵ for some deterministic link function ϕ : R→ R and random noise ϵ.
See Damian et al. (2024) for more complicated examples.

Generative exponent. The following discussion on the generative exponent is based on the work of
Damian et al. (2024). We aim to learn (2.1) where the link distribution p has generative exponent
s⋆ ≥ 1 , a measure of the computational-statistical gap for learning single-index models. We let
x = ⟨θ⋆, z⟩. Notice that Pθ⋆(y, z) = P(y, x) · N (z⊥; 0, Id−1) where we use P to denote the joint
distribution of (x, y) as this joint distribution is independent of θ⋆. As the marginal distribution of y
is also independent of θ⋆, we define the null distribution Q(y, z) :=N (z; 0, Id)⊗Q(y) and denote
Q(y, x) :=N (x; 0, 1) ⊗ Q(y) where Q(y) =

∫
R P(y, x)dx. Under a square-integrable condition

under Q, the likelihood ratio admits a Hermite expansion with coefficient functions {ζs(y)}s≥1, i.e.,

Pθ⋆ (y,z)
Q(y,z) = P(y,x)

Q(y,x)

L2(Q)
=

∑∞
s=0 ζs(y) · hs(x), where ζs(y) = EP[hs(x)|y], (2.2)

and EQ[ζs(y)
2] ≤ 1 for all s ≥ 1. Note that (2.2) makes sense only when we are working with the

inner product of P/Q and a square-integrable function under the null distribution Q.
Definition 2.1 (Generative exponent). For the Gaussian single-index model defined in (2.1), the
generative exponent s⋆ of the link distribution p is defined as s⋆(p) :=min{s ≥ 1 : EQ[ζs(y)

2] > 0}.
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Example 2.2 (Example 2.7, Damian et al. (2024)). Consider the special case of the Gaussian single-
index model (2.1) where y = ϕ(⟨θ⋆, z⟩) for a deterministic link function ϕ : R → R. When ϕ is
a polynomial function, it holds that s⋆(ϕ) ≤ 2, and the equality holds if and only if f is an even
polynomial. In particular, s⋆(hs) = 1 for odd s and s⋆(hs) = 2 for even s. While for the example of
ϕ(x) = x2 exp(−x2), which is not a polynomial, it has generative exponent s⋆(ϕ) = 4.

Two-layer neural networks. We consider using a two-layer neural network with M hidden neurons
to learn the single-index model (2.1). The weight vector for each neuron m ∈ [M ] is θm ∈ Rd,
and the weights of the second layer are a1, . . . , aM ∈ R. We collect all the weights and denote
θ = (θ1, . . . , θM ) ∈ Rd×M , a = (a1, . . . , aM )⊤ ∈ RM . Now for any input z ∈ Rd, the output of
the network is given by f(z;θ,a) :=

∑M
m=1 am · σ(⟨z, θm⟩), where σ : R→ R is the activation.

3 OV E RV I E W O F T E C H N I Q U E S

In this work, we apply gradient-based methods to learn Gaussian single-index models, with a focus
on feature learning in neural networks and the corresponding computational-statistical tradeoff. To
motivate the techniques involved, we begin by discussing an illustrative example that highlights such
tradeoffs. For this overview, we focus on s⋆ > 2 and the uniform prior π = Unif(Sd−1). It has been
shown that a gap exists between the information-theoretic lower bound Ω(d) and the SQ lower bound
Ω(ds

⋆/2) under this setting when s⋆ > 2 (Bach, 2017; Damian et al., 2024).

For illustration, let us consider training a two-layer network with a single neuron under the population
square loss. When the weight of the second layer is small, the rescaled negative gradient g satisfies

g = −(2a)−1∇θ
(
f(z; θ, a)− y

)2
= −

(
a · σ(⟨z, θ⟩)− y

)
· σ′(⟨z, θ⟩) · z = (yσ′(⟨z, θ⟩) + err) · z,

where we take yσ′(⟨z, θ⟩) as the signal term and treat −aσ(⟨z, θ⟩)σ′(⟨z, θ⟩) as the error term since
it scales with a.2 We ignore the error term in the following discussion. Taking expectation over
(z, y) ∼ Pθ⋆ and using the likelihood ratio decomposition in (2.2), we have

EPθ⋆
[g] ≈ EQ [y] · EQ [σ′(⟨z, θ⟩) · z]︸ ︷︷ ︸

bias

+
∑
s≥s⋆

EQ [yζs(y)] · EQ [hs(⟨θ⋆, z⟩) · σ′(⟨z, θ⟩) · z]︸ ︷︷ ︸
informative queries

, (3.1)

where we use the fact that y and z are independent under the null distribution Q. Note that the
bias term does not contain any information about θ⋆, and it can be easily removed by a debiasing
procedure, so we assume for simplicity that E[y] = 0.

Failure of vanilla online minibatch SGD. We first consider the vanilla online minibatch SGD,
which updates the weight vector θ by θ ← θ − η

∑n
i=1 gi for a minibatch of size n. The sample

complexity of gradient-based methods is determined by the signal-to-noise ratio (SNR) of the one-
sample gradient, which in our case is defined as SNR :=E[⟨g, θ⋆⟩]2/E[∥g∥22]. This is the square of
the alignment between g and θ⋆, governed primarily by the informative query corresponding to the
lowest degree s⋆ in (3.1) assuming that EQ[yζs⋆(y)] ̸= 0. It can be shown that the inner product
between the lowest-degree informative query in (3.1) and the signal θ⋆ satisfies (see Lemma H.1)

EQ [hs⋆(⟨θ⋆, z⟩) · σ′(⟨z, θ⟩) · ⟨z, θ⋆⟩] ≈ s⋆ · pσs⋆ · ⟨θ⋆, θ⟩s
⋆−1 = pσs⋆ ·O(d−(s⋆−1)/2), (3.2)

where pσs⋆ is the s⋆-th coefficient in the Hermite expansion of σ. While for ∥g∥2, we have

EPθ⋆

[
∥g∥22

]
≈ d · EQ

[
y2σ′(⟨z, θ⟩)2

]
= Ω(d),

where the high-order terms in the likelihood ratio decomposition are ignored and we come back to
this point later. Now we can argue why vanilla online minibatch SGD has difficulty achieving the
SQ lower bound for generative exponent s⋆ > 2: Suppose EQ[yζs⋆(y)] and pσs⋆ are both nonzero
constants. Then the one-sample SNR is O(d−s

⋆

). For a minibatch with n samples, the SNR of the
gradient averaged over the minibatch is roughly n times the one-sample SNR3, i.g., nd−s

⋆

. To ensure
2A rigorous derivation of the error term with multiple neurons and general loss function ℓ can be found in the

proof of Example 4.6 in Appendix C.2.2.
3This argument is not fully rigorous because EPθ⋆ [∥g∥

2
2] also includes “bias” ∥EPθ⋆ [g]∥

2
2 besides the

fluctuations, but it remains valid as long as ∥g∥22 is dominated by fluctuations from all d directions at initialization.
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one update step achieves alignment, i.e., the square root of the n-sample SNR,
√
nd−s⋆ , exceeding

the trivial d−1/2 threshold attained by a random vector, it requires at least ds
⋆−1 samples. Note that

the sample complexity would become even worse if s⋆ < argmins≥s⋆{s : EQ[yζs(y)] ̸= 0}. This
contrasts with the sample complexity O(ds

⋆/2) suggested by the SQ lower bound.

The above failure of vanilla online minibatch SGD exposes three key challenges:

(i) (Non-polynomial) How to handle the infinite sum of high-order terms in the likelihood ratio?
(ii) (Low SNR) How to enhance the SNR to achieve the SQ lower bound?

(iii) (Zero correlation) How to ensure that the algorithm still works if EQ[yζs⋆(y)] = 0?

Below we discuss our techniques for addressing these challenges.

Label transformation via general gradient oracle. The idea to fix the zero correlation problem is to
apply a nonlinear transformation T : R→ R to y such that T (y) has nonzero correlation with ζs⋆(y).
This label transformation technique has been widely used in the literature (Lu & Li, 2020; Mondelli
& Montanari, 2018; Dudeja & Hsu, 2018; Chen & Meka, 2020; Damian et al., 2024). In particular,
Lee et al. (2024) show that the label transformation can be automatically realized by running two
gradient steps on the same batch, a technique termed as batch-reusing (Dandi et al., 2024; Arnaboldi
et al., 2024). In this work, we study a more general class of gradient-based methods with gradient of
form g = ψ(y, ⟨θ, z⟩)z, which is an abstract form of the transformed gradient T (y)σ′(⟨z, θ⟩)z. The
desired condition becomes EQ[ pψs⋆−1(y)ζs⋆(y)] ̸= 0, where pψs(y) is the s-th Hermite coefficient
function of ψ(y, x) in the Hermite basis of x. One particular way to obtain such a gradient is to use a
modified loss function, similar to the approach in Joshi et al. (2024), while in our case the specific
choice of ψ is also related to the other two challenges addressed as follows.

Exploration by weight perturbation with high-pass activation. The low-SNR challenge corre-
sponds to the fact that points on the equator of Sd−1 orthogonal to θ⋆ are all saddle points in terms of
|⟨θ, θ⋆⟩|, and random initialization typically lies near this equator. To efficiently escape from such
saddle points, we perform random weight perturbation, akin to the approach in Jin et al. (2017) for
non-convex optimization. To understand the effectiveness of weight perturbation, we still stick to the
squared loss and the two-layer neural network for the following second-moment calculation.4 Specifi-
cally, suppose the activation σ is high-pass and has the lowest degree s⋆, i.e., σ(x) =

∑
s≥s⋆ pσshs(x),

and consider for simplicity the case of odd s⋆. In the extreme case where θ is perturbed into i.i.d.
pure noise θ1, . . . , θL ∼ Unif(Sd−1), we compute the gradient for each θl and aggregate them into
g = L−1(g1 + · · ·+ gL). Using the properties of the Gaussian noise operator (see Appendix B for
details), the second moment of this aggregated gradient satisfies

E
[
∥g∥22

]
≈ d

L2

∑L
l,l′=1 EQ[y

2] · EQ[σ
′(⟨z, θl⟩)σ′(⟨z, θl′⟩)] ≈ d

∑
s≥s⋆ s · pσ2

s · Eθ,θ′ [⟨θ, θ′⟩s−1],

where θ, θ′ are drown independently from Unif(Sd−1). Since ⟨θ, θ′⟩ ≈ d−1/2, we have E[∥g∥22] ≈
O(d−(s⋆−3)/2), yielding a higher one-sample SNR as the first moment remains unchanged and
pushing the sample complexity towards the SQ lower bound. Moreover, we also see from the
above calculation that the weight perturbation resolves the non-polynomial issue thanks to the near-
orthogonality of the perturbed weights. The above heuristics can be made rigorous for polynomially
large L, thereby handling non-polynomial link and activation functions.

Our approach also draws inspiration from the landscape smoothing method in Damian et al. (2024),
but in constrast to their problem setup, we do not require full knowledge of the link distribution in
advance. Instead, it suffices to know the generative exponent s⋆ to construct a high-pass activation
function as well as the gradient oracle ψ. See Example 4.6 for a detailed discussion on this.

4 G R A D I E N T- B A S E D A L G O R I T H M F O R U N I F O R M P R I O R

We first present our method and results for the case of θ⋆ ∼ Unif(Sd−1), or equivalently, when there is
no structural information on θ⋆. Motivated by the discussion in Section 3, we propose a gradient-based
meta algorithm (Algorithm 1) that can train a two-layer neural network to learn the unknown signal
θ⋆ with rO(ds

⋆/2 ∨ d) sample complexity, nearly matching the corresponding SQ lower bound. This

4The label transformation only affects the second moment by a constant factor as we show in Appendix C.1.
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Algorithm 1 Meta-Algorithm for Gradient-based Feature Learning for Uniform Signal Prior

1: Input: Initialization θ(0) = (θ
(0)
1 , . . . , θ

(0)
M ) ∈ Rd×M , where θ(0)m

i.i.d.∼ Unif(Sd−1), a = a ·1 ∈
RM , number of iterations T ∈ N, learning rate η > 0, batch size n ∈ N, polarization level
γ ∈ (0, 1), number of perturbation L ∈ N.

2: For t = 0, 1, . . . , T − 1, in the t-th iteration:
3: Sample a fresh mini-batch of data {(z(t)i , y

(t)
i )}ni=1.

4: Perturb weights w(t)
m,l = (γθ

(t)
m + ξ

(t)
m,l)/∥γθ

(t)
m + ξ

(t)
m,l∥2, ξ(t)m,l

i.i.d.∼ Unif(Sd−1) for all m, l.

5: Compute the gradients g(t)m,l,i = (ψ(y
(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) + err

(t)
m,l,i) · z

(t)
i for all m, l, i.

6: Aggregate the gradients: g(t)m = (nL)−1
∑n
i=1

∑L
l=1(g

(t)
m,l,i − pψ1(y

(t)
i )w

(t)
m,l) for all m.

7: Normalize the update step: sg
(t)
m = g

(t)
m /∥g(t)m ∥2 for all m.

8: Update the weights θ(t+1)
m = (θ(t) + ηsg

(t)
m )/∥θ(t) + ηsg

(t)
m ∥2 for all m.

9: Output: Final model weights θ(T ).

meta-algorithm (Algorithm 1) covers an extensive family of gradient-based methods including the
batch-reusing and gradient descent with label transformation or modified loss.

4 . 1 G R A D I E N T- B A S E D T R A I N I N G A L G O R I T H M ( A L G O R I T H M 1 )

We initialize each neuron m with θ(0)m ∼ Unif(Sd−1), and we set a(t)m ≡ a for some sufficiently small
a > 0 throughout the training. In each iteration t ∈ [T ], we sample a new data batch of size n.

Weight perturbation. Before calculating the gradients, we first perturb the weights of each neuron to
get L noisy replica, by injecting uniform noise from the sphere Sd−1 as in Line 4. There is a simple
rule for choosing the polarization level γ. In the previous section, we discussed how EPθ⋆

[∥g∥22] in
the one-sample SNR depends on the following quantity:

E
ξ
(t)
m,l,ξ

(t)

m,l′
⟨w(t)

m,l, w
(t)
m,l′⟩s

⋆−1 ≲
(
γ2∥θ(t)m ∥22

)s⋆−1
+ E

ξ
(t)
m,l,ξ

(t)

m,l′
⟨ξ(t)m,l, ξ

(t)
m,l′⟩s

⋆−1 ≈ (γ2 ∨ d−1/2)s
⋆−1.

In this context, γ2 represents the bias from the exploitation of the learned search direction, and d−1/2

accounts for the variance from the exploration for the unknown signal. In fact, γ should be set as
large as possible to maximize exploitation while still ensuring that the exploration noise dominates.
This balance is necessary to fully gain the SNR enhancement from weight perturbation. This gives
rise to the choice γ = rΘ(d−1/4). Moreover, it suffices to set L = rΩ(n

√
d) as stated in Theorem 4.2.

Gradient aggregation and debiasing. Then for each neuron m and its perturbed weights w(t)
m,l, we

calculate the gradient g(t)m,l,i for every sample (Line 5). Here, we express the gradient as a sum of an

oracle term ψ(y
(t)
i , ⟨z(t)i , w

(t)
m,l⟩) and an error term err

(t)
m,l,i, which we will discuss in more detail in the

next paragraph. Next, we aggregate the gradients for each neuron m by averaging over the n samples
and L perturbations to get g(t)m as shown in Line 6. Here we additionally subtract a term pψ1(y

(t)
i )w

(t)
m,l

to debias the gradient, where pψ1(y) is the first coefficient function in the Hermite expansion of the
oracle function ψ(y, x) with respect to x. Finally, we update θ(t)m according to Line 7 and Line 8.

Implementation for a general loss function. The gradient step in Line 5 is an implicit decomposition
of the actual implementation, and we present the meta-algorithm in this way for the purpose of
theoretical analysis. Specifically, for a general loss function ℓ(y, f(z;θ,a)) evaluated on the two-
layer neural network, the actual g(t)m,l,i is the negative gradient of the loss rescaled by a−1

m , i.e.,

g
(t)
m,l,i = −a

−1
m ∇θmℓ

(
y
(t)
i , f(z

(t)
i ; {w(t)

m,l},a)
)
= −ℓ′

(
y
(t)
i , f(z

(t)
i ; {w(t)

m,l},a)
)
· σ′(⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i ,

6
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where we denote by ℓ′(y, f) the partial derivative of the loss function with respect to the output f .
Correspondingly, the oracle term and the error term are given by

ψ(y
(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) = −ℓ

′(y
(t)
i , 0) · σ′(⟨w(t)

m,l, z
(t)
i ⟩),

err
(t)
m,l,i =

(
ℓ′(y

(t)
i , 0)− ℓ′

(
y
(t)
i , f(z

(t)
i ; {w(t)

m,l}
M
m=1,a)

))
· σ′(⟨w(t)

m,l, z
(t)
i ⟩).

Note that err(t)m,l,i can be made small by setting a to be small. Again, we emphasize that these two
terms are not calculated explicitly, but rather from an implicit decomposition of the actual gradient.

Beyond the above example, the meta-algorithm encompasses more general gradient-based methods,
and the theoretical results presented later are valid as long as the actual gradient can be decomposed
in the same way such that the assumptions of our main theorem are satisfied.

4 . 2 F E AT U R E A L I G N M E N T A N D S TAT I S T I C A L C O M P L E X I T Y

For any ψ ∈ L2(Q), we write its Hermite expansion as ψ(y, x) =
∑∞
s=0

pψs(y) · hs(y) in the L2(Q)

sense, where pψs(y) is the s-th coefficient function and
∑∞
s=0 EQ[ pψs(y)

2] <∞.
Assumption 4.1. For the Gaussian single-index model in (2.1) with generative exponent s⋆ ≥ 1, the
oracle ψ : R× R→ R satisfies the following conditions:
(a) (Quadruple-integrable under Q). Both ψ(y, x) · x and ψ(y, x) belong to L4(Q).
(b) (High-pass underQ). For all s = 1, . . . , s⋆−2, the s-th coefficient function is zero, i.e., pψs(y) ≡ 0.

In addition, there exists a constant C > 0 such that |EQ[ζs⋆(y) · pψs⋆−1(y)]| ≥ C.
(c) (Polynomial-like tail under P and Q). There exists a constant C > 0 such that for all r ≥ 1,

max{EP [|ψ(y, x)|r] ,EQ [|ψ(y, x)|r]} ≤ C · rCr.

The quadruple-integrability condition (Assumption 4.1(a)) ensures that the decomposition of the
likelihood ratio in (2.2) is well defined for calculations involving the second moment, i.e.,

EP
[
ψ(y, x)2x2

]
= EQ

[
ψ(y, x)2x2 · P(y,x)Q(y,x)

]
= EQ

[
ψ(y, x)2x2 ·

∑∞
s=0ζs(y)hs(x)

]
.

The high-pass condition (Assumption 4.1(b)) has been motivated in Section 3 and guarantees noise
reduction for the second moment. The polynomial-like tail condition (Assumption 4.1(c)) is used
for concentration arguments in the proof. Note that this condition is analogue to the Gaussian
hypercontractivity property, where Ex∼N (0,1)[|f(x)|r] ≲ rDr/2 if f(x) is a polynomial of degree at
most D. In particular, ψ can be constructed as ψ(y, x) = ℓ′(y)σ′(x), where ℓ is the loss function and
σ is the activation in the two-layer network. It suffices to use a loss ℓ with bounded derivative and a
polynomial activation σ for the polynomial-like tail condition (see Section 4.2.1 and 4.2.2).

Now we are ready to state our first main result on the sample complexity of Algorithm 1 for uniform
prior. See Appendix D for a proof sketch for even s⋆ ≥ 2 and Appendix E for a detailed proof.
Theorem 4.2 (Sample complexity for uniform prior). Under Assumption 4.1, set the initializa-
tion of the weights as θ(0)1 , . . . , θ

(0)
M

i.i.d.∼ Unif(Sd−1). Suppose that the event E = {|err(t)m,l,i| ≤
d−10s⋆ ,∀(m, l, i, t) ∈ [M ]× [L]× [n]× [T ]} holds with probability at least 1−O(d−c0) for some
constant c0 > 0 with (M,L, n, T ) specified as follows. Set the learning rate η > 2, the polarization
level γ = d−1/4(log d)1/4, and the number of neurons M = Θ(1). Suppose

n = Θ
(
(ds

⋆/2(log d)1+s
⋆/2) ∨ d(log d)2

)
, L = Θ

(
d(s

⋆+1)/2 log d
)
.

Define τ = η−2/(1− η−1)2, and let ∆ = (log d)−1/2 if s⋆ ≤ 2 and ∆ = d−1/4(log d)1/4 if s⋆ ≥ 3.
Then with probability at least 1− O(d−c) for some constant c > 0, after running Algorithm 1 for
T = O(log d + log(∆−1)/ log(τ−1)) steps, there are at least Ω(M) neurons having alignment
|⟨θ(T )

m , θ⋆⟩| ≥ 1−O(
√
∆).

Theorem 4.2 shows that the sample complexity of Algorithm 1 is nT = rΘ(ds
⋆/2 ∨ d), matching the

SQ sample complexity lower bound for all s⋆ ≥ 1 established by Damian et al. (2024). Compared to
the partial trace method in Damian et al. (2024), our algorithm does not require special warm-start
initialization. Meanwhile, the computational complexity of Algorithm 1 isMLnT = rΘ(ds

⋆+1/2∨d2).
Indeed, one is allowed to choose η = +∞, which resembles tensor power iteration. So far the gradient

7
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oracle ψ is still an abstract object, and next we will instantiate the above general theorem with concrete
examples of ψ that yield implementable algorithms. We consider the special case of polynomial link
functions with s⋆ ≤ 2 in Section 4.2.1, and then the general case for any s⋆ ≥ 1 in Section 4.2.2.

Remark 4.3 (Benefit of overparametrization). Algorithm 1 trains a two-layer neural network with
constant width M , involving L times of perturbation for every neuron in each step. Indeed, this is
equivalent to train a two-layer neural network with width LM = Θ

(
d(s

⋆−1)/2 ∨ (d log d)1/2
)
, where

we divide the neurons into L groups, each havingM neurons. In each iteration we perturb the weights
and compute the gradients, and then aggregate the gradients within each group of M neurons. This
combination of weight perturbation and gradient sharing exploits the benefit of overparametrization.

4 . 2 . 1 O N L I N E S G D W I T H B AT C H R E U S I N G

The oracle function ψ can be specialized to two consecutive gradient descent steps on the same batch
under square loss to handle polynomial link functions corresponding to s⋆ ≤ 2 (Lee et al., 2024).

Example 4.4 (Batch-reusing: ψ for polynomial link functions). Suppose that the link distribution is
a polynomial of degree q. We consider ψ induced by batch-reusing on single neuron, i.e., ψ(y, x) =
yσ′(x) + yσ′(x+ yσ′(x)) (see Section 4.2 of Lee et al. (2024) for deduction) and choose σ′(x) =∑Cq

i=0 cihi(x) where Cq ∈ N is a constant depending only on q and each ci ∼ Unif([0, 1]).

Corollary 4.5 (Batch-reusing for polynomial link function). Suppose that the link distribution is
given by a polynomial link function. Under the same setups in Theorem 4.2 with the oracle ψ given by
Example 4.4, the sample complexity of Algorithm 1 is rΘ(d), recovering the result of Lee et al. (2024).

The proof is deferred to Appendix C.2.1. However, batch-reusing may not be optimal for s⋆ ≥ 3 due
to violation of the high-pass condition, necessitating a more general approach to construct ψ.

4 . 2 . 2 L A B E L T R A N S F O R M AT I O N V I A M O D I F I E D L O S S

We discuss another approach to construct ψ by modifying the loss function, a universal method for
arbitrary generative exponent s⋆ ≥ 1. Additional details and proofs are postponed to Appendix C.2.2.

Example 4.6 (ψ based on modified loss). Let ψ(y, x) = ℓ′(y)σ′(x) with ℓ(y) being certain loss
function and σ(x) being some activation function. Such a form corresponds to the gradient of the
loss ℓ(y − f(z;θ)) (assuming that a is fixed and has small entries), since

a−1
m ∇θmℓ

(
y − f(z;θ)

)
= −ℓ′

(
y − f(z;θ)

)
· σ′(⟨θm, z⟩) · z = − ℓ′(y) · σ′(⟨θm, z⟩)︸ ︷︷ ︸

:=ψ(y,⟨θm,z⟩)

·z + errm · z,

where errm :=[ℓ′(y)− ℓ′(y− f(z;θ,a))] · σ′(⟨θm, z⟩) = O(f(z;θ,a)) · σ′(⟨θm, z⟩) denotes small
error for sufficiently small a. In Appendix C.2.2, we provide specific choice of the activation function
σ(x) (order-s⋆ Hermite polynomial) and the loss function ℓ(y) (a carefully designed random loss
function), satisfying all the conditions in Assumption 4.1.

Corollary 4.7 (Modified loss for general s⋆). The oracle ψ given by Example 4.6 satisfies all the
assumptions of Theorem 4.2, thus the results of Theorem 4.2 hold for Algorithm 1 using this ψ.

To satisfy the high-pass condition with high probability, we construct a random loss function based
on the spectral properties of ζs⋆ in the likelihood ratio decomposition, as detailed in Appendix C.2.2.
Furthermore, we show an equivalence between direct label transformation and modified loss functions
(see Appendix C.1.1 for details). Therefore, using a random label transformation with the standard
squared loss can also achieve a similar effect. (See Appendix C.4 for a discussion on the limitations.)

5 E X P L O I T I N G T H E S T R U C T U R E : A L G O R I T H M F O R S PA R S E P R I O R

We have seen that when the prior on θ⋆ is uninformative, our method nearly achieves the SQ lower
bound that scales with the ambient dimension d. It is natural to ask whether our method can benefit
from extra structural information on θ⋆, one classic example being sparsity. To this end, we consider
an extension of the framework in the previous section to the setting where θ⋆ is a k-sparse vector. We
first introduce the algorithm for extreme sparsity k = o(

√
d) and then discuss the general sparse case.

8



Published as a conference paper at ICLR 2025

Gaussian single-index model with sparse signal. Given sparsity level k = o(
√
d), we consider the

Gaussian single-index model in (2.1) with θ⋆ drawn from a k-sparse prior:

πk : θ⋆ |ϕ⋆ ∼ Unif
(
Sk−1(ϕ⋆)

)
, ϕ⋆ ∼ Unif(Sk), (5.1)

where Sk :={ϕ ⊂ [d] : |ϕ| = k} is the collection of all k-sparse support sets, and Sk−1(ϕ) :={x ∈
Rd :

∑
i∈ϕ x

2
i = 1, xj = 0,∀j /∈ ϕ} is the associated k-dimensional unit sphere for any ϕ ∈ Sk.

We show that Algorithm 1 for the uniform prior can be easily adapted to leverage the sparsity of θ⋆,
striking a nearly optimal computational-statistical balance with rO(ks

⋆

) sample complexity.

5 . 1 A L G O R I T H M D E S I G N : H O W T O L E V E R A G E S PA R S I T Y ?

Note that Algorithm 1 can also learn the k-sparse Gaussian single-index model, albeit with rO(ds
⋆/2∨

d) samples, which is apparently suboptimal in light of the classic example of sparse linear regression.
Here the key challenge is support identification of ϕ⋆, and the issue of Algorithm 1 lies in the weight
perturbation using noise ξ ∼ Unif(Sd−1), thus unaware of the sparsity of θ⋆. Below we discuss how
to calibrate the weight perturbation with the sparse prior.

Perturbation by replicating the prior is not enough. An intuitive first-cut attempt is to use perturba-
tion noise from the same distribution as the sparse prior πk in (5.1), which turns out to be suboptimal
as well. To illustrate this, we assume for simplicity a balanced θ⋆ where every nonzero entry of θ⋆ is
equal to k−1/2, and consider i.i.d. ξ1, . . . , ξL ∼ πk. For each j ∈ ϕ⋆, consider the j-th entry of the
lowest-degree informative query (analogous to (3.2)), whose first moment satisfies

EPθ⋆
[gj ] ≈ EQ[yζs(y)] · s⋆pσs⋆ · 1

L

∑L
l=1⟨θ⋆, θl⟩s

⋆−1θj ≈
Eθ∼πk

[⟨θ⋆,θ⟩s
⋆−1]√

k
≃ k2

d ·
k−(s⋆−1)

√
k

,

where the last step follows from direct calculation for θ ∼ πk. Similarly, the second moment satisfies
EPθ⋆

[g2j ] ≈
∑
s≥s⋆ s · (pσs)2 · Eθ,θ′∼πk

[⟨θ, θ′⟩s−1] ≃ k2

d · k
−(s⋆−1),

where θ and θ′ are drawn independently from the prior πk. This calculation implies that the fluctuation
of each entry of the aggregated gradient is of order

√
k2/d · k−(s⋆−1)/2 · n−1/2 for batch size n. To

successfully identify the true support ϕ⋆, the signal must be larger than the fluctuation for entries
in ϕ⋆, resulting in a sample complexity of n = rO(ks

⋆ · d/k2). In comparison to the SQ lower
bound in Theorem 5.4, this is suboptimal by a factor d/k2. However, for s⋆ = 1, we observe that
EPθ⋆

[gj ] = Ω(k−1) for j ∈ ϕ⋆ and EPθ⋆
[g2j ] = O(1), indicating that the support ϕ⋆ can still be

identified using rO(k) samples. The form of the perturbation does not matter here since both ⟨θ⋆, θ⟩
and ⟨θ, θ′⟩ are degree zero in terms of k−1. Therefore, we conjecture that our algorithm succeeds for
s⋆ = 1 even without weight perturbation as outlined in Conjecture 5.3.

Perturbation by groups that cover the prior. The suboptimality of the previous stragety originates
from the fact that ϕ⋆ is sampled from a uniform distribution over

(
d
k

)
different k-sparse support sets,

making it unlikely for two independent sets to overlap (only with k2/d probability). Then how to
perturb the weights in a way that guarantees a significant overlap with ϕ⋆? The solution is to construct
a polynomial-size cover for the prior πk. Specifically, we divide Sk into d subsets, where the j-th
subset is define as Sk,j := {ϕ ∈ Sk | j ∈ ϕ}, which contains all k-sparse support sets that include
the j-th coordinate. Now suppose θ⋆ ∈ Sk,j , then for any perturbed weight θl with support from the
same subset Sk,j , its support overlaps with ϕ⋆ almost surely, thereby eliminating the d/k2 factor.

In particular, considering a two-layer neural network with width d, the above strategy can be carried
out by perturbing each neuron m using θm,1, . . . , θm,L whose support sets are sampled from the
same group Sk,m. As a result, at least k neurons will have one or more overlapping coordinates with
the true signal θ⋆. For these neurons, the signal in the aggregated gradient would be strong enough
for simple thresholding methods to correctly identify the true support ϕ⋆ with rO(k⋆) samples. We
further refine this by first projecting the aggregated gradient for each neuron onto its top-k support,
and then selecting the strongest projected gradient to update the weights.

Combining these yields Algorithm 2 for the sparse case, where we define the support projection
matrix Pϕ :=

∑
i∈ϕ eie

⊤
i and the top-k operator Topk(v) := argmaxϕ⊂Sk

∥Pϕ(v)∥1, which extracts
the k-sparse support ϕ corresponding to the largest (in absolute value) k entries of v. We set the
polarization level γ = k−1/2, following the same balance between exploitation and exploration as in
the uniform case, since the exploration noise is now of order k−1.

9
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Algorithm 2 Meta Algorithm for Gradient-based Feature Learning for Sparse Signal Prior

1: Input: Initialization θ(0) = (θ
(0)
1 , . . . , θ

(0)
M ) ∈ Rd×M , where θ(0)m = em, a = a · 1 ∈ RM with

number of neurons M = d, number of iterations T ∈ N, batch size n ∈ N, polarization level
γ ∈ (0, 1), number of perturbation L ∈ N.

2: for iteration t = 0, 1, . . . , T − 1 do
3: Sample a fresh mini-batch {(z(t)i , y

(t)
i )}ni=1.

4: Perturb as Line 4 in Algorithm 1 with ξ(t)m,l
i.i.d.∼ Unif(Sk−1(ϕm,l)) and ϕm,l

i.i.d.∼ Unif(Sk,m).

5: Compute and aggregate the gradients to get g(t)m , same as Line 5&6 in Algorithm 1.
6: Find the top-k support of g(t)m and project: ϕ(t)m = Topk(g

(t)
m ), rg

(t)
m = P

ϕ
(t)
m
(g

(t)
m ) for all m.

7: Locate the neuron with the largest ∥rg(t)m ∥2: pm = argmaxm∥rg
(t)
m ∥2.

8: Update weights by gradient sharing: θ(t+1)
m = rg

(t)
xm /∥rg(t)

xm ∥2 for all m.
9: end for

10: Output: Model weights θ(T ).

5 . 2 S A M P L E C O M P L E X I T Y A N A LY S I S F O R S PA R S E P R I O R

Theorem 5.1 (Sample complexity for sparse prior). Under Assumption 4.1, consider the sparse prior
in (5.1) with sparsity level k satisfying ω(dι) < k < o(

√
d) for a small ι > 0. Suppose that the

event E = {|err(t)m,l,i| ≤ d−10s⋆ ,∀(m, l, i, t) ∈ [M ]× [L]× [n]× [T ]} holds with probability at least
1−O(d−c0) for some constant c0 > 0 with (M,L, n, T ) specified as follows. Let γ = k−1/2, n =
Ω((k log3 k)s

⋆ · log d), and L = Ω(k(s
⋆+3)/2 · log(k)s⋆−1). Then with probability at least 1−O(k−c)

for some c > 0, after running Algorithm 2 with T = 2 iterations, there are at least Ω(M) neurons
that have alignment |⟨θ(T )

m , θ⋆⟩| ≥ 1−O(∆), where ∆ = k−1 ∨
(
k−(s⋆−1)/2 · log(k)−3/2

)
= o(1).

Theorem 5.1 shows that the sample complexity of Algorithm 2 is n = rO(ks
⋆

), matching the SQ lower
bound established in Theorem 5.4 which will be presented below. Here for simplicity, we essentially
use an infinitely large learning rate when updating the weights in Line 8 of Algorithm 2, so it takes
only two iterations to achieve strong alignment. This is equivalent to running the same algorithm with
a finite learning rate but with a larger number of iterations, which is omitted for brevity.
Remark 5.2 (Implication for sparse tensor PCA). The connection between the Gaussian single-index
model and tensor PCA has been discussed in Damian et al. (2023), by showing that estimating
θ⋆ corresponds to a tensor PCA problem defined over the empirical Hermite tensors. Our weight
perturbation technique can be potentially applied to iteratively solve sparse tensor PCA problems.
Conjecture 5.3. If dι < k < o(d) for a small ι > 0 and s⋆ = 1, Algorithm 2 succeeds with sample
complexity n = rO(k). Furthermore, the same guarantee applies even without perturbing the weights.

Finally, we present the following SQ lower bound for the sparse prior, complementing Theorem 5.1.
Theorem 5.4 (SQ lower bound). Consider the Gaussian single-index model in (2.1) with generative
exponent s⋆ ≥ 1. Suppose θ⋆ is k-sparse for ω((log d)2) ≤ k ≤ d/2. Take c > 2 as a constant. For
any (stochastic) algorithm using exp(Ω((log d)c)) calls to the VSTAT(Pθ⋆ , n) oracle with sample
size n, in order to achieve nontrivial alignment |⟨pθ, θ⋆⟩| > ρ with probability at least 2/3, it requires

n ≳ ks
⋆

(log d)cs⋆
, where ρ = rω(k−1) if (log d)2 < k <

√
d(log d)c, (5.2)

n ≳ ds
⋆/2

(log d)cs⋆/2 , where ρ = rω(d−1/2) if
√
d(log d)c ≤ k ≤ d/2. (5.3)

More discussion on Theorem 5.4 is available in Remark G.8. For k = o(
√
d), running Algorithm 2 will

succeed with rO(ks
⋆

) samples, matching the lower bound in (5.2) for every s⋆ ≥ 1. For k = Ω(
√
d),

running Algorithm 1 will succeed with rO(ds
⋆/2) samples, matching the lower bound in (5.3) for

s⋆ ≥ 2. In addition, for k = Ω(
√
d) with s⋆ = 1, we conjecture n = rO(k) samples to be sufficient,

where the information-theoretic lower bound is Ω(k log(d/k)) (Neykov et al., 2016). This gives rise
to the paradigm in Figure 1 (b).
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A N U M E R I C A L E X P E R I M E N T S

We conduct extensive simulation experiments to validate the sample complexity result established in
Theorem 4.2. In specific, for a fixed Gaussian single-index model, we run Algorithm 1 extensively
over a variety of problem instances with diverse scales and report the average accuracy in terms of
the alignment. We lay out the details of the experiment setting as follows.

• Gaussian single-index model. We focus on the Gaussian single-index model introduced in (2.1)
with a deterministic link function p and Gaussian additive noise. Here we set p(x) = x2 ·exp(−x2)+ϵ
where ϵ ∼ N (0, σ2) with σ2 = 0.5. As shown in Example 2.2, the generative exponent of the function
p is s⋆(p) = 4. In addition, the signal parameter θ⋆ is uniformly sampled from the unit sphere in Rd.

• Neural network architecture. We adopt the two-layer neural network introduced in Section 2 with
M set to 15 and am = 1 for all m ∈ [M ] in all experiments. Since s⋆(p) = 4, we set the activation
function as σ(x) = h4(x), i.e., the fourth-order Hermite polynomial.

• Training using Algorithm 1. In Algorithm 1, we set ψ(x, y) = y · σ′(x), as stated in Example 4.6.
Such a ψ is justified by considering the following alignment loss:

L(θ) = 1− y · f(z;θ,a) = 1−
M∑
m=1

a · σ(⟨z, θm⟩) · y, (A.1)

where recall that each entry of a is equal to a. As a result, by (A.1) we have

a−1 · ∇θmL(θ) = y · σ′(⟨z, θm⟩) · z = ψ(⟨z, θm⟩, y) · z.
As a result, we can alternatively interpret the gradients in Algorithm 1 as those with respect to the
alignment loss L(θ). Thus, the choice of a does not matter in this case, and we set a = 1 for simplicity.
Furthermore, other details of Algorithm 1 are specified as follows:

• The parameters {θn}m∈[M ] are initialized as i.i.d. random vectors in Rd uniformly sampled
from the unit sphere.

• We fix M = 15, a = 1, η = 3, T = 24, and L = 500 throughout all experiments with
different values of n and d.
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• We enumerate n and d over a grid with d ∈ [32, 499] and n ∈ [5× 103, 3× 106]. Note that
log d ∈ (3, 7), our choice of T satisfies the requirement in Theorem 4.2.

• Choices of (d, n). We select 40 different values of d and 30 different values of n within the ranges
d ∈ [32, 499] and n ∈ [5× 103, 3× 106], respectively. These values form an evenly spaced grid in
terms of log n and log d. See Figure 2 for an illustration.
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(a) Scatter plot of (d, n) (b) Scatter plot of (log d, log n)

Figure 2: Scatter plots of (d, n) and (log d, log n). In (a) we plot n against d and in (b) we plot log n
agains log d. As shown in (b), we choose n and d such that they form an evenly-spaced grid after
logarithm.

• Evaluation. We report the accuracy of Algorithm 1 based on 25 repeated experiments for every
choice of (n, d). We report two types of accuracy metrics:

(i) Average accuracy: We report M−1
∑M
m=1 |⟨θm, θ⋆⟩| in each experiment and then average

over the 25 experiments.

(ii) Top-8 accuracy: Given {θm}m∈[M ] returned by the algorithm, we sort the alignment values
{|⟨θm, θ⋆⟩|}m∈[M ]. Then we report the average of the largest 8 numbers. The rationale is
that if the top-8 accuracy is close to one, at least half of the neurons correctly find θ⋆.

Contour plots. After calculating these two versions of accuracy for every (d, n) pair, we generate
the contour plots based on (log d, log n,acc(d, n)), where acc(d, n) is one of the two versions of
average accuracy introduced above. We report these two contour plots in Figure 3 and Figure 4, where
in Figure 3 we zoom in to a smaller range of d for better visualization. In these plots, points with the
same color indicate (log d, log n) with the same level of accuracy.

Validate rΘ(ds
⋆/2) sample complexity. As shown in these figures, the average accuracy and the top-8

accuracy clearly exhibit a linear relationship. That is, for a fixed accuracy level δ, (d, n) satisfying
acc(d, n) = δ is a line segment. That is, log n = c1 · log d+ c2. To determine c1 and c2, we further
fit linear models for (log d, log n) with the same accuracy level δ, where δ ∈ {0.6, 0.7, 0.8}. For both
the average accuracy and the top-8 accuracy, the coefficient c1 in the linear models is close to 2. We
report the linear models corresponding to different accuracy levels in Table 1. This finding indicates
that n ∝ d2. Note that s⋆ = 4. Moreover, since we compute the accuracy for all (d, n) on the grid.
The fact that c1 ≈ 2 indicates that the rΘ(ds

⋆/2) sample complexity is sharp.

Table 1: Fitted linear equations of the form log n = c1 · log d+ c2 for n, d with the desired accuracy
level. Notably, the slopes of these equations are all close to s⋆/2 = 2, which shows that n ∝ ds⋆/2.

Accuracy level Average accuracy Top-8 accuracy
0.8 log(n) = 1.9058 · log(d) + 4.4516 log(n) = 1.8201 · log(d) + 4.6218
0.7 log(n) = 1.9103 · log(d) + 4.3273 log(n) = 1.9343 · log(d) + 4.0790
0.6 log(n) = 1.9640 · log(d) + 4.0361 log(n) = 1.9653 · log(d) + 3.8901
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Figure 3: The contour plots of (log d, log n,acc(d, n)), where acc(d, n) is either the average
accuracy and top-8 accuracy. Here we zoom in to a smaller subset of d’s for better visualization. We
also plot the lines containing (log d, log n) with the same accuracy level among {0.6, 0.7, 0.8}. The
slopes of these lines are all close to 2. This indicates that n ≈ d2 samples are sufficient and necessary
for accurate estimation.
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Figure 4: The contour plots of (log d, log n,acc(d, n)), where acc(d, n) is either the average
accuracy and top-8 accuracy. We also plot the lines containing (log d, log n) with the same accuracy
level among {0.6, 0.7, 0.8}. The slopes of these lines are all close to 2. This indicates that n ≈ d2

samples are sufficient and necessary for accurate estimation.

B N O TAT I O N , P R E L I M I N A R I E S A N D R E L AT E D W O R K S

Notations. We use N to denote the set of positive integers and N0 to denote the set of nonnegative
integers. For vector z ∈ Rd, we denote by Rn[z] the set of polynomials of degree at most n in z with
real coefficients. For s ∈ N, we denote by Πs the symmetric group of all permutations of [s]. We
denote by Nd(·) and N (·) the standard normal distribution in Rd and R, respectively.

For two tensors S ∈ (Rd)⊗s and T ∈ (Rd)⊗t where s ≥ t,

(S[T ])j1,...,js−t
:=

d∑
i1,...,it=1

Sj1,...,js−t,i1,...,itTi1,...,it .

Here, S[T ] produces a tensor of order s − t and dimension d. We also define the symmetrization
operation for a tensor T ∈ (Rd)⊗t as

Sym(T )i1,...,it :=
1

t!

∑
π∈Πt

Tiπ(1),...,iπ(t)
.

The followings are some notations for the relationship between two quantities (or matrices):
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a ≃ b: There exists a constant C = O(1) such that a ≤ Cb and b ≤ Ca. Note that a and b should
have the same sign. a = Θ(b) also has the same meaning.

a ≊ b: a ≤ polylog(d) · b and b ≤ polylog(d) · a, and the same for a = rΘ(b).
a ≲ b: There exists a constant C = O(1) such that a ≤ Cb, and the same for a = Ω(b). The use of

a ≳ b is similar.

a ⪅ b: a ≤ polylog(d) · b, and the same for a = rO(b). The use of a ⪆ b and a = rΩ(b) is similar.
a≪ b: a ≤ (polylog(d))−1 · b. The use of a≫ b is similar.

In addition, we denote by a = b± ε, a ≃ b± ε, a ≊ b± ε that b− ε ≤ a ≤ b+ ε, a− ε ≲ b ≲ a+ ε,
a− ε ⪅ b ⪅ a+ ε, respectively.

For square matrices A and B, A ⪯ B means that B −A is positive semi-definite, and A ≾ B means
that there exists a constant C = O(1) such that C ·B −A is positive semidefinite.

B . 1 B A C K G R O U N D O N H E R M I T E P O LY N O M I A L S

The probabilist’s Hermite polynomials satisfy the following recurrence relations

hs(x)
′ =
√
s · hs−1(x), x · hs(x) =

√
s+ 1 · hs+1(x) +

√
s · hs−1(x), (B.1)

where we adopt the convention that h−1(x) ≡ 0.

For any function f ∈ L2(N (0, 1)), its Hermite expansion is given by

f(x) =

∞∑
s=0

pfs · hs(x),

where we denote by pfs the s-th coefficient of the Hermite expansion of f .

Gaussian noise operator. For ρ ∈ [−1, 1], define the Gaussian noise operator as

Uρf(x) = Ex′∼N (0,1)

[
f(ρx+

√
1− ρ2 · x′)

]
.

Proposition 11.37 of O’Donnell (2014) shows that the Hermite expansion of Uρf is given by

Uρf(x)
L2(N (0,1))

=

∞∑
s=0

ρs · pfs · hs(x).

A direct implication of this identity is

Ex∼N (0,1)[Uρf(x)g(x)] = Ex∼N (0,1)[f(x)Uρg(x)] =

∞∑
s=0

ρs pfspgs. (B.2)

As a result, for any fixed w, θ ∈ Sd−1, it holds that

Ez∼N (0,Id) [f(⟨w, z⟩)hs(⟨θ, z⟩)] = Ex∼N (0,1) [Uρf · hs(x)] = ⟨w, θ⟩s · pfs. (B.3)

Hermite tensor. Corresponding to the Hermite polynomials defined for scalar variables, we define
the Hermite tensors over z ∈ Rd:

hs(z) :=
(−1)s√
s!
· e∥z∥

2
2/2 · ∇se−∥z∥2

2/2 ∈ (Rd)⊗s, for s ≥ 0.

The scalar-valued Hermite polynomials and the tensor-valued Hermite tensors are related as follows:

hs(⟨θ, z⟩) = hs(z)[θ
⊗s], ∀θ ∈ Sd−1. (B.4)

Now let f : Rd → R be a s-times differentiable function such that for all k ≤ s, every component of
∇kf belongs to L2(N (0, Id)). Then it follows from integration by parts that

Ez∼N (0,Id) [f(z)hs(z)] =
1√
s!
· Ez∼N (0,Id) [∇

sf(z)] . (B.5)

This is a version of Stein’s lemma for tensor-valued functions.
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B . 2 A D D I T I O N A L R E L AT E D W O R K S

Related Works. Our work contributes to the recent research on the computation-statistical tradeoff
in learning single-index models. The information-theoretic limit for estimating the latent signal is
n = Ω(d) (Bach, 2017; Damian et al., 2024), but the sample complexity lower bound varies across
computational models, potentially revealing a computational-statistical gap.

The information exponent q⋆ (Dudeja & Hsu, 2018; Arous et al., 2021) governs the sample complexity
for learning Gaussian single-index models in the CSQ framework (Chen et al., 2020; Bietti et al.,
2022; Damian et al., 2022; Dandi et al., 2023; Abbe et al., 2023; Ba et al., 2023). Notably, Arous
et al. (2021) show that online SGD has a sample complexity of n = rO(dq

⋆−1), which is worse than
the CSQ lower bound n = Ω(dq

⋆/2) (Abbe et al., 2023; Damian et al., 2022). This gap can be closed
by a loss landscape smoothing technique (Damian et al., 2023) originally developed for tensor PCA
(Anandkumar et al., 2017; Biroli et al., 2020).

Our work extends beyond the CSQ framework, aligning with more general SQ algorithms (Feldman
et al., 2017; Feldman, 2017), where the sample complexity lower bound is Ω(ds

⋆/2), with s⋆ as the
generative exponent (Damian et al., 2024). In this context, online SGD with batch reusing suffices for
learning polynomial link functions (Dandi et al., 2024; Lee et al., 2024), while for s⋆ ≥ 3, only the
partial trace estimator proposed by Damian et al. (2024) can match the SQ lower bound.

In the sparse setting, including sparse linear models (Vaskevicius et al., 2019; Zhao et al., 2022;
Gamarnik & Zadik, 2017), sparse PCA (Arous et al., 2020), and planted models (Bandeira et al.,
2022), computational-statistical gaps also exist. For example, in matrix PCA, the best rank-1 estimator
achieves a near-optimal sample complexity of rO(d) due to the BBP transition (Baik et al., 2005;
Choo & d’Orsi, 2021). Under extreme sparsity, however, sparse estimators require rO(k2) samples,
utilizing methods such as diagonal thresholding (Johnstone & Lu, 2009) or semidefinite relaxation
(d’Aspremont et al., 2004). These approaches improve upon the rO(d) sample complexity but reveal a
notable computational-statistical gap relative to the information-theoretic lower bound of Ω(k log d)
(Wang et al., 2016).

Related to our work, Fan et al. (2023) provide a rO(k) sample complexity for learning single index
models with q⋆ = 1 using diagonal linear networks, and Neykov et al. (2016) report a rO(k2) result
for phase retrieval where q⋆ = 2. However, as previously noted, the information exponent does not
fully characterize the intrinsic computational-statistical tradeoff. Our work completes the picture
by providing a gradient-based framework that simultaneously handles all sparsity levels and any
generative exponent s⋆ ≥ 1.

On the other hand, Ba et al. (2023) and Mousavi-Hosseini et al. (2023) demonstrate that additional
structures in the data, such as spiked covariance in the input, can break the dp

⋆

sample complexity
lower bound compared to the standard Gaussian single-index model. A promising direction for future
research is to explore whether similar structural properties could be utilized to surpass the ds

⋆/2

sample complexity lower bound in the SQ setting.

Other works show manifold method can break CSQ or SQ lower bounds. Mousavi-Hosseini et al.
(2024) investigate learning multi-index models using two-layer neural networks trained with the
Mean-Field Langevin Algorithm (MFLA). In a Riemannian setting, constraining weights to a compact
manifold allows MFLA to achieve polynomial-time convergence while surpassing the CSQ sample
complexity lower bound.

C S U P P L E M E N TA RY P R O O F S F O R T H E M A I N C O N T E X T

C . 1 P R O O F S F O R S E C T I O N 3

In this section, we first argue why Ex∼N (0,1)[yζs⋆(y)] = 0 is the major difficulty for vanilla (stochas-
tic) gradient descent to achieve the information-theoretical lower bound O(d) (the same for SQ lower
bound) when the information exponent q⋆ is larger than 2. It has been shown by Damian et al. (2024)
that the generative exponent s⋆ for polynomial model is either 1 or 2. Consider the information
exponent q⋆ > 2. We have the following lemma saying that the correlation Ex∼N (0,1)[yζs(y)] = 0
for any s < q⋆.
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Lemma C.1. Recall that ζs is the coefficient function for degree s in the decomposition of the
likelihood ratio P(x, y)/Q(x, y) in (2.2). For any q⋆ ≥ 2, consider the Gaussian single-index model
given by y = β0 +

∑
p≥p⋆ βphp(x) with x ∼ N (0, 1). Then for any 1 ≤ s < p⋆, EQ[yζs(y)] = 0.

Proof. The proof can be done by noting that ζs(y) = EQ[P(x, y)/Q(x, y) · hs(x) | y], and

EQ[yζs(y)] = EQ

[
y · EQ

[ P(x, y)
Q(x, y)

· hs(x)
∣∣∣ y]] = EP [y · hs(x)]

= β0 · Ex∼N (0,1)[hs(x)] +
∑
i≥p⋆

βi · Ex∼N (0,1)[hi(x)hs(x)] = 0,

where the second equality follows from the independence between x and y under Q.

Therefore, the first nonzero term in the informative queries of (3.1) is of order at least p⋆. This gives
rise to sample complexity dp

⋆−1 for vanilla online SGD (Arous et al., 2021) and dp
⋆/2 for SGD after

smoothing the landscape (Damian et al., 2023). This sample complexity dp
⋆/2 matches the correlated

statistical query (CSQ) lower bound with gradient of the form yϕ(z) (Abbe et al., 2023; Damian
et al., 2022).

C . 1 . 1 E Q U I VA L E N C E B E T W E E N D I R E C T L A B E L T R A N S F O R M AT I O N A N D
M O D I F I E D L O S S F U N C T I O N

In this derivation, we focus on a single neuron f(z; θ, a) = aσ(⟨θ, z⟩) with θ ∈ Sd−1 and sufficiently
small a ∈ R. A more general case with multiple neurons is handled in the proof of Example 4.6 in
Appendix C.2.2. We consider the following cases:

(i) L2 loss with direct label transformation y → T (y).
(ii) Label transformation with modified loss function ℓ(f(x), y).

Let ℓ′(f, y) denote the partial derivative of ℓ(f, y) with respect to f . We have the following observa-
tions:

Lemma C.2. Take T (·) = ℓ′(0, ·). Assume ℓ′(f, ·) is B-Lipschitz with respect to f . The gradients
obtained from both cases (i) and (ii) are the same up to a small error term that scales with a.

Proof. For case (i), the rescaled negative gradient is obtained as

g = −a−1 · ∇θ(T (y)− f(z; θ, a))2 = (T (y)− f(z; θ, a)) · σ′(⟨θ, z⟩) · z
= T (y) · σ′(⟨θ, z⟩) · z − a · σ(⟨θ, z⟩) · σ′(⟨θ, z⟩) · z

For case (ii), the gradient is given by

g = −a−1 · ∇θℓ(f(z; θ, a), y) = −ℓ′(f(z; θ, a), y) · σ′(⟨θ, z⟩) · z
= −ℓ′(0, y) · σ′(⟨θ, z⟩) · z + a · (ℓ′(0, y)− ℓ′(f(z; θ, a), y)) · σ′(⟨θ, z⟩) · z,

where |ℓ′(0, y)− ℓ′(f(z; θ, a), y)| ≤ |a ·B · σ(⟨θ, z⟩)|. Therefore, in the following we just focus on
case (i) and omit the error term that scales with a for simplicity.

The assumption on the Lipschitz constant B is just for the sake of simplicity, which is not required in
our main results.

C . 1 . 2 M O M E N T C A L C U L AT I O N A R O U N D I N I T I A L I Z AT I O N

In the following, we provide a detailed calculation of the first and second moments of the gradient
g = T (y)σ′(⟨θ, z⟩) · z.
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Without Weight Perturbation. Consider gradient g = T (y)σ′(⟨θ, z⟩ · z for a single neuron with
weight θ ∈ Sd−1 and input z ∈ Rd, where we omit the error term for simplicity. The first moment of
the gradient is given by

EPθ⋆
[T (y) · σ′(⟨θ, z⟩) · z]

= EQ

T (y) · σ′(⟨θ, z⟩) · z ·

1 +
∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)


= EQ [T (y) · σ′(⟨θ, z⟩) · z]︸ ︷︷ ︸

bias

+
∑
s≥s⋆

EQ [T (y)ζs(y)] · EQ [σ′(⟨θ, z⟩)hs(⟨θ⋆, z⟩)z]︸ ︷︷ ︸
informative queries

.

The right-hand side of the above equation gives rise to (3.1) in the main text. From the above
derivation, we can see clearly that using a direct label transformation or a modified loss function can
handle the zero correlation issue EQ[yζs(y)] = 0 for the informative queries. Invoking Lemma H.1
with ψ(y, ⟨w, z⟩) = σ′(⟨θ, z⟩) where we replace w → θ and θ → θ⋆ in the lemma statement, we
obtain

EQ[σ
′(⟨θ, z⟩) · hs(⟨θ⋆, z⟩) · z] =

√
s+ 1 · y(σ′)s+1 · ⟨θ, θ

⋆⟩s · θ +
√
s · y(σ′)s−1 · ⟨θ, θ

⋆⟩s−1 · θ⋆,

where y(σ′)s is the s-th coefficient of the Hermite expansion of σ′, and we have by a simple calculation
that y(σ′)s =

√
s+ 1 · pσs+1. Since we are only interested in the alignment between the informative

queries and the unknown signal θ⋆, we only need to focus on the second term for s = s⋆ as the
remaining terms are of higher order in ⟨θ, θ⋆⟩ = d−1/2 at initialization. With a debiasing procedure
(Line 6 in Algorithm 1), we can also cancel the bias term in the first moment of the gradient. For
simplicity, we just assume EQ[T (y)] = 0 in the following calculations while the more general version
is handled in the proofs of both Theorem 4.2 and Theorem 5.1. This gives rise to the first moment

EPθ⋆
[⟨g, θ⋆⟩] = EQ[T (y)ζs(y)] · s⋆ · pσs⋆ · ⟨θ, θ⋆⟩s

⋆−1 +O(d−s
⋆/2) = O(d−(s⋆−1)/2). (C.1)

For the second moment, we have

EPθ⋆
[∥g∥22] = EPθ⋆

[
T (y)2 · σ′(⟨θ, z⟩)2 · ∥z∥22

]
= O(d),

where ∥z∥22 contributes to the O(d) term.

With Weight Perturbation. Let wl = (γθ + ξl)/∥γθ + ξl∥2 for l ∈ [M ] with ξl ∼ Unif(Sd−1)
and γ = d−1/4. As the norm ∥γθ + ξl∥2 ∈ [1− γ, 1 + γ] thanks to the triangle inequality, we can
just focus on numerator, i.e., wl ≈ γθ + ξl. For given wl, we denote the previous calculated gradient
as gl, i.e., gl = T (y)σ′(⟨wl, z⟩) · z. Then, the aggregated gradient over all L perturbed weights is
given by g = 1

L

∑L
l=1 gl. For the following calculation, we focus on s⋆ being an odd number and

larger than 1 for simplicity. In the formal proof of Theorem 4.2, we handle the remaining cases
separately. Following from the same calculation for (C.1), the first moment now becomes

EPθ⋆
[⟨g, θ⋆⟩] = 1

L

L∑
l=1

pσs⋆EQ[T (y)ζs(y)]︸ ︷︷ ︸
̸= 0

·s⋆⟨wl, θ⋆⟩s
⋆−1 +O(d−s

⋆/2) = O(d−(s⋆−1)/2), (C.2)

which gives the same order as (C.1). The things are quite different for the second moment. Note
that in the first moment, only the s⋆-th coefficient of the Hermite expansion of σ contributes to the
alignment with θ⋆, while the lower order terms are canceled out due to the fact that the likelihood
ratio P(x, y)/Q(x, y) has the lowest nonzero order s⋆. The second moment is now given by

EPθ⋆
[∥g∥22] =

1

L2

L∑
l,l′=1

EPθ⋆

[
T (y)2 · σ′(⟨wl, z⟩) · σ′(⟨wl′ , z⟩) · ∥z∥22

]
≃ d

L2

L∑
l,l′=1

EPθ⋆

[
T (y)2 · σ′(⟨wl, z⟩) · σ′(⟨wl′ , z⟩)

]
.
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The approximation in the second line is a heuristic calculation for the second moment, and the rigorous
version is available in the proof of Proposition E.4 in Appendix E.3. Now, we plug in the likelihood
ratio P(x, y)/Q(x, y), and under certain regularity assumption (See Item Assumption 4.1(c) for
details) we obtain

EPθ⋆
[∥g∥22] ≃

d

L2

L∑
l,l′=1

EQ

T (y)2 · σ′(⟨wl, z⟩) · σ′(⟨wl′ , z⟩) ·

1 +
∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)


=

d

L2

L∑
l,l′=1

EQ
[
T (y)2

]
· EQ [σ′(⟨wl, z⟩) · σ′(⟨wl′ , z⟩)] (C.3)

+
d

L2

L∑
l,l′=1

∑
s≥s⋆

EQ
[
T (y)2ζs(y)

]
· EQ [σ′(⟨wl, z⟩) · σ′(⟨wl′ , z⟩) · hs(⟨θ⋆, z⟩)]︸ ︷︷ ︸

higher order term

.

Here, we remark that when comparing the two terms on the right-hand side, the higher-order terms
s ≥ s⋆ are of order at least d · d−s⋆/2 due to the fact that both wl and wl′ have a correlation with θ⋆
of order d−1/2 at initialization. Therefore, when considering the first term in (C.3) only, we have

EPθ⋆
[∥g∥22] ≃ EQ

[
T (y)2

]
·

 d

L2
·
L∑
l=1

EQ
[
σ′(⟨wl, z⟩)2

]
+

d

L2
·
∑
l ̸=l′

EQ [σ′(⟨wl, z⟩) · σ′(⟨wl′ , z⟩)]

 .

The first term in the bracket is of order d/L since EQ[σ
′(⟨wl, z⟩)2] = O(1). With large L, the main

contribution comes from the second term in the bracket. Suppose the lowest nonzero Hermite
coefficient of σ is r, then we have by noting that Eξl,ξl′ [⟨wl, wl′⟩

r] ≤ O(γ2r+Eξl,ξl′ [|⟨ξl, ξl′⟩|
r]) =

O
(
d−r/2

)
for constant r and hence

d

L2
·
∑
l ̸=l′

EQ [σ′(⟨wl, z⟩) · σ′(⟨wl′ , z⟩)] ≃
d

L2
·
∑
l ̸=l′
⟨wl, wl′⟩r−1 ≤ O(d−(r−3)/2), (C.4)

where in the first approximation, we ignore the higher order terms. One would like to pick the largest
possible r, which will be s⋆ as (C.2) requires pσs⋆ ̸= 0. This leads to the second moment

EPθ⋆
[∥g∥22] = O(d−(s⋆−3)/2).

The case for r < s⋆ will be discussed ilater. Here, we remark that the label transformation T (·) is
only changing the second moment up to some constant factor as the only difference that occurs for not
using label transformation would be changing EQ[T (y)2] to EQ[y

2] in the above calculation. This is
also the reason why we can stick to the standard L2 loss in the discussion of the weight perturbation
in Section 3 for showing how the weight perturbation can help boost the signal-to-noise ratio (SNR)
in the second moment.

C . 1 . 3 H E U R I S T I C D E R I VAT I O N O F S A M P L E C O M P L E X I T Y

In the following, we first discuss what is the thresholding SNR for developing a O(1) alignment
between the neuron weight θ and the unknown signal θ⋆. Then, we provide a heuristic derivation
of the sample complexity O(ds

⋆/2) for the case with weight perturbation. We still focus on the
two-layer neural network with a single neuron f(z; θ, a) = aσ(⟨θ, z⟩) as in the previous discussion.
We asssume the following to hold in the following discussion:

(i) s⋆ is an odd number greater than 1.
(ii) The activation function σ satisfies the high-pass assumption, i.e., the lowest nonzero Hermite

coefficient of σ is r.
(iii) The alignment |⟨θ, θ⋆⟩| = o(1) (to ensure the previous simplified results are valid).
(iv) The label transformation T (·) is such that EQ[T (y)] = 0 and EQ[T (y)ζs⋆(y)] ̸= 0.
(v) The number of perturbation L is sufficiently large.

We will follow the update in Algorithm 1 and take learning rate η = ∞, which means directly
updating the weight by the gradient at each step.
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Sample Complexity from the View of SNR Recursion. Let us first consider r = s⋆, i.e., Assump-
tion 4.1(b) holds. At step t, let the weight be g(t−1)/∥g(t−1)∥2 and the perturbed weight be

w
(t)
l =

γ · g(t−1)/∥g(t−1)∥2 + ξ
(t)
l

∥γ · g(t−1)/∥g(t−1)∥2 + ξ
(t)
l ∥2

with ξ(t)l ∼ Unif(Sd−1). Following the same procedure as in (C.2), we have the first moment of the
gradient as

EPθ⋆
[⟨g(t), θ⋆⟩] ≃ 1

L

L∑
l=1

⟨w(t)
l , θ⋆⟩s

⋆−1 ≃ (γ · |⟨g(t−1)/∥g(t−1)∥2, θ⋆⟩|+ d−1/2)s
⋆−1,

where the last equality follows from the fact that s⋆−1 is an even number, and≃ hides some constant
factors. A proof of this calculation can be found in Lemma H.4. Following the similar derivation in
(C.3)-(C.4), the second moment is given by

EPθ⋆
[∥g(t)∥22] ≃

d

L2
·
∑
l ̸=l′
⟨wl, wl′⟩r−1

∣∣∣∣
r=s⋆

≃ d · (γ2 + d−1/2)s
⋆−1,

where≃ hides some constant factors that depends on s⋆. The last equality follows from the observation

that ⟨wl, wl′⟩s
⋆−1 =

√
⟨wl, wl′⟩2

s⋆−1
≃
√
γ4 + ⟨ξl, ξl′⟩2

s⋆−1
≃ (γ2 + |⟨ξl, ξl′⟩|)s

⋆−1, and a
concentration of |⟨ξl, ξl′⟩|s for s ≤ s⋆ − 1. Hence, the one-sample SNR is given by

SNR(t) =
EPθ⋆

[⟨g(t), θ⋆⟩]2

EPθ⋆
[∥g(t)∥22]

=
C

d
·
(
γ2 · |⟨g(t−1)/∥g(t−1)∥2, θ⋆⟩|2 + d−1

γ2 + d−1/2

)s⋆−1

,

where C is some constant factor that depends on s⋆. One can replace |⟨g(t−1)/∥g(t−1)∥2, θ⋆⟩|2 by
nSNR(t−1) as the square root of the n sample SNR is roughly the alignment between the gradient and
the unknown signal. Under this replacement, we always have nSNR(t−1) = o(1) by our assumption
(iii). We also obtain the recursion

nd1/2 · SNR(t) =
Cn

ds⋆/2
·

(
γ2d1/2 · nd1/2 · SNR(t−1) + 1

γ2d1/2 + 1

)s⋆−1

.

Viewing the term inside the bracket as a function of x = γ2d1/2, and taking α(t) = nd1/2 · SNR(t),
we have

f(x;α) =
αx+ 1

x+ 1
.

For α < 1, f is a decreasing function of x, and for α > 1, f is an increasing function of x. At
initialization, the alignment is of order d−1/2, which means α(0) = nd1/2SNR(0) = O(d−1/2)≪ 1.
The best choice is x = 0 and f(x;α(0)) = 1, and the corresponding next-step SNR is given by

α(1) =
Cn

ds⋆/2
.

If n ≪ ds
⋆/2, then α(1) ≪ 1, and the same argument applies for α(2) ≪ 1 and so on. This means

that the alignment cannot break the barrier O(d−1/4). On the other hand, when n≫ ds
⋆/2, we have

α(1) ≫ 1. Suppose we can choose x as large as possible such that f(x;α(1)) = α(1), then we have
another recursion:

α(t) =
Cn

ds⋆/2
· (α(t−1))s

⋆−1,

which means that the alignment can grow exponentially with t.

Polarization Level as a Trade-off. From the above discussion, we can see that when α≪ 1, we
want to choose x as small as possible such that f(x;α) = 1 and when α≫ 1, we want to choose x
as large as possible such that f(x;α) = α. In fact, setting x = 1, i.e., γ = d−1/4, is a good choice to
balace the two cases, as it is easy to check that

f(1;α) =

{
1
2 , if α≪ 1,
α
2 , if α≫ 1,

which is optimal in the sense that it only introduces a 1/2 factor when compared to the best choice.
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Heuristic Derivation of Sample Complexity from Alignment. Previously, we derive from the
SNR recursion that why O(ds

⋆/2) samples are necessary to achieve nontrivial alignment with weight
perturbation and why γ = d−1/4 is a good choice for the polarization level. Now, we provide an
alternative view to understand the sample complexity ds

⋆/2 from the perspective of the alignment
between the perturbed weight and the unknown signal θ⋆. The following discussion is more heuristic
in nature when compared to the SNR recursion. We still follow the assumptions (i)-(v) as in the
previous discussion. We set γ = d−1/4.

Consider the case of an infinitely large learning rate η, where at each step, the weight is approximately
given by the gradient from the previous step, i.e., w ≈ γg/∥g∥2 + ξ, where g is the gradient from
the previous step, and ξ is a perturbed noise. Here, our goal is for the perturbed weight to exhibit
nontrivial alignment with θ⋆. Specifically, we require

⟨w, θ⋆⟩ ≈ γ · ⟨g/∥g∥2, θ⋆⟩+ ⟨ξ, θ⋆⟩ ≫ O(d−1/2).

Since ⟨ξ, θ⋆⟩ is of order d−1/2, it follows that we need γ · ⟨g/∥g∥2, θ⋆⟩ ≫ O(d−1/2). This translates
into the condition

√
nSNR≫ d−1/4. From our previous moment calculations, we know that

SNR =
EPθ⋆

[⟨g, θ⋆⟩]2

EPθ⋆
[∥g∥22]

= O

(
d−(s⋆−1)

d−(s⋆−3)/2

)
= O(d−(s⋆+1)/2),

which leads to the condition n = rO(ds
⋆/2) when combined with

√
nSNR≫ d−1/4.

The rationale behind this criterion is that if γ · ⟨g, θ⋆⟩ does not sufficiently exceed ⟨ξ, θ⋆⟩, then the
perturbed noise will dominate. In such a case, the successive gradient updates would not provide
more information than those derived from random initialization.

C . 1 . 4 FA I L U R E O F H I G H - PA S S A S S U M P T I O N

Previously, we heuristically derive the sample complexity O(ds
⋆/2) for the case with weight perturba-

tion and the activation function σ satisfying the high-pass assumption, i.e., r = s⋆. Here, we discuss
what happens when the high-pass assumption is violated, i.e., 1 ≤ r < s⋆. We still focus on s⋆ being
an odd number greater than 1. Here, we have r ≥ 1 as by definition, r is the lowest nonzero Hermite
coefficient of σ. This is akin to the case where Assumption 4.1(b) is not satisfied. We still assume
that pσs⋆ ̸= 0 as this is needed for the signal term to survive in the first moment calculation. Using the
second moment calculation in (C.4), we have

SNR =
EPθ⋆

[⟨g, θ⋆⟩]2

EPθ⋆
[∥g∥22]

= O

(
d−(s⋆−1)

d−(r−3)/2

)
= O(d−(2s⋆−r+1)/2).

Combined with the same condition
√
nSNR ≫ d−1/4, we obtain n = rO(d(2s

⋆−r)/2). Hence, for
general 1 ≤ r ≤ s⋆, the sample complexity interpolates between O(ds

⋆/2) and O(ds
⋆−1/2). We

would like to point out that the above calculation is heuristic, and a formal proof is left for future work.
However, we believe that the above calculation provides sufficient insight on the sample complexity
when the high-pass assumption is violated.

On the other hand, if r ≥ s⋆, this is equivalent to the case where the generative exponent is r (as the
terms in the decomposition of the likelihood ratio with degree less than r don’t have any effect on
both the first and second moment). Hence, we obtain a sample complexity n = rO(dr/2). In summary,
the sample complexity is

n ≃ d((2s
⋆−r)∨r)/2.

Notably, if the activation has the lowest nonzero degree r, the oracle ψ, defined as ψ(y, x) =
T (y)σ′(x), has the lowest degree r − 1.

C . 2 P R O O F S F O R E X A M P L E S O F O R A C L E F U N C T I O N

Here we complete the discussions of the specific examples of ψ in Example 4.4 and Example 4.6.
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C . 2 . 1 B AT C H - R E U S I N G F O R P O LY N O M I A L L I N K F U N C T I O N

We consider a polynomial link function y = p(x) =
∑
q⋆≤q′≤q βq′hq′(x) for general q⋆ ∈ N and

βq′ ∈ R, where q⋆ is the information exponent of the link function, and we also denote it by q⋆(p)
in the sequel. For batch-reusing, we take ψ(y, x) = yσ′(x) + yσ′(x + yσ′(x)), where activation
function σ(x) satisfies that

σ(x) =

Cq∑
j=0

αj · hj(x), σ′(x) =

Cq∑
j=1

√
j · αj · hj−1(x). (C.5)

Here the degree Cq ∈ N+ only depends on the degree q of the link function and is specified later,
and each coefficient αj ∼ Unif([0, 1]). The second equality in (C.5) follows from the property
of Hermite polynomials in (B.1). The error term err

(t)
m,l,i now comes from the difference between

ψ(y
(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i and the exact form of the update step obtained from two consecutive

gradient descent steps on the same data under the square loss. More specifically, let us consider a
single neuron whose weight is wm,l and a single data point (zi, yi). Here we omit the time index t
for convenience. Then two gradient descent step on (zi, yi) gives

−gRe
m,l(zi, yi) =

(
yi − f(zi; {wm,l}m∈[M ])

)
· σ′(⟨wm,l, zi⟩) · zi

+
(
yi − f(zi; {w+

m,l}m∈[M ])
)
· σ′(⟨w+

m,l, zi⟩) · zi, (C.6)

where w+
m,l = wm,l + ηRe

i · (yi− f(zi; {wm,l}m∈[M ])) · σ′(⟨wm,l, zi⟩) · zi. Here ηRe
i is the learning

rate for batch reusing, different from the learning rate η in our algorithm. More specifically, to
fit the gradient form (C.6) into our general framework with oracle function ψ(y, x), we take the
batch-reusing learning rate ηRe

i = 1/∥zi∥22. Then the error term is given by

errm,l,i = −gRe
m,l(zi, yi)− ψ(yi, ⟨wm,l, zi⟩) = errm,l,i,1 + errm,l,i,2 + errm,l,i,3, (C.7)

where errm,l,i,1, errm,l,i,2, and errm,l,i,3 are given by

errm,l,i,1 = −f(zi; {wm,l}m∈[M ]) · σ′(⟨wm,l, zi⟩),
errm,l,i,2 = −f(zi; {w+

m,l}m∈[M ]) · σ′(⟨w+
m,l, zi⟩),

errm,l,i,3 = yiσ
′(⟨wm,l, zi⟩+ yiσ

′(⟨wm,l, zi⟩) + errm,l,i,1
)

− yiσ′(⟨wm,l, zi⟩+ yiσ
′(⟨wm,l, zi⟩)

)
. (C.8)

Proof of Corollary 4.5. To prove Corollary 4.5, it suffices to show that (i) Assumption 4.1 holds, and
(ii) the event E holds with the desired high probability. In the following, we first verify Assumption 4.1,
and then check the event E .

Verifying Assumption 4.1. Note that the fact of y = p(x) being a polynomial immediately implies
that both the square-integrable condition (Assumption 4.1(a)) and the polynomial-like tail condition
(Assumption 4.1(c)) are satisfied. It remains to check the high-pass condition (Assumption 4.1(b)).
Since now s⋆ ≤ 2, we only need to check the condition that |EQ[ζs⋆(y) · pψs⋆−1(y)]| > 0.

Case 1: s⋆ = 2. In this case, we have that

pψ1(y) = Ex∼N

[
x ·
(
yσ′(x) + yσ′(x+ yσ′(x)

))]
= y · Ex∼N

[ Cq∑
j=1

√
j · αj · x · hj−1(x) +

Cq∑
j=1

√
j · αj · x · hj−1

(
x+ yσ′(x)

)]
(C.9)

For the first summation in (C.9), only the first summand is nonzero, so we obtain

y · Ex∼N

[ Cq∑
j=1

√
j · αj · x · hj−1(x)

]
=
√
2α2 · y. (C.10)

For the second summation in (C.9), we have the following expansion,

y · Ex∼N

[ Cq∑
j=1

j · αj · x · hj−1

(
x+ yσ′(x)

)]
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= y · Ex∼N

[ Cq∑
j=1

j · αj · x ·
j−1∑
k=0

rj−1,k · hj−k−1(x) ·
(
yσ′(x)

)k]

=

Cq−1∑
k=0


Cq∑

j=k+1

j · αj · rj−1,k · Ex∼N

[
x · hj−k−1(x) ·

(
σ′(x)

)k]︸ ︷︷ ︸
:= ςk(α)

·yk+1. (C.11)

where ς0(α), . . . , ςCq−1(α) are just polynomials of α = (α1, · · · , αCq ) (recall the definition of σ′(x)
in (C.5)) and each rj−1,k is a positive number. Combining (C.10) and (C.11), we get the following
decomposition of pψ1(y):

pψ1(y) =
√
2α2 · y +

Cq−1∑
k=0

ςk(α) · yk+1.

Further using y = p(x) and the definition of ζ2(y), we get

EQ[ζ2(y) · pψ1(y)] = EP[h2(x) · pψ1(y)]

=
√
2α2 · Ex∼N [h2(x) · p(x)] +

Cq−1∑
k=0

ςk(α) · Ex∼N
[
h2(x) · p(x)k+1

]
.

According to Proposition 5 of Lee et al. (2024), we can set Cq ∈ N+ (only depending on q) such
that there exists a smallest I ≤ Cq such that the information exponent q⋆(pI) ≤ 2. We notice that
in this case s⋆(p) = 2, where we abuse the notation and let s⋆(p) be the generative exponent of the
polynomial p. In fact, s⋆(p) = 1 means EP[T (y) · h1(x)] ≡ 0 for all label transformation T . Hence,
the only possibility is that q⋆(pI) = 2 since pI is just a special case of label transformation and we
cannot get any first-order term from pI . Therefore, we further simplify the target quantity as

EQ[ζs⋆(y) · pψs⋆−1(y)] =
√
2α2 · Ex∼N [h2(x) · p(x)]︸ ︷︷ ︸

:= b1

+

Cq∑
k=I

ςk−1(α) · Ex∼N
[
h2(x) · p(x)k

]︸ ︷︷ ︸
:= bk

= b1 ·
√
2α2 +

Cq∑
k=I

bk · ςk−1(α), (C.12)

where bI ̸= 0 according to the definition of I . Now we take a closer look at the polynomials
{ςk(α1, · · · , αCq )}

Cq−1
k=I−1. We claim that: (i) they are different polynomials and are linearly indepen-

dent, and (ii) especially, they are all nonzero. To see these, recall that

ςk(α1, · · · , αCq ) =

Cq∑
j=k+1

√
j · αj · rj−1,k · Ex∼N

[
x · hj−k−1(x) ·

(
σ′(x)

)k]
,

where σ′(x) =
∑Cq

j=1

√
j · αj · hj−1(x). We can calculate that for k = 0, ς0(α1, · · · , αCq ) =

√
2α2

which is a non-zero polynomial. For k = 1, we have that

ς1(α1, · · · , αCq ) =

Cq∑
j=2

√
j · αj · rj−1,1 · Ex∼N [x · hj−2(x) · σ′(x)]

= 2r1,1 · α2
2 +

Cq∑
j=3

√
j · αj · rj−1,1 · Ex∼N [x · hj−2(x) · σ′(x)]

which is non-zero (since in the summation from j = 3 to Cq there would be no term in the form of
c22) and is linearly independent of of ς0 because each terms in the summation here has degree exactly
2. Now consider for k ≥ 2,

ςk(α1, · · · , αCq ) =
√
2(k + 1)k · rk,k · αk−1

1 α2αk+1
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+

Cq∑
j=k+2

√
jαjrj−1,k · Ex∼N

[
x · hj−k−1(x) ·

(
σ′(x)

)k]
.

Again, this polynomial is non-zero (since in the summation from j = k + 2 to Cq there would be no
term in the form of αk−1

1 α2αk+1) and is linearly independent of ς0, · · · , ςk−1 due to the fact that the
highest degree of these polynomials is no larger than k, and the order for each term in ςk is exactly
k+1. Thus we have proved the two claims by induction. Now recall that we are aiming at proving the
RHS of (C.12) is non-zero. By our two claims just proved, the RHS of (C.12) is a linear combination
of Cq − I + 2 linearly independent and non-zero polynomials where at least one of the combination
coefficient is non-zero (which is bI ). Thus we obtain that the RHS of (C.9) is a non-zero polynomial
of (α1, · · · , αCq ) and its zeros form a zero-measure set. This proves that with probability 1 over the
randomness of (α1, · · · , αCq

), the high-pass condition holds.

Case 2: s⋆ = 1. For this case of s⋆ = 1, the proof is almost the same as that for s⋆ = 2, where we
additionally utilize the fact that polynomial link function with generative exponent s⋆ = 1 can not be
an even polynomial (Example 2.2) and thus there always exists some I ≤ Cq ∈ N+ such that the
information exponent q⋆(pI) = 1 (see Proposition 5 of Lee et al. (2024)). With this fact, repeating
the above argument can give the desired high-pass property.

Verifying the event E . Now we verify that the desired event

E =
{
|err(t)m,l,i| ≤ d

−10s⋆ ,∀(m, l, i, t) ∈ [M ]× [L]× [n]× [T ]
}

holds with probability at least 1−O(d−c0) for some constant c0 > 0 that we specify later. With (C.7)
and (C.8), it suffices to look at each of the error terms err(t)m,l,i,1, err(t)m,l,i,2, and err

(t)
m,l,i,3 respectively.

For err(t)m,l,i,1,

∣∣∣err(t)m,l,i,1∣∣∣ ≤ M∑
m′=1

|am′ | ·
∣∣∣σ(⟨w(t)

m′,l, zi⟩)
∣∣∣ · ∣∣∣σ′(⟨w(t)

m,l, zi⟩)
∣∣∣ (C.13)

Note that {⟨w(t)
m,l, zi⟩}m∈[M ] are standard Gaussians since {w(t)

m,l}m∈[M ] ⊂ Sd−1. Therefore, with

probability at least 1− d−c0 for some constant c0 > 0, we have that |⟨wm,l, zi⟩| = rO(1). Meanwhile,
since that σ and σ′ are both polynomials with constant order and bounded coefficients, and that
M = O(d), then by taking am = d−11s⋆ , we conclude from (C.13) that∣∣err(t)m,l,i,1∣∣ ≤ rO(d−10s⋆). (C.14)

For the second error term err
(t)
m,l,i,2, similarly we have that∣∣∣err(t)m,l,i,2∣∣∣ ≤ ∑
m′∈[M ]

|am′ | ·
∣∣∣σ(⟨(w(t)

m′,l)
+, zi⟩)

∣∣∣ · ∣∣∣σ′(⟨(w(t)
m,l)

+, zi⟩)
∣∣∣ . (C.15)

Note that the one-step updated weights satisfy that∣∣∣⟨(w(t)
m,l)

+, zi⟩
∣∣∣ = ∣∣∣⟨w(t)

m,l, zi⟩+ yi · σ′(⟨w(t)
m,l, zi⟩) + err

(t)
m,l,i,1

∣∣∣ = rO(1), (C.16)

with probability at least 1− d−c0 since yi = p(⟨θ⋆, zi⟩) and p is also a polynomial of constant degree
and coefficients. Therefore, with the choice of am’s, by (C.15), we conclude that∣∣∣err(t)m,l,i,2∣∣∣ ≤ rO(d−10s⋆). (C.17)

Finally, regarding err
(t)
m,l,i,3, note that with the same argument as (C.16), we know that with probability

at least 1− d−c0 , both ⟨w(t)
m,l, zi⟩+ yi ·σ′(⟨w(t)

m,l, zi⟩)+ err
(t)
m,l,i,1 and ⟨w(t)

m,l, zi⟩+ yi ·σ′(⟨w(t)
m,l, zi⟩)

are rO(1). Since σ′ is a polynomial, it is rO(1)-Lipschitz continuous for inputs that are rO(1). Therefore,
combined with (C.14) that we have proved, we can obtain that∣∣err(t)m,l,i,3∣∣ ≤ |yi| · rO

(
|err(t)m,l,i,1|

)
= rO(d−10s⋆). (C.18)

27



Published as a conference paper at ICLR 2025

Finally, combining (C.14), (C.17), and (C.18), we obtain that for given (m, l, i, t), with probability at
least 1−O(d−c0), it holds that ∣∣err(t)m,l,i∣∣ = rO(d−10s⋆).

Finally, taking c0 as a constant that is larger than 2 and applying a union bound argument, we can
obtain that

Pr(E) ≥ 1−MLnT · rO(d−c0) ≥ 1− rΘ(d2) · rO(d−c0) ≥ 1− rO(d−c
′
0)

for some other constant c′0 > 0. Here we have applied our choice of (M,L, n, T ) in our algorithm
(see Algorithm 1, Algorithm 2). Thus we verify the property of the event E , proving Corollary 4.5.

C . 2 . 2 M O D I F I E D L O S S F O R G E N E R A L s⋆ ≥ 1

Here we give a specific choice of the activation function σ and the loss function ℓ. We mainly focus on
the situation where Qy has a continuous cumulative distribution function FQy

with bounded density
fQy

. For the situation where Qy is a discrete distribution (e.g., classification task), we discuss them in
the end of this section. For the activation function σ, we let σ(x) := (1/

√
s⋆) · hs⋆(x). Since then,

pψs(y) = EQ[ψ(x, y) · hs(x) | y] = EQ[σ
′(x) · hs(x)] · ℓ′(y) = 0, ∀s < s⋆ − 1. (C.19)

Regarding the choice of the loss function ℓ, we remark that if one chooses a fixed loss function, there
always exist instances such that the second assumption in the high-pass condition fails. To address
this issue, we propose to construct a random loss function ℓ. To rule out pathological examples of the
underlying distribution P, we make the following assumption on the coefficient function ζs⋆ .

Assumption C.3. We assume that the expansion of rζs⋆ := ζs⋆ ◦ F−1
Qy

: [0, 1] 7→ R on the Fourier
basis {φi(x)}i≥0 of [0, 1] has a non-zero coefficient of order at most D = O(1).

We then choose the loss function ℓ as the following,

ℓ′(y) =

D∑
i=0

αi · φi ◦ FQy (y), αi ∼ Unif([0, 1]), ∀0 ≤ i ≤ D.

Notice that FQy
can be estimated from data using a one dimensional density estimator. Thus here we

directly assume the accessibility of the function FQy
. This further gives that

EQ[ζs⋆(y) · pψs⋆−1(y)] = EQ[ζs⋆(y) · ℓ′(y)] =
D∑
i=0

αi · EUnif([0,1])

[
rζs⋆(ry) · φi(ry)

]
, (C.20)

which is a non-zero polynomial of the coefficients {αi}i≤D due to Assumption C.3.

Proof of Corollary 4.7. To prove Corollary 4.7, it suffices to show that (i) Assumption 4.1 holds, and
(ii) the event E holds with the desired high probability. In the following, we first verify Assumption 4.1,
and then check the event E .

Verifying Assumption 4.1. First, since σ′ is a polynomial and ℓ′ is bounded (the Fourier basis is
bounded and D = O(1)), we know that both Assumption 4.1(a) and Assumption 4.1(c) are satisfied.
Then, by the discussions before the proof, we know from (C.19) that the first condition in the high-pass
assumption (Assumption 4.1(b)) is satisfied. Furthermore, according to (C.20) and Assumption C.3,
EQ[ζs⋆(y) · pψs⋆−1(y)] is a non-zero polynomial of the coefficients {αi}i≤D and thus its zeros form
a measure-zero set. This means that with probability 1 over the randomness of (α1, · · · , αD), the
second condition in the high-pass assumption is also satisfied. This verifies Assumption 4.1.

Verifying the event E . Recall our definition in Example 4.6, the error term is defined as

err
(t)
m,l,i =

(
ℓ′(yi)− ℓ′

(
yi − f(zi; {w(t)

m,l}m∈[M ]})
))
· σ′(⟨w(t)

m,l, zi⟩).

First, since w(t)
m,l ∈ Sd−1, ⟨w(t)

m,l, zi⟩ is a standard Gaussian and therefore |⟨w(t)
m,l, zi⟩| = rO(1) with

probability at least 1− d−c0 for some constant c0 > 0. Since σ′ is a polynomial of constant degree,
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we then obtain that |σ′(⟨w(t)
m,l, zi⟩)| = rO(1) with probability at least 1− d−c0 . Second, consider that

the second derivative of the loss function ℓ′′(y) is given by

ℓ′′(y) =

D∑
i=0

αi · φ′
i

(
FQy

(y)
)
· fQy

(y),

which satisfies |ℓ′′(y)| = O(1) since the derivative of the Fourier basis is still bounded and that the
density of Qy is assumed to be bounded. Therefore, we have

ℓ′(yi)− ℓ′
(
yi − f(zi; {w(t)

m,l}m∈[M ]})
)
= O

(∣∣∣f(zi; {w(t)
m,l}m∈[M ]})

∣∣∣)
= O

(
M∑
m=1

|am| ·
∣∣∣σ(⟨w(t)

m,l, zi⟩)
∣∣∣) .

Since σ is a polynomial of constant degree and ⟨w(t)
m,l, zi⟩ are all standard Gaussians, we have that

|σ(⟨w(t)
m,l, zi⟩)| = rO(1) with probability at least 1−O(d−c0). Now given that M = O(d) and taking

am = d−11s⋆ , we have that

ℓ′(yi)− ℓ′
(
yi − f(zi; {w(t)

m,l}m∈[M ]})
)
= rO(d−10s⋆),

with probability at least 1−O(d−c0). Therefore, for any given (m, l, i, t), with probability at least
1−O(d−c0), it holds that ∣∣err(t)m,l,i∣∣ = rO(d−10s⋆) · rO(1) = rO(d−10s⋆).

Finally, as in the proof of Corollary 4.5, we take c0 as a constant that is larger than s⋆ + 1, and apply
a union bound argument, by which we can obtain that

Pr(E) ≥ 1−MLnT · rO(d−c0) ≥ 1− rΘ(ds
⋆+1/2) · rO(d−c0) ≥ 1− rO(d−c

′
0)

for some other constant c′0 > 0. Thus we verify the property of the event E , proving Corollary 4.7.

Remark C.4 (Discrete labels). For the case of discrete label y that supports on a finite set Y (e.g.,
classification tasks), the construction of ψ is somehow more direct. In this case, we can still consider
an oracle function in the form of ψ(y, x) = σ′(x) · φ(y) for some function φ(y). The activation
function σ(x) = (1/

√
s⋆) · hs⋆(x) and the function φ(y) is a random function given by

φ(y) ∼ Unif([0, 1]), ∀y ∈ Y. (C.21)

On the one hand, we can directly conclude as in (C.19) that pψs(y) = 0 for all s < s⋆ − 1. On the
other hand, we have that

EQ[ζs⋆(y) · pψs⋆−1(y)] = EQ[ζs⋆(y) · φ(y)] =
∑
y∈Y

Qy(y) · ζs⋆(y) · φ(y).

By the definition of generative exponent (Definition 2.1), EQy
[ζs⋆(y)

2] > 0 and thus at least one of
{Qy(y) · ζs⋆(y)}y∈Y is non-zero. Thus under (C.21), EQ[ζs⋆(y) · pψs⋆−1(y)] is non-zero with proba-
bility 1 over the randomness in φ. Thus we have verified Assumption 4.1(b). Assumption 4.1(a) and
Assumption 4.1(c) can be verified in the same way as for the continuous case, and thus Assumption 4.1
is checked. Finally, we remark that in the discrete case we do not attempt to reduce the oracle function
from certain loss derivative and thus we simply set the error terms err as zero. Thus all the conditions
in Theorem 4.2 hold and Corollary 4.7 is proved.

Remark C.5. (Non-monotonicity of the loss function) Note that this loss function constructed above
is not monotonically decreasing as f approaches y. However, this non-monotonicity does not impact
our analysis since our primary objective is to learn the feature direction.
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C . 3 D E B I A S I N G T H E G R A D I E N T E S T I M AT O R F O R U N K N O W N O R A C L E

In Algorithm 1, we propose a meta-algorithm that incorporates weight perturbation at each gradient
step. Specifically, as outlined in Line 6, after computing the gradient estimator

g
(t)
m,l,i =

(
ψ(y

(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) + err

(t)
m,l,i

)
· z(t)i ,

we aggregate the gradients and remove bias through the following operation:

g(t)m =
1

nL

n∑
i=1

L∑
l=1

(
g
(t)
m,l,i − pψ1(y

(t)
i ) · w(t)

m,l

)
.

We would like to demonstrate that the debiasing operation is only needed for s⋆ ≤ 2, as the high-pass
assumption already guarantees that the bias term is zero for s⋆ > 2. Therefore, we only need to
consider the case where s⋆ ≤ 2. In the two examples presented in Example 4.4 and Example 4.6
(where the modified loss ℓ is known), we demonstrated that the oracle ψ(y, x) can be derived in
closed form. Consequently, calculating pψ1(y) to debias the gradient poses no significant challenges
in such scenarios.

However, in cases where the gradient oracle is not readily available in closed form, additional
complexity arises. Examples include scenarios where mini-batch SGD involves multiple passes over
the same batch, or when label transformations are applied using a neural network. To handle such
cases, we propose to use a debiasing technique based on the U statistics.

To simplify the notation, we omit the time index t. Additionally, we drop the dependence on the
neuron index m and the perturbation index l. For a given mini-batch {(zi, yi)}ni=1, we retain {yi}ni=1

and resample {rzj}Nj=1 from an isotropic Gaussian distribution. Taking the product of these two sets,
we obtain a dataset of size nN :

D = {(rzj , yi)}i∈[n],j∈[N ] .

The gradient calculated for each sample (rzj , yi) is given by:

gi,j = (ψ(yi, ⟨w, rzj⟩) + erri,j) · rzj .

Note that here the error term is uniformly bounded by rO(d−10s⋆) under the assumptions of both
Theorem 4.2 and Theorem 5.1.

Leveraging the independence between {rzj}Nj=1 and {yi}ni=1, and noting that ψ(y, x)x has a polyno-
mial tail (as established in Assumption 4.1(c)), we apply Lemma J.3 to obtain the following result
with probability at least 1− δ:∣∣∣∣∣∣ 1

nN

∑
i∈[n],j=∈[N ]

⟨gi,j , w⟩ − Ex∼N (0,1)

[
n∑
i=1

ψ(yi, x)x

]∣∣∣∣∣∣ ≤
√

log δ−1

N
+ rO(N−1)+

1

nN

∑
i,j

|erri,j |

By choosing N large enough (e.g., N = dC for some large constant C), the estimation error becomes
negligible and can be safely absorbed into the error term for our analysis. Note that this debiasing
procedure is only needed once at each iteration for a single perturbed weight, and we don’t need to
repeat it for each neuron or perturbation as the distribution of ⟨w, rzj⟩ is the same for all neurons
and perturbations. It is also worth noting that N only affects computational complexity, not sample
complexity. Furthermore, the computational complexity remains polynomial in d.

In summary, suppose the gradient oracle is not available in closed form, we can instead implement
the following procedure for s⋆ ≤ 2 at each iteration of Algorithm 1:

1. Sample isotropic Gaussian vectors {rzj}Nj=1.

2. On synthetic sample {(rzj , yi)}i∈[n],j∈[N ], perform a gradient backward to obtain each gi,j
for weight w1,1, which is the first perturbation of the first neuron.

3. Compute the debiasing term ν = 1
nN

∑
i∈[n],j=∈[N ]⟨gi,j , w1,1⟩.

After this procedure, in Line 6 of Algorithm 1, we compute g(t)m = (nL)−1
∑n
i=1

∑L
l=1

(
g
(t)
m,l,i − ν ·

w
(t)
m,l

)
instead. The other steps of the meta algorithm remain the same.
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C . 4 S U M M A RY O F L I M I TAT I O N S

Failure of standard methods. Although being a gradient-based method, our approach is extensively
modified to adapt to the structure of the problem. Although we have shown in 4.2.2 that some fatal
issues prevent the vanilla mini-batch SGD from efficiently learning θ⋆, it remains unknown whether
there is any standard gradient-based methods (for example noisy-SGD) that can succeed in this
problem.

Minimizing the expected loss. Current work focuses on estimating θ⋆ using the two-layer neural
networks. However, training the second layer with learned feature goes beyond the scope of this
work. We leave it as a future direction to investigate whether a learned feature enables minimizing
the expected error efficiently.

Misspecification of the gradient oracle. The validity of Theorem 4.2 is based on that the order of
the gradient oracle is correctly specified as the generative exponent s⋆, i.e., Assumption 4.1(b). In
general estimating tasks where the link distribution is unknown, the generative exponent is beyond
the access and requires additional identification. In Appendix C.1.4, we heuristically derive that size
n = Ω(d(2s

⋆−r)∨r)/2) samples are required for a order-r high-pass oracle to obtain a non-trivial SNR.
This indicates that both the optimistic or pessimistic specification of the gradient oracle deteriorates
the sample efficiency of our algorithm. To address the issue of unknown generative exponent, Damian
et al. (2024) propose to run their partial-trace algorithm with different order and compare the quality
of the estimated feature on the hold-out validation set. We expect that a similar strategy for our
algorithm can also tackle this issue. However, this brute-force approach is computationally inefficient.
It is an interesting future direction to construct an efficient and adaptive algorithm that works for
unknonw s⋆.

Constructing modified loss in general cases. In Appendix C.2.2, we provide an example of loss
function which provably satisfies Assumption 4.1. However, the construction of this loss function
involves a random linear combination of Fourier basis, which is unnatural and is rarely adopted
in practice. Additionally, this construction requires access to the marginal distribution of y under
P that needs an ad-hoc estimation. It is unclear whether using an estimated version of Py would
cause the failure of previous argument. Besides, the minimal order of non-zero Fourier coefficient in
Assumption C.3 is involved in the construction, which is typically inaccessible in practice. It would
be an interesting future direction to investigate if there is any natural choice of loss function that
generally follows Assumption 4.1.

D P R O O F S K E T C H O F T H E M A I N T H E O R E M F O R U N I F O R M P R I O R

In the following proof sketch, we only focus on the case s⋆ being an even integer and s⋆ ≥ 2. The
other cases only differs technically and we defer readers to Appendix E.2 for a detailded proof. For
simplicity, denote ρ(t)m := ⟨θ(t)m , θ⋆⟩, the alignment between the weights of neuron m and the signal
θ⋆ at time t. Recall from Line 8 in Algorithm 1 that the update for neuron m at time step t is

θ(t+1)
m =

θ
(t)
m + ηsg

(t)
m

∥θ(t)m + ηsg
(t)
m ∥2

. (D.1)

This implies that the alignment of the next iteration, ρ(t+1)
m , is a convex combination of the previous

alignment ρ(t)m and the alignment of the update step ⟨sg(t)m , θ⋆⟩ = ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2. Therefore, to
show that the alignment improves after one iteration, we need to first analyze the scale of ⟨g(t)m , θ⋆⟩
and ∥g(t)m ∥2; then we will be able to characterize the improvement of ρ(t)m across iterations.

Alignment of the update step ⟨sg(t)m , θ⋆⟩. To this end, we calculate the first moment and and second
moment of g(t)m over the randomness of the data {(z(t)i , y

(t)
i )}ni=1, and combining these leads to the

concentration of ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2. More specifically, for the first moment of g(t)m , we have

⟨EPθ⋆
[g(t)m ], θ⋆⟩ ≈ ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s

⋆−2,
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while the magnitude of EPθ⋆
[g

(t)
m ] in any other direction orthogonal to θ⋆ is of strictly higher order. For

the second moment of g(t)m , setting γ = rΘ(d−1/4), it can be shown that for any direction v ∈ Sd−1,
EPθ⋆

[⟨g(t)m , v⟩2] = rO(d−(s⋆−1)/2). Now chooing n = rΩ(ds
⋆/2), it follows from a Bernstein-type

concentration inequality that the fluctuation of ⟨g(t)m , v⟩ is of the same order rO(d−s
⋆/2+1/4) for any

direction v ∈ Sd−1. Therefore, with high probability,

⟨g(t)m , θ⋆⟩ ≥ ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s
⋆−2 − rO(d−s

⋆/2+1/4),

∥g(t)m ∥2 ≤ ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s
⋆−2 + rO(d−s

⋆/2+3/4).
(D.2)

Phase 1: from d−1/2 to weak alignment. Due to random initialization, it holds with high prob-
ability that ρ(0)m = O(d−1/2) for Ω(M) many neurons. Therefore, it suffices to consider a neuron
with ρ(t)m = Ω(d−1/2). When Ω(d−1/2) ≤ ρ(t)m ≤ O(1), by choosing γ = rΘ(d−1/4), we can ensure
that the first term in the lower bound for ⟨g(t)m , θ⋆⟩ in (D.2) dominates the rO(d−s

⋆/2+1/4) fluctuation.
Based on this, we can leverage (D.2) to further show that ⟨sg(t)m , θ⋆⟩ = ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2 ≥ (1+c)ρ

(t)
m

for a constant c > 0. Consequently, it follows from (D.1) that

ρ(t+1)
m ≥ (1 + c)ρ(t)m for some constant c > 0.

Therefore, it takes O(log d) many steps for ρ(t)m to increase from d−1/2 to O(1). During this period,
the dynamics will go through two phases separated by a critical alignment level ρ⋆ such that

ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s
⋆−2 ≈ rO(d−s

⋆/2+3/4),

which gives that ρ⋆ = rΘ(d−1/4). After the alignment ρ(t)m reaches ρ⋆, there is a short period where
ρ
(t)
m grows rapidly as ρ(t+1)

m /ρ⋆ ≥ (ρ
(t)
m /ρ⋆)s

⋆−1, until the alignment reaches d−1/4+1/4(s⋆−1). The
length of this period is very short compared to the other periods on the road to weak alignment.

Phase 2: from weak to strong alignment. Finally, after ρ(t)m grows to a constant scale, we need to
track the value of 1− ρ(t)m . Again using (D.2), we can show that 1− ρ(t+1)

m ≤ (1 + c)(1− ρ(t)m ) for
some constant c > 0. Hence, it takes another O(log d) steps to eventually achieve strong alignment.

E P R O O F O F T H E M A I N T H E O R E M F O R T H E U N I F O R M P R I O R

Now we present the proof for Theorem 4.2. We introduce a shorthand ρ = ⟨θ, θ⋆⟩ for the alignment
between θ and θ⋆. This shorthand inherits the subscript and superscript of θ as well, i.e., ρ(t)m =

⟨θ(t)m , θ⋆⟩.

Recall from Algorithm 1 that at the t-th step, given the normalized gradient step g(t)m = g
(t)
m /∥g(t)m ∥2,

the updated weight parameter is given by

θ(t+1)
m =

θ
(t)
m + ηg

(t)
m /∥g(t)m ∥2∥∥θ(t)m + ηg
(t)
m /∥g(t)m ∥2

∥∥
2

.

Note that the alignment ⟨θ(t+1)
m , θ⋆⟩ depends on the alignment of the previous iterate ⟨θ(t)m , θ⋆⟩ and

the alignment of the current update step ⟨g(t)m /∥g(t)m ∥, θ⋆⟩, so we first need to analyze the latter.

Here, we stop to introduce an immediate result that is crucial in characterizing the alignment.

Almost orthogonality of smoothing noise. Recall that the perturbated weights are w
(t)
m,l =

(γθ
(t)
m + ξm,l)/∥γθ(t)m + ξm,l∥2, where ξm,l

i.i.d.∼ Unif(Sd−1). Due to the high dimensionality, ξm,l is
almost orthogonal to any designated direction with high probability. In the context, we are primarily
interested in the alignment with θ⋆. Correspondingly, we decompose g(t)m with respect to the following
orthonormal basis

{v(t)m,1 = θ⋆, v
(t)
m,2 = (1− ρ2)−1/2 · (θ(t)m − ⟨θ(t)m , θ⋆⟩ · θ⋆), v(t)m,3, . . . , v

(t)
m,d} (E.1)
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We justify this property by defining the following nice event for ϵ > 0:

E(t)m (ϵ) =
{

max
1≤i≤d

|⟨ξm,l, v(t)m,i⟩| < ϵ, ∀l ∈ [L]
}
.

This event helps in characterizing the alignment between the expected gradient EPθ⋆
[g

(t)
m ] and the

signal θ⋆. Additionally, we define another event for rϵ > 0:

rE(t)m (rϵ) =
{
|⟨ξm,l, ξm,l′⟩| < rϵ, ∀l, l′ ∈ [L] s.t. l ̸= l′

}
.

This event controls the correlation between the noise vectors, which helps in controlling the fluctuation
of the gradient. The following lemma provides some direct benefits of these events.

Lemma E.1 (Polarized weight on the nice event). For the orthonormal directions
{θ⋆, v(t)m,2, . . . , v

(t)
m,d} defined in (E.1), suppose that the corresponding nice event E(t)m (ϵ) ∩ rE(t)m (rϵ)

holds and the polarization level γ ∈ (0, 1/2). Then we have for any l ∈ [L] that

|⟨w(t)
m,l, θ

⋆⟩| ≤ 2(γ|⟨θ(t)m , θ⋆⟩|+ ϵ), |⟨w(t)
m,l, vm,1⟩| ≤ 2

(
γ

√
1− ⟨θ(t)m , θ⋆⟩2 + ϵ

)
,

|⟨w(t)
m,l, v

(t)
m,i⟩| ≤ 2 · ϵ, 2 ≤ i ≤ d.

Additionally, for any l ̸= l′, we have that

⟨w(t)
m,l, w

(t)
m,l′⟩ ≤ 4(γ2 + 2γϵ+ rϵ).

Proof of Lemma E.1. See Appendix E.3.

Characterizing ⟨g(t)m , θ⋆⟩. Note that g(t)m = n−1
∑
i g

(t)
m,i, where

g
(t)
m,i =

1

L

L∑
l=1

(
ψ(y

(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i − pψ1(y

(t)
i ) · wm,l

)
.

We characterize the alignment ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2 in Appendix E.1 with two steps, stated in two key
propositions as follows:

1. In Proposition E.3, we analyze the magnitude of EPθ⋆
[⟨g(t)m , θ⋆⟩] and ∥EPθ⋆

[P⊥
θ⋆⟨g

(t)
m , θ⋆⟩]∥.

2. In Proposition E.4, we control the fluctuation of ⟨g(t)m , θ⋆⟩ around its expectation using the
polynomial-tail like property in Assumption 4.1(c).

Both propositions are established under the nice event E(t)m (ϵ) ∩ rE(t)m (rϵ). The proof of these propo-
sitions is deferred to Appendix E.3. Finally, with these two propositions, we prove Theorem 4.2 in
Appendix E.2.

E . 1 P R O P E R T I E S O F T H E G R A D I E N T S T E P

In this part, we characterize the alignment of normalized update g(t)m /∥g(t)m ∥ with the signal θ⋆, given
θ
(t)
m . Since we are focusing on the one step behavior for a fixed neuron m ∈ [M ], we omit the neuron

index m and time index t in the sequel. To facilitate the presentation, we propose the following
simplified setup that extract all the essential elements to describe the one-step behavior.

Definition E.2. Fix θ and θ⋆ and let ρ = ⟨θ, θ⋆⟩. Suppose the data points (z1, y1), . . . , (zn, yn) are

i.i.d. generated from Pθ⋆ . Define wl = (γθ + ξl)/∥γθ + ξl∥2 for l = 1, . . . , L, where ξ1, . . . ξL
i.i.d.∼

Unif(Sd−1) are independent of {(zi, yi)}ni=1. Given the oracle ψ : R× R→ R, we define

g =
1

nL

n∑
i=1

L∑
l=1

(
ψ(yi, ⟨wl, zi⟩) · zi − pψ1(yi) · wl

)
.
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To describe the associated good event, we fix an orthonormal basis:

v1 = θ⋆, v2 =
θ − ρθ⋆√
1− ρ2

, v3, . . . , vd,

and define

E(ϵ) =
{
|⟨ξl, θ⋆⟩| < ϵ, max

2≤i≤d
|⟨ξl, vi⟩| < ϵ, ∀l ∈ [L]

}
;

rE(rϵ) = {|⟨ξl, ξl′⟩| < rϵ, ∀l, l′ ∈ [L] s.t. l ̸= l′} .

As mentioned in Appendix D, we can reduce this problem to first characterizing EPθ⋆
[g], and then

control the fluctuation of g around its expectation. To this end, we first introduce a lemma that
characterizes the first moment of the gradient step. This lemma is valid for both the non-sparse and
sparse setting and is helpful in understanding the structure of the expected gradient.
Lemma H.2 (Decomposition of the first moment). Suppose that we are working with the setting in
Definition E.2, where the oracle function ψ follows Assumption 4.1. Then it holds that

EPθ⋆
[g] =

∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L

L∑
l=1

⟨wl, θ⋆⟩s−1 · θ⋆

+
∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl.

Proof of Lemma H.2. See Appendix H.

One can easily see that the first summation term corresponds to the signal, while the second corre-
sponds to the resilience of current weight. The structure of wl guarantees ⟨wl, θ⋆⟩ is small, therefore
only the leading term in the geometric series above is dominant. Also we note that the leading term
from the signal is larger than the leading term from the resilience, which indicates that the expected
gradient is highly aligned with the true signal. This is justified in the next proposition.

Before stating it, we fix M to be a sufficiently large constant that does not scale with d and T =
O(log d). The involvement of M,T here is merely for the union bound argument in Appendix E.2.
Proposition E.3 (Alignment of expected gradient). Suppose that we are working with the setting in
Definition E.2, where the oracle function ψ follows Assumption 4.1. Additionally, we set γ = o(1),
L = Ω

(
(ϵ∨ γ)s⋆−1 · ds⋆/2 ∨ (d log d)

)
and ϵ = o(1) is chosen such that Pr(E(ϵ)) = 1−O(d−s

⋆/2).
Then there exists a {ξl}l∈[L]-measurable event E1 with Pr(E1) ≥ 1− d−c(MT )−1, such that on the
event E1 ∩ E(ϵ), it holds that

⟨EPθ⋆
[g], θ⋆⟩ ≃

{
γρ · (γ|ρ|+ d−1/2)s

⋆−2 if s⋆ is even;
(γ|ρ|+ d−1/2)s

⋆−1 if s⋆ is odd,

and that ∣∣∥EPθ⋆
[g]∥2 − |⟨EPθ⋆

g, θ⋆⟩|
∣∣ ≲ (γ|ρ|+ d−1/2)s

⋆

,

as long as γ|ρ| = ω(d−1).

Proof of Proposition E.3. See Appendix E.3.

From this proposition, it is already clear that the expected gradient is highly aligned with the signal
θ⋆ in the sense that ∥P⊥

θ⋆EPθ⋆
[g]∥2 < |⟨EPθ⋆

[g], θ⋆⟩| whenever γ|ρ| = ω(d−1). Later we will see
that this is indeed the case during the trajectory of Algorithm 1.
Proposition E.4 (Fluctuation of mini-batch gradient). Under the simplified setting introduced in
Definition E.2 where ψ : R× R→ R follows Assumption 4.1. Suppose that we choose ϵ and rϵ such
that

ϵ2 ≤ rϵ≪ 1; 2γϵ ≤ rϵ.
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Also, suppose that sample size

n = Ω
((

(γ2 + rϵ)s
⋆−1 + L−1

)−1 · log(d)2Cp+2
)

where Cp is defined in Assumption 4.1(c). Then there exists a {(yi, zi)}i∈[n]-measurable event E2
with Pr(E2c) ≤ d−c · (MT )−1. And it holds on E2 ∩ E(ϵ) ∩ rE(rϵ) that

∣∣⟨g, θ⋆⟩ − ⟨EPθ⋆
[g], θ⋆⟩

∣∣ ≲
√(

(γ2 + rϵ)s⋆−1 + L−1
)
· log(d)

n
,

and that

∥∥g − EPθ⋆
[g]
∥∥
2
≲

√(
(γ2 + rϵ)s⋆−1 + L−1

)
· d log(d)

n
.

Proof of Proposition E.4. See Appendix E.3.

E . 2 P R O O F O F T H E M A I N T H E O R E M F O R U N I F O R M P R I O R

Now we are ready to present the proof of Theorem 4.2.

Proof of Theorem 4.2. We first establish the good events required for the proof, characterize the
properties of the update step on these events, and then put things together to establish the alignment
of the model weights with the signal.

Preparations. To start with, we clarify the event we will work with by verifying that our configu-
ration is compatible with the conditions in Proposition E.3 and Proposition E.4. Recall that we set
L = Ω

(
d(s

⋆−1)/2 ∨ (d log d)1/2
)

and is at most polynomial in d, the scale of L clearly satisfy that
L = Ω

(
(d1/2ϵ)s

⋆ ∨ (d log d)
)
. During our algorithm, γ = (d−1 · log d)1/4 = o(1) is fixed. Choosing

ϵ = d−1/2 log d, we have by Lemma J.6 that for any t and m, it holds that

1− Pr(E(t)m (ϵ)) ≤ Ld ·
(
exp(−d/16) + d− log d/4

)
,

which decays faster than any constant-degree polynomial in d. Therefore, for sufficiently large d, it
holds that Pr

(
E(t)m (ϵ)

c)
= O(d−s

⋆/2). So far, we see that all the conditions in Proposition E.3 are

satisfied and we denote the associated event as E(t)m,1.

Next, we verify the conditions in Proposition E.4. We choose rϵ =
√
4
(
c+ logd(MTL2)

)
· d−1 log d,

then it holds by Lemma J.6 that

1− Pr
(

rE(t)m (rϵ)
)
≤ L2 ·

(
exp(−d/16) + d−rϵ2·log d/4) ≲ d−c/MT.

Additionally, we see that both ϵ2 ≤ rϵ≪ 1 and 2γϵ ≤ rϵ is satisfied for sufficiently large d. It is easily
verified that our choice of L = Ω

(
d(s

⋆+1)/2 ∨ (d log d)
)

clearly meets the condition that

L ≳ (ϵ ∨ γ)s
⋆−1 · ds

⋆/2 ∨ d log d

we have that the sample size threshold is now

log(d)2Cp+2(
(γ2 + rϵ)s⋆−1 + L−1

) ≲ log(d)2Cp+2 · d(s
⋆−1)/2,

which is satisfied by our choice n = Θ
((

(d log d)s
⋆/2 ∨ d log d

)
log d

)
. Hence, all the conditions in

Proposition E.4 are satisfied and we denote the associated event as E(t)m,2.
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Recalling that the gradient in Definition E.2 does not include the error term err
(t)
m,l,i, we additionally

need an event that controls the norm of the inputs zi
(t)
2 , which helps to control ∥err(t)m,l,i · zi∥2. For

this purpose, we define

E(t)m,3 =

{
max
i∈[n]
∥z(t)i ∥2 ≤

√
d

}
.

By standard Bernstein’s inequality, we have that Pr
(
Ecm,3

(t)
)
≤ Ld · exp{−d/8} = O(exp{−C ′d})

for some C ′ > 0. To put things together, we work on the following event:

E =

M⋂
m=1

T⋂
t=1

(
E(t)m (ϵ) ∩ rE(t)m (rϵ) ∩ E(t)m,1 ∩ E

(t)
m,2 ∩ E

(t)
m,3

)
,

which is of Pr(E) ≥ 1−O(d−c) for some c > 0 by the union bound argument. Denote

sg(t)m =
1

nL

n∑
i=1

L∑
l=1

(
ψ(y

(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i − pψ1(y

(t)
i ) · wm,l

)
,

then sg
(t)
m and the mini-batch data {(y(t)i , z

(t)
i )}i∈[n] match the definition in Definition E.2, which

allows us to apply Proposition E.3 and Proposition E.4. Thanks to the event E(t)m,3, we always have for
any v ∈ Sd−1 that ∣∣⟨g(t)m , v⟩ − ⟨sg(t)m , v⟩

∣∣ ≤ ∣∣∥g(t)m ∥2 − ∥sg(t)m ∥2∣∣
≤ d1/2 ·max

l,i
|err(t)m,l,i|

≤ d−9s⋆ . (E.2)

In the sequel, we restrict our attention to neurons that have d−1/2/2 alignment, i.e., the index m such
that |⟨θ(0)m , θ⋆⟩| ≥ d−1/2/2. From now on, we will drop the neuron index m and the iteration index
(t) in the following analysis for simplicity. The updated weight parameter is denoted as θ′, and the
alignment after the update is denoted as ρ′ = ⟨θ′, θ⋆⟩. Note that for large M ≫ 1, the number of
neurons with initial alignment |ρ| ≥ d−1/2/2 is at least Ω(M). For our convenience, in the following
we will denote by

κ :=
n

(d log d)s⋆/2 ∨ d log d
· (log d)−1 = Ω(1).

Under the preceding configuration, Proposition E.4 and Eq. (E.2) together imply that the fluctuations
of ⟨g, θ⋆⟩ can be further bounded by∣∣⟨g, θ⋆⟩ − EPθ⋆

[⟨sg, θ⋆⟩]
∣∣ ≲√ ((γ2 + rϵ)s⋆−1 + L−1) · log(d)

n
+
∣∣⟨sg, θ⋆⟩ − ⟨g, θ⋆⟩∣∣

≲

√
(d−1 log d)(s⋆−1)/2 · log(d)

n
+ d−9s⋆

=

{
d−(2s⋆−1)/4 · (log d)−1/4 · κ−1/2 if s⋆ ≥ 2,

d−1/2 · (log d)−1/2 · κ−1/2 if s⋆ = 1.
(E.3)

On the other hand, we have by Proposition E.3 and Eq. (E.2) that

EPθ⋆
[⟨g, θ⋆⟩] ≳ EPθ⋆

[⟨sg, θ⋆⟩]−
∣∣⟨g, θ⋆⟩ − EPθ⋆

[⟨sg, θ⋆⟩]
∣∣

≥ |ρ|γ(|ρ|γ + d−1/2)s
⋆−2 − d−9s⋆

≥ d−(2s⋆−1)/4 · (log d)1/4,

whenever |ρ|γ = Ω(d−3/4). Therefore, when κ is sufficiently large, we have the fluctuations to be
strictly bounded by half of the signal strength. Thus, we have

|⟨g, θ⋆⟩| ≥ 1

2
· |⟨EPθ⋆

[sg], θ⋆⟩|.
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For the norm of g, we have that

∥g∥2 ≤
∣∣∥g∥2 − ∥sg∥2∣∣+ ∣∣∥sg∥2 − ∥EPθ⋆

[sg]∥2
∣∣

+
∣∣∥EPθ⋆

[sg]∥2 − EPθ⋆
[⟨sg, θ⋆⟩]

∣∣+ ∣∣EPθ⋆
[⟨sg, θ⋆⟩]

∣∣
≤ d−9s⋆ + ∥sg − EPθ⋆

[sg]∥2 +
∣∣∥EPθ⋆

[sg]∥2 − ⟨EPθ⋆
[sg], θ⋆⟩

∣∣+ |⟨EPθ⋆
[sg], θ⋆⟩]|

≲
∣∣EPθ⋆

[⟨sg, θ⋆⟩]
∣∣+ (γ|ρ|+ d−1/2)s

⋆

+

√
(d−1 log d)(s⋆−1)/2 · d log d

n
, (E.4)

where in the second inequality, we apply Eq. (E.2) and the triangular inequality that
∣∣∥sg∥ −∥∥EPθ⋆

[sg]
∥∥∣∣ ≤ ∥∥sg − EPθ⋆

[sg]
∥∥. And the last inequality is deduced by combining the result Propo-

sition E.3 and the fact that d−9s⋆ ≪ d−s
⋆/2. For the leading term, it holds by Proposition E.3

that

|⟨EPθ⋆
[sg], θ⋆⟩| ≃

{
(|ρ|γ + d−1/2)s

⋆−1 if s⋆ is odd,
|ρ|γ(|ρ|γ + d−1/2)s

⋆−2 if s⋆ is even.
(E.5)

Recall that the alignment admits the following iterative update rule:

|⟨θ′, θ⋆⟩| =
∣∣∣∣〈 θ + ηG

∥θ + ηG∥2
, θ⋆
〉∣∣∣∣ ≥ |⟨G, θ⋆⟩| − η−1|⟨θ, θ⋆⟩|

1 + η−1
,

where G = g/∥g∥2. In the following, we will define ρ⋆ = d−1/4(log d)1/4 as a critical threshold
before the weak alignment. Specifically, in the phase I of weak alignment, we assume that |ρ| ≤ ρ⋆.
When the training process goes across this critical threshold, the dominant term in EPθ⋆

[⟨sg, θ⋆⟩] ≂
(γρ)1{s

⋆ is even}(γρ+ d−1/2)⋆−1−1{s⋆ is even} becomes γρ instead of d−1/2.

Stage I of weak alignment. Case I: s⋆ ̸= 1, s⋆ is odd. Combining the results in Eq. (E.3), (E.4)
and (E.5), we conclude that for s⋆ ≥ 3 being odd,

|⟨g, θ⋆⟩| ≳ (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−1,

∥g∥2 ≲ (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−1 + d−(2s⋆−3)/4 · (log d)−1/4 · κ−1/2.

It is important to note that here “≳” and “≲” only hides constants that are independent of d and n.
Combining these two inequalities, we have that

|⟨g, θ⋆⟩|
∥g∥2

≳
(|ρ|d1/4(log d)−1/4 + 1)s

⋆−1

(|ρ|d1/4(log d)−1/4 + 1)s⋆−1 + d1/4(log d)−1/4 · κ−1/2

=
(|ρ|/ρ⋆ + 1)s

⋆−1

(|ρ|/ρ⋆ + 1)s⋆−1 + κ−1/2/ρ⋆
.

Thus, if |ρ| ≤ ρ⋆ and take κ to be a sufficiently large constant, after the first gradient update, the
alignment will grow to at least ρ⋆ by noting that |⟨g, θ⋆⟩|/∥g∥2 ≳ ρ⋆κ1/2 and that

|ρ′| ≳ ρ⋆κ1/2 − η−1|ρ|
1 + η−1

≥ ρ⋆ ·
√
κ− η−1

1 + η−1
≥ ρ⋆.

As a summary of Case I(a), with one step of gradient update, the alignment will grow to at least ρ⋆ if
|ρ| ≤ ρ⋆.

Stage I of weak alignment. Case II: s⋆ is even. In the case where s⋆ is even, we have by the
previous arguments that

|⟨g, θ⋆⟩| ≳ |ρ| · (d log d)−1/4 · (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−2,

∥g∥2 ≲ |ρ| · (d log d)−1/4 · (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−2

+ d−(2s⋆−3)/4 · (log d)−1/4 · κ−1/2
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Here, we use the following fact that

(|ρ|γ + d−1/2)s
⋆

≲ (|ρ|γ + d−1/2)s
⋆−2 · (ρ2γ2 + d−1) ≲ (|ρ|γ + d−1/2)s

⋆−2|ρ|γ,

where the last inequality holds since |ρ| ≥ d−1/2/2. Thus, we conclude that

|⟨g, θ⋆⟩|
∥g∥2

≳
|ρ| · (|ρ|d1/4(log d)−1/4 + 1)s

⋆−2

|ρ| · (|ρ|d1/4(log d)−1/4 + 1)s⋆−2 + κ−1/2

=
|ρ| · (|ρ|/ρ⋆ + 1)s

⋆−2

|ρ| · (|ρ|/ρ⋆ + 1)s⋆−2 + κ−1/2
. (E.6)

Note that κ = Ω(1). Hence before the alignment reaches ρ⋆, κ−1/2 will dominate the denominator in
Eq. (E.6), which gives us that |⟨g, θ⋆⟩|/∥g∥2 ≳ |ρ| ·

√
κ. Importantly, the “≳” hides constants that

are independent of d and κ. Thus, by taking κ to be a sufficiently large constant, we can conclude that

|ρ′| ≥ |ρ| ·
√
κ− η−1

1 + η−1
≥ 2|ρ|.

As a summary of Case II(a), before the alignment reaches ρ⋆, the alignment will grow exponentially
fast, and this phase takes at most O

(
log(d)

)
steps. In the following, we consider the case when

|ρ| ≥ ρ⋆ for both cases I and II.

Stage II of weak alignment. Case I&II combined. Now we consider the case when |ρ| ≥ ρ⋆

for both cases I and II, i.e., s⋆ ≥ 2. For this case, we have |ρ|/ρ⋆ + 1 ≃ |ρ|/ρ⋆. Let us define
r = |ρ|/ρ⋆ ≥ 1 and r′ = |ρ′|/ρ⋆, and it follows that

|⟨g, θ⋆⟩|
∥g∥2

≳
rs

⋆−1

rs⋆−1 + κ−1/2/ρ⋆
,

and consequently:

r′ ≳
rs

⋆−1 · (rs⋆−1ρ⋆ + κ−1/2)−1 − η−1r

1 + η−1

≥ (
√
κ · rs⋆−1) ∧ ρ⋆−1 − η−1r

1 + η−1

It can be noted that the maximal ratio r ≤ (ρ⋆)−1, and also
√
κ · rs⋆−1 ≥ 2η−1r given that κ is

sufficiently large and r ≥ 1. Thus, we conclude that in this case

r′ ≳ (
√
κ · rs

⋆−1) ∧ ρ⋆−1.

For this case, the growth of the alignment will be also at least exponentially fast, until it reaches
Ω
(
(ρ⋆)−1

)
, i.e., |ρ| = C for some constant C. This phase takes at most O(log(d)) steps.

Strong alignment. Case I&II combined. We need a more careful analysis for this case in order to
achieve strong alignment. When the alignment is on a constant level, we can deduce from its original
form that

|⟨EPθ⋆
[sg], θ⋆⟩| = B(ρ, {ξl}l∈[L]) · (|ρ|γ)s

⋆−1 + E1,

where B(ρ, {ξl}l∈[L]) = Ω(1) is a constant that depends on ρ and the random perturbations {ξl}l∈[L]

and the error term follows that |E| ≤ O(d−s
⋆

). . In the following, we will drop the dependency on ρ
and {ξl}l∈[L] and use B for simplicity. We have by Eq. (E.3) that

|⟨g, θ⋆⟩| ≥ B(|ρ|γ)s
⋆−1 −O

(
d−(2s⋆−1)/4 · (log d)−1/4 · κ−1/2

)
= B(|ρ|γ)s

⋆−1 −O
(
(d log d)−s

⋆/4 · γs
⋆−1 · κ−1/2

)
= γs

⋆−1 ·
(
B|ρ|s

⋆−1 − (d log d)−s
⋆/4 ·O(κ−1/2)

)
,
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and also

∥g∥2 ≤ B(|ρ|γ)s
⋆−1 +O

(
(|ρ|γ)s

⋆

+ d−(2s⋆−3)/4 · (log d)−1/4 · κ−1/2
)

≤ B(|ρ|γ)s
⋆−1 +O

(
(|ρ|γ)s

⋆

+ d−(s⋆−2)/4 · (log d)−s
⋆/4 · γs

⋆−1 · κ−1/2
)

≤ γs
⋆−1 · (B|ρ|s

⋆−1 +O(d−(s⋆−2)/4 · (log d)−s
⋆/4 · κ−1/2)).

Therefore, once the alignment reaches a constant level |ρ| ≥ O(1), we have

|⟨G, θ⋆⟩| = |⟨g, θ
⋆⟩|

∥g∥2
≥ B|ρ|s⋆−1 −O(d−s

⋆/4)

B|ρ|s⋆−1 +O(d−1/4(log d)1/4)

≥ 1−O(d−1/4(log d)1/4)=: 1−∆.

Here, ∆ ≃ d−1/4(log d)1/4. Thus, as long as η > 2, after one step gradient,

|ρ′|2 =
⟨G+ η−1θ, θ⋆⟩2

⟨G+ η−1θ, θ⋆⟩2 + ∥P⊥
θ⋆(G+ η−1θ)∥22

≥ (1−∆− η−1|ρ|)2

(1−∆− η−1|ρ|)2 + (
√
1− (1−∆)2 + η−1

√
1− ρ2)2

≥ (1− η−1 −∆)2

(1− η−1 −∆)2 + η−2(1− ρ2) + 2
√
2∆ + 2∆2

=
(1− η−1)2

(1− η−1)2 + η−2(1− ρ2)
−O(

√
∆).

Here, the first equality holds by the Pythagorean theorem, the first inequality holds by the triangle
inequality, and in the last line, we separate the major term and the error term that scales with

√
∆,

where we use the fact that 1− η−1 > 1/2 with η > 2. In addition, by letting τ = η−2/(1− η−1)2,
we have

1− (ρ′)2 = 1− (1− η−1)2

(1− η−1)2 + η−2(1− ρ2)
+O(

√
∆)

=
τ(1− ρ2)

1 + τ(1− ρ2)
+O(

√
∆)

≤ τ(1− ρ2) +O(
√
∆).

Therefore, we conclude that as long as τ < 1, i.e., η > 2, 1 − ρ2 will exponentially decrease to
O((1− τ)−1 ·

√
∆), and achieves strong alignment in O((log∆−1)/(log τ−1)) steps.

Weak & strong alignment. Case III: s⋆ = 1. In this case, we conclude from the previous
arguments that regardless of the alignment level, it always holds that

|⟨EPθ⋆
[sg], θ⋆⟩| = B = O(1),

which gives us

|⟨g, θ⋆⟩| ≥ B −O(d−1/2 · (log d)−1/2 · κ−1/2),

and

∥g∥2 ≤ B +O(d−1/4(log d)1/4 + (log d)−1/2 · κ−1/2),

where we use the fact that n = κ · d(log d)2. Therefore, we also have

|⟨G, θ⋆⟩| = |⟨g, θ
⋆⟩|

∥g∥2
≥ 1−O((log d)−1/2 · κ−1/2) = 1−∆,

where in this case, we also have ∆ ≃ (log d)−1/2 just like s⋆ = 2 in the previous case, and the rest
of the proof follows the same arguments as in the previous case for the strong alignment.
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E . 3 P R O O F O F K E Y R E S U LT S

Proof of Lemma E.1. We begin with proving the first part of the lemma. For conciseness, we drop the
supscript (t) and simply denote θm as the present weight. We have the projection of wm,l onto θ⋆ as

|⟨wm,l, θ⋆⟩| =
∣∣∣∣γ⟨θm, θ⋆⟩+ ⟨ξm,l, θ⋆⟩∥γθm + ξm,l∥2

∣∣∣∣ ≤ 2(γ|ρm|+ ϵ).

For direction vm,2, by definition we have

|⟨wm,l, vm,2⟩| =
∣∣∣∣γ⟨θm, vm,2⟩+ ⟨ξm,l, vm,2⟩∥γθm + ξm,l∥2

∣∣∣∣
≤ 2 ·

(
γ

∣∣∣∣〈θm, θm − ρmθ⋆

∥θm − ρmθ⋆∥2

〉∣∣∣∣+ ϵ

)
= 2
(
γ
√
1− ρ2m + ϵ

)
.

For the remaining directions, we always have

|⟨wm,l, vm,i⟩| =
∣∣∣∣γ⟨θm, vm,i⟩+ ⟨ξm,l, vm,i⟩∥γθm + ξm,l∥2

∣∣∣∣ ≤ 2 · ϵ,

where we use the fact that ⟨θm, vm,i⟩ = 0 for i ≥ 2. This completes the proof for the first part.

On the joint nice event rEm(rϵ), we have that

|⟨wm,l, wm,l′⟩| ≤ 4 · ⟨γθm + ξm,l, γθm + ξm,l′⟩
≤ 4(γ2 + rϵ+ γ⟨θm, ξm, l⟩+ γ⟨θm, ξm,l′⟩).

On the other hand, it holds on the event Em(ϵ) that

|⟨θm, ξm,l⟩| = |⟨
√

1− ρ2 · vm,2 + ρvm,1, ξm,l⟩| ≤ (
√
1− ρ2 + |ρ|) · ϵ ≤ 2ϵ.

Therefore, we have for any l ̸= l′ that

|⟨wm,l, wm,l′⟩| ≤ 4(γ2 + 4ϵγ + rϵ).

Proof of Proposition E.3. Invoking Lemma H.2 with the fact that ∥θ⋆∥2 = 1, we can decompose
⟨EPθ⋆

[g], θ⋆⟩ as

⟨EPθ⋆
[g], θ⋆⟩ =

∑
s≥s⋆

√
s+ 1

L

L∑
l=1

EQ[ζs(y) · pψs+1(y)] · ⟨wl, θ⋆⟩s+1

+
∑
s≥s⋆

√
s

L

L∑
l=1

EQ[ζs(y) · pψs−1(y)] · ⟨wl, θ⋆⟩s−1

= EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆

L

L∑
l=1

⟨wl, θ⋆⟩s
⋆−1 +R, (E.7)

where all the remainder terms are collected by R, defined as

R =
∑
s≥s⋆

√
s+ 1

L

L∑
l=1

(
EQ[ζs(y) · pψs+1(y)]⟨wl, θ⋆⟩+ EQ[ζs+1(y) · pψs(y)]

)
· ⟨wl, θ⋆⟩s.

Below we will analyze the scale of each term in Eq. (E.7), and show that the remainderR is negligible
compared to the first term in Eq. (E.7) with high probability over the randomness of the injected noise
ξ1, . . . , ξL.
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Analysis for the remainder term R in Eq. (E.7). To bound |R|, we apply the triangle inequality
with the fact that |⟨wl, θ⋆⟩| ≤ 1 to get

|R| ≤
∑
s≥s⋆

√
s+ 1

L

L∑
l=1

EQ

[
|ζs(y) · pψs+1(y)|+ |ζs+1(y) · pψs(y)|

]
· |⟨wl, θ⋆⟩|s.

Since EQ[ζs+1(y)
2] ≤ 1 for all s ≥ 0 by the property of the decomposition of the likelihood ratio,

we have

EQ[|ζs+1(y) · pψs(y)|] ≤ EQ[ζs+1(y)
2]1/2 · EQ[ pψs(y)

2]1/2

≤ EQ[ pψs(y)
2]1/2

≤

√√√√ ∞∑
s=0

E[ pψs(y)2] = O(1),

and similarly for EQ[|ζs(y) · pψs+1(y)|]. It then suffices to bound
∑
s≥s⋆ (

√
s+ 1)/L ·∑L

l=1 |⟨wl, θ⋆⟩|s. Recall that we restrict ourselves to the following nice event

E(ϵ) :
{
|⟨ξl, θ⋆⟩| < ϵ, max

2≤i≤d
|⟨ξl, vi⟩| < ϵ, ∀l ∈ [L]

}
,

where {v1 = θ⋆, v2 = (θ − ρθ⋆)/
√

1− ρ2, v3, . . . vd} is an orthonormal basis. Since we assume
that γ = o(1), it follows from Lemma E.1 that |⟨wl, θ⋆⟩| < 1/2 for all l ∈ [L] on E(ϵ). Consequently,
it holds on E(ϵ) that∑

s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wl, θ⋆⟩|s ≤
∑
s≥s⋆

√
s+ 1 ·

(
1

2

)s−s⋆
· 1
L

L∑
l=1

|⟨wl, θ⋆⟩|s
⋆

≲
1

L

L∑
l=1

|⟨wl, θ⋆⟩|s
⋆

, (E.8)

where ≲ hides a constant that depends on s⋆. Now it reduces to upper bound the right hand side in
Eq. (E.8). To proceed, we define

rwl =

{
wl if supi |⟨wl, vi⟩| < ϵ;

0 otherwise.

It can be easily verified that rwl = wl for any l ∈ [L] on E(ϵ), and { rwl}l∈[L] is a sequence of
independent and bounded random vectors. By Lemma E.1, we have that

|⟨ rwl, θ
⋆⟩| ≤ 2γ ∨ ϵ.

To find its second moment, we have by definition that

E
rwl
[⟨ rwl, θ

⋆⟩2s
⋆

] = Ewl

[
⟨wl, θ⋆⟩2s

⋆

· 1
{
sup
i
|⟨wl, vi⟩| ≤ ϵ

}]
≤ Ewl

[⟨wl, θ⋆⟩2s
⋆

]

≃ (|ρ|γ + d−1/2)2s
⋆

,

where the last line holds by Lemma H.4. Therefore, we can apply the Bernstein’s inequality
(Lemma J.1) to the right hand side of Eq. (E.8) restricted to E(ϵ). We deduce from it that there
exists a event E1,1 with Pr(E1,1) ≥ 1− d−c/(MT ), and it holds on E1,1 ∩ E(ϵ) that

1

L

L∑
l=1

|⟨wl, θ⋆⟩|s
⋆

=
1

L

L∑
l=1

|⟨ rwl, θ
⋆⟩|s

⋆

≲
(
1 +

√
L−1 log d

)
· (|ρ|γ + d−1/2)s

⋆

+
(ϵ ∨ γ)s⋆ log d

L

≲ (|ρ|γ + d−1/2)s
⋆

(E.9)

Here we use the fact that M and T are at most polynomial in d and the last line holds since we choose
L = Ω

((
d1/2 · (ϵ ∨ γ)

)s⋆ · log d ∨ log d
)

.
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Analysis for the dominant term in Eq. (E.7). We then consider the major term
L−1

∑L
l=1⟨wl, θ⋆⟩s

⋆−1. By the definition of rwl, we can approximate its expectation as follows:

E
rwl
[⟨ rwl, θ

⋆⟩s
⋆−1] = Ewl

[
⟨wl, θ⋆⟩s

⋆−1 · 1
{
sup
i
|⟨wl, vi⟩| ≤ ϵ

}]
≃ Ewl

[⟨wl, θ⋆⟩s
⋆−1]± Pr

(
sup
i
|⟨wl, vi⟩| > ϵ

)
≃ Ewl

[⟨wl, θ⋆⟩s
⋆−1]± Pr

(
E(ϵ)c

)
,

where we use the fact that |⟨wl, θ⋆⟩|s
⋆−1 ≤ 1 and the event {supi |⟨wl, vi⟩| > ϵ} ⊂ E(ϵ)c. Again,

we have by Lemma H.4 that

Ewl
[⟨wl, θ⋆⟩s

⋆−1] ≃

{
(|ρ|γ + d−1/2)s

⋆−1 if s⋆ is odd;
ργ(|ρ|γ + d−1/2)s

⋆−2 if s⋆ is even.

Similarly, we have for the second moment that

E
rwl
[⟨ rwl, θ

⋆⟩2(s
⋆−1)] = Ewl

[
⟨wl, θ⋆⟩2(s

⋆−1) · 1
{
sup
i
|⟨wl, vi⟩| ≤ ϵ

}]
≤ Ewl

[⟨wl, θ⋆⟩2(s
⋆−1)]

≃ (|ρ|γ + d−1/2)2(s
⋆−1).

Given the boundedness on E(ϵ) and the second moment characterization, the Bernstein’s inequality
(Lemma J.1) implies that there exists E1,2 with Pr(E1,2) ≥ 1− d−c/(MT ). Furthermore, it holds on
E1,2 ∩ E(ϵ) that

1

L

L∑
l=1

⟨wl, θ⋆⟩s
⋆−1=

1

L

L∑
l=1

⟨ rwl, θ
⋆⟩s

⋆−1

=Ewl
[⟨wl, θ⋆⟩s

⋆−1] + E,

where the error term E is absolutely bounded as

|E| ≲ (|ρ|γ + d−1/2)s
⋆−1 ·

√
log d

L
+

(ϵ ∨ γ)s⋆−1 log d

L
+ Pr

(
E(ϵ)c

)
≲ (|ρ|γ + d−1/2)s

⋆

+ Pr(E(t)m (ϵ))

≲ (|ρ|γ + d−1/2)s
⋆

.

Here, the second line holds because L = Ω
((

(ϵ ∨ γ)s⋆−1 · ds⋆/2
)
log d ∨ d log d

)
and the last line

holds because Pr(E(ϵ)) ≤ d−s⋆/2.

So far, we have obtained that on the event E(ϵ) ∩ E1,1 ∩ E1,2, the following holds:

EPθ⋆
[⟨g, θ⋆⟩] ≃ Ewl

[⟨wl, θ⋆⟩s
⋆−1] + E +R,

where |E|+ |R| ≲ (|ρ|γ + d−1/2)s
⋆

given our configuration of L and Pr(E(ϵ)c). On the other hand,
provided that |ρ|γ ≫ d−1, we have that

(|ρ|γ + d−1/2)s
⋆

= (|ρ|γ + d−1/2)s
⋆−2 ·

(
(|ρ|γ)2 + d−1 + 2 · |ρ|γ · d−1/2

)
= (|ρ|γ + d−1/2)s

⋆−2 · |ρ|γ · (|ρ|γ + d−1 · (|ρ|γ)−1 + 2d−1/2)

≪ (|ρ|γ + d−1/2)s
⋆−2 · |ρ|γ.

Therefore, EPθ⋆
[⟨g, θ⋆⟩] is always the major term no matter whether s⋆ is even or odd, and we have

that

EPθ⋆
[⟨g, θ⋆⟩] ≃

{
γρ · (γ|ρ|+ d−1/2)s

⋆−2 if s⋆ is even;
(γ|ρ|+ d−1/2)s

⋆−1 if s⋆ is odd.
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We now turn to the norm of EPθ⋆
[g]. We have already shown the projection of EPθ⋆

[g] onto θ⋆. Next,
define P⊥

θ⋆ = I − θ⋆θ⋆⊤ as the projection matrix onto the orthogonal complement of the space
spanned by θ⋆. Now, it follows from Eq. (H.6) that

∥P⊥
θ⋆EPθ⋆

[g]∥2 ≤
∑
s≥s⋆
|EQ[ζs(y) · pψs+1(y)]| ·

∥∥∥∥∥
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl

∥∥∥∥∥
2

≲
∑
s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wl, θ⋆⟩|s.

Here, the first inequality holds by noting that the second term in Eq. (H.6) lies exactly along the
direction of θ⋆ and thus does not contribute to the norm of P⊥

θ⋆EPθ⋆
[g], while for the first term in

Eq. (H.6), we use the triangle inequality and the fact that ∥P⊥
θ⋆v∥2 ≤ ∥v∥2 for any v ∈ Rd. In the

second inequality, we also use the triangle inequality and the fact that ∥wl∥2 = 1 for all l ∈ [L]. Here,
the “≲” hides a constant that depends on the boundedness of EQ[ζs(y) · pψs+1(y)] as we have shown
in the previous analysis.

Note that the term
∑
s≥s⋆

√
s+1
L

∑L
l=1 |⟨wl, θ⋆⟩|s is already handled in Eq. (E.8) and (E.9) under the

success of event E(ϵ) ∩ E1,1, on which we have∣∣∥EPθ⋆
[g]∥2 − |⟨EPθ⋆

[g], θ⋆⟩|
∣∣ ≲ ∑

s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wl, θ⋆⟩|s ≲ (|ρ|γ + d−1/2)s
⋆

.

Setting E1 = E1,1 ∩ E1,2 gives the desired event.

Proof of Proposition E.4. The polynomial-tail property allows us to control the fluctuation of the
gradient estimator g in each direction at the level that is determined by the sample size n and the
corresponding variance. To this end, we begin with calculating the variance of g along each direction.

Calculating the second moment. Given θ and θ⋆, recall that we consider the following d orthonor-
mal directions:

θ⋆, v2, v3, . . . , vd,

where we set v2 = (θ − ⟨θ, θ⋆⟩θ⋆)/∥θ − ⟨θ, θ⋆⟩θ⋆∥2 and vi for i ≥ 3 are orthogonal to θ⋆ and v2.
Our goal is to show that g has small variance on each of these directions.

As each sample (zi, yi) is independently drawn from Pθ⋆ , we just need to consider the variance of

g1 =
1

L

L∑
l=1

(
ψ(y1, ⟨wl, z1⟩) · z1 − pψ1(y1) · wl

)
in the direction of v for v ∈ {θ⋆, v1, . . . , vd−1} as

VarPθ⋆
[⟨g1, v⟩] = EPθ⋆

[⟨g1, v⟩2]− EPθ⋆
[⟨g1, v⟩]2

≤ EPθ⋆
[⟨g1, v⟩2].

From this we see that it suffices to bound the second moment of ⟨g1, v⟩, which is given by

EPθ⋆
[⟨g1, v⟩2] ≲

1

L2

L∑
l,l′=1

EPθ⋆

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2

]
+

1

L2

L∑
l,l′=1

EPθ⋆

[
pψ1(y)

2⟨wl, v⟩⟨wl′ , v⟩
]

=
1

L2

∑
l ̸=l′

EQ

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2 ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

+
1

L2

L∑
l=1

EQ
[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl, z⟩)⟨z, v⟩2

]
+

1

L2

∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wl, v⟩⟨wl′ , v⟩

+
1

L2

L∑
l=1

EQ[ pψ1(y)
2]⟨wl, v⟩2.
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As ψ(y, z)z is quadruple-integrable by Assumption 4.1, the above integral is well-defined. We split
the summation into two parts: l = l′ and l ̸= l′. For l = l′, we directly have an O(L−1) bound for
each direction θ⋆, v2, . . . , vd thanks to the polynomial-like tail property of ψ in Assumption 4.1.

For l ̸= l′, Lemma E.1 implies that we have on the nice event rE(rϵ) that

|⟨wl, wl′⟩| ≤ 4(γ2 + 2γϵ+ rϵ)

≤ 8(γ2 + rϵ) := ϵ2.

Invoking Lemma H.3, for any v ∈ {θ⋆, v2, . . . , vd}, it holds on rE(rϵ) that

EQ

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2 ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

≲ ϵs
⋆−1

2 ·

(
1 +

ϵ21
ϵ2

+

(
ϵ21
ϵ2

)s⋆−1

· ϵ+ 1(v ⊥ θ⋆) ·
(
ϵ21
ϵ2

)s⋆−2

· ϵ
2
0

ϵ2
· (ϵ21 + ϵ1 · 1(s⋆ ≥ 4))

)
(E.10)

where we also define ϵ1 :=max{|⟨wl, θ⋆⟩|, |⟨wl′ , θ⋆⟩|}, ϵ0 :=max{|⟨wl, v⟩|, |⟨wl′ , v⟩|}. If the nice
event E(ϵ) also holds, on which the following holds for all l ∈ [L]:

|⟨ξl, θ⋆⟩| < ϵ, max
2≤i≤d

|⟨ξl, vi⟩| < ϵ,

then we have by Lemma E.1 that

|⟨wl, θ⋆⟩| ≲ γ|ρ|+ ϵ, |⟨wl, v2⟩| ≲
√
1− ρ2γ + ϵ, |⟨wl, vi⟩| ≲ ϵ, ∀i ≥ 3, ∀l ∈ [L].

Consequently, we can set ϵ1 ≃ γ|ρ|+ ϵ = o(1) and

ϵ0 ≃


γ|ρ|+ ϵ, if v = θ⋆,

γ
√
1− ρ2 + ϵ, if v = v2,

ϵ, otherwise.

Therefore, we have the ratio

ϵ21
ϵ2
≃ (γ|ρ|+ ϵ)2

4(γ2 + rϵ)
≃ γ2|ρ|2 + ϵ2

γ2 + rϵ
,

ϵ20
ϵ2
≃


(γ|ρ|+ϵ)2
8(γ2+rϵ) ≃

γ2|ρ|2+ϵ2
γ2+rϵ , if v = θ⋆,

(γ
√

1−ρ2+ϵ)2

8(γ2+rϵ) ≃ γ2(1−ρ2)+ϵ2
γ2+rϵ , if v = v2,

ϵ2

4(γ2+rϵ) ≃
ϵ2

γ2+rϵ , otherwise.

Since ϵ2 ≤ rϵ, we can conclude that ϵ21/ϵ2 ≲ 1 and ϵ20/ϵ2 ≲ 1. Hence, the right-hand side of Eq. (E.10)
is bounded by ϵs

⋆−1
2 ≃ (γ2 + rϵ)s

⋆−1 for all v ∈ {θ⋆, v2, . . . , vd}.

Similarly, let us consider the term L−2 ·
∑
l ̸=l′ EQ[ pψ1(y)

2]⟨wl, v⟩⟨wl′ , v⟩. On the good event E(ϵ),
we have

1

L2
·
∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wl, v⟩⟨wl′ , v⟩ ≲ ϵ20 · 1{s⋆ ≤ 2}

≲ ϵ2 1(s
⋆ ≤ 2)

≲ (γ2 + rϵ)s
⋆−1 · 1{s⋆ ≤ 2}.

The first inequality holds because pψ1(y) = 0 whenever s⋆ ≥ 2 because of Assumption 4.1(b) and the
second inequality holds due to the condition that ϵ2 ≤ rϵ

Lastly for all the terms that take a single summation over l ∈ [L], we have them bounded by 1/L as
each term in the summation can be upper bounded by 1. Combining the results for l = l′ and l ̸= l′,
we have on the event E(ϵ) ∩ rE(rϵ) that

VarPθ⋆
[⟨g1, v⟩] ≤ EPθ⋆

[⟨g1, v⟩2]≲(γ2 + rϵ)s
⋆−1 +

1

L
, ∀v ∈ {θ⋆, v2, . . . , vd}.
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Concentration. The first thing is to control the variation of g in the direction of θ⋆, where we need
to upper bound the Lr(Pθ⋆)-norm of ⟨g1, v⟩. To this end, we define G : (R× R)× R→ R as

G(z, y, w) = |ψ(y, ⟨w, z, )⟩ · ⟨z, v⟩|+ | pψ1(y) · ⟨w, v⟩|.
Also we define the empirical measure dµ(w) = L−1

∑
l δ(wl), then it holds by integral Minkowski’s

inequality that

EPθ⋆
[⟨g1, v⟩r]1/r ≤

(∫
dPθ⋆(y, z)

(∫
dµ(w) ·G(z, y, w)

)r)1/r
≤
∫

dµ(w)
(∫

dPθ⋆(y, z) ·G(z, y, w)r
)1/r

≲
1

L

∑
l

EPθ⋆

[
|ψ(y, ⟨wl, z⟩) · ⟨z, v⟩|r

]1/r
+

1

L

∑
l

|⟨wl, v⟩|. (E.11)

For the second term, we have on E(ϵ) that |⟨wl, v⟩| ≤ 2γ + 2ϵ ≤ 1. Applying the Cauchy-Schwarz
inequality, we have for the summand of the first term in Eq. (E.11) that

EPθ⋆
[|ψ(y, ⟨wl, z⟩) · ⟨wl, z⟩|r]1/r ≤ EPθ⋆

[|ψ(y, ⟨wl, z⟩)|2r]1/2r · EPθ⋆
[|⟨wl, z⟩|2r]1/2r.

Note thatEPθ⋆
[|⟨wl, z⟩|2r]1/2r ≤ (2r−1)!!1/(2r) ≲ r1/2, it suffices to deal withEPθ⋆

[|⟨wl, z⟩|2r]1/2r.
To proceed, we can decompose ⟨wl, z⟩ to components that are correlated and independent with y as

⟨wl, z⟩ = ⟨wl − ⟨wl, θ⋆⟩θ⋆, z⟩+ ⟨wl, θ⋆⟩⟨θ⋆, z⟩

=
√

1− ⟨wl, θ⋆⟩2 · x′ + ⟨wl, θ⋆⟩x′

where x = ⟨θ⋆, z⟩ ∼ N (0, 1) is independent to x′ = (1 − ⟨wl, θ⋆⟩2)−1/2 · ⟨wl − ⟨wl, θ⋆⟩θ⋆, z⟩ ∼
N (0, 1) . Therefore, we define a Gaussian noise operator as Uρψ(y, x) = Ex′∼N (0,1)[ψ(y, ρx +√

1− ρ2x′)]. And it holds that
EPθ⋆

[ψ(y, ⟨wl, z⟩)2r] = EP[U⟨θ⋆,wl⟩ψ(y, x)
2r]

= EQ

[
U⟨θ⋆,wl⟩ψ(y, x)

2r · P(x, y)
Q(x, y)

]
= EQ

[
ψ(y, x)2r ·U⟨θ⋆,wl⟩

(
P(x, y)
Q(x, y)

)]

≤

(
EQ[ψ(y, x)

4r] · EQ

[(
U⟨θ⋆,wl⟩

( P(x, y)
Q(x, y)

))2
])1/2

, (E.12)

where the second line follows from the property of the Gaussian noise operator in (B.2). By assumption
of the tail bound in Assumption 4.1, we have that EQ[ψ(y, x)

4r] ≤ Cp(4r)4Cpr. For the second term,
we have by the Parseval’s identity that

EQ

[(
U⟨θ⋆,wl⟩

( P(x, y)
Q(x, y)

))2
]
= 1 +

∑
s≥s⋆
⟨θ⋆, wl⟩2 · EQ

[
ζs(y)

2
]
≤2.

where we use the property that on the good event E(ϵ) we have |⟨wl, θ⋆⟩| ≤ γ|ρ|+ ϵ ≤ γ + ϵ < 1/2
and also EQ[ζs(y)

2] ≤ 1. And in conclusion, we get for the first term in Eq. (E.11) that
1

L

∑
l

EPθ⋆
[|ψ(y, ⟨wl, z⟩) · ⟨wl, z⟩|r]1/r ≲ rCp+1/2.

Combining everything, we have

EPθ⋆
[|⟨g1, v⟩|r]1/r ≲ rCp+1/2, ∀v ∈ {θ⋆, v2, . . . , vd}.

Thus, by Lemma J.3, there exists a {(zi, yi)}i∈[n]-measurable event E2,1 with Pr(E2,1) ≥ 1 −
d−c/(MT ) and it holds on E2 that
|⟨g, θ⋆⟩ − EPθ⋆

[⟨g, θ⋆⟩]|

≲

√
EPθ⋆

[⟨g1, θ⋆⟩2] · log(dcMT )

n
+

log(dcMT ) · log(dcMTn)Cp+1/2

n

≲

√
((γ2 + rϵ)s⋆−1 + L−1) · log(d)

n
+

log(d)Cp+3/2

n
, ∀v ∈ {θ⋆, v1, . . . , vd−1}. (E.13)
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where we utilize the fact T,M, n all have polynomial dependency on d. Moreover, since we assume
that

n = Ω
((

(γ2 + rϵ)s
⋆−1 + L−1

)−1 · log(d)2Cp+1
)
,

we have that the first term in Eq. (E.13) dominates, which further implies that

|⟨g, θ⋆⟩ − EPθ⋆
[⟨g, θ⋆⟩]| ≲

√
((γ2 + rϵ)s⋆−1 + L−1) · log(d)

n
.

Meanwhile, for the ℓ2-norm of g, we have by the Jensen’s inequality that for any r ≥ 1,

EPθ⋆
[∥g1∥r2]1/r =

(
EPθ⋆

[ ∑
v∈{θ⋆,v2,...,vd}

⟨g1, v⟩2
]r/2)1/r

≤
√
d ·
(
1

d
·

∑
v∈{θ⋆,v2,...,vd}

EPθ⋆
[|⟨g1, v⟩|r]

)1/r

≲
√
d · (r)Cp+1/2.

This polynomial tail bound enables us to apply Lemma J.3 for the ℓ2-norm of g, which implies that
there exists some event E2,2 with Pr(E2,2) ≥ 1− d−c/(MT ), and it holds on E2,2 that

∥∥g − EPθ⋆
[g]
∥∥
2
≲

√(
(γ2 + rϵ)s⋆−1 + L−1

)
· d · log(d)

n
.

Setting E2 = E2,1 ∩ E2,2 gives the desired event. This concludes the proof of Proposition E.4.

F P R O O F O F T H E M A I N T H E O R E M F O R T H E S PA R S E P R I O R

F. 1 P R O O F O U T L I N E A N D P R E L I M I N A R I E S

In this section, we provide a detailed proof for Theorem 5.1. We begin with some good events that
we will work with.

Signal concentration. We begin with a good event on which the signal spreads almost evenly
within its support. Define a series of event:

E0,r := {∥θ∥rr ≤ Cr · k1−r/2};
E0,∞ := {∥θ⋆∥∞ ≤ C∞ · k−1/2 log(k)1/2};

E0,♯ :=
{ ∑
j∈[d]

1
{
|θ⋆j | ≥

1√
2k

}
≥ k

4

}
.

The following lemma guarantees that the all the events above hold with high probability.
Lemma F.1 (Good signal). Suppose that k is sufficiently large such that k/ log(k) ≥ 32c(r ∨ 1),
k/ logr+2 k ≥

√
2c+ 2, then it holds that

Pr(E0,r) ∧ Pr(E0,∞) ≥ 1−O
(
k−c0,1

)
;

Pr(E0,♯) ≥ 1−O
(
exp{−c0,2k}

)
,

for some constants c0,1, c0,2 > 0.

Proof of Lemma F.1. See Appendix F.5.

For fixed s⋆, we collect all the indices r such that the corresponding nice event E0,r will be involved
in the coming analysis. Define S(s⋆) =

{
s⋆ − 1, s⋆ − 1{s⋆ odd}, 2s⋆, 4s⋆

}
. And we will stick to

the following high probability event

E0 := E0,∞ ∩ E0,♯ ∩ (∩r∈S(s⋆)E0,r).

With Lemma F.1, we have that Pr(E0) ≥ 1−O(k−c0) for some constant c0 > 0.
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Preparation for characterizing one-step gradient. Following the same manner as the proof for
the non-sparse case, we first characterize the alignment of the gradient step (without adversarial error
term err

(t)
m,l,i). We begin with the definition of a minimal setup, that collects all the essential elements

to form the one-step gradient. The following definition is the sparse analogue of Definition E.2.
Apart from the method of generating the noise, in the sparse case, we will analyze the gradient in a
coordinate-wise manner to adapt to the sparse structure.
Definition F.2. Fix k-sparse vectors θ, θ⋆ ⊂ Sd−1 with ϕ = supp(θ) and ϕ⋆ = supp(θ⋆). Let
ρ = ⟨θ, θ⋆⟩. Suppose that a single batch of data {(zi, yi)}i∈[n] is i.i.d. generated from Pθ⋆ . We

fix the index m as the current neuron. We first sample ϕm,1, ϕm,2, . . . ϕm,L
i.i.d.∼ Unif(Sk,m), i.e.,

uniform distribution over all k-sparse supports with m-th index always included. Given these random
supports, we sample independent noises ξm,l ∼ Unif(Sk−1(ϕm,l)) for l ∈ [L]. Now, for each l ∈ [L]
and γ = o(1), we define wm,l = (γθ + ξm,l)/∥γθ + ξm,l∥2. Then our target is

sgm =
1

nL

n∑
i=1

L∑
l=1

(
ψ(yi, ⟨wm,l, zi⟩) · zi − pψ1(yi) · wm,l

)
. (F.1)

The associated good event is defined as
Em(ϵ) = {sup

l,j
|⟨ξm,l, ej⟩| ≤ ϵ}; (F.2)

rEm =
{
max

{
sup
l ̸=l′
|ϕm,l ∩ ϕm,l′ |, sup

l
|ϕm,l ∩ ϕ⋆|, sup

l
|ϕm,l ∩ ϕ|

}
≤ log k

}
. (F.3)

Almost orthogonality. Recall that our perturbation noise ξm,l is sampled from Unif(Sk−1(ϕm,l)),
which is approximately isotropic. One can presume that each ξm,l is evenly distributed among different
coordinates. Additionally, we expect that (ξm,l, ϕm,l) and (ξm,l′ , ϕm,l′) should have a negligible
overlap. These two qualitative properties, which can help simplify the analysis, are captured by
Eq. (F.2) and Eq. (F.3) in Definition F.2. The following lemma characterizes the property of the
perturbated weights wm,l on the nice event Em(ϵ) ∩ rE .
Lemma F.3 (Polarized weight on nice event, sparse case). Consider the setting in Definition F.2 with
γ < 1/2. Suppose that the nice event Em(ϵ) ∩ rEm holds and ∥θ⋆∥∞ ≤ 1/ log k, then we have that

sup
l,j
|⟨wm,l, ej⟩| ≤ 2(γ|θj |+ ϵ);

sup
l
|⟨wm,l, θ⋆⟩| ≤ 2(γ|ρ|+ ϵ).

Additionally, we have that
sup
l ̸=l′
|⟨wm,l, wm,l′⟩| ≤ 4(γ2 + ϵ2 log k).

Proof of Lemma F.3. See Appendix F.5.

This lemma, serving as the counterpart of Lemma E.1, controls the behavior of the perturbated weight
wm,l in its coordinates and alignment with θ⋆. Additionally, they are approximately orthogonal with
each other, which allows for good characterization to the second moment of the gradient.

One may notice that the definition of rE differs from the non-sparse case, where we explicitly bound
the correlation between different ξm,l. This is the benefit of the sparse structure, as two randomly
sampled k-sparse supports are naturally of low overlap.

Before delving into the component-wise analysis, we begin with a proposition that will be frequently
used to calculate the average contribution of each term in the gradient. This proposition serves as the
counterpart of Lemma H.4 in the sparse case.
Proposition F.4. Suppose that the polarization level γ = o(1) and the noise (ξm,l, ϕm,l) ∼
Unif

(
Sk−1(ϕm,l)

)
⊗Unif(Sk,m). Let ρ = ⟨θ, θ⋆⟩ where θ is the polarized direction in wm,l. Assume

that the event E0,s−1{s odd} holds. Then we have that

Ewm,l
[⟨wm,l, θ⋆⟩s] ≃

{
γρ ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs−1)

s−1 if s odd;
(γ|ρ|+ k−1/2|θ⋆m|+ k−1δs)

s if s even,

where δs = (k2/d)1/s = o(1) for any s = O(1).
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Proof of Proposition F.4. See Appendix F.5.

Recall that we define the good event over the signal as E0 = E0,∞ ∩ E0,♯ ∩
⋂
r∈S(s⋆) E0,r, where

S(s⋆) = {s⋆ − 1, s⋆ − 1{s⋆ odd}, 2s⋆, 4s⋆}. This definition facilitates our defered analysis where
we need to control multiple moments of different orders and we collect all the necessary good events
in E0 in the first place.

F. 2 P R O P E R T I E S O F T H E G R A D I E N T S T E P

In this section, we preview some properties regarding the gradient defined in Eq. (F.1). The following
proposition deals with the first moment.

Proposition F.5 (First-order moment of the gradient). Suppose that θ⋆ is fixed such that the nice
event E0 holds. Under Definition F.2, we choose γ ≤ ϵ = o(1) such that Pr

(
Em(ϵ)

c) ≤ O(k−s
⋆

)
and

L = Ω
(
log(d) ·

(
k ∨ (ϵs

⋆−1 · ks
⋆+1)

))
.

Then there exists a {ξm,l}l∈[L]-measurable event Em,1 with Pr(Em,1) ≥ 1 − O(k−c1) for some
constant c1 > 0, such that on Em,1 ∩ Em(ϵ) ∩ rEm, it holds for any j ∈ [d] that

⟨EPθ⋆
[sgm], ej⟩ = EQ[ζs⋆(y) · pψs⋆−1(y)] ·

√
s⋆ · E

rwm,l
[⟨ rwm,l, θ

⋆⟩s
⋆−1]θ⋆j +Rm,j ,

where the expectation

E
rwm,l

[⟨ rwm,l, θ
⋆⟩s

⋆−1] ≃

{
γρ ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−2

)s⋆−2 · θ⋆j if s⋆ is even;(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1

)s⋆−1 · θ⋆j if s⋆ is odd,

and Rm,j is the remainder that can be bounded by

|Rm,j | ≲
((
k−1 ∨ (γ|ρ|+ k−1/2|θ⋆m|)

)
·
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆−1
+ k−s

⋆
)
· |θ⋆j |

+ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)
s⋆ · (γ|θj |+ k−1/2 · (k/d)1{j ̸=m}/2) + k−(s⋆+1).

Proof of Proposition F.5. See Appendix F.4.

The statement of this proposition clarifies the leading term explicitly, which enables us to track the
leading term in the strong alignment more precisely. To complete this section, we provide a proposition
that characterizes the fluctuation of the gradient, serving as the counterpart of Proposition E.4.

Proposition F.6 (Fluctuation of mini-batch gradient). Under the simplified setting Definition F.2
where ψ follows Assumption 4.1. Additionally, suppose that the sample size

n = Ω
((

(γ2 + ϵ2 log k)s
⋆−1 + L−1

)−1 · log(d)2Cp+2
)
,

where Cp is the order of the polynomial tail in Assumption 4.1(c). Then there exists a {(zi, yi)}i∈[n]-
measurable event Em,2 with Pr(Em,2) ≥ 1 − O(d−(c+1)/T ), such that on Em,2 ∩ Em(ϵ) ∩ rEm, it
holds that

∣∣⟨sgm, ej⟩ − ⟨EPθ⋆
[sgm], ej⟩

∣∣ ≤
√(

(γ2 + ϵ2 log k)s⋆−1 + L−1
)
· log(d)

n
,

for any v ∈ {e1, e2, . . . , ed}

Proof of Proposition F.6. See Appendix F.4.

With these propositions, we have completed the preparation for the analysis of the gradient step and
are ready to move on to the proof of the main theorem.
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F. 3 P R O O F O F T H E M A I N T H E O R E M

Proof of Theorem 5.1.

Preparations. We first clarify the final good event that we will use throughout the proof. We first
fix ϵ = k−1/2 · log k, then it holds by Lemma J.6 that for each m and t, we have

Pr
(
E(t)m (ϵ)

c
)
≤ Ld ·O(exp{−ck}+ k− log k/4).

Since L and d are at most polynomials in k, we see that for sufficiently large k, it holds that
Pr
(
E(t)m (ϵ)

c)
≤ k−s

⋆

. Additionally, we see that γ = k−1/2 is fixed and our parameter config-
uration

n = Ω
(
(k log3 k)s

⋆

· log d
)
, L = Ω(k(s

⋆+3)/2 · log(k)s
⋆−1)

are clearly compatible with the conditions in Proposition F.5 and Proposition F.6. At the t-th step, the
mini-batch {(z(t)i , y

(t)
i )}i∈[n], θ = θ

(t)
m and the error-free gradient

sg(t)m =
1

nL

L∑
l=1

n∑
i=1

(
ψ(y

(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i − pψ1(y

(t)
i ) · w(t)

m,l

)
(F.4)

together form an instance of Definition F.2, for which we can find the event E(t)m,1 and E(t)m,2, both with

probability at least 1 − O(d−c−1/T ), such that on E(t)m,1 ∩ E
(t)
m,2 the results in Proposition F.5 and

Proposition F.6 hold.

The gradient we use in the algorithm differs from Eq. (F.4) by the error term err
(t)
m,l,i · z

(t)
i . To control

this difference, we define

E(t)m,3 =
{
sup
i
∥z(t)i ∥ ≤

√
d
}
.

Given our specification on supm,l,i,t err
(t)
m,l,i, it holds on E(t)m,3 that for any v ∈ Sd−1:∣∣∥g(t)m ∥2 + ∥sg(t)m ∥2∣∣ ∨ |⟨g(t)m , v⟩ − ⟨sg(t)m , v⟩| ≤ ∥g(t)m − sg(t)m ∥2

≤ sup
i
∥z(t)i ∥ · sup

l
∥err(t)m,l,i∥2

≤ d−9s⋆ . (F.5)

Our final event is fixed to be

E = E0 ∩
⋂
m∈[d]

T⋂
t=1

(
E(t)m (ϵ) ∩ rEm ∩ E(t)m,1 ∩ E

(t)
m,2 ∩ E

(t)
m,3

)
.

With union bound, we have that Pr(E) ≥ 1−O(d−c) for some constant c > 0.

To avoid confusion, we denote for each m that qg
(t)
m = EPθ⋆

[sg
(t)
m ]. Later we will encounter some data

dependent index pm and using qg
(t)
xm avoids the ambiguity of the expectation. With our choice of n and

L, Proposition F.6 guarantees that for any m, t, j, it holds that∣∣
sg
(t)
m,j − qg

(t)
m,j

∣∣ ≲ k−(s⋆−1/2) · log−3/2 k. (F.6)

In the sequel, we will drop the superscript t whenever there is no ambiguity. We will frequently
involve rg

(t)
m = P

Topk(g
(t)
m )

(g
(t)
m ).

Weak alignment. The proof towards the weak alignment in the initial step comprises three parts. In
the first place, we will show that the index of the gradient we choose pm guarantees that |θ⋆

xm| ≳ k−1/2.
Thereby, the corresponding gradient exhibits good alignment towards the signal. Based on this, we
can show that the support we choose Topk(gxm) is of considerable quality by successfully identifying
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ϕ⋆⋆ = {j : |θ⋆j | ≥ 1/
√
2k}. Combining these elements, we can show that the gradient rg

xm is
well-aligned with the signal θ⋆.

We begin with analyzing the quality of g
xm where pm = argmaxm∥rgm∥2. With this objective in mind,

we first work on deriving a signal-dependent upper bound for ∥rg
xm∥. Note that ρm = ⟨θm, θ⋆⟩ = |θ⋆m|,

where θm = em is the initial weight. Applying Proposition F.5, we have for any ϕ, |ϕ| = k that∑
j∈ϕ

|qg
xm,j |2 ≲ (k−1/2|θ⋆

xm||)
2 1{s⋆ even} ·

(
k−1/2|θ⋆

xm|+ k−1δ+
)2(s⋆−1−1{s even}) ·

∑
j∈ϕ

θ⋆j
2

+
(
k−2 ∨ (k−1/2|θ⋆

xm|)
2 · (k−1/2|θ⋆

xm|+ k−1δ+)
2(s⋆−1) + k−2s⋆

)∑
j∈ϕ

θ⋆j
2

+ (k−1/2|θ⋆
xm|+ k−1δ+)

2s⋆ · k−1
∑
j∈ϕ

(
θ2j + ·(k/d)1{j ̸=m}

)
+ k−(2s⋆+1)

Note that we have ∥θ⋆∥∞ ≲ k−1/2 · log k, it holds that

k−2 ∨ (k−1 · |θ⋆
xm|

2) · (k−1/2|θ⋆
xm|+ k−1δ+)

2(s⋆−1) ≲ k−2s⋆ · log(k)2s
⋆

.

For any ϕ such that |ϕ| = k, we have
∑
j∈ϕ θ

2
j ≤ 1 for any θ such that ∥θ∥0 = k. Therefore, we can

further upper bound this quantity by

sup
|ϕ|=k

∑
j∈ϕ

|qg
xm,j |2 ≲ (k−1/2|θ⋆

xm|+ k−1δ+)
2s⋆−2 + k−2s⋆ · log(k)2s

⋆

+ (k−1/2|θ⋆
xm|+ k−1δ+)

2s⋆ · k−1

≲ (k−1/2|θ⋆
xm|+ k−1δ+)

2s⋆−2

+ k−2s⋆ · logs
⋆/2 k + k−2s⋆ · log(k)2s

⋆

. (F.7)

Now we combined Eq. (F.7), Eq. (F.6) and Eq. (F.5) to conclude that

sup
|ϕ|=k

∑
j∈ϕ

|g
xm,j |2 ≲ k · sup

j
|g

xm,j − sg
xm,j |2 + k · sup

j
|sg

xm,j − qg
xm,j |2 + sup

|ϕ|=k

∑
j∈ϕ

|qg
xm,j |2

≲ k−(s⋆−1) · (|θ⋆
xm|+ k−1/2δ+)

2s⋆−2 + k−2s⋆ · log(k)2s
⋆

.

By definition of rgm, we can further conclude that

∥rg
xm∥22 = sup

|ϕ|=k

∑
j∈ϕ

|⟨g
xm, ej⟩|2

≲ k−(s⋆−1) · |θ⋆
xm|

2(s⋆−1) + o
(
k−2(s⋆−1)

)
. (F.8)

On the other hand, for m ∈ ϕ⋆⋆, we have (γ|ρ| + k−1/2|θ⋆m| + k−1δ+)
r ≳ k−r. Then it holds by

Proposition F.5 that ∑
j∈ϕ⋆

|qgm,j |2 ≳ k−2(s⋆−1) − rO(k−2s⋆),

and by Eq. (F.6) and (F.5), we have that

∥rgm∥22 ≳ k−2(s⋆−1) − rO(k−2s⋆). (F.9)

Now, combinig Eq. (F.9) with Eq. (F.8) by the definition of pm, we have that

k−(s⋆−1)|θ⋆
xm|

2(s⋆−1) + o
(
k−2(s⋆−1)

)
≳ k−2(s⋆−1) − rO(k−2s⋆).

We conclude the first step from the last inequality that there exists a global constant c1 > 0 such that
for sufficiently large k:

|θ⋆
xm| ≥

(
c1 ·

(
1− o(1)

)
· k−2(s⋆−1) · ks

⋆−1
)1/2(s⋆−1)

≥ c′1k−1/2. (F.10)
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Now we move on to the support identification. We have shown that |θ⋆
xm| ≳ k−1/2. To establish

ϕ⋆⋆ ⊂ pϕ = Topk(gxm), it is sufficient to demonstrate that

sup
j /∈ϕ⋆

|g
xm,j | ≤ inf

j∈ϕ⋆
|g

xm,j |. (F.11)

In the following, we will bound each side separately. Consider j /∈ ϕ⋆, we have by Proposition F.5
that

|qg
xm,j | ≲

(
k−1/2|θ⋆

xm|+ k−1δ+
)s⋆ · (k−1/2|θj |+ (k/d)−1/2

)
+ k−(s⋆+1).

Combining this upper bound with Eq. (F.10) and Eq. (F.6) gives us that

|g
xm,j | ≤ |gxm,j − sg

xm,j |+ |sgxm,j − qg
xm,j |+ |qgxm,j |

≲ (k−1/2 · |θ⋆
xm|+ k−1δ+)

s⋆ ·
(
k−1/2|θj |+ (k/d)−1/2

)
+ k−(s⋆+1)

+ d−9s⋆ + k−(s⋆−1/2) · log−3/2 k

≲ k−(s⋆−1/2) · log−3/2 k + rO(k−(s⋆+1)). (F.12)

On the other hand, for j ∈ ϕ⋆⋆, we have that

|qg
xm,j | ≳ |k−1/2θ⋆

xm + k−1δ+|s
⋆−1 · |θ⋆j |

≳ k−(s⋆−1/2)

Similarly, it holds that

|g
xm,j | ≳ |qgxm,j | − |gxm,j − sg

xm,j | − |sgxm,j − qg
xm,j |

≳ k−(s⋆−1/2) − o(k−(s⋆−1/2)). (F.13)

Comparing Eq. (F.12) and Eq. (F.13), we successfully validate Eq. (F.11) holds, and consequently
ϕ⋆⋆ ⊂ pϕ.

We complete our proof of weak alignment by analyzing the inner product between rg
xm and θ⋆ and the

norm of rg
xm respectively. Since |θ⋆

xm| ≳ k−1/2, we have that

(γ|ρ
xm|+ k−1/2 · |θ⋆

xm|+ k−1δ+)
s⋆−1 ∧ (γ|ρ

xm|+ k−1/2 · |θ⋆
xm|+ k−1δ+)

s⋆−2 · |γρm| ≳ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1

For the inner product, we apply Proposition F.5 for pm and each j ∈ ϕ⋆⋆ and get that

g
xm,j · θ⋆j ≃ θ⋆j

2 · k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1 · sign(θ⋆

xm)

−
(
|R

xm,j |+ |gxm,j − sg
xm,j |+ |sgxm,j − qg

xm,j |
)
· |θ⋆j |. (F.14)

Since ϕ⋆⋆ ⊂ pϕ1, we can lower bound the summation of the leading term as∑
j∈pϕ1

θ⋆j
2 · k−(s⋆−1)/2 · |θ⋆

xm|
s⋆−1 ≳

∑
j∈pϕ⋆⋆

θ⋆j
2 · k−(s⋆−1)/2 · |θ⋆

xm|
s⋆−1

≳ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1 · k−1 · |ϕ⋆⋆|

≥ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1, (F.15)

where the last line holds by the definition of E0,♯ ⊂ E0. For the term associated with R
xm,j , we have

by the characterization in Proposition F.5 that∑
j∈pϕ1

|Rm,j | · |θ⋆j | ≲ (k−s
⋆

· log(k)s
⋆

+ k−s
⋆

) ·
∑
j∈ϕ⋆

|θ⋆j |2

+ k−s
⋆

· log(k)s
⋆

· k−1/2 ·
( ∑
j∈pϕ1

|θj | · |θ⋆j |+ |θ⋆j | · (k/d)1{j ̸=m}
)

+ k−(s⋆+1) ·
∑
j∈pϕ1

|θ⋆j |.
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Applying the Cauchy-Schwarz inequality, we have that∑
j∈pϕ1

|θ⋆j | ·
(
|θ⋆j |+ (k/d)1{j ̸=m}) ≤ (

∑
j∈[d]

|θ⋆j |2)1/2 ·
(
(
∑
j∈[d]

|θj |2)1/2 + (1 + k3/d2)1/2
)

= O(1). (F.16)

And therefore ∑
j∈pϕ1

|Rm,j | · |θ⋆j | ≲ k−s
⋆

· log(k)s
⋆

+ k−s
⋆

+ rO(k−(s⋆+1/2)). (F.17)

For the rest of the error terms, we have by Eq. (F.6) and Eq. (F.5) that∑
j∈pϕ1

(
|g

xm,j − sg
xm,j |+ |sgxm,j − qg

xm,j |
)
· |θ⋆j | ≲

∑
j∈ϕ⋆

|θ⋆j | · k−(s⋆−1/2) · log(k)−3/2

≤ k−(s⋆−1) · log(k)−3/2. (F.18)

Combining Eq. (F.14), Eq. (F.15), Eq. (F.17) and Eq. (F.18), we have that

|⟨rg
xm, θ

⋆⟩| ≳ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1 − o(k−(s⋆−1)).

For the norm, we already have in Eq. (F.8) that

∥rg
xm∥2 ≲ k−(s⋆−1)/2 · |θ⋆

xm|
(s⋆−1) + o(k−(s⋆−1)).

Combining last two inequalities, we concludes that

|⟨P
pϕ1
g

xm, θ
⋆⟩|

∥P
pϕ1
g

xm∥
≳
|θ⋆

xm|
s⋆−1 − o(k−(s⋆−1)/2)

|θ⋆
xm|s

⋆−1 + o(k−(s⋆−1)/2)
= Θ(1),

given that |θ⋆
xm| ≥ c

′
1k

−1/2 for some constant c′1 > 0. This concludes the proof of weak alignment.

Strong Alignment. Starting from the second step, we have by Algorithm 2 that all the neurons
share the same weight parameter. Let θ be the weight parameter in any step after the first step and we
suppose that ρ = ⟨θ, θ⋆⟩ = Θ(1). From Proposition F.5, we see that now the choice of the gradient
should not change the quality of the gradient significantly, as γ|ρ| ≫ k−1/2|θ⋆m| for any m ∈ [d].
Therefore, we start by analyzing the alignment increment using any gm. This alteration does not
affect the alignment increment, but substantially simplifies the analysis.

We additionally define a support ϕ† = {j ∈ [d] : |θ⋆j | ≥ k−1}. In the following, we fix an arbitrary
m ∈ [d]. We begin with analyzing the magnitude of gm,j for j ∈ ϕ† \ {m}. Since |ρ| = Ω(1), it
holds that

(γ|ρ|+ k−1/2 · |θ⋆m|+ k−1δs⋆−1)
s⋆−1 ≃ (γ|ρ|+ k−1/2 · |θ⋆m|+ k−1δs⋆−2)

s⋆−2 · (γ|ρ|) ≃ k−(s⋆−1)/2.

With triangle inequality, Proposition F.5 indicates that, for j ∈ ϕ†:

|gm,j | ≥ |qgm,j | − |sgm,j − qgm,j | − |sgm,j − gm,j |
≥ k−(s⋆−1)/2 · |θ⋆j | − k−s

⋆/2 · |θ⋆j |

− k−(s⋆+1)/2 · (|θj |+ (k/d)1{j ̸=m}/2)− rO(k−(s⋆−1/2)).

Similarly, we have for j /∈ ϕ⋆ that

|gm,j | ≤ |qgm,j |+ |sgm,j − qgm,j |+ |sgm,j − gm,j |
≲ k−(s⋆+1)/2 · (|θj |+ (k/d)1{j ̸=m}/2) + rO(k−(s⋆−1/2)).

Comparing last two inequalities, we have that |θj | > k−1 implies that |gm,j | ≥ maxj /∈ϕ⋆ |gm,j | for
sufficiently large k, and therefore

min
j∈ϕ†
|gm,j | > max

j /∈ϕ⋆
|gm,j |,
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which means that ϕ† ⊂ pϕm = Topk(θm). Thereby, we have∑
j∈pϕm

|θ⋆j |2 ≥ 1−
∑
j /∈ϕ†

|θ⋆j |2 ≥ 1− k−1.

We then move on to the alignment analysis. Retreat to Eq. (F.23), we define

βm(ρ, {ξm,l}l∈[L], θ
⋆, θ) =

EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆ · E

rwm,l
[⟨wm, l, θ⋆⟩s

⋆−1]

sign(ρ)1{s⋆ even} · (γ|ρ|)s⋆−1
;

rm,j(ρ, {ξm,l}l∈[L], θ
⋆, θ) = EPθ⋆

[⟨sgm, ej⟩]− θ⋆j · (γ|ρ|)s
⋆−1 · sign(ρ)1{s

⋆ even} · βm. (F.19)

Then it follows from Proposition F.5 that whenever |ρ| = Ω(1), we have that βm > 0 and

βm ∨ β−1
m < B

|rm,j | ≤ ram,j + rbm,j ,

where

ram,j ≤ Cak−(s⋆+1)/2 ·
(
|θj |+ (k/d)1{j ̸=m}/2);

rbm,j ≤ Cb · |θ⋆j | · (γ|ρ|)s
⋆

(F.20)

with some global positive constantB,Ca and C0, whenever the designated parameters are compatible
with the definition of our nice event. With this representation, we can deduce by Eq. (F.6) and Eq. (F.5)
that

|⟨rgm, θ⋆⟩| =
∣∣∣ ∑
j∈pϕm

⟨qgm, ej⟩ · θ⋆j
∣∣∣+ ∑

j∈pϕm

(
|⟨gm, ej⟩ − ⟨sgm, ej⟩|+ |⟨sgm, ej⟩ − ⟨qgm, ej⟩|

)
· |θ⋆j |

≥
∣∣∣ ∑
j∈pϕm

⟨qgm, ej⟩ · θ⋆j
∣∣∣−∑

j∈ϕ⋆

|θ⋆j | ·O(k−(s⋆−1/2) · log−3/2 k)

≥ βm · (γ|ρ|)s
⋆−1 ·

∑
j∈pϕm

|θ⋆j |2 −
∑
j∈ϕ⋆

|rm,j | · |θ⋆j | −O(k−(s⋆−1) · log−3/2 k)

≥
(
βm · (γ|ρ|)s

⋆−1 − Cb · (γ|ρ|)s
⋆)
·
∑
j∈pϕm

|θ⋆j |2 − 2Ca · k−(s⋆+1)/2 −O(k−(s⋆−1) · log−3/2 k).

(F.21)

where the last inequality holds by Eq. (F.16). To complete the analysis, we need an upper bound for
∥rgm∥2. Note that by the triangle inequality and Eq. (F.19), we have that

∥rgm∥ ≤ ∥Ppϕm
qgm∥+ ∥Ppϕm

sgm − Ppϕm
qgm∥+ ∥Ppϕm

sgm − Ppϕm
gm∥

≤ ∥βm(γ|ρ|)s
⋆−1 · P

pϕm
θ⋆∥+ ∥P

pϕm
ram∥+ ∥Ppϕm

rbm∥

+O(k−(s⋆−1) · log−3/2 k),

where ram = (rm,1, . . . , r
a
m,d) ∈ Rd and rbm = (rm,1, . . . , r

b
m,d) ∈ Rd. To proceed, note that by

Eq. (F.20) and Eq. (F.6), we have that

∥P
pϕr
a
m∥ ≤ Cak−(s⋆+1)/2 · (∥θ∥2 +

√
1 + k2/d)

≤ 3Cak
−(s⋆+1)/2;

∥P
pϕr
b
m∥ ≤ Cb · (γ|ρ|)s

⋆

·
(∑
j∈pϕm

|θ⋆j |2
)1/2

.

Putting these upper bounds together, we have that

∥P
pϕgm∥2 ≤

(
βm · (γ|ρ|)s

⋆−1 + Cb(γ|ρ|)s
⋆)
·
(∑
j∈pϕm

|θ⋆j |2
)1/2

+ 3Cak
−(s⋆+1)/2 +O(k−(s⋆−1) · log−3/2 k). (F.22)
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Note that for any a1 ∧ a2 > b > 0, it holds that

a1 − b
a2 + b

=
(a1 − b) · (a2 − b)

a22 − b2
≥ (a1/a2 − b/a2) · (1− b/a2).

Setting ∆ = ·k−1 + k−(s⋆−1)/2 · log−3/2 k ∨ k−1 = o(1), we get by combining Eq. (F.21) and
Eq. (F.22) that

⟨rgm, θ⋆⟩
∥rgm∥

≥
(βm − Cb · γ|ρ|) ·

(∑
j∈pϕm

θ⋆j
2
)
− 3Ca · k−1 −O(k−(s⋆−1)/2 · log−3/2 k)(

βm + Cb · γ|ρ|
)
·
(∑

j∈pϕm
θ⋆j

2
)1/2

+ 3Ca · k−1 +O(k−(s⋆−1)/2 · log−3/2 k)

≥
(
1−O(∆)

)−1 ·
(1− Cbβ−1

m γ|ρ|
1 + Cbβ

−1
m γ|ρ|

· (
∑
j∈pϕm

θ⋆j
2)1/2 −O(∆)

)
≥ 1− C · k−1 −O(∆)

where the last line holds because (1 − Ck−1)r ≥ 1 − rC · k−1 for any C, r > 0 and sufficiently
large k. Note that k−1 = O(∆), we see that

⟨rgm, θ⋆⟩
∥rgm∥

≥ 1−O(∆).

This concludes the proof of Theorem 5.1.

F. 4 P R O O F O F T H E K E Y R E S U LT S

Proof of Proposition F.5. First, by Lemma H.2, we have for each j ∈ [d] that

⟨EPθ⋆
[sgm], ej⟩ =

∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wm,l, θ⋆⟩s · ⟨wm,l, ej⟩

+
∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L
·
L∑
l=1

⟨wm,l, θ⋆⟩s−1 · ⟨θ⋆, ej⟩.

= EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆

L

L∑
l=1

⟨wm,l, θ⋆⟩s
⋆−1 · ⟨θ⋆, ej⟩

+R1 +R2, (F.23)

where the remainders R1, R2 are defined as

R1 =
∑
s≥s⋆

EQ[ζs+1(y) · pψs(y)] ·
√
s+ 1

L

L∑
l=1

⟨wm,l, θ⋆⟩s · ⟨θ⋆, ej⟩;

R2 =
∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L
·
L∑
l=1

⟨wm,l, θ⋆⟩s · ⟨wm,l, ej⟩.

We also denote the leading signal term as

S = EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆

L

L∑
l=1

⟨wm,l, θ⋆⟩s
⋆−1 · ⟨θ⋆, ej⟩.

By definition R1 collects the higher order term that aligns with the signal and the R2 collects all the
terms in the expected gradient that are parallel to wm,l. In comparison to the non-sparse case, here we
are analyzing the gradient coordinate-wisely. Therefore, R1 and R2 need to be controlled separately.
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Analysis for the dominant term S in Eq. (F.23). We first define

rwm,l = wm,l · 1{| sup
j
⟨ξm,l, ej⟩| ≤ ϵ}.

By definition of rwm,l, we have that rwm,l, l ∈ [L] are independent to each other and rwm,l = wm,l on
event Em(ϵ). We can approximate the expectation of the ⟨wm,l, θ⋆⟩ as

E
rwm,l

[⟨ rwm,l, θ
⋆⟩s

⋆−1] = Ewm,l

[
⟨wm,l, θ⋆⟩s

⋆−1 · 1
{
sup
j
|⟨ξm,l, ej⟩| ≤ ϵ

}]
≃ Ewm,l

[⟨wm,l, θ⋆⟩s
⋆−1]± Pr

(
sup
j
|⟨ξm,l, ej⟩| > ϵ

)
≃ Ewm,l

[⟨wm,l, θ⋆⟩s
⋆−1]± Pr(Em(ϵ)

c
).

Here the last line holds because Em(ϵ)
c
= ∪l{supj |⟨ξm,l, ej⟩| > ϵ}. For the first term, it holds by

Proposition F.4, we have that on E0,s⋆−1−1{s⋆ even}

Ewm,l
[⟨wm,l, θ⋆⟩s

⋆−1] ≃

{
γρ ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−2

)s⋆−2
if s⋆ even;

(γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1)
s⋆−1 if s⋆ odd.

For the second moment that is involved in the Bernstein’s inequality, we have that on E0,2s⋆−2

E[⟨ rwm,l, θ
⋆⟩2s

⋆−2] = E[⟨wm,l, θ⋆⟩2s
⋆−2 1{sup

j
|⟨wm,l, ej⟩| ≤ ϵ}]

≤ E[⟨wm,l, θ⋆⟩2s
⋆−2]

≃ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ2s⋆−2)
2s⋆−2

To proceed, we have by Bernstein’s inequality (Lemma J.1) that there exists an event Em,11 with
Pr(Em,11) ≥ 1−O(d−cb,11). And it holds on Em,11 ∩ Em(ϵ) that

1

L

∑
l

⟨wm,l, θ⋆⟩s
⋆−1 =

1

L

∑
l

⟨ rwm,l, θ
⋆⟩s

⋆−1

≃ Ewm,l
[⟨wm,l, θ⋆⟩s

⋆−1] + E,

where the error term E can be bounded by

|E| ≤
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ2s⋆−2

)s⋆−1 ·
√

log(d)

L
+
ϵs

⋆−1 log(d)

L
+ Pr

(
Ecm(ϵ)

)
.

Moreover, the assumption that

L ≳ log d ·
(
k2 ∨

(
ϵs

⋆−1 · ks
⋆
))

; Pr(Em(ϵ)
c
) ≤ k−s

⋆

;

allows us to simplify the upper bound for E, since

|E| ≲ k−1 ·
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ2s⋆−2

)s⋆−1
+ k−s

⋆

. (F.24)

In conclusion, we have on Em,11 ∩ Em(ϵ) that

S ≃ (Ewm,l
[⟨wm,l, θ⋆⟩s

⋆−1] + E) · ⟨θ⋆, ej⟩.

We remain this form for further simplification.

Analysis for the first remainder R1 in Eq. (F.23). For any s, s′, it holds by the property of
likelihood ratio decomposition that

EQ[|ζs(y) · pψs′(y)|] ≤ EQ[ζs(y)
2]1/2 · EQ[ pψs′(y)

2]1/2

≤
√∑
s′≥0

EQ[ pψs′(y)2],
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and the last quantity is a constant that is independent to s, s′. To bound the summation for s ≥ s⋆, we
have on by Lemma F.3 that |⟨wm,l, θ⋆⟩| ≤ γ|ρ|+ ϵ < 1/2 on

∑
s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s ≲
∑
s≥s⋆

√
s+ 1 ·

(1
2

)s−s⋆
· 1
L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

≲
1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

. (F.25)

Now it reduces to bound the right-hand side of Eq. (F.25). Note that on Em(ϵ), rwm,l = wm,l. We can
first track the first and second moment of ⟨wm,l, θ⋆⟩ as

E
rwm,l

[|⟨ rwm,l, θ
⋆⟩|s

⋆

] ≤ Ewm,l
[|⟨wm,l, θ⋆⟩|s

⋆

]

≤ Ewm,l
[⟨wm,l, θ⋆⟩2s

⋆

]1/2.

To bound the last quantity, we see that given E0,2s⋆ , Proposition F.4 reads

Ewm,l
[⟨wm,l, θ⋆⟩2s

⋆

] ≤ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)
2s⋆ .

By Bernstein’s inequality, there exists a event Em,12 with Pr(Em,12) ≥ 1−O(d−cb,12) such that on
Em,12 ∩ Em(ϵ), it holds that

1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

≲
(
1 +

√
log d

L

)
· (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)

s⋆ +
ϵs

⋆

log(d)

L
,

Given that L ≳ log(d) ·
(
k ∨ (ϵs

⋆ · ks⋆)
)
, it further holds that

1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

≲ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)
s⋆ + k−s

⋆

.

In conclusion, it holds on Em,12 ∩ Em(ϵ) that

R1 ≲
(
(γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)

s⋆−1 + k−s
⋆
)
· |⟨θ⋆, ej⟩|.

Analysis for the second remainder R2 in Eq. (F.23). Similar to Eq. (F.25), we can first upper
bound R2 as

|R2| ≲
1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

· |⟨wm,l, ej⟩|

=
1

L

L∑
l=1

|⟨ rwm,l, θ
⋆⟩|s

⋆

· |⟨ rwm,l, ej⟩|,

where the last line holds by the definition of Em(ϵ). We decouple the product with the Cauchy-Schwarz
inequality as follows:

E
rwm,l

[|⟨ rwm,l, θ
⋆⟩|s

⋆

· |⟨ rwm,l, ej⟩|] ≤ Ewm,l
[|⟨wm,l, θ⋆⟩|s

⋆

· |⟨wm,l, ej⟩|]

≤ Ewm,l
[|⟨wm,l, θ⋆⟩|2s

⋆

]1/2 · Ewm,l
[|⟨wm,l, ej⟩|2]1/2

The first term in the upper bound can be tackled with Proposition F.4. For the second term, we have
that

Ewm,l
[⟨wm,l, ej⟩2] ≲ E[(⟨ξm,l, ej⟩+ γ · ⟨θ, ej⟩)2]

≲ E[⟨ξm,l, ej⟩2] + γ2θ2j

= γ2θ2j + E[1{j ∈ ϕm,l} · ξ2m,l,j ]

≲ γ2θ2j + k−1 · (k/d)1{j ̸=m}.

56



Published as a conference paper at ICLR 2025

Here, the first line holds because ∥γθ + ξ∥2 ≥ 1/2. The last line holds by applying Lemma I.5 and
that P(j ∈ ϕm,l) ≤ k/d for j ̸= m. Note that each term in the summation of is bounded by ϵ log(k)
up to a constant on Em(ϵ). We have by Bernstein’s inequality (Lemma J.1) that, there exists an event
Em,13 with Pr(Em,13) ≥ 1−O(d−cb,13). And it holds on Em,13 ∩ Em(ϵ) that

|R2|≲

(
1 +

√
log(d)

L

)
·
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
·
(
γ|θj |+ k−1/2(k/d)1{j ̸=m}/2)

+
ϵs

⋆+1 log(d)

L
.

Given that

L ≳ log(d) ·
(
k ∨ (ϵs

⋆+1 · ks
⋆+1)

)
,

we conclude that it holds on Em,13 ∩ Em(ϵ) that

|R2|≲
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
·
(
γ|θj |+ k−1/2(k/d)1{j ̸=m}/2)+ k−(s⋆+1).

Summary of first-order moment. We now merge previous results to summarize the results for the
first-order moment. Note that it is sufficient to set

L = Ω
(
log(d) ·

(
k ∨ ϵs

⋆−1(k · log k)s
⋆+1
))

Define the final event as Em,1 = Em,11 ∩ Em,12 ∩ Em,13, which is {wm,l}l∈[L] measurable. By
previous analysis, it holds on this event that

S ≃ θ⋆j · (γρ)1{s
⋆ even} ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1−1{s⋆ even}

)s⋆−1−1{s⋆ even}
+ θ⋆j · E;

R1 ≲
((
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
+ k−s

⋆
)
· |θ⋆j |;

R2 ≲
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
· (γ|θj |+ k−1/2 · (k/d)1{j ̸=m}/2) + k−(s⋆+1).

Following the error term E in Eq. (F.24), we define R = R1 +R2 + E, which be bounded by d

|R| ≲
(
k−1 ∨ (γ|ρ|+ k−1/2|θ⋆m|) · (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)

s⋆−1 + k−s
⋆
)
· |θ⋆j |

+
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
· (γ|θj |+ k−1/2 · (k/d)1{j ̸=m}/2) + k−(s⋆+1).

(F.26)

And we summarize the first moment on Em,1 ∩ Em(ϵ) as

EPθ⋆
[⟨sgm, ej⟩] ≃ θ⋆j · (γρ)1{s even} ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1−1{s⋆ even}

)s⋆−1−1{s even}
+R,

where R is upper bounded in Eq. (F.26).

Proof of Proposition F.6. Similar to the proof of Proposition E.4, the proof of this proposition com-
prises two parts. To begin with, we calculate the variance of each coordinate of sgm.

Second moment calculation. It suffices to consider the variance of the first sample. To this end,
we define

sgm,1 =
1

L

L∑
l=1

(
ψ(y1, ⟨wm,l, z1⟩) · z1 − pψ1(y1) · wm,l

)
.
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For any v ∈ {e1, e2, . . . , ed}, it holds by the definition of sgm,1 that

EPθ⋆
[⟨sgm,1, v⟩2] ≲

1

L2

L∑
l,l′=1

EPθ⋆

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2

]
+

1

L2

L∑
l,l′=1

EPθ⋆

[
pψ1(y)

2⟨wl, v⟩⟨wl′ , v⟩
]

=
1

L2

∑
l ̸=l′

EQ

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2 ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

+
1

L2

L∑
l=1

EQ
[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl, z⟩)⟨z, v⟩2

]
+

1

L2

∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wl, v⟩⟨wl′ , v⟩

+
1

L2

L∑
l=1

EQ[ pψ1(y)
2]⟨wl, v⟩2. (F.27)

In the same manner as the non-sparse case, we can derive a O(1/L) upper bound for the second and
the last summation, which traverse through all l = l′. Recalling Eq. Lemma F.3, we already have that

sup
l,j
|⟨wm,l, ej⟩| ≲ γ + ϵ;

sup
l
|⟨wm,l, θ⋆⟩| ≲ γ|ρ|+ ϵ.

sup
l ̸=l′
|⟨wm,l, wm,l′⟩| ≲ γ2 + ϵ2 log(k).

To incorporate with the notations in Lemma H.3, we denote the upper bounds of the ⟨wm,l, ej⟩,
⟨wm,l, θ⋆⟩ and ⟨wm,l, wm,l′⟩ (l ̸= l′) as

ϵ0 = γ + ϵ; ϵ1 = γ|ρ|+ ϵ; ϵ2 = γ2 + ϵ2 log(k),

respectively. By the virtue of Lemma H.3, the desired expectation is behaving nicely if the ratio
(ϵ20 ∨ ϵ21)/ϵ2 is a constant term. To validate this fact, we note that

ϵ20
ϵ2
≃ γ2 + ϵ2

γ2 + ϵ2 log(k)
,

ϵ21
ϵ2
≃ γ2ρ2 + ϵ2

γ2 + ϵ2 log(k)
.

Since ϵ≪ 1≪ log(k)1/2 , we conclude that ϵ20 ∨ ϵ21/ϵ2 ≲ 1 for sufficiently large k. Therefore, we
have by Lemma H.3 that

1

L2

∑
l ̸=l′

EQ

[
ψ(y1, ⟨wm,l, z1⟩) · ψ(y1, ⟨wm,l′ , z1⟩) · ⟨z1, v⟩2 ·

(
1 +

∞∑
s=s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

≲ ϵs
⋆−1

2 .

On the other hand, we have for the third term in Eq. (F.27) that

1

L2

∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wm,l, v⟩ · ⟨wm,l′ , v⟩ ≲ sup

l
|⟨wm,l′ , v⟩|2 · 1{s⋆ ≤ 2}

≲ ϵ20 · 1{s⋆ ≤ 2}
≲ ϵ2 · 1{s⋆ ≤ 2},

where the first line holds by Lemma F.3.

In summary, we have on the event Em(ϵ) ∩ rEm that

sup
v∈{e1,e2,...,ed}

nVarPθ⋆
[⟨gm, v⟩] ≲ ϵs

⋆−1
2 +

1

L
=
(
γ2 + ϵ2 log(k)

)s⋆−1
+

1

L
.

Concentration . We now turn to validate the condition of Lemma J.3. For any v ∈ {e1, e2, . . . , ed},
we set G(z, y, w) = |ψ(y, ⟨w, z⟩) · ⟨z, v⟩| + | pψ1(y) · ⟨w, v⟩| with the domain measure defined as
dPθ⋆(z1, y1)× dµ(w), where dµ(w) = L−1

∑
l δwm,l

, the integral Minkowski’s inequality implies
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that

EPθ⋆
[|⟨gm,1, v⟩|r]1/r =

(∫
dPθ⋆(y, z)

(∫
dµ(w)|G(z, y, w)|

)r)1/r
≤
∫

dµ(w)
(∫

dPθ⋆(y, z)|G(z, y, w)|r
)1/r

=
1

L

L∑
l=1

EPθ⋆
[|ψ(yi, ⟨wm,l, zi⟩) · ⟨zi, v⟩|r]1/r +

1

L

∑
l

|⟨wm,l, v⟩|. (F.28)

To proceed, we leverage Cauchy-Schwarz inequality to decouple the average of the product in the
first term, which reads

1

L

L∑
l=1

EPθ⋆
[|ψ(yi, ⟨wm,l, zi⟩) · ⟨zi, v⟩|r]1/r ≤

1

L

L∑
l=1

EPθ⋆
[|ψ(yi, ⟨wm,l, zi⟩)|2r]1/2r · EPθ⋆

[|⟨zi, v⟩|2r]1/2r.

Similar to the proof of Proposition E.4, we have that

EPθ⋆
[ψ(y, ⟨wm,lz, )⟩2r] ≤ EQ[U⟨θ⋆,wm,l⟩

( P(x, y)
Q(x, y)

)2
]1/2 · EQ[ψ(y, x)

4r]1/2 ≲ rCp4r,

where the first inequality exactly repeats Eq. (E.12) and the second inequality holds by Assump-
tion 4.1(c). On the other hand, we have that EPθ⋆

[⟨zi, v⟩2r]1/2r ≤ r1/2. Since the second term in
Eq. (F.28) is bounded by O(1), we conclude that

EPθ⋆
[|⟨gm,1, v⟩|r]1/r ≲ rCp+1/2.

Thus, Lemma J.3 implies that there exists a {(zi, yi)}i∈[n]-measurable event Em,2 with probability at
least 1−O(d−c−1/T ), on which for any v ∈ {e1, e2, . . . , ed}, it holds that∣∣⟨gm, v⟩ − EPθ⋆

[⟨gm, v⟩]
∣∣≲√EPθ⋆

[⟨gm,1, v⟩2] · log(dc+1T )

n
+

log(dc+1T ) · log(dc+1Tn)Cp+1/2

n

≲

√((
γ2 + ϵ2 log(k)

)s⋆−1
+ L−1

)
· log(d)

n
+

log(d)Cp+3/2

n
,

given that T, n are at most of polynomial rate in d. Since we assume that

n = Ω
((

(γ2 + ϵ2 log(k))s
⋆−1 + L−1

)−1 · log(d)2Cp+2
)
,

the above inequality can be further simplified as

∣∣⟨gm, v⟩ − EPθ⋆
[⟨gm, v⟩]

∣∣≲
√((

γ2 + ϵ2 log(k)
)s⋆−1

+ L−1
)
· log(d)

n
.

Additionally, Em,2 is the desired event. This concludes the proof of Proposition F.6.

F. 5 P R O O F S F O R T E C H N I C A L R E S U LT S I N T H E S PA R S E C A S E

Proof of Lemma F.1. With slighly abuse of notation, we assume that θ⋆ ∼ Unif(Sk−1). We first
consider the event E0,∞ = {∥θ⋆∥∞ ≤ C · k−1/2 log(k)1/2}. From the proof of Lemma J.6, we see
that

P(∥θ⋆∥∞ ≥ t) ≤ 2k · P(θ⋆1 ≥ t) ≤ 2k exp(−k/16) + 2k exp(−t2k/4).

Take t = C · k−1/2 log(k)1/2, we have that the failure probability is upper bounded by
2k exp(−k/16) + 2k1−C

2/4.

For the r-norm, we leverage the property that θ⋆ d.
= Z/∥Z∥2 where Z ∼ N (0, Ik). Now,

∥Z∥22 =
∑
i≤k Z

2
i , where Z2

i − E[Z2
i ] ≥ −1. Applying one-sided Bernstein’s inequality with

failure probability k−c0 , we have that

∥Z∥22 ≤ k +
√
2c0k log(k) + c0 log(k)/3.
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On the other hand, note that we have for c1 > 2 that

P(max
i≤k
|Zi| >

√
2c1 log k) ≤ k · P(|Z1| >

√
2c1 log k) ≤ k exp{−c log k} = k1−c1 ,

To apply Bernstein’s inequality, we note that

E[|Zi|r · 1{|Z1| ≤
√
2c1 log k}] ≤ E[|Zi|2r]1/2;

E[|Zi|2r · 1{|Z1| ≤
√
2c1 log k}] ≤ E[|Zi|2r],

where E[Z2r
i ] = (2r − 1)!!. Therefore, it holds by truncated Bernstein’s inequality that

P
(
∥Z∥rr > (k +

√
2c2k log(k)) · E[|Z1|2r]1/2 +

(√
2C log(k)

)r · c2 log(k)/3) ≤ k1−c1 + k−c2

Combining the two bounds, we conclude that with probability 1−O(k1−c0∨c1∨c2), it holds that

∥θ⋆∥rr
d.
=
∥Z∥rr
∥Z∥r2

≲
k +
√
k log k + (log k)1+r/2

(k +
√
k log k + log k)r/2

≲ k1−r/2,

with probability at least 1−O(k−c) for some constant c > 0.

We now move on to consider the event E0,♯ =
{∑

i≤k 1{|θ⋆i | ≥ 1/
√
2k} ≥ k/4

}
. First, it holds by

the Hoeffding’s inequality that

P
(∣∣∣∑

i≤k

1{Z2
i ≥ 1/2} − kp

∣∣∣ ≤ kp

2

)
≥ 1− 2 exp(−2p2k),

where p = P(Z2
1 ≥ 3/4) > 0.5. Denote above event as A1. On the other hand, we have by the

Bernstein’s inequality that

P
(∣∣∣k−1

∑
i≤k

Z2
i − 1

∣∣∣ ≤ 1/2
)
≥ 1− 2 exp{−k/32}.

Denote above event as A2. Then on the event A1 ∩ A2, we have that∑
i≤k

1
{ Z1

∥Z∥
>

1√
2k

}
=
∑
i≤k

1
{
Z2
i >

1

2k

∑
i≤k

Z2
i

}
A2

≥
∑
i≤k

1{Z2
i >

3

4
}

A1

≥ kp

2
> k/4.

In conclusion we have that P(|{i : |θ⋆i | > 1/
√
2k}| > k/4) ≥ P(A1 ∩ A2) ≥ 1− exp{−c3k} for

some constant c3 > 0.

Proof of Lemma F.3. Clearly, it holds that

∥γθ + ξm,l∥2 ≥ ∥ξm,l∥2 − γ · ∥ξm,l∥2 ≥ 1/2.

Bu substituting this lower bound for the denominator, we have for any j, l that

|⟨wm,l, ej⟩| ≤ 2(γ|θj |+ |⟨ξm,l, ej⟩|)
≤ 2(γ|θj |+ ϵ).

The last line holds by the definition of Em(ϵ). On the other hand, we have for any l that

|⟨wm,l, θ⋆⟩| ≤ 2(γ|ρ|+
∑
j∈[d]

ξm,l,j · θ⋆j · 1{j ∈ ϕ⋆ ∩ ϕm,l})

≤ 2γ|ρ|+ 2
(∑

j

ξ2m,l,j · 1{j ∈ ϕ⋆ ∩ ϕm,l}
)1/2 · (∑

j

θ⋆j
2 · 1{j ∈ ϕ⋆ ∩ ϕm,l}

)1/2
≤ 2γ|ρ|+ 2 sup

j
|ξm,l,j | · ∥θ⋆∥∞ · |ϕ⋆ ∩ ϕm,l|
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To proceed, note that on the event rEm∩Em(ϵ), it holds that |ϕ⋆∩ϕm,l| ≤ log k and that supj |ξm,l,j | ≤
ϵ. Since we assume that ∥θ⋆∥∞ ≤ 1/ log k, it holds that

|⟨wm,l, θ⋆⟩| ≤ 2(γ|ρ|+ ϵ).

Now we turn to consider the correlation between wm,l and wm,l′ .

|⟨wm,l, wm,l′⟩| ≤ 2
(
γ2 +

∑
j

|ξm,l,j | · |ξm,l′,j | · 1{j ∈ ϕm,l ∩ ϕm,l′}

+ γ
∑
j

|θj | · |ξm,l,j | · 1{j ∈ ϕm,l ∩ supp(θ)}

+ γ
∑
j

|θj | · |ξm,l′,j | · 1{j ∈ ϕm,l′ ∩ supp(θ)}
)
.

For the second term, we have with the definition of Em(ϵ) that∑
j

|ξm,l,j | · |ξm,l′,j | · 1{j ∈ ϕm,l ∩ ϕm,l′} ≤ max
j,l
|ξm,l,j |2 · |ϕm,l ∩ ϕm,l′ |

≤ ϵ2 log k.

For the third term, applying the Cauchy-Schwarz inequality, we have that

γ
∑
j

|θj | · |ξm,l′,j | · 1{j ∈ ϕm,l ∩ ϕm,l′} ≤ γ∥θ∥2 · ϵ
√

log k =≤ γ2 + ϵ2 log k.

Putting them together, we have that

|⟨wm,l, wm,l′⟩| ≤ 4(γ2 + ϵ2 log k).

This concludes the proof of Lemma F.3.

Proof of Proposition F.4. For conciseness, we momentarily drop the subscript m, l in the following
analysis. Conditioning on fixed ϕ, we have that

Ew[⟨w, θ⋆⟩s] = Ew
[
∥γθ + ξ∥−s2 ·

(
γ⟨θ, θ⋆⟩+ ⟨ξ, θ⋆⟩

)s]
= Eϕ

[
Ew
[
∥γθ + ξ∥−s2 ·

(
γρ+ ⟨ξ, Pϕθ⋆⟩

)s ∣∣ϕ]]. (F.29)

Given the polarization level γ = o(1), we see that ∥γθ+ ξ∥s+1
2 ≃ 1± o(1), and it suffices to evaluate

Ew
[(
γρ+ ⟨ξ, Pϕθ⋆⟩

)s ∣∣ϕ]. Without loss of generality, we assume that 1 ∈ ϕ and we can translate
Pϕθ

⋆ into the first coordinate by the isotropy of ξ over Sk−1(ϕ). To this end, we can characterize the
first term as follows:

E
[(
γρ+ ⟨ξ, Pϕθ⋆⟩

)s ∣∣ϕ] = E
[(
γρ+ ⟨ξ, ∥Pϕθ⋆∥2 · e1⟩

)s ∣∣ϕ]
=

s∑
r=0

(
2⌊s/2⌋
r

)
(γρ)s−r · ∥Pϕθ⋆∥r2 · E

[
ξr1
∣∣ϕ] · 1{r even}

(i)
≃

⌊s/2⌋∑
r=0

(
2⌊s/2⌋
2r

)
(γρ)2⌊s/2⌋−2r · ∥Pϕθ⋆∥2r2 · k−r · (γρ)1{s odd}

= (γρ)1{s odd} ·
(
(γρ+ k−1/2∥Pϕθ⋆∥2)2⌊s/2⌋ + (γρ− k−1/2∥Pϕθ⋆∥2)2⌊s/2⌋

)
/2

≃ (γρ)1{s odd} · (γ|ρ|+ k−1/2∥Pϕθ⋆∥2)2⌊s/2⌋. (F.30)

Here, (i) holds by applying Lemma I.5 and ≃ denotes the equality that is up to a s-dependent
multiplicative constant.

Putting together Eq. (F.29) and (F.30), we conclude that

Ew[⟨w, θ⋆⟩s |ϕ] ≃ (γρ)1{s odd}(γ|ρ|+ k−1/2∥Pϕθ⋆∥2)s−1{s odd}. (F.31)
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In the sequel, we consider averaging over ϕ. From Eq. (F.31), we see that it suffices to consider
Eϕ[(γ|ρ| + k−1/2∥Pϕθ⋆∥2)r] for some r ≥ 2. We alter the notation to facilitate some deferred
calculation. Consider m ⊂ [d] with constant size |m| = O(1) that does not scale with k or d. Now
define ϕm ∼ Unif{Sk,m}, where Sk,m = {S ⊂ [d] : |S| = k,m ⊂ S}. It is easily seen that this
definition covers previous definition of Sk,m by setting m = {m}. We characterize the magnitude of
Eϕm [∥Pϕmθ

⋆∥r2] from both sides as follows. For the lower bound, we have that

Eϕm [∥Pϕmθ
⋆∥r2] = Eϕm

[(
∥θ⋆m∥22 +

∑
j /∈m

|θ⋆j |2 1{j ∈ ϕm}
)r/2]

≥ Eϕm

[
∥θ⋆m∥rr +

∑
j /∈m

|θ⋆j |r 1{j ∈ ϕm}
]

(i)
≃ (1− k/d) · ∥θ⋆m∥rr +

k

d
· ∥θ⋆∥rr

(ii)

≳ ∥θ⋆m∥rr +
k

d
· k1−r/2 · ∥θ⋆∥r/22

= ∥θ⋆m∥rr +
k2

d
· k−r/2.

Here (i) holds by the fact that E[1{j ∈ ϕm}] ≃ k/d for j /∈m, and (ii) is a consequence of Jensen’s
inequality. For the upper bound, we have that

Eϕm [∥Pϕθ⋆∥r2] = Eϕm

[(
∥θ⋆m∥22 +

∑
j /∈m

|θ⋆j |2 · 1{j ∈ ϕm}
)r/2]

≲ Eϕm

[
∥θ⋆m∥rr +

( ∑
j /∈m

|θ⋆j |2 · 1{j ∈ ϕm}︸ ︷︷ ︸
|(ϕm∩ϕ⋆)\{m}| nonzero summands

)r/2]

Jensen
≲ ∥θ⋆m∥rr + Eϕm

[
|(ϕm ∩ ϕ⋆) \m|r/2−1 ·

(∑
j /∈m

|θ⋆j |r · 1{j ∈ ϕm}
)]
. (F.32)

Next, we apply Cauchy-Schwarz inequality as follows:

(F.32) = ∥θ⋆m∥rr + Eϕm

[∑
j /∈m

|θ⋆j |r · 1{j ∈ ϕm}2 · |(ϕm ∩ ϕ⋆) \m|r/2−1
]

≤ ∥θ⋆m∥rr + Eϕm

[∑
j /∈m

|θ⋆j |2r · 1{j ∈ ϕm}
]1/2
· Eϕm

[∑
j /∈m

1{j ∈ ϕm} · |(ϕm ∩ ϕ⋆) \m|r−2
]1/2

= ∥θ⋆m∥rr +
(k
d
·
∑
j /∈m

|θ⋆j |2r
)1/2

· Eϕm

[
|(ϕm ∩ ϕ⋆) \m|r−1

]1/2
(i)

≲ ∥θ⋆m∥rr +
(k
d
· k1−r

)1/2
·
(k2
d

)(r−1)/2

= ∥θ⋆m∥rr +
k2

d
· k−r/2,

where (i) holds by E0,2r and Lemma J.7. In conclusion, we have that Eϕm [∥Pϕθ⋆∥r2] ≃ ∥θ⋆m∥rr +
k−r/2 · δ given that k = o(

√
d). Combining this result with Eq. (F.31), we obtain that

Ew[⟨w, θ⋆⟩s] ≃ (γρ)1{s odd}(γ|ρ|+ k−1/2|θ⋆m|+ k−1δ1/(s−1{s odd}))
s−1{s odd}

where δ = k2/d = o(1) and δr = δ1/r.

G S TAT I S T I C A L Q U E RY L O W E R B O U N D F O R S PA R S E S I G N A L
R E C O V E RY

In this section, we provide a ks
⋆

sample complexity lower bound for the single index model with
k-sparse signal when querying a VSTAT oracle. The statistical query (SQ) framework was developed
in Feldman et al. (2017) and for completeness, we present essential definition and results here.
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Definition G.1 (VSTAT Oracle). Let D⋆ be the input distribution over domain X . For a sample size
parameter n > 0, VSTAT(D⋆, n) oracle is the oracle that for any query function h : X → [0, 1],
returns a value v ∈ [p− τ, p+ τ ], where p = Ex∼D⋆ [h(x)] and τ = max{t−1,

√
p(1− p)/n}.

To define a key concept statistical query dimension, we first introduce the following notation.
Definition G.2 (Relative Pairwise Correlation). Given two distributions D1, D2 ∈ ∆(X ) and a
reference distribution D ∈ ∆(X ),

χD(D1, D2) = Ex∼D
[
D1(x)

D(x)
· D2(x)

D(x)

]
− 1.

Definition G.3 (Statistical Dimension). For sγ > 0, η ∈ (0, 1), domain X , a set of distributions D
over X , the statistical dimension SDA(D, sγ, η) of D with average correlation sγ and solution set
bound η is defined as the largest value m′ such that there exists a reference distribution D ∈ ∆(X )
and a finite set of distributions DD ⊆ D which can depend on the reference D with the following
property: for any solution D⋆ ∈ D,

(i) |DD \ {D⋆}| ≥ (1− η)|DD|;

(ii) for any subset D′
D ⊆ DD \ {D⋆} such that |D′

D| ≥ |DD \ {D⋆}|/m′,

1

|D′
D|2

∑
Di,Dj∈D′

D

χD(Di, Dj) ≤ sγ.

The above definition of the statistical dimension is a speical case of the original Definition 3.1 in
Feldman et al. (2017) where we consider a search problem of exact recovery of the ground truth D⋆.
Definition G.4 ((γ, β)-correlated Distributions). We say that a set of m distributions D =
{D1, . . . , Dm} over X is (γ, β)-correlated relative to a reference distribution D ∈ ∆(X ) if:

χD(Di, Dj) ≤
{
β for i = j ∈ [m]

γ for i ̸= j ∈ [m].

The following lemma borrowed from Lemma 3.10 of Feldman et al. (2017) provides a lower bound on
the statistical dimension in terms of the (γ, β)-correlation property of the set of candidate distributions.
Lemma G.5. Given a set of candidate distributions D that are (γ, β)-correlated with respect to a
reference distribution D, then for any γ′ > 0 and η > |D|−1,

SDA(D, γ + γ′, η) ≥ (|D| − 1)γ′

β − γ
.

The main result in the SQ framework is the following statement that relates the number of queries
required to the statistical dimension, which is borrowed from Theorem 3.2 of Feldman et al. (2017).
Lemma G.6. Let X be a domain and D be a set of candidate distributions over X . For any sγ > 0
and η ∈ (0, 1), Any randomized SQ algorithm that solves the problem of finding the input distribution
D⋆ ∈ D with probability at least α > η requires at least (α − η)/(1 − η) · SDA(D, sγ, η) calls to
the VSTAT(D⋆, (3sγ)−1) oracle.

Our strategy for proving the lower bound is to first construct a set of candidate distributions D that
are (ω(k−1), β)-correlated with respect to reference distribution Q with β = Dχ2(Pθ⋆ ∥Q) and
|D| exponentially large. Then by Lemma G.5 and Lemma G.6, we can derive the desired hardness
result. It remains to construct the set of candidate distributions D that are (ω(k−1), β)-correlated
with respect to Q. To this end, we introduce the following result on the packing number of k-sparse
vectors.
Lemma G.7 (Packing Number for k-Sparse Vectors). Define ρ(u, v) = |⟨u, v⟩|. Let packing number
Mρ(d, k, t) be the maximal cardinality of the set of k-sparse vectors in Sd−1 such that ρ(u, v) < t
for any u ̸= v in the set. We have for any t ∈ (1/k, 1) that

Mρ(d, k, t) ≥
1

2
· exp

(
min

{
(d− k)t2 , 3kt

}
8

)
.
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With all these ingredients in place, we are ready to prove the main theorem.

Proof of Theorem 5.4. Let us pick parameter κd ∈ ((log d)2, k/4) that scales with d and set

t ≥ max

{√
κd
d− k

,
κd
3k

}
∈ (1/k, 1/2). (G.1)

Note that t ∈ (1/k, 1/2) is able to hold by our choice of κd and condition that ω((log d)2) ≤ k ≤ d/2.
In this vein, we can pick D to be the maximal set of distributions Pθ for some k-sparse vectors
θ ∈ Sd−1 satisfying ρ(θ, θ′) < t for any θ ̸= θ′ in the set. It follows from plugging (G.1) into
Lemma G.7 that |D| ≥ exp(κd/8)/2, which is super polynomially large in d for our choice of κd.

Next, we configure the remaining parameters in Lemma G.5 and Lemma G.6. We choose the reference
distribution to be Q, in which the covariate z is independent of the output y. For β, we note that

χQ(Pθ,Pθ) = Dχ2(Pθ ∥Q) = O(1),

which is a constant independent of θ due to the rotational invariance of the likelihood ratio with
respect to θ. Thus, we define this quantity as B can just set β = Dχ2(Pθ⋆ ∥Q) = B. For γ, we note
that for any two Pθ,Pθ′ in D for θ ̸= θ′,

|χQ(Pθ,Pθ′)| =
∣∣∣∣Ex∼Q

[
Pθ(x)
Q(x)

· Pθ
′(x)

Q(x)

]
− 1

∣∣∣∣
=

∣∣∣∣∣∣Ex∼Q

[(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ, z⟩)
)
·
(
1 +

∑
s′≥s⋆

ζs′(y)hs′(⟨θ′, z⟩)
)]
− 1

∣∣∣∣∣∣
=
∑
s≥s⋆

EQ[ζs(y)
2] · |⟨θ, θ′⟩|s ≤

∑
s≥s⋆

EQ[ζs(y)
2] · ts ≤ EQ[ζs⋆(y)

2] · ts
⋆

+
ts

⋆+1

1− t
.

Here, the third equality follows from the fact that only when s = s′, the cross term
EQ[hs(⟨θ, z⟩)hs(⟨θ′, z⟩)] is non-zero. In particular, by the property of the Gaussian noise opera-
tor introduced in (B.3), we have that EQ[hs(⟨θ, z⟩)hs(⟨θ′, z⟩)] = ⟨θ, θ′⟩s < ts. For the last inequality
above, we simply use the fact that EQ[ζs(y)

2] ≤ 1 for any s (Damian et al., 2024) and t < 1. Now,
we conclude that

|χQ(Pθ,Pθ′)| ≤
(
EQ[ζs⋆(y)

2] +
t

1− t

)
· ts

⋆

≤
(
EQ[ζs⋆(y)

2] + 1
)
· ts

⋆

.

We thus set γ′ = γ =
(
EQ[ζs⋆(y)

2] + 1
)
· ts⋆ = Θ(ts

⋆

). Finally, we set η = 1/3 and α = 2/3. Then
all the conditions in both Lemma G.5 and Lemma G.6 are satisfied and we have

SDA(D, 2γ, 1/3) ≥ (|D| − 1)γ

β − γ
≥ |D|γ

2β
≥ γ exp(κd/8)

4β
.

Lastly, recall that we have |⟨θ, θ′⟩| ≤ t for any θ ̸= θ′ in D, which means that in order to achieve
alignment at least 2t with the true signal θ⋆, we need to exactly identify the distribution Pθ⋆ . Con-
sequently, by Lemma G.6, we have that any randomized SQ algorithm that solves the problem of
achieving alignment 2t with probability at least 2/3 requires at least γ exp(κd/8)/(8B) calls to the
VSTAT(Pθ⋆ , (6γ)−1) oracle.

Simplification of the lower bound. To simplify the lower bound, let us take κd = (log d)c/2 for
some constant c > 2. Thus, the alignment 2t is upper bounded by

2t ≤
{

rω(k−1) if k <
√
d

rω(d−1/2) if k ≥
√
d
,

where rω(·) hides some poly-logarithmic factors. The number of queries is still super polynomially
large in d. Following from (G.1), we can safely set

t =

{
(log d)c/k if (log d)2 < k <

√
d(log d)c√

(log d)c/d if
√
d(log d)c ≤ k ≤ d/2

,
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Hence, the number of sample

(6γ)−1 =
t−s

⋆

6
≃

 ks
⋆

(log d)cs⋆
if (log d)2 < k <

√
d(log d)c

ds
⋆/2

6(log d)cs⋆/2 if
√
d(log d)c ≤ k ≤ d/2

.

Hence, we have established the desired lower bound on the sample complexity.

Remark G.8 (Difference between CSQ and SQ lower bound). The following is a comparison between
our SQ lower bound and the CSQ lower bound in Vural & Erdogdu (2024):

• Difference: CSQ is constrained to operate on a specific set of functions, whereas SQ is not.
In this sense, CSQ creates a large family of functions with small average correlation, while
SQ constructs a large covering net over the support of θ as a hard instance, allowing for
arbitrary query forms.

• Similarity: Both methods rely on Bernstein concentration inequalities on the correla-
tion level for two random sparse vectors. This leads to the critical correlation threshold
max{1/

√
d, 1/k}, where d is the dimensionality and k is the sparsity level.

G . 1 P R O O F O F T E C H N I C A L L E M M A S F O R S Q L O W E R B O U N D

Proof of Lemma G.7. We use the probability method to prove the existence of a set of k-sparse vectors
in Sd−1 with the desired property. We i.i.d. sample m vectors ω(1), . . . , ω(m) from the following
distribution:

ω : ϕ ∼ Unif(Sk), ωj =


1√
k
, w.p. 1

2 if j ∈ ϕ
− 1√

k
, w.p. 1

2 if j ∈ ϕ
0, j /∈ ϕ.

, j ∈ [d].

where we recall that Sk is the set of all size-k subsets in [d]. Since each ω(i) is i.i.d. sampled, we can
equivalently view ⟨ω(i), ω(j)⟩ for i ̸= j as a random variable sampled from the following distribution:

⟨ω(i), ω(j)⟩ d= RX
k
, where RX = r1 + . . . , rX , X ∼ Hypergeometric(d, k, k), (G.2)

where r1, r2, . . . are i.i.d. Rademacher random variables. Let us consider random variable W dis-
tributed as

W
d
=
RY
k
, where RY = r1 + . . .+ rY , Y ∼ Binomial

(
k,

k

d− k

)
. (G.3)

We will invoke the following fact on the tail probability regarding the above two random variables.

Proposition G.9. For RX and RY defined in (G.2) and (G.3), respectively, we have that P(RX ≥
t) ≤ 2P(RY ≥ t) for any t > 1.

The proof of the proposition is deferred to the end of the proof. Thus, it suffices to study the tail
probability of W . Note that W d

=
∑k
j=1 wj where wj are i.i.d. sampled from

wj =


1
k , w.p. k

2(d−k)
− 1
k , w.p. k

2(d−k)
0, w.p. 1− k

d−k

, j ∈ [k].

where E[wj ] = 0 and E[w2
j ] = (k(d− k))−1. Hence, we can apply the Bernstein inequality to obtain

that for any t > 1/k,

P(⟨ω(i), ω(j)⟩ ≥ t) ≤ 2P(W ≥ t) ≤ 2 exp

(
− k(t/k)2/2

(k(d− k))−1 + t/(3k2)

)
= 2 exp

(
− k2t2

2k2/(d− k) + 2kt/3

)
≤ 2 exp

(
−min

{
(d− k)t2

4
,
3kt

4

})
.
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Suppose we randomly sample m i.i.d. ω(i) from the same distribution. Then the probability that all
such pair |⟨ω(i), ω(j)⟩| < t for t > 1/k is lower bounded by

P
(
|⟨ω(i), ω(j)⟩| < t,∀i ̸= j

)
≥ 1−m2 · 2P(⟨ω(i), ω(j)⟩ ≥ t)

≥ 1− 4m2 · exp
(
−min

{
(d− k)t2

4
,
3kt

4

})
.

Ensuring that the probability is nonzero will give us a valid construction of the setD. Therefore, there
must exist a D satisfying |⟨ω(i), ω(j)⟩| < t for any i ̸= j and with size

|D| ≥ 1

2
· exp

(
min

{
(d− k)t2 , 3kt

}
8

)
.

Hence, we complete the proof.

Next, we aim to present the proof of Proposition G.9. To proceed, let us introduce the definition of
stochastic dominance.

Definition G.10 (Stochastic Dominance). For any real-valued random variable X and Y , we say

that X is stochastically dominated by Y , denoted by X
s.t.
≤ Y , if P(X ≥ t) ≤ P(Y ≥ t) for every t.

The following result is from Theorem A, Chapter 2 of Szekli (2012).

Proposition G.11. We have X
s.t.
≤ Y if and only if there exists a coupling ( pX, pY ) with law( pX) =

law(X) and law(pY ) = law(Y ) such that pX ≤ pY almost surely.

Proposition G.12 (Theorem 1.1, Klenke & Mattner (2010)). Hypergeometric(d, k, k)
s.t.
≤

Binomial(k, k/(d− k)).

Another way to think of the problem is that Hypergeometric(d, k, k) corresponds to the number of
times a black ball is drawn when sampling for k times from an urn with d− k white ball and k black
ball without replacement, while Binomial(k, k/(d−k)) corresponds to sampling in the same urn but
with replacement. We claim the following fact on the tail probability of sum of Rademacher random
variables.

Proposition G.13 (Sum of Rademacher Random Variables). Let r1, r2, . . . be i.i.d. Rademacher
random variables. Let Rl = r1 + . . .+ rl for l = 1, 2, . . .. Let pl(·) be the probability mass function
of Bl. Then the following holds for any l = 1, 2, . . .:

1. pl is symmetric and supported on the set of odd integers if l is odd, and supported on the set
of even integers if l is even.

2. For i ∈ supp(pl) and i ≥ 0, pl(i) is a non-increasing function of i.

3. P(Rl ≥ t) ≤ P(Rl+2 ≥ t) for any t > 1.

4. P(Rl ≥ t) ≤ 2P(Rl+1 ≥ t) for any t > 1.

5. P(Rl ≥ t) ≤ 2P(Rl+l′ ≥ t) for any l ≥ 1 and l′ ≥ 1.

Proof of Proposition G.13. The first claim is immediate from the symmetry of the Rademacher
random variables and the fact that the sum of an odd number of Rademacher random variables is odd,
while the sum of an even number of Rademacher random variables is even. For the second claim, we
note that

pl(i) = 2−l ·
(

l

(i+ l)/2

)
, i ∈ supp(pl),

which is a non-increasing function for i ≥ 0. For the third claim, we let t⋆ = 2⌈t/2⌉ if l is even and
t⋆ = 2⌈(t− 1)/2⌉+ 1 if l is odd. In other words, t⋆ = min{τ ∈ supp(pl) : τ ≥ t}. Then we have

66



Published as a conference paper at ICLR 2025

that

P(Rl+2 ≥ t) = P(Rl ≥ t⋆ + 2) + P(Rl = t⋆) · P(rl+1 + rl+2 ≥ 0)

+ P(Rl = t⋆ − 2) · P(rl+1 + rl+2 = 2)

= P(Rl ≥ t⋆) + (P(Rl = t⋆ − 2)− P(Rl = t⋆)) · P(rl+1 + rl+2 = 2)

≥ P(Rl ≥ t⋆) = P(Rl ≥ t).
where in the first equality we use the fact that rl+1 + rl+2 is supported on {−2, 0, 2} and in the
second equality we use the symmetric property of the distribution of rl+1 + rl+2. The last inequality
follows from the monotonicity of the probability mass function of Rl for t⋆ − 2 ≥ 0 when t > 1. For
the forth claim, we similarly have that

P(Rl+1 ≥ t) ≥ P(Rl ≥ t⋆)− P(Rl = t⋆) · P(rl+1 = −1) ≥ 1

2
P(Rl ≥ t⋆) =

1

2
P(Rl ≥ t).

The last claim follows from a combination of the third and forth claims where

P(Rl+l′ ≥ t) ≥
1

2
P(Rl+2⌊l′/2⌋ ≥ t) ≥

1

2
P(Rl+2⌊l′/2⌋−2 ≥ t) ≥ . . . ≥

1

2
P(Rl ≥ t).

Hence, the proof is complete.

Next, we proceed to the proof of Proposition G.9.

Proof of Proposition G.9. By Proposition G.12 and Proposition G.11, there exists a coupling pX, pY

with law( pX) = law(X) and law(pY ) = law(Y ) such that pX ≤ pY almost surely where X ∼
Hypergeometric(d, k, k) and Y ∼ Binomial(k, k/(d− k)).
Consider i.i.d. Rademacher random variables r1, r2, . . . , rk. Let Rl = r1 + . . .+ rl for l = 1, 2, . . ..
Since R

xX
= r1 + . . . + r

xX
| pX

d
= 2Binomial( pX, 1/2) − L and R

pY = r1 + . . . + r
pY | pY

d
=

2Binomial(pY , 1/2)− L for the coupling ( pX, pY ) with pX ≤ pY , we consider the conditional random
variable

r
xX+i
| (R

xX+i−1
, pX, pY ) = r

xX+i
=

{
1, w.p. 1/2
−1, w.p. 1/2

, i = 1, 2, . . . , pY − pX

The equality holds by the i.i.d. property of these Rademacher random variables. From the distributional
perspective, the distribution of R

pY is obtained by conducting convolution with the Rademacher
distribution for pY − pX times on the distribution of R

xX
. Invoking Proposition G.13, we directly

conclude that P(R
pY ≥ t | pX, pY ) ≥ P(R

xX
≥ t | pX, pY )/2 for any t > 1 and pY ≥ pX . As pY ≥ pX

holds almost surely, by the law of total probability, we arrive at the conclusion that P(R
pY ≥ t) ≥

P(R
xX
≥ t)/2 for any t > 1.

H S U P P O R T I N G L E M M A S O N M O M E N T C A L C U L AT I O N S

Lemma H.1 (First moment). Under Assumption 4.1, for any s ≥ 0, it holds for any y ∈ R and
w, θ ∈ Sd−1 that

Ez∼Nd

[
ψ(y, ⟨w, z⟩)z · hs(⟨θ, z⟩)

]
=
√
s+ 1 · pψs+1(y) · ⟨w, θ⟩sw +

√
s · pψs−1(y) · ⟨w, θ⟩s−1θ,

in the L2 sense over the marginal distribution of y under Q.

Proof of Lemma H.1. For convenience, we denote ρ := ⟨w, θ⋆⟩. We claim the following identities:

Ez∼Nd
[ψ(y, w⊤z)z · hs(θ⋆⊤z)]

= Ez∼Nd

[
ψ(y, w⊤z) · θ⋆⊤z · hs(θ⋆⊤z)

]
· θ⋆ + Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · P⊥

θ⋆z
]

(H.1)

= Ez∼Nd

[
ψ(y, w⊤z) · θ⋆⊤z · hs(θ⋆⊤z)

]
︸ ︷︷ ︸

(I)

·θ
⋆ − ρw
1− ρ2

+ Ez∼Nd

[
ψ(y, w⊤z) · w⊤z · hs(θ⋆⊤z)

]
︸ ︷︷ ︸

(II)

·w − ρθ
⋆

1− ρ2
.
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Here, in the first identity, we project z in the direction of θ⋆ and the orthogonal complement of θ⋆,
where P⊥

θ⋆ = I − θ⋆θ⋆⊤ is the projection operator onto the orthogonal complement of θ⋆. To see how

the second identity holds, we first look at the second term Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · P⊥

θ⋆z
]
.

For each direction v orthogonal to both θ⋆ and w, we have

Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · ⟨P⊥

θ⋆z, v⟩
]
= Ez∼Nd,x∼N

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · x

]
= 0.

Also, by projection P⊥
θ⋆z is always orthogonal to θ⋆. Thus, the only direction left for consideration is

v = (w − ρθ⋆)/
√
1− ρ2, for which we have

Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · ⟨P⊥

θ⋆z, v⟩
]
· v

= Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) ·

w⊤z − ρθ⋆⊤z√
1− ρ2

]
· w − ρθ

⋆√
1− ρ2

= Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · (w⊤z − ρθ⋆⊤z)

]
· w − ρθ

⋆

1− ρ2
. (H.2)

Plugging Eq. (H.2) into the second term of line 2 in Eq. (H.1), we thus have the last identity in
Eq. (H.1). Next, we analyze terms (I) and (II) in Eq. (H.1). For our convenience, we define Uρ as the
Gaussian noise operator such that

Uρψ(y, x) = Ex′∼N

[
ψ(y, ρx+

√
1− ρ2x′)

]
.

For term (I), we have by the definition of Uρ that

(I) = Ex∼N [Uρψ(y, x) · x · hs(x)]
= Ez∼Nd

[√
s+ 1 ·Uρψ(y, x) · hs+1(x) +

√
s ·Uρψ(y, x) · hs−1(x)·

]
L2(Q)
=
√
s+ 1 · pψs+1(y) · ρs+1 +

√
s · pψs−1(y) · ρs−1. (H.3)

where the second line follows from the recurrence relation of the Hermite polynomials in Eq. (B.1),
and the last line follows from the property of the Gaussian noise operator in Eq. (B.3). Similarly for
term (II), we have

(II) = Ex∼N [Uρ (ψ(y, x)x) · hs(x)]
L2(Q)
= ρs · Ex∼N [ψ(y, x) · x · hs(x)]

L2(Q)
= ρs ·

(√
s+ 1 · pψs+1(y) +

√
s · pψs−1(y)

)
, (H.4)

where in the last line we borrow the calculation in Eq. (H.3) by letting ρ = 1. Plugging Eq. (H.3)
and (H.4) into Eq. (H.1), we hence have

(H.1)
L2(Q)
=

(√
s+ 1 · pψs+1(y) · ρs+1 +

√
s · pψs−1(y) · ρs−1

)
· θ

⋆ − ρw
1− ρ2

+ ρs ·
(√

s+ 1 · pψs+1(y) +
√
s · pψs−1(y)

)
· w − ρθ

⋆

1− ρ2

=
√
s+ 1 · pψs+1(y) · ρsw +

√
s · pψs−1(y) · ρs−1θ⋆,

which completes the proof.

An implication of the previous lemma is that

EQ[hs⋆(⟨θ⋆, z⟩) · σ′(⟨z, θ⟩) · ⟨z, θ⋆⟩] = s · pσ(s⋆) · ⟨θ⋆, θ⟩s
⋆−1 +

√
(s+ 1)(s+ 2) · pσ(s⋆+2) · ⟨θ⋆, θ⟩s

⋆+1,

where we take pσ(s) as the s-th normalized Hermite coefficient of σ. Here, we take ψ(y, x) as σ′(x)

and thus pψs(y) =
√
s+ 1 · pσ(s+1).
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Lemma H.2 (Decomposition of first order moment). Suppose that ψ follows Assumption 4.1 and

g =
1

nL

n∑
i=1

L∑
l=1

(
ψ(yi, ⟨wl, zi⟩) · zi − pψ1(yi) · wl

)
,

where (zi, yi)
i.i.d.∼ Pθ⋆ and {wl}l≤L is fixed. Then it holds that

EPθ⋆
[g] =

∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L

L∑
l=1

⟨wl, θ⋆⟩s−1 · θ⋆

+
∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl.

Proof of Lemma H.2. Applying a change of measure from Pθ⋆ to Q and invoking Eq. (2.2), we get

EPθ⋆
[g] =

1

L

L∑
l=1

EPθ⋆

[
ψ(y, ⟨wl, z⟩) · z − pψ1(y) · wl

]
=

1

L

L∑
l=1

EQ

[
ψ(y, ⟨wl, z⟩)z ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)
− pψ1(y)wl

]
, (H.5)

Note that for s = 0, we have for the first term in the summation of Eq. (H.5) that

L−1
L∑
l=1

EQ[ψ(y, ⟨wl, z⟩)z] = EQ[ pψ1(y)] ·
1

L

L∑
l=1

wl,

which is cancelled out by the debiasing term in the algorithm. Applying the result of Lemma H.1 to
the remaining terms in Eq. (H.5) yields

EPθ⋆
[g] =

∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl

+
∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L

L∑
l=1

⟨wl, θ⋆⟩s−1 · θ⋆, (H.6)

where the EQ[ pψ1(y)] · 1L
∑L
l=1 wl term from Lemma H.1 with s = 0 is cancelled out by the debiasing

term in the algorithm.

Lemma H.3 (Second moment on nice event). Suppose ψ : R × R → R satisfies the quadruple-
integrable and high-pass assumptions in Assumption 4.1. Let s⋆ be the generative exponent defined
in Definition 2.1. Suppose EQ[ζs(y)

2] ≤ C for some universal C = O(1) and for all s ≥ s⋆. For any
w,w′, θ⋆, v ∈ Sd−1 where either v = θ⋆ or ⟨v, θ⋆⟩ = 0 in the non-sparse case, and either v = ej for
j ∈ supp(θ⋆) or v = ej for j /∈ supp(θ⋆) in the sparse case, suppose that

max{|⟨v, w⟩|, |⟨v, w′⟩|} ≤ ϵ0, max{|⟨θ⋆, w⟩|, |⟨θ⋆, w′⟩|} ≤ ϵ, |⟨w,w′⟩| ≤ ϵ1
for some ϵ, ϵ0, ϵ1 such that 4es⋆ϵ < 1/2. Then, we have for s⋆ ≥ 2 that

EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2 ·

(
1 +

∞∑
s=s⋆

ζs(y)hs(⟨θ⋆, z⟩)

)]

≲ ϵs
⋆−1

1 ·

(
1 +

ϵ2

ϵ1
+

(
ϵ2

ϵ1

)s⋆−1

· ϵ+ 1(v ⊥ θ⋆) ·
(
ϵ2

ϵ1

)s⋆−2

· ϵ
2
0

ϵ1
· (ϵ2 + ϵ · 1(s⋆ ≥ 4))

)
,

and for s⋆ = 1, the bound is O(1). Here, ≲ hides constants that only depend on s⋆, EQ[ψ(x, y)4]
and C.
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Proof. Using the results from Proposition I.1, we have that

hs(⟨θ⋆, z⟩)⟨v, z⟩2 =
√

(s+ 2)(s+ 1) · hs+2(z)[(θ
⋆)⊗s ⊗ v⊗2] + hs(z)[(θ

⋆)⊗s] (H.7)

+ 2s · hs(z)[(θ⋆)⊗s−1 ⊗ v]⊤ · ⟨θ⋆, v⟩+
√
s(s− 1) · hs−2(z)[(θ

⋆)⊗s−2] · ⟨θ⋆, v⟩2.
Thus, we only need to focus on these degree terms in ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩). Our goal is to
compute the following quantity, which we denoted by F :

F = EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2 ·

(
1 +

∞∑
s=s⋆

ζs(y)hs(⟨θ⋆, z⟩)

)]
= EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2

]
+

∞∑
s=s⋆

∣∣EQ
[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2hs(⟨θ⋆, z⟩)

]∣∣ . (H.8)

Here, for the term corresponding to s = 0 in Eq. (H.8), we plug in Eq. (H.7) and have by Lemma I.3
that∣∣EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2

]∣∣
=
∣∣∣EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)(

√
2 · h2(z)[v

⊗2] + 1)
]∣∣∣

≲ ϵ
(s⋆−2)∨0
1 · ϵ2∧c00 · ϵ(2−c0)∨0 + ϵs

⋆−1
1 ≲ ϵ

(s⋆−2)∨0
1 · ϵ20 + ϵs

⋆−1
1 ≲ 1(s⋆ = 1) + ϵs

⋆−2
1 ϵ20 + ϵs

⋆−1
1 .

Here, to use Lemma I.3, for h2(z)[v
⊗2] we take test tensor T2 = v⊗2 and set c0 = 2. The last line

also holds by using the Cauchy-Schwarz inequality for EQ[|ζs(y)| · ψ(y, x)2] ≤ EQ[|ζs(y)|2]1/2 ·
EQ[ψ(y, x)

4]1/2 ≤ EQ[ψ(y, x)
4]1/2 = O(1). As for the case s⋆ = 1, we already have a constant

outside, and noting that the second moment is at most O(1) due to the quadruple-integrable as-
sumption, it suffices to consider in the following s⋆ ≥ 2. For the second part of Eq. (H.8), we
can split the expectation according to Eq. (H.7). For the first term in Eq. (H.7) which corresponds
to
√

(s+ 2)(s+ 1) · hs+2(z)[(θ
⋆)⊗s ⊗ v⊗2], we take test tensor Ts = v⊗2 ⊗ (θ⋆)⊗(s−2) with

c0 = 2, s0 = s⋆ + 2 and have by Proposition I.4 that∣∣∣∣∣
∞∑
s=s⋆

√
(s+ 2)(s+ 1) · EQ

[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs+2(z)[(θ

⋆)⊗s ⊗ v⊗2]
]∣∣∣∣∣

≲ 1(s0 ≤ c0) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2s

⋆)∨s0−c0

+ 1(s0 ≤ 2(s⋆ − 1)) ·
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ ϵ20 · ϵ2s
⋆−2 + 1(s⋆ ≥ 4) ·

(
ϵs

⋆−2
1 · ϵ20 · ϵ+ ϵ20 · ϵ2s

⋆−3
)
.

For the second term hs(z)[(θ
⋆)⊗s], we take test tensor Ts = (θ⋆)⊗s with c0 = 0, s0 = s⋆ and have

by Proposition I.4 that∣∣∣∣∣
∞∑
s=s⋆

EQ
[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[(θ⋆)⊗s]

]∣∣∣∣∣
≲ ϵc00 · ϵ(2s

⋆)∨s0−c0 +
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ ϵ2s
⋆

+ ϵs
⋆−1

1 · ϵ+ ϵ2s
⋆−1 ≲ ϵs

⋆−1
1 · ϵ+ ϵ2s

⋆−1.

For the third term 2s · hs(z)[(θ⋆)⊗s−1 ⊗ v]⊤ · ⟨θ⋆, v⟩, we take test tensor Ts = v ⊗ (θ⋆)⊗s−1 with
c0 = 1, s0 = s⋆ and have by Proposition I.4 that∣∣∣∣∣

∞∑
s=s⋆

2s · EQ
[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[(θ⋆)⊗s−1 ⊗ v]⊤

]∣∣∣∣∣
≲ ϵc00 · ϵ(2s

⋆)∨s0−c0 +
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ ϵ0 · ϵ2s
⋆−1 + ϵs

⋆−2
1 · ϵ0 · ϵ+ ϵ0 · ϵ2s

⋆−2 ≲ ϵs
⋆−2

1 · ϵ0 · ϵ+ ϵ0 · ϵ2s
⋆−2.
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For the last term
√
s(s− 1) · hs−2(z)[(θ

⋆)⊗s−2] · ⟨θ⋆, v⟩2, we take test tensor Ts = (θ⋆)⊗s with
c0 = 0, s0 = s⋆ − 2 and have by Proposition I.4 that∣∣∣∣∣

∞∑
s=s⋆

√
s(s− 1) · EQ

[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs−2(z)[(θ

⋆)⊗s−2] · ⟨θ⋆, v⟩2
]∣∣∣∣∣

≲ 1(s⋆ = 2) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2s

⋆)∨s0−c0

+
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ 1(s⋆ = 2)ϵ1 + ϵ2s
⋆

+ ϵs
⋆−1

1 · ϵ+ ϵ2s
⋆−1 ≲ 1(s⋆ = 2)ϵ1 + ϵs

⋆−1
1 · ϵ+ ϵ2s

⋆−1.

Summing up the above terms, we have that for s⋆ ≥ 2,

F ≲
(
ϵs

⋆−2
1 ϵ20 + ϵs

⋆−1
1

)
+
(
ϵ20 · ϵ2s

⋆−2 + 1(s⋆ ≥ 4) ·
(
ϵs

⋆−2
1 · ϵ20 · ϵ+ ϵ20 · ϵ2s

⋆−3
))

+
(
ϵs

⋆−1
1 · ϵ+ ϵ2s

⋆−1
)
+
(
ϵs

⋆−2
1 · ϵ0 · ϵ+ ϵ0 · ϵ2s

⋆−2 + 1(s⋆ = 2)ϵ1 + ϵs
⋆−1

1 · ϵ+ ϵ2s
⋆−1
)
1(v = θ⋆)

≲ ϵs
⋆−2

1 ϵ20 + ϵs
⋆−1

1 + ϵ20 · ϵ2s
⋆−2 + 1(s⋆ ≥ 4) · ϵ20 · ϵ2s

⋆−3 + ϵ2s
⋆−1

+
(
ϵs

⋆−2
1 · ϵ0 · ϵ+ ϵ0 · ϵ2s

⋆−2
)
1(v = θ⋆).

If v = θ⋆, then we additionally have ϵ0 = ϵ, which simplifies the above bound to

F | s⋆≥2,v=θ⋆ ≲ ϵs
⋆−2

1 ϵ2 + ϵs
⋆−1

1 + ϵ2s
⋆−1 = ϵs

⋆−1
1 ·

(
1 +

ϵ2

ϵ1
+

(
ϵ2

ϵ1

)s⋆−1

· ϵ

)
.

For v ⊥ θ⋆, we have that

F | s⋆≥2,v⊥θ⋆ ≲ ϵs
⋆−2

1 ϵ20 + ϵs
⋆−1

1 + ϵ20 · ϵ2s
⋆−2 + 1(s⋆ ≥ 4) · ϵ20 · ϵ2s

⋆−3 + ϵ2s
⋆−1

≲ ϵs
⋆−1

1 ·

(
1 +

ϵ2

ϵ1
+

(
ϵ2

ϵ1

)s⋆−1

· ϵ+
(
ϵ2

ϵ1

)s⋆−2

· ϵ
2
0

ϵ1
· (ϵ2 + ϵ · 1(s⋆ ≥ 4))

)
.

Where for s⋆ = 1, we have F |s⋆=1 ≲ 1. Hence, we complete the proof.

Lemma H.4. For polarization level γ = o(1), take the polarized random vector

w =
γe1 + ξ

∥γe1 + ξ∥2
, where ξ ∼ Unif(Sd−1),

where e1 = (1, 0, . . . , 0)⊤ is the first standard basis vector in Rd. Let θ⋆ = (ρ,
√

1− ρ2, 0, . . . , 0) ∈
Sd−1 be a fixed direction. Then, we have that

E[⟨θ⋆, w⟩s] ≃


(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s
if s is even

ργ
(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s−1

if s is odd.

Proof of Lemma H.4. For w, we have by Lemma I.9 that the first moment is given by

E[w] = C(e1, γ) · γ · e1 ≃ γe1,

and the second moment is controlled by

E[ww⊤] =


C(2e1, γ) · (γ + d−1/2)2 0 · · · 0

0
...
0

C(2e2, γ)d
−1 · Id−1

 ≾


(γ + d−1/2)2 0 · · · 0

0
...
0

d−1 · Id−1

.
For ⟨θ⋆, w⟩s · w, we look at coordinate τ of w, and the first moment is given by

E [⟨θ⋆, w⟩s · wτ ] = E
[
(ρw1 +

√
1− ρ2w2)

swτ

]
.
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Note that if τ ̸= 1, 2, then the expectation is zero. For more generality, let us take r1, r2 ∈ N. We
study the following expectation:
E [⟨θ⋆, w⟩s · wr11 w

r2
2 ]

=

s∑
j=0

(
s

j

)
ρj
√
1− ρ2

s−j
E
[
wj+r11 ws−j+r22

]
· 1(s− j + r2 even)

=



⌊s/2⌋∑
j=0

(
s

2j

)
ρ2j
√

1− ρ2
s−2j

E
[
w2j+r1

1 ws−2j+r2
2

]
if s+ r2 is even,

⌊(s−1)/2⌋∑
j=0

(
s

2j + 1

)
ρ2j+1

√
1− ρ2

s−2j−1
E
[
w2j+1+r1

1 ws−2j−1+r2
2

]
if s+ r2 is odd.

Here, the first equality holds by noting that each term in the sum is zero if the degree on w2 is odd
due to the symmetry in the distribution of w2. Next, we invoke Lemma I.9 for the moment as
E [⟨θ⋆, w⟩s · wr11 w

r2
2 ]

≃



if s+ r2 is even:
⌊s/2⌋∑
j=0

(
s

2j

)
ρ2j
√

1− ρ2
s−2j

γ1(r1 odd)
(
γ + d−1/2

)2j+2⌊r1/2⌋ (
d−1/2

)s−2j+r2

if s+ r2 is odd:
⌊(s−1)/2⌋∑

j=0

(
s

2j + 1

)
ρ2j+1

√
1− ρ2

s−2j−1
γ1(r1 even)

(
γ + d−1/2

)2j+2⌊ r1+1
2 ⌋ (

d−1/2
)s−2j−1+r2

≃



if s+ r2 is even:√
1− ρ2

1(s odd)
γ1(r1 odd)

(
γ +

1√
d

)2⌊ r1
2 ⌋(

1√
d

)r2+1(s odd) (
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)2⌊ s
2 ⌋

if s+ r2 is odd:

ρ
√
1− ρ2

1(s even)
γ1(r1 even)

(
γ +

1√
d

)2⌊ r1+1
2 ⌋(

1√
d

)r2+1(s even) (
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)2⌊ s−1
2 ⌋

Here, the symbol ≃ conceals some constant factors that are governed by upper and lower bounds
dependent on s only. Using the above calculation, we have We can specialize the above results to the
case r1 = r2 = 0 and obtain

E[⟨θ⋆, w⟩s] ≃


(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s
if s is even

ργ
(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s−1

if s is odd,

which completes the proof.

I T E C H N I C A L R E S U LT S

I . 1 T E C H N I C A L R E S U LT S F O R H E R M I T E T E N S O R

Proposition I.1. Let s ∈ N0. For any z ∈ Rd, we have

zizjhs(z) = Sym
(√

(s+ 2)(s+ 1) · hs+2(z)[ei ⊗ ej ] + δijhs(z) + s · hs(z)[ej ]⊗ ei
+ s · hs(z)[ei]⊗ ej +

√
s(s− 1) · hs−2(z)⊗ ei ⊗ ej

)
,

where we define h−1(z) and h−2(z) to be all zero tensors of any conformable shape.

Proof of Proposition I.1. Note that each element of hs(θ⋆⊤z)zz⊤ must lie in the polynomial space
with degree at most s+ 2, i.e., Rs+2[z]. We take a test function F : Rd → R such that R ∈ Rs+2[z].
Thus, we can write down the inner product of F and hs(θ⋆⊤z)zizj for i, j ∈ [d] as

Ez∼Nd
[F (z)hs(θ

⋆⊤z)zizj ] = Ez∼Nd
[F (z)zizj · hs(z)[(θ⋆)⊗s]],
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where in the equation, we use (B.4) to rewrite the Hermite polynomial in terms of the Hermite tensor.
It suffices to understand the tensor F (z)zizjhs(z). Note that F is differentiable to any order, and the
tensor obtained by differentiating F to any order is square-integrable with respect to the standard
normal distribution. By the Stein’s lemma for Hermite tensor (B.5), we have√
s! · Ez∼Nd

[F (z)zizjhs(z)] = Ez∼Nd
[∇s(F (z)zizj)]

= Sym

(
Ez∼Nd

[∇sF (z)zizj ] + sEz∼Nd
[∇s−1F (z)∇(zizj)] +

s(s− 1)

2
Ez∼Nd

[∇s−2F (z)∇2(zizj)]

)
= Sym

(
Ez∼Nd

[∇sF (z)δij ] + Ez∼Nd
[∇s+2F (z)[ei ⊗ ej ]] + sEz∼Nd

[∇sF (z)[ej ]⊗ ei]
+ sEz∼Nd

[∇sF (z)[ei]⊗ ej ] + s(s− 1)Ez∼Nd
[∇s−2F (z)⊗ ei ⊗ ej ]

)
.

(I.1)
Here, the “Sym” operation symmetrizes the tensor in the parentheses. The last equality holds by the
following calculations. For Ez∼Nd

[∇sF (z)zizj ], we have

Ez∼Nd
[∇sF (z)zizj ] = Sym

(
Ez∼Nd

[∇sF (z)δij ] + Ez∼Nd
[∇s+1F (z)[ej ]zi]

)
= Sym

(
Ez∼Nd

[∇sF (z)δij ] + Ez∼Nd
[∇s+2F (z)[ei ⊗ ej ]]

)
,

where we use the Stein’s lemma for both equalities. For Ez∼Nd
[∇s−2F (z)∇2(zizj)], we have

Sym
(
Ez∼Nd

[∇s−1F (z)∇(zizj)]
)
= Sym

(
Ez∼Nd

[zj∇s−1F (z)⊗ ei + zi∇s−1F (z)⊗ ej ]
)

= Sym (Ez∼Nd
[∇sF (z)[ej ]⊗ ei] + Ez∼Nd

[∇sF (z)[ei]⊗ ej ]) .
Now, for each derivative of F in (I.1), we have by the Stein’s lemma stated in (B.5) that
Ez∼Nd

[∇sF (z)] =
√
s! · Ez∼Nd

[F (z)hs(z)], which gives us

Ez∼Nd
[F (z)zizjhs(z)] = Ez∼Nd

[
F (z) · Sym

(
δijhs(z) +

√
(s+ 2)(s+ 1) · hs+2(z)[ei ⊗ ej ]

+ s · hs(z)[ej ]⊗ ei + s · hs(z)[ei]⊗ ej +
√
s(s− 1) · hs−2(z)⊗ ei ⊗ ej

)]
.

Since F ∈ Rs+2[z] is arbitrary, we conclude that

zizjhs(z) = Sym
(√

(s+ 2)(s+ 1) · hs+2(z)[ei ⊗ ej ] + δijhs(z) + s · hs(z)[ej ]⊗ ei
+ s · hs(z)[ei]⊗ ej +

√
s(s− 1) · hs−2(z)⊗ ei ⊗ ej

)
.

The proof is completed by further taking the tensor inner product operation with respect to (θ⋆)⊗s on
both side.

Proposition I.2. Let w,w′ ∈ Sd−1 and s ∈ N0. We have
E [hi(⟨w, z⟩)hj(⟨w′, z⟩) · hs(z)]

=

s∑
τ=0

1(j = i+ s− 2τ, i ≥ τ) ·
(
s

τ

)√
i!j!

s!((i− τ)!)2
· ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗s−τ).

The above term is equal to(
s

(i− j + s)/2

)
·
√
i!j!

s!
· ⟨w,w

′⟩(i+j−s)/2

((i+ j − s)/2)!
· Sym

(
w⊗(i−j+s)/2 ⊗ w′⊗(j−i+s)/2)

.

if |i− j| ≤ s ≤ i+ j and s ≡ i− j mod 2. Otherwise the expectation gives the zero tensor.

Proof of Proposition I.2. By the Stein’s lemma for the Hermite tensor (B.5), we have

E [hi(⟨w, z⟩)hj(⟨w′, z⟩) · hs(z)] =
1√
s!
· E [∇s(hi(⟨w, z⟩)hj(⟨w′, z⟩))]

=
1√
s!
·
s∑

τ=0

(
s

τ

)
E
[
Sym

(
∇τhi(⟨w, z⟩)⊗∇s−τhj(⟨w′, z⟩)

)]
=

1√
s!
·
s∑

τ=0

(
s

τ

)√
i!j!

(i− τ)!(j − s+ τ)!
E
[
hi−τ (⟨w, z⟩)⊗ hj−s+τ (⟨w′, z⟩) · Sym

(
w⊗τ ⊗ w′⊗s−τ)]

=

s∑
τ=0

1(j = i+ s− 2τ, i ≥ τ) ·
(
s
τ

)
(i− τ)!

√
i!j!

s!
⟨w,w′⟩i−τSym

(
w⊗τ ⊗ w′⊗s−τ).

73



Published as a conference paper at ICLR 2025

the condition can be translated into |i− j| ≤ s ≤ i+ j and s ≡ i− j mod 2. Then, we can take
τ = (i− j + s)/2, s− τ = (j − i+ s)/2, i− τ = (i+ j − s)/2 to obtain the desired result.

Lemma I.3. Let ψ : R → R such that ψ2 ∈ L2(N ). Suppose that ψ is high-pass in the sense
that pψi = 0 for any i < s⋆ − 1 for some s⋆ ∈ N0. For w,w′ ∈ Sd−1, take a series of test tensor
{Ts = v1 ⊗ v2 ⊗ . . . ⊗ vs ∈ (Rd)⊗s}∞s=0 such that supi>c0{|⟨w, vi⟩| ∨ |⟨w

′, vi⟩|} ≤ ϵ for some
ϵ ∈ (0, 1/2) and integer c0 ∈ N0. Let

ϵ0 := max
1≤i≤c0

{|⟨w, vi⟩| ∨ |⟨w′, vi⟩|}.

Suppose that |⟨w,w′⟩| ≤ ϵ1. Then we have for any s ∈ N0 that∣∣Ez∼Nd

[
ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]

]∣∣ ≤ 4∥ψ∥22 (4es⋆)
s/2√

s+ s⋆ · ϵ(s
⋆−1−⌊s/2⌋)∨0

1 · ϵs∧c00 · ϵ(s−c0)∨0,

where ∥ψ∥22 = Ex∼N [ψ2(x)].

Proof of Lemma I.3. As ψ(x)ψ(x′) is also square-integrable, we are able to extract the s-th tensor
coefficient of the Hermite expansion of ψ(x)ψ(x′) as
Ez∼Nd

[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)]

= Ez∼Nd

 ∞∑
i=0

∞∑
j=0

pψi pψjhi(⟨w, z⟩)hj(⟨w′, z⟩) · hs(z)


=

∞∑
i=0

∞∑
j=0

s∑
τ=0

1(j = i+ s− 2τ, i ≥ τ) ·
(
s

τ

)√
i!j!

s!((i− τ)!)2
pψi pψj · ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗s−τ)

=

∞∑
i=0

s∑
τ=0

1(i ≥ τ)
(
s

τ

)√
1

s!

√
i!(i+ s− 2τ)!

((i− τ)!)2
pψi pψi+s−2τ · ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗(s−τ))

,

where the last second identity follows from Proposition I.2, and in the last line we restrict the condition
j = i+ s− 2τ . Note that the double sums are interchangeable only if the series converges for each τ .
However, by our condition that ⟨w,w′⟩ ≤ 1− ϵ for some ϵ > 0, then for each τ , we have for any test
tensor T = v1 ⊗ v2 ⊗ . . .⊗ vs with ∥vi∥2 = 1 that∣∣∣∣∣

∞∑
i=τ

√
i!(i+ s− 2τ)!

((i− τ)!)2
pψi pψi+s−2τ · ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗(s−τ))

[T ]

∣∣∣∣∣
≤

∞∑
i=τ

(i+ s)s/2 ·
∣∣∣ pψi pψi+s−2τ

∣∣∣ · (1− ϵ)i−τ <∞,
where we note that 1− ϵ will dominate the polynomial growth of (i+ s)s/2, and also using the fact
that pψi pψi+s−2τ is uniformly bounded by

∑∞
i=0

pψ2
i <∞. Now, we interchange the double sum and

apply the high-pass assumption and have that
Ez∼Nd

[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[T ]]

=

s∑
τ=0

(
s

τ

)√
1

s!

∞∑
i=i0

√
i!(i+ s− 2τ)!

((i− τ)!)2
pψi pψi+s−2τ · ⟨w,w′⟩i−τ︸ ︷︷ ︸
(I)

·Sym
(
w⊗τ ⊗ w′⊗(s−τ))

[T ].

where we define
i0 = max {(s⋆ − 1), (s⋆ − 1 + 2τ − s), τ}

Note that the tensor product part is independent of i. Hence, we pull out term (I) and have

(I) =

√
i0!(i0 + s− 2τ)!

((i0 − τ)!)2
pψi0

pψi0+s−2τ ⟨w,w′⟩i0−τ

± ∥ψ∥22 · ⟨w,w′⟩i0−τ+1

 ∞∑
j=0

(j + s+ s⋆)(j + s+ s⋆ − 1) · · · (j + s⋆ + ⌈(s+ 1)/2⌉)|⟨w,w′⟩|j
 .
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Here, the first term is given by splitting out the term with i = i0 from the summation, and the second
term is for i ≥ i0 + 1. For the second term, we have the following argument:
max{i0, i0 + s− 2τ} = (s⋆ − 1) ∨ (s⋆ − 1 + 2τ − s) ∨ τ ∨ (s⋆ − 1 + s− 2τ) ∨ (s⋆ − 1) ∨ (s− τ)

= (s⋆ − 1 + 2τ − s) ∨ (s⋆ − 1 + s− 2τ) ∨ τ ∨ (s− τ)
= (s⋆ − 1 + |2τ − s|) ∨ (|τ − s/2|+ s/2) ≤ s⋆ + s− 1.

Hence, we then have that for any i ≥ i0 + 1 with j = i− (i0 + 1) that
max{i, i+ s− 2τ} ≤ s⋆ + s+ j.

Therefore, for any i ≥ i0 + 1, we have√
i!(i+ s− 2τ)!

((i− τ)!)2
=
√
i(i− 1) · · · (i− τ + 1) ·

√
(i+ s− 2τ)(i+ s− 2τ − 1) · · · (i− τ + 1)

≤
√

(j + s⋆ + s)(j + s⋆ + s− 1) · · · (j + s⋆ + 1)

≤ (j + s⋆ + s)(j + s⋆ + s− 1) · · · (j + s⋆ + ⌈(s+ 1)/2⌉).
To characterize the second term, we use Proposition J.5 where we have conditions |⟨w,w′⟩| < 1/2
and s⋆ + s ≥ 2⌊(s+ 1)/2⌋ − 1 satisfied, which gives us

∞∑
j=0

(j + s+ s⋆)(j + s+ s⋆ − 1) · · · (j + s⋆ + ⌈(s+ 1)/2⌉)|⟨w,w′⟩|j

≤ 2(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉) · 1

1− |⟨w,w′⟩|
≤ 4(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉).

Combining these results, we have for (I) that

(I) =

√
i0!(i0 + s− 2τ)!

((i0 − τ)!)2
pψi0

pψi0+s−2τ ⟨w,w′⟩i0−τ ± ∥ψ∥22 · 4(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉) · ⟨w,w′⟩i0−τ+1

= C(s⋆, s, τ, ⟨w,w′⟩) · ⟨w,w′⟩i0−τ ,
where we define C(s⋆, s, τ, ⟨w,w′⟩) = (I)/⟨w,w′⟩i0−τ as the coefficient, which is given by

C(s⋆, s, τ, ⟨w,w′⟩) =

√
i0!(i0 + s− 2τ)!

((i0 − τ)!)2
pψi0

pψi0+s−2τ ± ∥ψ∥22 · 4(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉) · |⟨w,w′⟩|,

and also enjoys the following upper bound
|C(s⋆, s, τ, ⟨w,w′⟩)| ≤ ∥ψ∥22 · 4(s+ s⋆ − 1) · · · (s⋆ − 1 + ⌈(s+ 1)/2⌉). (I.2)

Here, the upper bound can be obtained by noting that the previous upper bound for terms i ≥ i0 + 1
can be also applied to i ≥ i0.

Case s ≥ 1. Let us plug in test tensor Ts into the expression, which gives us
|Ez∼Nd

[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]]|

≤
s∑

τ=0

(
s

τ

)√
1

s!
|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|i0−τ ·

∣∣∣Sym(w⊗τ ⊗ w′⊗(s−τ))
[Ts]
∣∣∣

≤
s∑

τ=0

(
s

τ

)√
1

s!
|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|i0−τ ·

 1

s!

∑
π∈Πs

τ∏
i=1

|⟨w, vπ(i)⟩|
s∏

j=τ+1

|⟨w′, vπ(j)⟩|

 ,

where Πs denotes the set of all permutations of s elements. We further have this term bounded by
|Ez∼Nd

[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]]| (I.3)

≤
s∑

τ=0

(
s

τ

)√
1

s!
max
0≤τ≤s

|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|i0−τ · ϵs∧c00 · ϵ(s−c0)∨0

≤ 2s√
s!

max
0≤τ≤s

|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|(s
⋆−1−⌊s/2⌋)∨0 · ϵs∧c00 · ϵ(s−c0)∨0.

75



Published as a conference paper at ICLR 2025

where the last inequality follows from the following fact

i0 − τ = (s⋆ − 1− τ) ∨ (s⋆ − 1 + τ − s) ∨ 0 = (s⋆ − 1− s/2 + |τ − s/2|) ∨ 0

≥ (s⋆ − 1− s/2 + 1(s odd)/2) ∨ 0 = (s⋆ − 1− ⌊s/2⌋) ∨ 0.

Plugging (I.2) into (I.3), and by noting that |⟨w, vi⟩| ∨ |⟨w′, vi⟩| ≤ ϵ for any vi ∈ {θ⋆, v} and
|⟨w,w′⟩| ≤ ϵ, we have that

|Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]]|

≤ 2s√
s!
∥ψ∥22 · 4(s+ s⋆ − 1) · · · (s⋆ − 1 + ⌈(s+ 1)/2⌉) · ϵ(s

⋆−1−⌊s/2⌋)∨0
1 · ϵs∧c00 · ϵ(s−c0)∨0

≤
(
4e(s+ s⋆ − 1)

s

)s/2
·
√
s+ s⋆ − 1 · 4∥ψ∥22 · ϵ

(s⋆−1−⌊s/2⌋)∨0
1 · ϵs∧c00 · ϵ(s−c0)∨0

≤ (4es⋆)
s/2 ·
√
s+ s⋆ · 4∥ψ∥22 · ϵ

(s⋆−1−⌊s/2⌋)∨0
1 · ϵs∧c00 · ϵ(s−c0)∨0.

Here, the second inequality follows from the Stirling’s approximation, and the last inequality holds
because s ≥ 1.

Case s = 0. For the case s = 0, we have that

|Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩)]| =

∣∣∣C(s⋆, 0, 0, ⟨w,w′⟩) · ⟨w,w′⟩s
⋆−1
∣∣∣ ≤ 4∥ψ∥22ϵs

⋆−1
1 ,

which can also be upper bounded by the quantity derived for the case s ≥ 1. Hence, the proof is
completed.

Proposition I.4. Let ψ(·, ·)2 satisfies the quadratic integrability condition and high-pass condition
in Assumption 4.1 with s⋆ being the generative exponent. Suppose the remaining definitions (c0,
{Ts}∞s=0, ϵ, ϵ0, ϵ1) and conditions are the same as in Lemma I.3. Suppose c0 ∈ {0, 1, 2} and s0 ∈ N0.
Take function series {ζs(·)}∞s=0 satisfying EQ[ζs(y)

2] < C,∀s ∈ N0 for some universal C = O(1).
Suppose 4eϵ2 < 1/2. If s⋆ = 1, then we have that∑

s≥s0

(s+ 2) · |EQ [ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[Ts]]| ≲ ϵs00 + ϵc00 ϵ
(s0−c0)∨0.

If s⋆ ≥ 2, then we have that∑
s≥s0

(s+ 2) · |EQ [ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[Ts]]|

≲ 1(s0 ≤ c0) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2s

⋆)∨s0−c0

+ 1(s0 ≤ 2(s⋆ − 1)) ·
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)
.

Here, ≲ hides constants that depend on s0, c0, C,EQ[ψ(y, x)
4].

Proof of Proposition I.4. Let F denote the target quantity. Invoking Lemma I.3 for each degree s, we
have that

F ≤
∑
s≥s0

√
s(s+ 1) · Ey∼Q |Ez∼Nd

[ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[Ts]]|

≤
∑
s≥s0

√
s(s+ 1) · Ey∼Q

[
4|ζs(y)|Ex∼N [ψ(y, x)2]

]
(4es⋆)

s/2√
s+ s⋆ϵ

(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0

≤
∑
s≥s0

√
s(s+ 1) · 4

√
EQ[ζs(y)2]EQ[ψ(y, x)4] (4es

⋆)
s/2√

s+ s⋆ϵ
(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0,

where the last inequality follows from the Cauchy-Schwarz inequality. Noting that by our assumptions,
EQ[ζs(y)

2]EQ[ψ(y, x)
4] = O(1) uniformly over s, which gives us

F ≲
∑
s≥s0

√
s(s+ 1)(s+ s⋆) (4es⋆)

s/2
ϵ
(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0.
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For the case s⋆ = 1, we have the above term controlled by

F | s⋆=1 ≲
∑
s≥s0

√
s(s+ 1)2 (4e)

s/2
ϵs∧c00 ϵ(s−c0)∨0

≲ 1(c0 > s0) · sup
s0≤s≤c0−1

ϵs0 +
∑

s≥c0∨s0

√
s(s+ 1)2 (4e)

s/2
ϵc00 ϵ

s−c0

≲ 1(c0 > s0) · ϵs00 + ϵc00 ϵ
(s0−c0)∨0

∑
s≥c0∨s0

√
s(s+ 1)2

(
4eϵ2

)(s−c0∨s0)/2
≲ 1(s0 < c0) · ϵs00 + ϵc00 ϵ

(s0−c0)∨0 ≲ ϵc0∧s00 ϵ(s0−c0)∨0,

where ≲ only hides constants that depend on s0, c0. The last second inequality holds by noting that
4eϵ2 < 1/2.

For the case s⋆ ≥ 2, we note that c0 ≤ 2 ≤ 2(s⋆ − 1), and we have

F | s⋆≥2 ≲
∑
s≥s0

√
s(s+ 1)(s+ s⋆) (4es⋆)

s/2
ϵ
(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0

≲ 1(s0 ≤ c0) · max
s0≤s≤c0

ϵ
s⋆−1−⌊s/2⌋
1 · ϵs0

+ 1(s0 ≤ 2(s⋆ − 1)) · max
c0+1≤s≤2(s⋆−1)+1

ϵ
s⋆−1−⌊s/2⌋
1 · ϵc00 · ϵs−c0

+
∑

s≥(2(s⋆−1)+2)∨s0

√
s(s+ 1)(s+ s⋆) (4es⋆)

s/2
ϵc00 ϵ

s−c0

≲ 1(s0 ≤ c0) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2(s

⋆−1)+2)∨s0−c0

+ 1(s0 ≤ 2(s⋆ − 1)) ·
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)
.

Thus, we complete the proof.

I . 2 T E C H N I C A L R E S U LT S F O R U N I F O R M D I S T R I B U T I O N O N T H E S P H E R E

Lemma I.5 (Moment of polynomial on a sphere, adapted from Folland (2001)). Let ξ =

(ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1) and s1, s2, . . . , sd ∈ N0. Let s =
∑d
i=1 si. Then we have

Eξ

[
d∏
i=1

ξsii

]
=


0 if some si is odd,
d∏
i=1

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s+ d)/2)
if all si are even,

To evaluate this moment, we provide the following bound.

Fact I.6. Take even degrees s1, s2, . . . , sd ∈ N0 and s =
∑d
i=1 si. Then we have(

1

d

)s/2
≤

d∏
i=1

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s+ d)/2)
≤
( s
d

)s/2
,

where we define (0)0 = 1.

Proof of Fact I.6. Note that we can rewrite the product as
d∏
i=1

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s+ d)/2)
=

∏d
i=1(si − 1)!!

(s+ d− 2) · (s+ d− 4) · · · d
.

Using the fact that a/b ≥ (a− 1)/(b− 1) for 2 ≤ a ≤ b, we can recursively apply this inequality to
the factorial until it gives us the desired lower bound of (1/d)s/2. For the upper bound, we can lower
bound the denominator by ds/2 and upper bound the numerator by ss/2. We thus have the desired
result.
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Note that the second moment E[ξ2i ] ≍ d−1, thus Fact I.6 can be viewed as some kind of reverse
Holder’s inequality where we use lower moment to control higher moment. Notably, the reverse
inequality gives a dimension-free bound for the moments of the polynomial on the sphere. The
following proposition formalizes this intuition.
Proposition I.7. Suppose ξ = (ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1). Let f : Rd → R be a function such
that E[(f(ξ)− 1)2] ≤ ε2. Take nonnegative degree s = (s1, s2, . . . , sd) with ∥s∥1 = s, and suppose
each si is even for i ∈ [d]. We then have

(1− (2s)s/2ε) ·
(
1

d

)s/2
≤ E

[
f(ξ) ·

d∏
i=1

ξsii

]
≤ (1 + 2s/2ε) ·

( s
d

)s/2
.

Proof of Proposition I.7. By the Cauchy-Schwarz inequality, we have for any j = 0, 1, . . . , s1/2,∣∣∣∣∣E
[
(f(ξ)− 1) ·

d∏
i=1

ξsii

]∣∣∣∣∣ ≤√E[(f(ξ)− 1)2] ·

√√√√E

[
d∏
i=1

ξ2sii

]
≤ ε ·

(
2s

d

)s/2
,

where we use Lemma I.5 and the upper bound in Fact I.6 for the second inequality. Additionally, note
that each si is even, we use the same argument to have(

1

d

)s/2
≤ E

[
d∏
i=1

ξsii

]
≤
( s
d

)s/2
.

Combining these two inequalities, we conclude the proof.

Proposition I.8. Let ξ = (ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1), γ > 0 be a fixed parameter, and s =
(s1, s2, . . . , sd) be a nonnegative integer vector with ∥s∥1 = s. It then holds that

G(s) :=E

[
(ξ1 + γ)

s1 ·
d∏
i=2

ξsii

]
= E

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · ξ2j1 ·

d∏
i=2

ξsii


=

0, if some si is odd for i = 2, 3, . . . , d,

C(s, γ) ·
(
γ + 1√

d

)2⌊s1/2⌋
· γ1(s1 odd) ·

(
1√
d

)s−s1
, otherwise,

where 1/5 ≤ C(s, γ) ≤ ss/2.

Proof of Proposition I.8. Note that

G(s) = E

[
(ξ1 + γ)

s1 ·
d∏
i=2

ξsii

]
= E

 s1∑
j=0

(
s1
j

)
ξj1γ

s1−j ·
d∏
i=2

ξsii

 .
Note that if there exists any odd degree si for i ≥ 2, then G(s) = 0. For s2, s3, . . . , sd being even,
we have

G(s) = E

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · ξ2j1 ·

d∏
i=2

ξsii


=

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · Γ(j + 1/2)

Γ(1/2)
·
d∏
i=2

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s− s1 + 2j + d)/2)

=

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j ·

(2j − 1)!! ·
∏d
i=2(si − 1)!!

(s− s1 + 2j + d− 2) · (s− s1 + 2j + d− 4) · · · d︸ ︷︷ ︸
(I)

,

where for the second identity, we use Lemma I.5 to compute the moments of the polynomial on the
sphere. Now, we compute the lower and upper bounds of G(s).
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Lower Bound. For the lower bound, we have

G(s) ≥
⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · d−j−(s2+s3+···+sd)/2

≥ 1

5
· 5

⌊s1/2⌋∑
j=0

(
2⌊s1/2⌋

2j

)
· γ2⌊s1/2⌋−2j

(
1√
d

)2j

· d−(s2+s3+···+sd)/2 · γ1(s1 odd)

≥ 1

5
·
2⌊s1/2⌋∑
j=0

(
2⌊s1/2⌋

j

)
· γ2⌊s1/2⌋−j

(
1√
d

)j
· d−(s2+s3+···+sd)/2 · γ1(s1 odd).

Here in the first inequality, we use the fact that a/b ≥ (a− 1)/(b− 1) for 2 ≤ a ≤ b and apply it
recursively to the factorial (I) until it gives us d−j−(s2+s3+···+sd)/2. For the second inequality, we
first rearrange the terms in the summation and lower bound the binomial coefficients by changing s1
to 2⌊s1/2⌋. For the last inequality, let us define

Aj =

(
2⌊s1/2⌋

j

)
· γ2⌊s1/2⌋−j

(
1√
d

)j
.

We invoke Lemma J.4 and have that for each odd j, we have that

Aj ≤ 2(Aj−1 +Aj+1), j = 1, 3, . . . , 2⌊s1/2⌋ − 1.

Therefore, the summation of all the odd terms is upper bounded by 4 times the summation of all the
even terms, which gives us the last inequality. Therefore, the lower bound of G(s) is

G(s) ≥ 1

5
·
(
γ +

1√
d

)2⌊s1/2⌋

· γ1(s1 odd) ·
(

1√
d

)(s−s1)

.

Upper Bound. For the upper bound, we have

G(s) ≤
⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · d−j−(s2+s3+···+sd)/2 · ss/2

≤
2⌊s1/2⌋∑
j=0

(
2⌊s1/2⌋

j

)
· γ2⌊s1/2⌋−j

(
1√
d

)j
· d−(s2+s3+···+sd)/2 · γ1(s1 odd) · ss/2

= ss/2 ·
(
γ +

1√
d

)2⌊s1/2⌋

· γ1(s1 odd) ·
(

1√
d

)−(s−s1)

,

where in the first line, we lower bound the denominator in the factorial (I) by dj+(s2+s3+···+sd)/2

and upper bound the numerator by ss/2. For the second inequality, we use the nonnegativity of each
terms and append the terms with j being odd to the summation.

Combining the lower and upper bounds, we have that

G(s) =

0, if some si is odd for i = 2, 3, . . . , d,

C(s, γ) ·
(
γ + 1√

d

)2⌊s1/2⌋
· γ1(s1 odd) ·

(
1√
d

)−(s−s1)
, otherwise,

for 1/5 ≤ C(s, γ) ≤ ss/2. Hence, the proof is complete.

I . 3 T E C H N I C A L R E S U LT S O N P O L A R I Z E D R A N D O M V E C T O R S

Lemma I.9 (Moments of weakly polarized random vector). Suppose ξ = (ξ1, ξ2, . . . , ξd) ∼
Unif(Sd−1) and define the polarized vector w as

w =
ξ + γe1
∥ξ + γe1∥2

,
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where γ = o(1) > 0 is a parameter that describes the polarization strength, and e1 = (1, 0, . . . , 0)
is the first standard basis vector. Take nonnegative integer degree s = (s1, s2, . . . , sd) with ∥s∥1 =
s = O(1) < (2

√
eγ)−1 − 2. Then we have

Ew

[
d∏
i=1

wsii

]
=


0, if some si is odd for i = 2, 3, . . . , d,

C(s, γ) ·
(
γ + 1√

d

)s1
·
(

1√
d

)s−s1
, if s1 is even, s2, . . . , sd are even,

C(s, γ) · γ ·
(
γ + 1√

d

)s1−1

·
(

1√
d

)s−s1
, if s1 is odd, s2, . . . , sd are even,

where 1/5−O(γ) ≤ C(s, γ) ≤ s(s+1)/2 +O(γ).

Proof of Lemma I.9. Let r = ∥ξ + γe1∥2. We reformulate the moment as

E

[
d∏
i=1

wsii

]
= E

[
(ξ1 + γ)

s1

rs
·
d∏
i=2

ξsii

]
.

By symmetry, we have the moment equal zero if some si is odd for i = 2, 3, . . . , d. Hence, we only
need to consider s2, s3, . . . , sd being even. In the following, we study the case for s1 being even and
odd separately.

Case 1: s1 is even. We first look at the simpler case where s1 is even. We note by weak polarization
in the sense of ∥ξ∥2 ≫ ∥γe1∥2, we can approximate 1/rs as 1 with approximation error∣∣∣∣∣E

[
d∏
i=1

wsii

]
− E

[
(ξ1 + γ)

si ·
d∏
i=2

ξsii

]∣∣∣∣∣ ≤√E [(1− r−s)2] ·

√√√√E

[
(ξ1 + γ)

2s1 ·
d∏
i=2

ξ2sii

]

≤ esγ ·

√√√√E

[
(ξ1 + γ)

2s1 ·
d∏
i=2

ξ2sii

]
, (I.4)

where we use the Cauchy-Schwarz inequality in the first line and for the second line, we use the fact

|1− r−s| ≤ 1

(1− γ)s
− 1 =

(
1 +

γ

1− γ

)s
− 1 ≤ exp

(
sγ

1− γ

)
− 1 ≤ esγ (I.5)

for s < (2
√
eγ)−1. Define

G(s) :=E

[
(ξ1 + γ)

si ·
d∏
i=2

ξsii

]
.

By Proposition I.8, we have that for even s1, s2, . . . , sd,

G(s) = C ′(s, γ) ·
(
γ +

1√
d

)s1
·
(

1√
d

)s−s1
,

with 1/5 ≤ C ′(s, γ) ≤ ss/2. Plugging the form of G(s) into (I.4), we have that

Ew

[
d∏
i=1

wsii

]
=M(s)± esγ ·

√
M(2s)

=
(
C ′(s, γ)± esγ

√
C ′(2s, γ)

)
·
(
γ +

1√
d

)s1
·
(

1√
d

)s−s1
=
(
C ′(s, γ)± esγ(2s)s/2

)
·
(
γ +

1√
d

)s1
·
(

1√
d

)s−s1
.

Here, C ′(s, γ)− esγ(2s)s/2 ≥ 1/5− esγ(2s)s/2 and C ′(s, γ) + esγ(2s)s/2 ≤ ss/2 + esγ(2s)s/2.
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Case 2: s1 is odd. We now consider the more complicated case where s1 is odd. In the following
proof, we will frequently invoke the following proposition, whose proof is deferred to Proposition I.7
of Appendix H.

Proposition I.7 (Restated). Suppose ξ = (ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1). Let f : Rd → R be a
function such that E[(f(ξ)− 1)2] ≤ ε2. Take nonnegative degree s = (s1, s2, . . . , sd) with ∥s∥1 = s,
and suppose each si is even for i ∈ [d]. We then have

(1− (2s)s/2ε) ·
(
1

d

)s/2
≤ E

[
f(ξ) ·

d∏
i=1

ξsii

]
≤ (1 + 2s/2ε) ·

( s
d

)s/2
.

We first rewrite the moment as

E

[
d∏
i=1

wsii

]
= E

[
(ξ1 + γ)

s1

rs
·
d∏
i=2

ξsii

]
(I.6)

=

(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j · E

[
ξ2j1
rs
·
d∏
i=2

ξsii

]
︸ ︷︷ ︸

(I) even terms

+

(s1−1)/2∑
j=0

(
s1

2j + 1

)
γs1−2j−1 · E

[
ξ2j+1
1

rs
·
d∏
i=2

ξsii

]
︸ ︷︷ ︸

(II) odd terms

.

Let us look at the odd terms of (I.6). Let r+ = ∥ξ + γe1∥2 and r− = ∥−ξ + γe1∥2. By symmetry,
we have for the expectation within the odd terms that

E

[
ξ2j+1
1

rs
·
d∏
i=2

ξsii

]
=

1

2
· E

[(
1

rs+
− 1

rs−

)
· ξ2j+1

1 ·
d∏
i=2

ξsii

]

=
1

2
· E

 (r2− − r2+)
(∑s−1

l=0 r
l
−r

s−1−l
+

)
rs+ · rs− · (r+ + r−)

· ξ2j+1
1 ·

d∏
i=2

ξsii


= −γ · E

[
2 ·
∑s−1
l=0 r

l
−r

s−1−l
+

rs+ · rs− · (r+ + r−)
· ξ2j+2

1 ·
d∏
i=2

ξsii .

]

Here, the last identity holds by noting that r2− − r2+ = −4γξ1. Note that

sup
ξ∈Sd−1

∣∣∣∣∣ 2 ·
∑s−1
l=0 r

l
−r

s−1−l
+

rs+ · rs− · (r+ + r−)
− 1

∣∣∣∣∣ ≤
(

1

1− γ

)s+2

− 1 ≤ eγ(s+ 2).

Hence, we have for the odd terms (II) that

−(II) = E

 2 ·
∑s−1
l=0 r

l
−r

s−1−l
+

rs+ · rs− · (r+ + r−)
·
(s1−1)/2∑
j=0

(
s1

2j + 1

)
γs1−2j · ξ2j+2

1 ·
d∏
i=2

ξsii


≤

(s1−1)/2∑
j=0

(
s1

2j + 1

)
γs1−2j · (1 + 2(s+2)/2eγ(s+ 2)) ·

(
s+ 2

d

)(s−s1+2j+2)/2

≤ s1 · (1 + 2(s+2)/2eγ(s+ 2)) ·
(
s+ 2

d

)(s−s1+2)/2

· γ ·
s1−1∑
j=0

(
s1 − 1

j

)
· γs1−1−j ·

(√
s+ 2

d

)j
,

where the first inequality holds by Proposition I.7 and the second inequality holds by
(
s1

2j+1

)
/
(
s1−1
2j

)
=

s1/(2j + 1) ≤ s1 and also appending the odd terms to the summation. Thus, we have

−(II) ≤ s1 · (1 + 2(s+2)/2eγ(s+ 2)) · γ ·

(
γ +

√
s+ 2

d

)s1−1

·

(√
s+ 2

d

)s−s1+2

.
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Next, we study the even terms (I) in (I.6). Using Proposition I.7 with the uniform bound in (I.5), we
have (I) upper bounded by

(I) =
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j · E

[
ξ2j1
rs
·
d∏
i=2

ξsii

]

≤ (1 + 2s/2esγ) ·
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j ·

(√
s

d

)s−s1+2j

≤ (1 + 2s/2esγ) · s1 ·
s1−1∑
j=0

(
s1 − 1

j

)
· γs1−1−j ·

(√
s

d

)j
·
(√

s

d

)s−s1
· γ

= s1 · (1 + 2s/2esγ) · γ ·
(
γ +

√
s

d

)s1−1

·
(√

s

d

)s−s1
.

Similarly, we have the lower bound for (I) as

(I) =
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j · E

[
ξ2j1
rs
·
d∏
i=2

ξsii

]

≥ (1− (2s)s/2esγ) ·
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j ·

(√
1

d

)s−s1+2j

≥ 1

5
(1− (2s)s/2esγ) ·

s1−1∑
j=0

(
s1 − 1

j

)
γs1−1−j ·

(√
1

d

)j
·

(√
1

d

)s−s1
· γ

=
1

5
(1− (2s)s/2esγ) · γ ·

(
γ +

√
1

d

)s1−1

·

(√
1

d

)s−s1
.

Combining these upper and lower bounds for (I) together with the upper bound for (II), we have

E

[
d∏
i=1

wsii

]
≥
(
1

5
(1− (2s)s/2esγ)− s1 · (1 + 2(s+2)/2eγ(s+ 2)) · (s+ 2)(s+2)/2

d

)

· γ ·

(
γ +

√
1

d

)s1−1

·

(√
1

d

)s−s1
,

and

E

[
d∏
i=1

wsii

]
≤ (1 + 2s/2esγ) · s(s+1)/2 · γ ·

(
γ +

√
1

d

)s1−1

·

(√
1

d

)s−s1
.

Hence, we complete our proof.

J AU X I L I A RY L E M M A S

Lemma J.1 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables with |Xi −
E[Xi]| ≤ C for all i ∈ [n]. Then for any t > 0, it holds that

P
(∣∣∣∣ 1n

n∑
i=1

Xi −
1

n

n∑
i=1

EXi

∣∣∣∣ ≥ t) ≤ 2 exp

(
− nt2/2

n−1 ·
∑n
i=1 Var[Xi] + Ct/3

)
,

or equivalently, for any δ ∈ (0, 1),

P
(∣∣∣∣ 1n

n∑
i=1

Xi − EXi

∣∣∣∣ ≤
√

2 · n−1
∑n
i=1 Var[Xi] · log δ−1

n
+
C log δ−1

3n

)
≥ 1− δ.
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For the vector case, by a union bound over all the coordinates, we have the following corollary.

Corollary J.2 (Vector version of Bernstein’s inequality). Let X1, . . . , Xn be independent random
vectors in Rd with ∥Xi − E[Xi]∥∞ ≤ C for all i ∈ [n]. Then for any δ ∈ (0, 1), it holds with
probability at least 1− δ that∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥
2

≲

∥∥∥∥E[ 1n
n∑
i=1

Xi

]∥∥∥∥
2

+

√
n−1

∑n
i=1 Tr(Cov[Xi]) · log(dδ−1)

n
+

√
dC log(dδ−1)

n
.

Lemma J.3 (Lemma I.3. in Damian et al. (2024)). Let X1, . . . , Xn ∈ Rd be independent mean-zero
random vectors such that for all p ≥ 2, E[∥Xi∥p]1/p ≤ Cpk/2 for some constants k,C ≥ 0 and
vector norm ∥·∥. Define σ2 := n−1

∑n
i=1 E[∥Xi∥2] and Y := n−1 ·

∑n
i=1Xi. Then with probability

at least 1− 2δ,

∥Y ∥ ≲ σ ·
√

log(1/δ)

n
+
C log(1/δ) log(n/δ)k/2

n
.

where ≲ only hides constant that depends on k.

Lemma J.4 (Ratio bound of binomial expansion). For real numbers a, b > 0 and integer s ≥ 2,
define

Aj :=

(
s

j

)
· as−j · bj , for j = 0, 1, . . . , s.

Then for all j = 1, 2, . . . , s− 1, it holds that Aj ≤ 2(Aj−1 +Aj+1).

Proof of Lemma J.4. By the definition of Aj ,

min

{
Aj
Aj−1

,
Aj
Aj+1

}
= min

{
b

a
· s− j + 1

j
,
a

b
· j + 1

s− j

}
≤

√
b

a
· s− j + 1

j
· a
b
· j + 1

s− j

≤

√(
1 +

1

s− j

)(
1 +

1

j

)
≤ 2.

Hence, the proof is complete by the nonnegativity of Aj .

Proposition J.5. For ϵ ∈ [0, 1/2) and s, r ∈ N0 with s ≥ 2r − 1, it holds that

∞∑
j=0

(j + s)(j + s− 1) · · · (j + s− r + 1) · ϵj ≤ 2s · (s− 1) · · · (s− r + 1) · 1

1− ϵ
.

Proof of Proposition J.5. Denote F (x) =
∑∞
j=0(j+s)(j+s−1) · · · (j+s−r+1)xj for x ∈ (0, 1).

The desired quantity on the left-hand side of the inequality is simply F (ϵ). It can be verified using
the expansion of 1/(1− x) =

∑∞
j=0 x

j for x ∈ (0, 1) that

F (x) =
dr

dxr

( xs

1− x

)
· x−(s−r).

Expanding this expression, we have

F (x) =

r∑
τ=0

(
r

τ

)
dτ

dxτ
(xs) · dr−τ

dxr−τ

(
1

1− x

)
· x−(s−r)

=

r∑
τ=0

(
r

τ

)
s(s− 1) · · · (s− τ + 1) · xs−τ · (−1)

r−τ (r − τ)!
(1− x)r−τ+1

· x−(s−r)

=

r∑
τ=0

(r · (r − 1) · · · (τ + 1)) · (s · (s− 1) · · · (s− τ + 1)) · (−1)r−τ · xr−τ

(1− x)r−τ+1
.
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Write the above summation as F (x) =
∑r
τ=0 Fτ (x), where Fτ (x) is the τ -th term in the summation.

Then for each τ = 0, . . . , r − 1, when x ∈ (0, 1), we have

Fτ (x)

Fτ+1(x)
= −s− τ

τ + 1
· 1− x

x
< −1.

Note that Fr(x) is positive, and for each k = 1, . . . , ⌊r/2⌋, Fr−2k+1(x) < −Fr−2k(x) < 0. Since
F (x) is positive, it is then upper bounded by Fτ (x) + |F0(x)|, i.e.,

F (x) ≤ s · (s− 1) · · · (s− r + 1) · 1

1− x
+ r! · xr

(1− x)r+1
≤ 2s · (s− 1) · · · (s− r + 1) · 1

1− x
.

The proof is complete by setting x = ϵ.

Lemma J.6 (Gaussian-like tail bound for spherical coordinate). Suppose ξ ∼ Unif(Sd−1). Then the
first coordinate of ξ, denoted by ξ1, satisfies that for any t ≥ 0,

Pr(ξ1 ≥
√
Cd−1 log d) ≤ exp(−d/16) + d−C/4,

where C > 0 is a constant.

Proof of Lemma J.6. Consider z ∼ N (0, Id), and it holds that ξ1
d
= z1/∥z∥2, where z1 is the first

coordinate of z. Note that ∥z∥22 ∼ χ2
d, and by a standard tail bound for the χ2

d distribution, we have

Pr(∥z∥22 ≤ d− 2
√
dx) ≤ exp(−x), for any x ≥ 0.

By taking x = d/16, we get Pr(∥z∥22 ≤ d/2) ≤ exp(−d/16). Thus, applying a union bound,

Pr(ξ1 ≥ t) = Pr
( z1
∥z∥2

≥ t
)
≤ Pr

(
∥z∥22 ≤ d/2

)
+ Pr(z1 ≥ t

√
d/2)

≤ exp(−d/16) + exp(−t2d/4).

The proof is complete by taking t =
√
Cd−1 log d.

Lemma J.7 (Hypergeometric behavior). Consider random variable X ∼ Hypergeometric(d, k, k)
with probability mass

Pr(X = x) =

(
k
x

)(
d−k
k−x
)(

d
k

) , for x = 1, 2, . . . k.

Suppose k = o(
√
d), then for any constant s > 0, it holds that E[Xs] ≃ k2/d. In addition, the

following tail bound holds:

Pr(X ≥ log k) ≲ (k2/d)log k.

Proof of Lemma J.7. We first notice that for x ≥ k2/d, since k = o(
√
d),

Pr(X = x+ 1)

Pr(X = x)
=

(k − x)2

(x+ 1)(d− 2k − x+ 1)
=
(
1− k

d

)2/( d
k2

+ o
( d
k2

))
≲
k2

d
. (J.1)

This immediately implies the tail bound:

Pr(X ≥ log k) ≤
k∑

j=⌈log k⌉

Pr(X = j) ≲
(k2
d

)log k
.

Next, for the moment E[Xs], we first study the magnitude of P(X = 0), which, by Stirling’s
approximation, is given by

Pr(X = 0) =
((d− k)!)2

d! · (d− 2k)!
≃ (d− k)2(d−k)+1 · e−2(d−k)

dd+1/2 · (d− 2k)(d−2k)+1/2 · e−2(d−k)

=
(1− 2k/d+ k2/d2)d−k+1/2

(1− 2k/d)d−2k+1/2

=

(
1 +

1

(1− 2k/d) · d2/k2

)d−k+1/2(
1− 2k

d

)k
.
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Since k = o(
√
d), we have (1− 2k/d)k ≃ 1. Further applying the fact that (1 + 1/m)m = Θ(1),

Pr(X = 0) ≃
(
1 +

1

(1− 2k/d) · d2/k2

)(1−2k/d)·d2/k2·k2/d

= Θ(1).

As a consequence, using the first equality in (J.1), we can lower bound the expectation of Xs by

E[Xs] ≥ Pr(X = 1) = Pr(X = 0) · k2

d− 2k + 1
≳
k2

d
.

For the upper bound, we again use the first equality in (J.1) to get

Pr(X = x+ 1) ≤ k2

(x+ 1)(d− 2k − x+ 1)
· Pr(X = x) ≲

Pr(X = x)

x+ 1
· k

2

d
.

Recursive application of this inequality yields that P(X = x) ≲ P(X = 0) · (k2/d)x/x!, and thus

E[Xs] =

k∑
x=1

xs · Pr(X = x) ≤ Pr(X = 0) ·
k∑
x=1

xs

x!

(k2
d

)x
≲
k2

d
.

Therefore, we conclude that E[Xs] ≃ k2/d. This completes the proof.
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