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Abstract

In this paper, we present two effective policy learning algorithms for multi-agent
online coordination(MA-OC) problem. The first one, MA-SPL, not only can achieve
the optimal (1− c

e )-approximation guarantee for the MA-OC problem with sub-
modular objectives but also can handle the unexplored α-weakly DR-submodular
and (γ, β)-weakly submodular scenarios, where c is the curvature of the investi-
gated submodular functions, α denotes the diminishing-return(DR) ratio and the
tuple (γ, β) represents the submodularity ratios. Subsequently, in order to reduce
the reliance on the unknown parameters α, γ, β inherent in the MA-SPL algorithm,
we further introduce the second online algorithm named MA-MPL. This MA-MPL
algorithm is entirely parameter-free and simultaneously can maintain the same
approximation ratio as the first MA-SPL algorithm. The core of our MA-SPL and
MA-MPL algorithms is a novel continuous-relaxation technique termed as policy-
based continuous extension. Compared with the well-established multi-linear
extension, a notable advantage of this new policy-based continuous extension is its
ability to provide a lossless rounding scheme for any set function, thereby enabling
us to tackle the challenging weakly submodular objectives. Finally, extensive
simulations are conducted to validate the effectiveness of our proposed algorithms.

1 Introduction

Coordinating multiple autonomous agents to cooperatively complete complex tasks in time-varying
environments is a significant challenge with extensive applications in machine learning, robotics
and control, including target tracking [27, 129, 130, 132], area monitoring [55, 73, 97], multi-path
planning [100, 101, 102], mobile sensor placement [65, 67, 95], environmental mapping [6, 75]
and task assignment [92, 5]. Critically, with the rapid advancement of self-supervised learning and
the development of large Transformers with billions of parameters, large language models (LLMs)
are now capable of generating factual and coherent responses to human queries [11, 25, 107, 51].
However, the mixed quality of training data can lead to the generation of undesired responses,
presenting a significant challenge. Therefore, how to select a limited number of high-quality input-
output examples from multi-source and massive datasets for fine-tuning LLMs remains a critical
challenge—a problem that can be formulated as multi-agent collaborative data selection [69, 70, 80,
93]. Moreover, the emergence of foundation models further highlights the necessity of effective
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cooperation architectures to enable multi-agent AI systems to mutually learn and adapt in dynamic
environments [4, 23, 28, 60]. Motivated by these diverse scenarios, thus this paper delves into
the Multi-Agent Online Coordination(MA-OC) problem, establishing a theoretical paradigm for
real-world embodied systems, LLMs fine-tuning, and intelligent AI agent collaboration.

Prior to this, numerous studies have demonstrated that the utility functions associated with a wide
range of multi-agent coordination scenarios often exhibit a diminishing-return(DR) property. Specifi-
cally, as the number of agents increases, the marginal gain in benefit will tend to decrease. For instance,
in area monitoring using a fleet of unmanned aerial vehicles(UAVs), due to the overlaps of sensing
ranges, the increment of the total monitored area from adding an additional UAV typically becomes
less and less as the team of UAVs expands. Note that the diminishing-return property is also known as
submodularity in mathematics [7, 42]. Consequently, a vast majority of research regarding multi-agent
coordination focus on submodular objectives [45, 50, 64, 66, 78, 92, 94, 95, 114, 115, 126, 129, 131].

However, recent works [55, 56, 59, 62, 117] observed that there also exist many multi-agent coordi-
nation scenarios inducing utility functions that are close-to-submodular, but not strictly submodular.
A notable example is the employment of a swarm of UAVs to track multiple moving objects. In this
scenario, each UAV needs to periodically determine its moving direction and speed. Particularly, un-
der the Kalman filter framework, [55, 56, 62] pointed out that the aforementioned trajectory selection
problem of UAVs can be formulated as a multi-agent variant of the general online weakly submodular
maximization problems. It is worth noting that the currently well-known algorithms for weakly sub-
modular maximization are highly dependent on the discrete local search [20, 43, 53, 76, 106]. So far,
however, how to extend this local search into online settings still remains an uncharted territory. Thus,
almost all existing studies regarding multi-agent coordination with weakly submodular objectives
choose to neglect the changing environment and focus on simple offline scenarios [55, 56, 62, 117].
In view of all this, a natural question arises:

Q1: Is it possible to design an effective online algorithm for MA-OC problem with weakly
submodular objectives?

In addition, we also find that when the objective function is exactly submodular, the state-of-the-art al-
gorithms [94, 126] for the MA-OC problem only can guarantee a sub-optimal ( 1−e−c

c )-approximation,
which mismatches the best possible (1− c

e )-approximation established in the works [105, 54] for
single-agent submodular maximization. Here, c denotes the curvature of the investigated submodular
functions. Given this drawback, another question comes to our mind, that is,

Q2: Is it possible to achieve the optimal (1− c
e )-approximation ratio for MA-OC problem

with submodular objectives?

In the subsequent sections of this paper, we will provide an affirmative answer to these two questions
by presenting an effective online algorithm named MA-SPL, which not only can achieve the optimal
(1− c

e )-approximation for the MA-OC problem with submodular objectives but also can address the
previously unexplored weakly submodular scenarios. The core of our proposed MA-SPL algorithm
is a novel continuous-relaxation framework named policy-based continuous extension, which can
efficiently transform the discrete set function maximization problem into a solvable continuous
optimization task. Furthermore, compared to the well-established multi-linear extension [15], a
notable advantage of our proposed policy-based continuous extension is that it can provide a lossless
rounding scheme for any set objective function. In contrast, all known lossless rounding schemes for
the multi-linear extension require the set objective function to be submodular [15, 18, 19]. Moreover,
to eliminate the dependence of both DR ratio and submodularity ratio inherent in our proposed
MA-SPL algorithm, we further present a parameter-free online algorithm termed as MA-MPL for the
MA-OC problem with general weakly submodular objectives.

In summary, we make the following contributions:

• This paper introduces an innovative continuous-relaxation technique named policy-based continuous
extension for the general multi-agent coordination problem. Furthermore, we conduct an in-depth
exploration of the differentiability, monotonicity and submodularity of our proposed policy-based
continuous extension. More importantly, when the investigated set objective function is submodular
or weakly submodular, we design three different surrogate functions for our policy-based continuous
extension. The stationary points of these three surrogate functions can yield a better approximation
guarantee than those of the original policy-based continuous extension itself.
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Table 1: Comparison of the different algorithms for T -round MA-OC problem. Note that ‘Approx.’ denotes the
obtained approximation ratio, ‘#Com.’ represents the number of communication, ‘#Queries’ denotes the number
of queries to the set objective functions, ‘D-Regret’ denotes the dynamic regret bound, ‘Proj-free’ indicates
whether the method does not require projection, ‘Para-free’ indicates whether the method does not require prior
knowledge of curvature c and parameters α, γ, β, PT is the deviation of maximizer sequence, τ is the spectral
gap of the weight matrix, d(G) is the diameter of the graph G, ϕ(γ, β) ≜ β(1− γ) + γ2 and κ ≜

∑n
i=1 κi.

Method Utility Para-free Proj-free Graph Approx. #Com. #Queries D-Regret

OSG [115, 50] Submodular ✔ ✔ Complete
(

1
1+c

)
O(T ) O(κT ) Õ(

√
PTT )

MA-OSMA [126] Submodular ✘ ✘ Connected
(

1−e−c

c

)
O(T ) O(κT ) O

(√
PTT
1−τ

)
MA-OSEA [126] Submodular ✘ ✔ Connected

(
1−e−c

c

)
O(T ) O(κT ) Õ

(√
PTT
1−τ

)
MA-SPL Submodular ✔ ✘ Connected

(
1− c

e

)
O(T ) O(κT ) O

(√
PTT
1−τ

)
(Algorithm 1) α-weakly DR-Sub ✘ ✘ Connected (1− e−α) O(T ) O(κT ) O

(√
PTT
1−τ

)
(γ, β)-weakly Sub ✘ ✘ Connected

(
γ2(1−e−ϕ(γ,β))

ϕ(γ,β)

)
O(T ) O(κT ) O

(√
PTT
1−τ

)
MA-MPL α-weakly DR-Sub ✔ ✔ Connected (1− e−α) O(T 3/2) O(κT 5/2) O

(
d(G)

√
PTT

)
(Algorithm 2) (γ, β)-weakly Sub ✔ ✔ Connected

(
γ2(1−e−ϕ(γ,β))

ϕ(γ,β)

)
O(T 3/2) O(κT 5/2) O

(
d(G)

√
PTT

)

• Building on these surrogate functions, we then propose a novel online algorithm named MA-SPL for
the concerned MA-OC problem. Moreover, we also verify that, when the set objective function is
monotone submodular with curvature c, α-weakly DR-submodular or (γ, β)-weakly submodular, our

proposed MA-SPL can achieve an approximation ratio of (1− c
e ), (1−e−α) or (γ

2(1−e−(β(1−γ)+γ2))
β(1−γ)+γ2 )

with a dynamic regret bound of O
(√

PTT
1−τ

)
to the best comparator in hindsight, respectively. Here,

PT is the deviation of maximizer sequence, τ is the spectral gap of the network, α denotes the DR
ratio, β represents the upper submodularity ratio and γ is the lower submodularity ratio.

• To eliminate the dependence of both DR ratio and submodularity ratio of our MA-SPL algorithm,
we next present a parameter-free online algorithm named MA-MPL for the MA-OC problem. The
cornerstone of this MA-MPL algorithm is a novel inequality between our proposed policy-based con-
tinuous extension and the original set objective function. Moreover, when the objective function is
monotone α-weakly DR-submodular or (γ, β)-weakly submodular, our proposed MA-MPL algorithm
also can enjoy the same approximation ratio with a regret bound of O

(
d(G)

√
PTT

)
to the best

comparator in hindsight, where d(G) is the diameter of the corresponding communication graph G.
• We conduct numerical experiments to verify the effectiveness of our proposed algorithms.

Related Work. Due to space limitations, the comprehensive literature review is placed in Appendix A.
In particular, we present a detailed comparison of our proposed MA-SPL algorithm and MA-MPL
algorithm with existing studies on multi-agent online coordination in Table 1.

2 Problem Setup

This section will provide a detailed introduction to multi-agent online coordination(MA-OC) problem.

In MA-OC problem, we generally consider a collection of n distinct agents, indexed by the set
N ≜ {1, . . . , n} and interconnected through an undirected network G(N , E). Here, E ⊆ N ×N
represents the possible communication links among agents. Additionally, each agent i ∈ N is
endowed with a unique set of actions Vi ≜ {vi,1, . . . , vi,κi

}, meaning that these action sets are
mutually disjoint, i.e., Vi∩Vj = ∅ for any i, j ∈ N . In the process of multi-agent online coordination,
at every time spot t ∈ [T ], each agent i ∈ N will separately select one action ai(t) from its own
action set Vi. After committing to these choices, the environment will reveal a utility set function
ft defined over the aggregated action space V ≜ ∪i∈NVi. Then, the agents receive the utility
ft(∪i∈N {ai(t)}). As a result, the goal of agents is to maximize their cumulative reward as much
as possible. Specifically, at each time step t ∈ [T ], we need to address the following set function
maximization problem in a multi-agent collaborative manner:

max ft(S), s.t. S ⊆ V and |S ∩ Vi| ≤ 1,∀i ∈ N . (1)

Furthermore, in numerous practical applications regarding MA-OC problem, each agent usually has
a limited perceptual range, allowing it to sense only the environmental changes in its immediate
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surroundings. For example, in target tracking scenarios involving a swarm of unmanned aerial
vehicles(UAVs), each UAV only can perceive the targets within its sensing radius, leaving those
outside this range undetected. To model this limitation, several studies on the MA-OC problem [126,
115, 114, 95, 94] adopt a local feedback model. More specifically, after ft is revealed, each agent
i ∈ N is only permitted to query a local marginal oracle Qi

t : Vi × 2V → R+ defined as Qi
t(a, S) ≜

ft(a|S) ≜
(
ft(S ∪ {a})− ft(S)

)
for any a ∈ Vi and S ⊆ V . This implies that, at each time t ∈ [T ],

agents only can receive the marginal evaluations about the actions within their individual action set,
rather than the full information of ft. We also impose this local-feedback constraint in this paper.

Before going into the details, it is crucial to emphasize that, in many real-world scenarios, there
exists such an (approximate) local marginal feedback oracle Qi

t for each agent i ∈ N after ft is
revealed. Typically, in addition to the decision-making process, agents often utilize various off-the-
shelf learning algorithms to estimate the marginal contributions of their available actions based on
the observed and collected information (See [27]). Moreover, the local information available to one
agent is often insufficient for precisely assessing the actions of other agents who are not in close
vicinity. Given this fact, confining each agent to the marginal estimations of the actions within its
own action set also can further reduce the accumulation of learning errors.

Dynamic ρ-Regret: Generally speaking, the set function maximization problem (1) is NP-hard [83,
35], indicating that no polynomial-time algorithms can solve it optimally. Thus, this paper employs the
dynamic ρ-regret [21, 61, 103, 115, 126, 134] to measure the performance of our proposed algorithms
for MA-OC problem. In dynamic ρ-regret, the algorithm is compared against a sequence of local
maximizers with scale parameter ρ ∈ [0, 1], i.e., R∗

ρ(T ) ≜ ρ
∑T

t=1 ft(A∗
t )−

∑T
t=1 ft

(
∪i∈N {ai(t)}

)
,

where A∗
t is the optimal solution of problem (1) and ai(t) is the action chosen by agent i at time t.

3 Preliminaries

In this section, we introduce some basic concepts and the frequently used notations.

Notations. For any positive integer n, the symbol [n] denotes the set {1, . . . , n}. 0p and 1p denote
the p-dimensional vector whose all components are 0 and 1, respectively. Moreover, ∥ · ∥1 and
∥ · ∥2 stand for the L1 norm and L2 norm for vectors, respectively. We also use ∆m to represent the
standard m-dimensional simplex, that is, ∆m ≜ {(x1, . . . , xm)|

∑m
i=1 xi ≤ 1, xi ≥ 0,∀i ∈ [m]}.

Submodularity and Curvature. Let V be a finite ground set and f : 2V → R+ be a set function
mapping any subset of V to a non-negative real number. Then, for any two subsets S, T ⊆ V ,
we denote by f(T |S) the marginal contribution of adding the elements of T to S, i.e., f(T |S) ≜
f(T ∪ S) − f(S). In particular, when T is a singleton set {v}, we also use f(v|S) to represent
f({v}|S). Therefore, we say a set function f is submodular if and only if it satisfies the diminishing-
return property [85, 42, 41], that is, f(v|S) ≥ f(v|T ) for any S ⊆ T ⊆ V and v ∈ V \ T . To
precisely characterize the diminishing-return property, [26, 36, 105, 109] introduced the concept of
curvature for submodular functions, which is defined as c ≜ 1−minS⊆V,v /∈S

f(S∪{v})−f(S)
f({v})−f(∅) .

Monotonicity. A set function f : 2V → R+ is monotone if and only if f(S) ≤ f(T ) for any
S ⊆ T ⊆ V . Moreover, in this paper, we suppose the set function f is normalized, that is, f(∅) = 0.

Weak Submodularity. A set function f : 2V → R+ is said to be γ-weakly submodular from below for
some γ ∈ (0, 1] if and only if

∑
v∈T\S f(v|S) ≥ γ

(
f(T )− f(S)

)
for any two subsets S ⊆ T ⊆ V ,

where γ is called as the lower submodularity ratio [29, 30, 20]. Similarly, we also can define the
weak submodularity from above, that is, a set function f : 2V → R+ is β-weakly submodular from
above for some β ≥ 1 if and only if

∑
v∈T\S f(v|T − {v}) ≤ β

(
f(T ) − f(S)

)
,∀S ⊆ T ⊆ V ,

where β is the upper submodularity ratio. When a set function f is both γ-weakly submodular from
below and β-weakly submodular from above, we say it is (γ, β)-weakly submodular [106].

Weak DR-submodularity. A set function f : 2V → R+ is α-weakly DR-submodular for some
α ∈ (0, 1] if and only if f(v|S) ≥ αf(v|T ) for any two subsets S ⊆ T ⊆ V and v ∈ V \ T .
In particular, α is often called as the diminishing-return(DR) ratio [9, 68, 43, 48, 76]. It is worth
noting that, from the previous definition of weak submodularity, we can infer that an α-weakly
DR-submodular function automatically satisfies the conditions for being (α, 1

α )-weakly submodular.
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4 Policy-based Continuous-Relaxation Framework

Before presenting our proposed algorithms for the MA-OC problem, we firstly explore the offline set
function maximization problem (1). In recent years, compared to discrete optimization, the field of
continuous optimization has made significant advancements, yielding a broad spectrum of effective
algorithmic frameworks and theoretical tools. Consequently, one promising strategy to addressing
the set function maximization problem (1) is to convert it into a solvable continuous optimization
problem throughout continuous-relaxation techniques.

A well-known continuous-relaxation framework is the multi-linear extension [15], which was in-
troduced for maximizing submodular set functions. Regrettably, this relaxation framework cannot
be directly applied to the general set function maximization problem (1), as most existing lossless
rounding schemes for multi-linear extension—such as pipage rounding [1], swap rounding [18],
and contention resolution [19]—rely heavily on the submodular assumption. Note that lossless
rounding schemes refer to methods that convert the obtained continuous solution into a feasible
discrete solution without any loss in terms of the objective function value. To date, how to losslessly
round the multi-linear extension of non-submodular set functions, e.g. (γ, β)-weakly submodular and
α-weakly DR-submodular functions, still remains an open question [106]. To overcome this hurdle,
we will introduce an innovative continuous-relaxation technique in the subsequent part of this section.

4.1 Policy-based Continuous Extension

From the previous description about the MA-OC problem provided in Section 2, we can view the set
function maximization problem (1) as a variant of multi-agent cooperative game [2, 98, 112, 120].
Inspired by this viewpoint, we naturally consider whether each agent i ∈ N can learn a policy
πi ≜ (πi,1, . . . , πi,κi

) over its individual action space Vi ≜ {vi,1, . . . , vi,κi
} and then utilizes this

policy πi to make decision, where each πi,m represents the probability of agent i taking the action
vi,m,∀m ∈ [κi]. Based on this idea, if letting ai ∈ Vi ∪ {∅} denote the random action chosen by
each policy πi,∀i ∈ N , then we can obtain the following policy-based continuous extension, namely,
Definition 1. If πi ≜ (πi,1, . . . , πi,κi) ∈ ∆κi for any i ∈ N , then the policy-based continuous
extension Ft :

∏n
i=1 ∆κi → R+ for the set function maximization problem (1) can be defined as:

Ft(π1, . . . , πn) ≜
∑

ai∈Vi∪{∅},∀i∈N

(
ft
(
∪n
i=1 {ai}

) n∏
i=1

p(ai|πi)
)
, (2)

where p(·|πi) is a probability distribution over the set Vi ∪ {∅}, that is, p(vi,m|πi) = πi,m,∀i ∈
[n],∀m ∈ [κi] and p(∅|πi) = 1−

∑Ki

m=1 πi,m,∀i ∈ N .
Remark 1. It is noteworthy that, in Eq.(2), with the probability 1−

∑κi

m=1 πi,m, the policy πi will
not pick any action from Vi, which means there is a possibility that no action will be chosen, i.e., ∅.
Remark 2. The definition in Eq.(2) highlights a notable advantage of our proposed policy-based
continuous extension: it does not assign probabilities to any subset that violates the constraint of
problem (1). As a result, for any set function ft and any (π1, . . . , πn) ∈

∏n
i=1 ∆κi

, throughout
the Definition 1, we can easily generate a subset, i.e., ∪n

i=1{ai}, that adheres to the constraints of
problem (1) while ensuring E (ft (∪n

i=1{ai})) = Ft(π1, . . . , πn). In contrast, all known lossless
rounding schemes of the multi-linear extension require the function ft to be submodular [15, 18, 19].
Remark 3. Notably, we observe that the works [96, 128] have introduced two relaxation techniques
for lattice submodular and k-submodular functions, both of which are analogous to our policy-based
continuous extension Ft. However, it is crucial to emphasize that there exist notable differences
between our work and [96, 128]: a) The lattice formulation typically requires an ‘order’ relationship
among different actions of the same agent. However, in our multi-agent coordination problem, we
do not impose any specific order on the decisions. Consequently, the results and algorithms from
[96, 128] are not directly applicable to our scenario. b) In addition to submodularity, our paper also
considers weak submodularity and allows for varying sizes of action sets among agents.

With the policy-based continuous extension Ft defined in Eq.(2), the set function maximization
problem (1) can be naturally relaxed into a continuous maximization task, i.e.,

maxFt(π1, . . . , πn), s.t. ∥πi∥1 ≤ 1, πi ∈ [0, 1]κi ,∀i ∈ N . (3)
In order to effectively tackle the policy optimization problem (3), we next investigate the properties
of our proposed policy-based continuous extension Ft.
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4.2 Properties of Policy-based Continuous Extension

This subsection will focus on characterizing the differentiability, monotonicity and submodularity of
our proposed policy-based continuous extension. Specifically, we have the following theorem:
Theorem 1 (Proof in Appendix D). The policy-based continuous extension Ft :

∏n
i=1 ∆κi

→ R+

defined in Eq.(2) satisfies the following properties:

1): For any point (π1, . . . , πn) ∈
∏n

i=1 ∆κi
, the first-order derivative of Ft at variable πi,m,∀i ∈

N ,∀m ∈ [κi], can be expressed as follows:

∂Ft

∂πi,m
(π1, . . . , πn) ≜ Eaj∼πj ,∀j∈N

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
))

,

where aj ∼ πj indicates that action aj is randomly selected from Vj ∪ {∅} based on the policy πj;

2): If the set function ft is monotone, then ∂Ft

∂πi,m
(π1, . . . , πn) ≥ 0 for any point (π1, . . . , πn) ∈∏n

i=1 ∆κi
, i ∈ N and m ∈ [κi], which means the monotonicity of ft can be inherited by Ft;

3): If ft is α-weakly DR-submodular, then Ft is α-weakly continuous DR-submodular [58, 88] over∏n
i=1 ∆κi

, that is, for any two point (πa
1 , . . . , πa

n) ∈
∏n

i=1 ∆κi
and (πb

1, . . . , πb
n) ∈

∏n
i=1 ∆κi

, if
πa
i ≤ πb

i ∀i ∈ N , we have that ∇Ft(π
a
1 , . . . , πa

n) ≥ α∇Ft(π
b
1, . . . , πb

n);

4): For any subset S within the constraint of problem (1) and any point (π1, . . . , πn) ∈
∏n

i=1 ∆κi
,

when ft is monotone α-weakly DR-submodular, the following inequality holds:

α
(
ft(S)− Ft(π1, . . . , πn)

)
≤

∑
(i,m):vi,m∈S

∂Ft

∂πi,m
(π1, . . . , πn), (4)

where {(i,m) : vi,m ∈ S} denotes the set of all indices (i,m) such that vi,m ∈ S. Similarly, when
ft is monotone (γ, β)-weakly submodular, we can show that(

γ2ft(S)− (β(1− γ) + γ2)Ft(π1, . . . , πn)
)
≤

∑
(i,m):vi,m∈S

∂Ft

∂πi,m
(π1, . . . , πn). (5)

Remark 4. Part 3) indicates that when ft is submodular, namely α = 1, our policy-based continuous
extension Ft belongs to the well-studied continuous DR-submodular functions. However, it is
important to highlight that these existing results for continuous DR-submodular maximization [57,
58, 89, 90, 111, 122] cannot be directly extended to our policy-based continuous extension Ft. This
is because all of them heavily rely on the inequality ⟨y−x,∇G(x)⟩ ≥ G(y∨x)−G(x) where G is
a monotone continuous DR-submodular function and ∨ denotes coordinate-wise maximum operation.
Note that the previous inequality requires that the domain of G must be closed under the maximum
operation ∨. However, the domain

∏n
i=1 ∆κi of our proposed Ft does not meet this requirement.

5 Multi-Agent Policy Learning

This section explores how to utilize the policy-based continuous extension introduced in Section 4
to address our concerned MA-OC problem. Broadly speaking, a notable advantage of continuous-
relaxation techniques is that they enable the use of gradient-based methods, such as gradient ascent [8,
72, 86] and Frank-Wolfe method [10, 71], to tackle discrete optimization problems. Moreover, as is
well established in the literature [3, 31, 44, 71], under mild conditions, a wide range of gradient-based
algorithms can converge to the stationary points of their target objectives. Motivated by these findings,
we next investigate the stationary points of our proposed policy-based continuous extension Ft.

5.1 Stationary Points and Surrogate Functions

At first, we recall the definition of stationary points for maximization problem, that is,
Definition 2. Given a differentiable function G : K → R and a domain C ⊆ K, a point x ∈ C is called
as a stationary point for the function G over the domain C if and only if maxy∈C⟨y−x,∇G(x)⟩ ≤ 0.

Next, we examine the performance of the stationary points of our proposed policy-based continuous
extension Ft relative to the maximum value of problem (1). Specifically, we have that
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Theorem 2 (Proof in Appendix E). Given a set function ft : 2
V → R+, if (πs

1, . . . , πs
n) is a stationary

point of its policy-based continuous extension Ft over the domain
∏n

i=1 ∆κi and S∗ denotes the
optimal solution of the corresponding maximization problem (1), then the following inequalities hold:

1): When ft is monotone submodular with curvature c ∈ [0, 1], Ft(π
s
1, . . . , πs

n) ≥
(

1
1+c

)
ft(S

∗);

2): When ft is monotone α-weakly DR-submodular, Ft(π
s
1, . . . , πs

n) ≥
(

α2

1+α2

)
ft(S

∗);

3): When ft is monotone (γ, β)-weakly submodular, Ft(π
s
1, . . . , πs

n) ≥
(

γ2

β+β(1−γ)+γ2

)
ft(S

∗).

Remark 5. It is worth noting that, in a certain sense, the approximation guarantees established in
Theorem 2 is tight. In Appendix E.3, we will present a simple instance of a submodular function ft,
i.e., c = α = γ = β = 1, whose policy-based continuous extension Ft can attain a 1

2 -approximation
guarantee at a stationary point that is also a local maximum.

Theorem 2 indicates that when the original set function ft is monotone submodular with curvature
c, α-weakly DR-submodular or (γ, β)-weakly submodular, the direct application of gradient-based
methods on our proposed policy-based continuous extension Ft can ensure an approximation ratio of
( 1
1+c ), (

α2

1+α2 ) or ( γ2

β+β(1−γ)+γ2 ) to the problem (1), respectively. However, as shown in [105, 36],
the optimal approximation ratio for maximizing a monotone submodular function with curvature c
is (1 − c

e ), which significantly exceeds the previous ( 1
1+c )-approximation provided by stationary

points of Ft. Similarly, [53] pointed out that the optimal approximation for α-weakly DR-submodular
maximization is (1 − e−α), which is also greater than the ( α2

1+α2 )-approximation established in
Theorem 2. Motivated by these findings, we naturally wonder whether it is possible to enhance the
approximation guarantees of the stationary points of our proposed policy-based continuous extension.

Previously, the multi-linear extension of submodular functions also encountered a similar issue,
namely, the stationary points of the multi-linear extension only can guarantee a sub-optimal 1

2 -
approximation [38, 58]. To overcome this drawback, prior studies [39, 40, 122, 126] constructed a
novel surrogate function for the multi-linear extension and proved that the stationary points of this
surrogate function can achieve the optimal (1 − 1

e )-approximation. Inspired by this idea, we also
hope to develop a surrogate function for our proposed policy-based continuous extension Ft such
that it can improve the approximation ratios of the stationary points of Ft. Specifically, we have that

Theorem 3 (Proof in Appendix F). Similar to [122, 125, 126], for any given policy-based continuous
extension Ft introduced in Definition 1, we consider a surrogate function F s

t :
∏n

i=1 ∆Ki
→ R+

whose gradient at each point x ∈
∏n

i=1 ∆κi
is a weighted average of the gradient ∇Ft(z ∗ x),

i.e., ∇F s
t (x) =

∫ 1

0
w(z)∇Ft(z ∗ x)dz where w(z) is a positive weight function over [0, 1]. After

elaborately designing the weight function w(z), we can show that:

1): When ft is α-weakly DR-submodular and w(z) = eα(z−1), for any stationary point (πs
1, . . . , πs

n)
of the surrogate objective F s

t over
∏n

i=1 ∆κi
, then we have Ft(π

s
1, . . . , πs

n) ≥
(
1− e−α

)
ft(S

∗);

2): When ft is (γ, β)-weakly submodular and w(z) = eϕ(γ,β)(z−1) where ϕ(γ, β) = β(1− γ) + γ2,
for any stationary point (πs

1, . . . , πs
n) of the surrogate objective F s

t over the domain
∏n

i=1 ∆κi
, then

we can show that Ft(π
s
1, . . . , πs

n) ≥
(γ2(1−e−ϕ(γ,β))

ϕ(γ,β)

)
ft(S

∗);

3): When ft is submodular with curvature c and w(z) = ez−1, for any stationary point (πs
1, . . . , πs

n)
of the objective (F s

t +
Gt

e ) over
∏n

i=1 ∆κi
, then we have Ft(π

s
1, . . . , πs

n) ≥
(
1− c

e

)
ft(S

∗), where S∗

is the optimal subset of problem (1) and Gt(π1, . . . , πn) ≜
∑n

i=1

∑κi

m=1

(
ft
(
vi,m|V−{vi,m}

))
πi,m.

Remark 6. Note that part 3) of Theorem 3 considers the objective (F s
t +

Gt

e ) instead of the surrogate
F s
t alone. Here, Gt is a special linear linear function related to the minimum margin gains of the

corresponding submodular objective ft, that is, ft
(
a|V −{a}

)
,∀a ∈ V . Furthermore, it is important

to emphasize that the proof of Theorem 3 is not a parallel copy of the articles [122, 126] regarding
the multi-linear extension. This is because the works [122, 126] also utilized the same inequality in
Remark 4,which requires our domain to be closed under the operation ∨. However, the domain of
our Ft does not satisfy this condition. As a result, new techniques are required to verify Theorem 3.
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Algorithm 1: Multi-Agent Surrogate Policy Learning(MA-SPL)

Input: Time horizon T , weight function w(z), action set Vi ≜ {vi,1, . . . , vi,κi
}, weight matrix

W ≜ [wij ]n×n, parameters (α, γ, β) and step size ηt,∀t ∈ [T ]
// Policy Initialization (Lines 1-2)

1 Initialize a policy vector (πi,1(1), . . . , πi,n(1)) for each agent i ∈ N ;
2 Set the policy πi,i(1) ≜ 1

κi
1κi and πi,j(1) ≜ 0κj when i ̸= j for any i ∈ N ;

3 for t = 1, . . . , T do
4 for each agent i ∈ N do

// Actions Sampling and Information Exchange (Lines 5-8)

5 Compute the normalized policy pi(t) ≜
πi,i(t)

∥πi,i(t)∥1
;

6 Utilize the normalized policy pi(t) to sample an action ai(t) from Vi;
7 Agent i executes the sampled action ai(t);
8 Exchange policy vector

(
πi,1(t), . . . , πi,n(t)

)
with the neighboring agent j ∈ Ni;

// Surrogate Gradient Estimation (Lines 9-16)

9 Generate a random number zi(t) from r.v. Z where Pr(Z ≤ z) ≜
∫ z
0

w(a)da∫ 1
0
w(a)da

,∀z ∈ [0, 1];

10 for j = 1, . . . , n do
11 Utilize the weighted policy zi(t) ∗ πi,j to sample an action ãj(t) ∈ Vi ∪ {∅};
12 Compute the random subset of actions Si(t) := ∪j ̸=i,j∈N {ãj(t)};
13 Estimate the derivatives of the surrogate function based on Theorem 1 and 3, i.e.,

∂̂F s
t

∂πi,m
(πi,1(t), . . . , πi,n(t)

)
≜ di,m(t) ≜ (

∫ 1

z=0

w(z)dz)ft
(
vi,m

∣∣Si(t)
)
,∀m ∈ [κi];

14 if ft is submodular then
15 Update di,m(t) =

(
di,m(t) + e−1ft(vi,m|V − {vi,m})

)
,∀m ∈ [κi];

16 Aggregate the surrogate gradient estimations
(
di,1(t), . . . , di,κi

(t)
)

as vector di(t);
// Policy Update (Lines 17-19)

17 Update πi,j(t+ 1) ≜
∑

k∈Ni∪{i} wikπk,j(t) for any j ̸= i and j ∈ N ;
18 Compute yi,i(t+ 1) ≜

∑
j∈Ni∪{i} wijπj,i(t) + ηtdi(t);

19 Update πi,i(t+ 1) ≜ argminb∈∆κi
∥b− yi,i(t+ 1)∥2;

5.2 Multi-Agent Policy Learning via Surrogate Functions

Theorem 3 suggests that, when the original set function ft is monotone submodular with curvature
c, α-weakly DR-submodular or (γ, β)-weakly submodular, the direct application of gradient-based
methods targeting stationary points to the surrogate function F s

t or its variant (F s
t + Gt

e ) can

achieve a tight approximation ratio of (1− c
e ), (1− e−α) or

(γ2(1−e−(β(1−γ)+γ2))
β(1−γ)+γ2

)
to the set function

maximization problem (1), respectively. Furthermore, recent study [126] developed an effective online
algorithm for the multi-agent submodular coordination problem based on the well-studied consensus
technique [84, 99, 118, 119] and the surrogate functions of multi-linear extension [122, 126]. Thus,
in order to address the unexplored weakly submodular scenarios and simultaneously achieve the
optimal (1− c

e )-approximation for submodular settings, we naturally consider replacing the surrogate
functions of multi-linear extension in the algorithms of [126] with those of our proposed policy-based
continuous extension Ft. Motivated by this idea, we then present a general online algorithm named
MA-SPL for MA-OC problem, with details presented in Algorithm 1.

In Algorithm 1, at every time step t ∈ [T ], each agent i ∈ N will maintain a local policy vec-
tor
(
πi,1(t), . . . , πi,n(t)

)
. Here, πi,i(t) represents the policy being executed by agent i, while

πi,j(t), j ̸= i reflects agent i’s current estimate of the policy πj,j(t) being taken by other agent j. Af-
ter that, each agent i selects an action ai(t) from Vi based on the normalized policy pi(t) ≜

πi,i(t)
∥πi,i(t)∥1

and shares its local policy vector with the neighboring agent j ∈ Ni, where Ni denotes the neighbors
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of agent i. Then, according to the results of Theorem 1 and Theorem 3, each agent i estimates
the first-order partial derivatives of our proposed surrogate function F s

t at every coordinate πi,m.
Specifically, agent i initially samples a random number zi(t) from the random variable Z with distri-
bution Pr(Z ≤ z) ≜

∫ z
0

w(a)da∫ 1
0
w(a)da

,∀z ∈ [0, 1] and then approximates each ∂F s
t

∂πi,m
(πi,1(t), . . . , πi,n(t)

)
by di,m(t) ≜ (

∫ 1

z=0
w(z)dz)ft

(
vi,m

∣∣Si(t)
)

where Si(t) is a random set generated from the weighted
policy vector zi(t)∗

(
πi,1(t), . . . , πi,n(t)

)
. Furthermore, when the set objective function ft is submod-

ular, Algorithm 1 will further adjust each surrogate gradient estimation di,m(t) with the minimum
marginal contribution ft(vi,m|V−{vi,m}),∀m ∈ [κi] (See Lines 14-15). Finally, each agent i updates
its policy πi,i(t) throughout a projected ascent along the direction di(t) ≜

(
di,1(t), . . . , di,κi(t)

)
.

In sharp contrast with the previous MA-OSMA and MA-OSEA algorithms in [126], the key inno-
vation of Algorithm 1 lies in the use of our proposed policy-based continuous extension and its
surrogate functions to update the policy vector in Lines 9-19, rather than relying on the well-studied
multi-linear extension [15]. Moreover, our proposed policy-based continuous extension naturally
aligns with the actions sampling process in Lines 5-7, ensuring that, for any set function ft, the
function value at the executed actions ∪i∈N {ai(t)} is at least as large as the expected function
value Ft(π1,1, . . . , πn,n), namely, E (ft(∪i∈N {ai(t)})) ≥ Ft(π1,1, . . . , πn,n). This is a significant
advantage over the multi-linear extension, as the latter generally requires the submodular assumption
to guarantee the losslessness of the action sampling of Lines 5-7 (See Lemma 13 in [126]).

Next, we provide the theoretical analysis for the proposed Algorithm 1. Before that, we introduce
some standard assumptions about the communication graph G(N , E) and the weight matrix W, i.e.,

Assumption 1. The graph G(N , E) is connected. Furthermore, the weight matrix W ≜ [wij ]n×n ∈
Rn×n

+ is symmetric and doubly stochastic, namely, WT = W and W1n = 1n. That is to say, τ < 1
where τ = max(|λ2(W)|, |λn(W)|) is the second largest magnitude of the eigenvalues of W and
λi(W) denotes the i-th largest eigenvalue of matrix W.

With this Assumption 1, we then can get the following convergence results for our Algorithm 1, i.e.,
Theorem 4 (Proof in Appendix G). Under Assumption 1, when each set objective function ft is
monotone submodular with curvature c, α-weakly DR-submodular or (γ, β)-weakly submodular, if

we set the weight function w(z) according to Theorem 3 and choose ηt = O
(√ (1−τ)PT

T

)
where

PT ≜
∑T

t=2 |A∗
t△A∗

t−1| is the deviation of maximizer sequence and the symbol △ denotes the
symmetric difference, namely, S△T = (S \T )∪ (T \S), then our proposed Algorithm 1 can achieve

a dynamic ρ-regret bound of O
(√

PTT
1−τ

)
, that is, E

(
R∗

ρ(T )
)
≤ O

(√
PTT
1−τ

)
, where ρ = (1− c

e ),

ρ = (1− e−α) or ρ =
(γ2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2

)
, respectively.

Remark 7. To the best of our knowledge, this is the first result that achieves the tight (1 − c
e )-

approximation for the MA-OC problem with submodular objectives and simultaneously can tackle
the previously unexplored (γ, β)-weakly submodular and α-weakly DR-submodular scenarios.

Remark 8. Note that when considering the weakly submodular objectives, Line 9 of Algorithm 1
requires prior knowledge of the ratios α, γ, β to set the weight function w(z). However, in general,
accurately computing these parameters will incur exponential computations. To overcome this
drawback, we further present a parameter-free online algorithm named MA-MPL in Appendix B.

6 Numerical Experiments

In this section, we validate the effectiveness of our proposed MA-SPL and MA-MPL algorithms via
two different multi-target tracking scenarios. Especially in Figure 1(a),1(b),1(c), we consider a
submodular facility-location objective function [115, 126] with different proportions of ‘Random’,
‘Adversarial’ and ‘Polyline’ targets. According to the results in Figure 1(a)-1(c), we can find that the
average utility of our MA-SPL can significantly exceed the state-of-the-art MA-OSMA and MA-OSEA
algorithms in [126], which is consistent with our Theorem 4. Note that the suffixes in Figure 1(a)-1(d)
represent two different choices for communication graphs, where ‘c’ stands for a complete graph
and ‘r’ denotes an Erdos-Renyi random graph with average degree 4. In contrast, Figure 1(d)-1(f)
adopt a bayesian A-optimal criterion for the target tracking task, which will lead to a α-weakly
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DR-submodular utility function [53, 55, 106]. Given the unknown DR ratio α, in Figure 1(e)-1(f), we
perform a brute-force 0.1-network search to find the optimal parameter settings for MA-SPL algorithm.
Subsequently, we report the best α = 0.1 case and the worse α = 1 scenario in Figure 1(d). Similarly,
from Figure 1(d), we also find that our proposed MA-MPL and MA-SPL can substantially outperform
the ‘RANDOM’ baseline, which is in accord with our theoretical findings. Particularly in ‘RANDOM’
baseline, we let each agent i randomly execute an action from its own action set Vi. Due to space
limitations, more discussions about experiment setups and results are presented in Appendix C.
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Figure 1: A comparison of the running average utility across two distinct target tracking simulations.

7 Conclusion

In this paper, we primarily introduce an effective online policy learning algorithm named MA-SPL
for the concerned MA-OC problem. Compared with the state-of-art MA-OSMA and MA-OSEA
algorithms [126] , our proposed MA-SPL not only can guarantee a tight (1− c

e )-approximation for
MA-OC problem with submodular objectives but also can address the unexplored (γ, β)-weakly
submodular and α-weakly DR-submodular scenarios. Subsequently, to eliminate the dependence
on the unknown DR ratio and submodularity ratio in our MA-SPL algorithm, we further present a
parameter-free online algorithm named MA-MPL for the MA-OC problem. The key cornerstone of our
MA-SPL and MA-MPL algorithms is a novel continuous relaxation termed as policy-based continuous
extension. In sharp contrast with the well-studied multi-linear extension [15], a notable advantage of
this new policy-based continuous extension is its ability to provide a lossless rounding scheme for any
set function, thereby enabling us to tackle the challenging weakly submodular objective functions.
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The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the paper’s contribution and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Some limitations of our proposed MA-MPL algorithm have been discussed in
the Appendix I.
Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have clearly stated the required assumptions and an accompanying com-
plete proof in the appendix for each theory result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the detailed experiment setups and results in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We reveal the codes about our experiments in supplemental materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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A Literature Review

In this section, we aim to provide a comprehensive review of the related literature.

A.1 Submodular Maximization

A set function f : 2V → R+ is called submodular if and only if it satisfies the diminishing-
return property, namely, for any two subsets A ⊆ B ⊆ V and v ∈ V \ B, f(A ∪ {v}) − f(A) ≥
f(B∪{v})−f(B). It is widely recognized that the maximization of submodular functions is NP-hard,
implying that no polynomial-time algorithms can solve it optimally. To overcome this challenge, [85]
introduced a greedy algorithm for solving the monotone submodular maximization problem under
a cardinality constraint and demonstrated that this greedy algorithm can achieve an approximation
ratio of (1− e−1). Subsequently, [35] showed that this (1− e−1)-approximation guarantee is tight
for monotone submodular maximization under reasonable complexity-theoretic assumptions. After
that, [41] extended the greedy algorithm to the general matroid constraint. However, [41] also
pointed out that under such a matroid constraint, the approximation ratio achievable by the greedy
algorithm diminishes from (1− e−1) to 1/2. To achieve the tight (1− e−1)-approximation under
matroid constraint, then [15] proposed a continuous greedy algorithm for submodular functions.
A key innovation of this continuous greedy algorithm is a novel continuous-relaxation technique
termed as the multi-linear extension. Furthermore, there has been extensive research dedicated to the
non-monotone submodular maximization [12, 13, 19, 22, 24, 37, 52, 82, 87, 123]

A.2 Non-Submodular Maximization

Recently, numerous studies have found that there exist various real-world applications inducing
utility functions that are close to submodular, but not strictly submodular. Examples include variable
selection [30, 34], data summarization [46, 79, 113], neural network pruning [33, 104], target
tracking [55, 56] and sparse optimal transport [77].

Weakly Submodular Maximization. A important class of close-to-submodular functions is known
as γ-weakly submodular functions. Specifically, for a set function f : 2V → R+, it is called
γ-weakly submodular if and only if, for any two subsets A ⊆ B ⊆ V , the following inequality
holds:

∑
v∈B\A f(v|A) ≥ γ

(
f(B)− f(A)

)
. The γ-weakly submodular functions were originally

introduced by the work [29]. Furthermore, when considering the simple cardinality constraint,
[29] also show that the standard greedy algorithm can achieve an approximation ratio of (1− e−γ)
for the maximization of a γ-weakly submodular function. Subsequently, [53] proved that, for any
ϵ > 0, no polynomial-time algorithm can achieve a (1− e−γ + ϵ)-approximation for the problem
of maximizing a γ-weakly submodular function subject to a cardinality constraint. As for more
complicated matroid constraints, [20] showed that the residual random greedy method of [14] can
achieve an approximation ratio of γ2

(1+γ)2 for the problem of maximizing a monotone γ-weakly
submodular functions. After that, [63] examined the approximation performance of the standard
greedy algorithm on the γ-weakly submodular maximization problem over a matroid constraint,
which indicated that the standard greedy algorithm only can offer an approximation ratio of 0.4γ2

√
rγ+1

where r is the rank of the matroid. It is important to note that this approximation ratio 0.4γ2

√
rγ+1 is not a

constant guarantee and highly depends on the matroid rank r. In order to improve the approximation
performance of these greedy-based algorithms over matroid constraints, [106] introduced the notion
of upper submodularity ratio β and developed a more powerful distorted local-search algorithm
for (γ, β)-weakly submodular maximization problem. More importantly, this distorted local search

can guarantee a γ2(1−e−(β(1−γ)+γ2))
β(1−γ)+γ2 -approximation for the problem of maximizing a monotone

(γ, β)-weakly submodular functions subject to a matroid constraint. Note that, when the (γ, β)-
weakly submodular function is closer to being submodular, i.e., γ, β → 1, the approximation ratio
γ2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2 will approach the tight (1−1/e). Conversely, when γ, β → 1, the approximation

ratio γ2

(1+γ)2 of the residual random greedy method [20] will trend to the sub-optimal 1/4.

Weakly DR-Submodular Maximization. The other important class of non-submodular functions is
known as α-weakly DR-submodular functions, where α is variously referred to as the diminishing-
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return(DR) ratio [68], the generalized curvature [9] or the generic submodularity ratio [48]. The work
of [63] is the first to explore the problem of maximizing a α-weakly DR-submodular maximization
subject to general matroid constraints and proved that the standard greedy algorithm achieves
approximation ratios of α

1+α for the matroid-constrained α-weakly DR-submodular maximization.
Recently, [47] also showed that the continuous greedy combined with the contention resolution
scheme [19] can obtain a sub-optimal approaximation ratio of

(
α(1−1/e)(1−e−α)

)
for the problem

of maximizing a monotone α-weakly DR-submodular functions subject to a matroid constraint. To
achieve the tight (1− e−α)-approximation guarantee, [76] presented a novel distorted local-search
method for the problem of maximizing a α-weakly DR-submodular maximization subject to al
matroid constraint, which is motivated via the non-oblivious search [40, 39, 38].

A.3 Multi-Agent Submodular Maximization

Multi-Agent Offline Submodular Maximization. Coordinating multiple agents to collaboratively
maximize a submodular function is a critical task with numerous applications in machine learning,
robot planning and control. A common solution for multi-agent submodular maximization problem
heavily depends on the distributed implementation of the classic sequential greedy method [41],
which can ensure a ( 1

1+c )-approximation [26] when the submodular function possesses a curvature
of c ∈ [0, 1]. However, this distributed greedy algorithm requires each agent to have full access
to the decisions of all previous agents, thereby forming a complete directed communication graph.
Subsequently, several studies [50, 45, 78] have investigated how the topology of the communication
network affects the performance of the distributed greedy method. Particularly, [50] pointed out that
the worst-case performance of the distributed greedy algorithm will deteriorate in proportion to the
size of the largest independent group of agents in the communication graph. In order to overcome these
challenges, various studies [94, 95, 32] utilized the multi-linear extension [15] to design algorithms
for solving mutli-agent submodular maximization problem. Specifically, [32] proposed a multi-agent
variant of gradient ascent for mutli-agent submodular maximization problem and showed that this
multi-agent variant of gradient ascent can attain 1

2OPT − ϵ over any connected communication
graph where OPT is the optimal value. After that, to achieve the tight (1− 1/e)-approximation, [95]
developed a multi-agent variant of continuous greedy method [15, 19]. However, this multi-agent
continuous greedy [95] requires the exact knowledge of the multi-linear extension, which will lead
to the exponential number of function evaluations. To tackle this drawback, [94] also proposed a
stochastic variant of continuous greedy method [15, 19], which can enjoy ( 1−e−c

c )OPT − ϵ. Here, c
is the curvature of the investigated submodular objectives.

According to the hardness result in centralized submodular maximization [105], the optimal achiev-
able approximation guarantee for maximizing a submodular function with curvature c is (1 − c

e ).
However, as previously discussed, the state-of-the-art approximation guarantee for multi-agent offline
submodular maximization problems is ( 1−e−c

c ), which highly mismatches the best possible guarantee
of (1 − c

e ) established in [105]. Thus, if in Algorithm 1 we treat any incoming objective function
ft,∀t ∈ [T ] as a fixed submodular set objective f , our Algorithm 1 can be naturally transformed
into an approximation algorithm with the tight (1− c

e ) guarantee for multi-agent offline submodular
maximization problems. Similar to [126], we compare this offline version of our Algorithm 1 with
existing algorithms for multi-agent offline submodular maximization problems in Table 2.

Multi-Agent Online Submodular Maximization. [115] is the first one to explore the multi-agent
submodular maximization problems in time-varying environments. Moreover, [115] also proposed an
online sequence greedy(OSG) algorithm for multi-agent online submodular maximization problems
and proved this OSG algorithm can achieve a sub-optimal ( 1

1+c )-approximation over a complete
communication graph, where c is the joint curvature of the investigated submodular objectives.
Concurrently, [114] extended this OSG algorithm into bandit settings. In order to improve this
sub-optimal ( 1

1+c )-approximation guarantee and reduce the rigid requirement of a fully connected
communication network of OSG algorithm, [126] utilized the non-oblivious auxiliary functions
presented in [122] to design two multi-agent variants of online gradient ascent algorithm, namely,
MA-OSMA algorithm and MA-OSEA algorithm, for the multi-agent online submodular maximization
problem. Furthermore, [126] also showed that these two MA-OSMA and MA-OSEA algorithms

can attain a regret bound of Õ(
√

PTT
1−τ ) against a ( 1−e−c

c )-approximation to the best comparator in
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Table 2: Comparison of the different algorithms for multi-agent offline submodular maximization problems.
Note that ‘Approx.’ denotes the obtained approximation result, ‘#Com.’ represents the number of communication,
‘#Queries’ denotes the number of queries to the set objective functions, ‘Proj-free’ indicates whether the method
does not require projection, ‘Para-free’ indicates whether the method does not require the knowledge of curvature
c, OPT denotes the optimal function value, d(G) is the diameter of the graph G, τ is the spectral gap of the
weight matrix, κ ≜

∑n
i=1 κi and α(G) ≥ 1 is the number of nodes in the largest independent set in graph G.

Method Type Para-free Proj-free Approx. Graph(G) #Com. #Queries Reference
Greedy Method det. ✔ ✔ ( 1

1+c )OPT complete O(n) O(κn) [26]
PGA sto. ✔ ✘ 1

2OPT − ϵ connected O( 1
(1−τ)ϵ2 ) O

(
κ

(1−τ)ϵ2

)
[32]

Greedy Method det. ✔ ✔ ( 1
1+α(G) )OPT connected O

(
n
)

O(κn) [50, 45]
CDCG det. ✔ ✔ (1− 1

e )OPT − ϵ connected O
(

1
(1−τ)ϵ

)
O
(

κ2κ

(1−τ)ϵ

)
[95]

Distributed-CG sto. ✔ ✔ ( 1−e−c

c )OPT − ϵ connected O
(d(G)

ϵ

)
Õ
(

κd3(G)
ϵ3

)
[94]

MA-OSMA sto. ✘ ✘ ( 1−e−c

c )OPT − ϵ connected O
(

1
(1−τ)ϵ2

)
O
(

κ
(1−τ)ϵ2

)
[126]

MA-OSEA sto. ✘ ✔ ( 1−e−c

c )OPT − ϵ connected O
(

1
(1−τ)ϵ2

)
O
(

κ log( 1
ϵ )

(1−τ)ϵ2

)
[126]

Algorithm 1 sto. ✔ ✘ (1− c
e )OPT − ϵ connected O

(
1

(1−τ)ϵ2

)
O
(

κ
(1−τ)ϵ2

)
Theorem 4

hindsight, where PT is the deviation of maximizer sequence, τ is the spectral gap of the network and
c is the joint curvature of submodular objectives.

A.4 Multilinear Extension

As almost all state-of-the-art algorithms for multi-agent submodular coordination [94, 95, 126] rely
on the multi-linear extension of [15], thus, in this subsection, we review the concept of multi-linear
extension and compare it with our proposed policy-based continuous extension in Section 4.

At first, we define κ ≜
∑n

i=1 κi. Furthermore, from the definition of V in Section 2, we can know
that κ = |V| such that we can re-define V ≜ [κ] ≜ {1, . . . , κ}. Then, we can show that
Definition 3. For a set function f : 2V → R+, we define its multi-linear extension as

G(x) =
∑
A⊆V

(
f(A)

∏
a∈A

xa

∏
a/∈A

(1− xa)
)
= ER∼x

(
f(R)

)
, (6)

where x = (x1, . . . , xκ) ∈ [0, 1]κ and R ⊆ V is a random set that contains each element a ∈ V
independently with probability xa and excludes it with probability 1− xa. We write R ∼ x to denote
that R ⊆ V is a random set sampled according to x.

With this multi-linear extension, we then can transfer the previous discrete subset selection problem (1)
into a continuous maximization which aims at learning the optimal independent probability for each
element a ∈ V , that is,

max
x

G(x), s.t. x ∈ [0, 1]κ and
∑
a∈Vi

xa ≤ 1,∀i ∈ N . (7)

It is important to note that, if we round any point x included into the constraint of problem (7)
by the definition of multi-linear extension, namely, Eq.(6), there is a certain probability that the
resulting subset will violate the partition constraint of the subset selection problem (1). Therefore, for
multi-linear extension, we need to design a specific rounding methods based on the properties of the
investigated set objective functions. However, current known lossless rounding schemes for multi-
linear extension, such as pipage rounding [1], swap rounding [18] and contention resolution [19],
are heavily dependent on the submodular assumption. Currently, how to losslessly round the multi-
linear extension of non-submodular set functions, e.g. (γ, β)-weakly submodular and α-weakly
DR-submodular functions, still remains an open question [106]. Conversely, our proposed policy-
based continuous extension in Section 4 does not assign probabilities to any subsets that are out of
the partition constraint of problem (1), which means that, for any set function f : 2V → R+ and
any given policy vector (π1, . . . , πn) ∈

∏n
i=1 ∆κi

, we can, through the Definition 1, easily produce
a subset that conforms to the constraint of problem (1) without any loss in terms of the expected
function value Ft(π1, . . . , πn).
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B Parameter-free Multi-Agent Policy Learning

It is important to note that, when considering the weakly submodular scenarios, the Line 9 of Algo-
rithm 1 requires the prior knowledge of the unknown submodularity ratio (γ, β) or the diminishing-
return(DR) ratio α to set the weight function w(z). However, in general, accurately computing these
parameters will incur exponential computations. To overcome this drawback, in this section, we
explore how to design a parameter-free online algorithm for the MA-OC problem with (γ, β)-weakly
submodular or α-weakly DR-submodular objectives.

Note that, in part 4) of Theorem 1, we establish a novel relationship between our proposed policy-
based continuous extension Ft and its original set function ft. More specifically, when the ft
is monotone α-weakly DR-submodular or (γ, β)-weakly submodular, the weighted discrepancy
between any ft(S) and its policy-based continuous extension Ft(π1, . . . , πn) can be bounded by
some sum of first-order derivatives, i.e.,

∑
(i,m):vi,m∈S

∂Ft

∂πi,m
(π1, . . . , πn). It is worth noting that the

computation of this sum
∑

(i,m):vi,m∈S
∂Ft

∂πi,m
(π1, . . . , πn) does not rely on the knowledge of α, γ, β.

Therefore, we naturally consider whether it is possible to devise a parameter-free online algorithm
for the MA-OC problem by controlling this aforementioned sum

∑
(i,m):vi,m∈S

∂Ft

∂πi,m
(π1, . . . , πn)

to narrow the gap between Ft(π1, . . . , πn) and ft(S).

Before that, [21, 88, 121, 133] utilized the idea of meta-actions [103] to devise a Meta-Frank-
Wolfe algorithm for online submodular maximization problems. The core of this Meta-Frank-Wolfe
algorithm lies in iteratively optimizing an upper bound of the gap of the corresponding multi-linear
extension Gt, i.e., ⟨y,∇Gt(x)⟩ ≥ Gt(y)−Gt(x), which is very similar to our previously discussed
idea. Motivated by this finding, we then leverage the idea of meta-actions [103] and the insight from
part 4) of Theorem 1 to design a parameter-free MA-MPL algorithm for the MA-OC problem with
(γ, β)-weakly submodular or α-weakly DR-submodular objectives, as shown in Algorithm 2.

Like the Algorithm 1, the core of our Algorithm 2 is primarily composed of three interleaved
components, namely, Policy Update and Information Exchange (Lines 5-10), Actions Sampling(Lines
11-13), Surrogate Gradient Estimation(Lines 9-16) and Batch Gradient Estimation and Linear Oracles
Update (Lines 14-21). Firstly, at every time step t ∈ [T ], each agent i ∈ N employs K online
linear oracles {Q(1)

i , . . . , Q
(K)
i } to mimic the process of decentralized Meta-Frank-Wolfe [81, 94]

for maximizing our proposed policy-based continuous extension Ft. Specifically, during every
inner iteration k ∈ [K], each agent i pushes the i-th local policy vector π

(k−1)
i,i along the direction

v
(k)
i ∈ ∆κi

provided by the oracle Q
(k)
i , while maintaining other policies π

(k−1)
i,j , j ̸= i unchanged.

Then, agent i exchanges the updated policy vector
(
y
(k)
i,1 (t), . . . ,y

(k)
i,n (t)

)
with the neighboring

agent j ∈ Ni and simultaneously utilizes these received information to initialize the next policy
π
(k)
i,m, i.e., π

(k)
i,m ≜ maxj∈Ni∪{i}

(
y
(k)
j,m(t)

)
,∀m ∈ N , where y

(k)
i,i (t) ≜ π

(k−1)
i,i (t) + 1

Kv
(k)
i (t) and

y
(k)
i,m(t) ≜ π

(k−1)
i,m (t),∀m ̸= i. After completing all K iterations, each agent i normalizes the final

policy vector π
(K)
i,i (t) to select an action ai(t) from Vi(See Lines 11-13). Next, in Lines 14-20, each

agent i uses a L-batch stochastic estimation d
(k)
i (t) to approximate the first-order partial derivatives

of our proposed policy-based continuous extension Ft at every policy vector
(
π
(k)
i,1 (t), . . . , π

(k)
i,n(t)

)
and every coordinate πi,m,∀m ∈ [κi]. Finally, each agent i feeds the obtained L-batch gradient
estimation d

(k)
i (t) back to its corresponding linear oracle Q

(k)
i .

Note that in the process of Algorithm 2, each agent i ∈ N only needs to evaluate the margin
contributions of the actions within its own action set Vi(See Line 18).

It is important to highlight that, compared with the previous studies [21, 103, 126, 133], the innova-
tions of our proposed MA-MPL algorithm are threefold: First, we utilize a policy-based continuous
extension instead of the well-studied multi-linear extension to adjust the linear oracles in Lines 14-21.
Second, rather than using a weight matrix to aggregate the received information, we employ the
coordinate-wise maximization operation to update the policy vector(See Line 10). Third, to reduce
communication complexity, we implement the batch gradient estimation in Lines 16-20.

Next, we provide the theoretical analysis for the proposed Algorithm 2. Before that, we introduce
some standard assumptions about the linear maximization oracles Q(k)

i ,∀i ∈ N , k ∈ [K], namely,
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Algorithm 2: Multi-Agent Meta-Policy Learning(MA-MPL)

Input: Time horizon T , action set Vi ≜ {vi,1, . . . , vi,κi
}, Communication Graph G(N , E),

number of online linear maximization oracles, namely, K and batch size L
// Policy Vector and Online Linear Oracles Initialization (Lines 1-2)

1 Initialize a policy vector (π(0)
i,1 (t), . . . , π

(0)
i,n(t)) ≜ 0,∀t ∈ [T ] for each agent i ∈ N ;

2 Initialize K online linear oracles over ∆κi
, i.e., {Q(1)

i , . . . , Q
(K)
i }, for each agent i ∈ N ;

3 for t = 1, . . . , T do
4 for each agent i ∈ N do

// Policy Update and Information Exchange (Lines 5-10)
5 for k = 1, . . . ,K do
6 Set the shared vector y(k)

i,m(t) ≜ π
(k−1)
i,m (t) for any m ̸= i and m ∈ N ;

7 Obtain the update direction v
(k)
i (t) ∈ ∆κi

from oracle Q
(k)
i ;

8 Compute y
(k)
i,i (t) ≜ π

(k−1)
i,i (t) + 1

Kv
(k)
i (t);

9 Exchange the vector
(
y
(k)
i,1 (t), . . . ,y

(k)
i,n (t)

)
with the neighboring agent j ∈ Ni;

10 Set π
(k)
i,m ≜ maxj∈Ni∪{i}

(
y
(k)
j,m(t)

)
,∀m ∈ N ;

// Actions Sampling (Lines 11-13)

11 Compute the normalized policy pi(t) ≜ π
(K)
i,i (t)

/
∥π

(K)
i,i (t)∥1;

12 Utilize the normalized policy pi(t) to sample an action ai(t) from Vi;
13 Agent i executes the sampled action ai(t);

// Batch Gradient Estimation and Linear Oracles Update(Lines 14-21)
14 for k = 1, . . . ,K do
15 Set the gradient estimation d

(k)
i (t) := 0κi

;
16 for l = 1, . . . , L do
17 Utilize the policy π

(k)
i,j (t) to sample an action ãj(t) ∈ Vi ∪ {∅} for any j ∈ N ;

18 Estimate the derivatives of Ft based on Theorem 1, i.e.,

∂̂Ft

∂πi,m

(
π
(k)
i,1 (t), . . . , π

(k)
i,n(t)

)
≜ g

(k)
i,m(t) ≜ ft

(
vi,m

∣∣ ∪j ̸=i {ãj(t)}
)
,∀m ∈ [κi];

19 Aggregate the gradient estimations
(
g
(k)
i,1 (t), . . . , g

(k)
i,κi

(t)
)

as vector g(k)
i (t);

20 Update d
(k)
i (t) ≜ d

(k)
i (t) + 1

Lg
(k)
i (t);

21 Feed back the batch gradient estimation d
(k)
i (t) to the linear oracle Q

(k)
i ;

Assumption 2. Each linear maximization oracle Q
(k)
i can achieve a dynamic regret of O(

√
VTT )

where VT is the variation of any feasible path (u1, . . . ,uT ) ∈
∏T

t=1 ∆κi
, that is to say, VT ≜∑T

t=2 ∥ut − ut−1∥2 for any path (u1, . . . ,uT ) ∈
∏T

t=1 ∆κi

Remark 9. It is worth noting that there exist several effective and efficient algorithms that can
achieve a regret bound of O(

√
VTT ) for online linear maximization problem, for instance, online

Frank-Wolfe [110] and online gradient ascent [116, 127, 134].

Theorem 5 (Proof provided in Appendix H). Under Assumption 2, when the communication graph
G(N , E) is connected and each set function ft is monotone α-weakly DR-submodular or (γ, β)-
weakly submodular, if we set L = O(T ) and K = O(

√
T ), our proposed MA-MPL algorithm can

achieve a dynamic ρ-regret bound of O
(
d (G)

√
PTT

)
, that is, E

(
R∗

ρ(T )
)
≤ O

(
d (G)

√
PTT

)
,

where ρ = (1− e−α) or ρ =
(γ2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2

)
, respectively.

Remark 10. Note that, in Theorem 5, d(G) represents the diameter of graph G(N , E) ,i.e., the
length of the shortest path between the most distanced nodes. Moreover, PT ≜

∑T
t=2 |A∗

t△A∗
t−1| is

the deviation of maximizer sequence and △ denotes the symmetric difference.
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C Additional Experimental Details and Results

In this section, we test the effectiveness of our proposed Algorithm 1 and Algorithm 2 in two different
multi-target tracking scenarios.

C.1 Target Tracking with Facility-Location Objective Functions

In line with the prior studies [115, 126], we consider a 2-dimensional plane where 20 agents are
deployed to track 30 moving targets over a duration of 25 seconds, subdivided into T ≜ 1250
discrete iterations. At every iteration, agents must determine their movement direction from “up”,
“down”, “left”, “right”, or “diagonally”. Simultaneously, agents also need to adjust their speeds from
a predefined set of 5, 10, or 15 units/s. As for targets, we categorize them into three different types:
the unpredictable ‘Random’ and the structured ‘Polyline’ as well as the challenging ‘Adversarial’.
More specifically, at every iteration, ‘Random’ target will change its movement angle θ randomly
from [0, 2π] and steers at a random speed between 5 units/s and 10 units/s. In contrast, the ‘Poly-
line’ target will maintain its trajectory and only behaves like the ‘Random’ target at the specific
{0, ⌊T

k ⌋, 2⌊
T
k ⌋ . . . , (k − 1)⌊T

k ⌋}-th iteration where T is the predefined total iterations and k is a
random number from {1, 2, 4}. Regarding the ‘Adversarial’ target, it mimics the ‘Random’ targets
when all agents are beyond a 20 units. Nevertheless, upon detecting an agent within the 20-unit range,
the ‘Adversarial’ target will evade at a speed of 15 units/s for one second, pointing to the direction
that maximizes the average distance of all agents.

Generally speaking, every motion of any agent can be characterized by three key parameters, namely,
its movement angle θ, speed s and the unique identifier i. With all these three parameters, then the
action set Vi available to each agent i ∈ [20] can be mathematically represented as:

Vi = {(θ, s, i) : s ∈ {5, 10, 15}units/s, θ ∈ {π
4
,
π

2
,
3π

4
, π, . . . , 2π}},∀i ∈ [20],

where each tuple (θ, s, i) encodes a specific action of agent i, that is, it will move at a speed of s
in the direction of θ. Furthermore, at each time step t ∈ [T ], we denote the location of each target
j ∈ [30] as oj(t). Similarly, we also utilize the symbol o(θ,s,i)(t) to represent the new position of
agent i after moving from its previous location at time (t− 1) with a movement angle θ and speed s.

To enhance the tracking quality, a common strategy is to minimize the distances between agents
and targets. Inspired by this idea, many studies [27, 114, 115, 126] naturally consider the following
facility-location objective function for agents at every iteration t ∈ [T ], that is,

ft(S) ≜
30∑
j=1

max
(θ,s,i)∈S

1

∥o(θ,s,i)(t)− oj(t)∥2
,

where ∥o(θ,s,i)(t)− oj(t)∥2 represents the Euclidean distance between the location oj(t) of target
j and the new position o(θ,s,i)(t) after agent i executing the action (θ, s, i) and S is a subset of the
ground action set V ≜ ∪n

i=1Vi. It is important to note that the larger the value of 1
∥o(θ,s,i)(t)−oj(t)∥2

becomes, the closer the action (θ, s, i) drives agent i to the target j.

Considering this facility-location utility set function ft and the truth that each agent only can execute
one decision from Vi at every time t ∈ [T ], then we can easily transform the aforementioned
multi-target tracking problem as a multi-agent online coordination(MA-OC) problem introduced in
Section 2. Particularly, at each time t ∈ [T ], we need to tackle the following facility-location utility
set function maximization problem in a multi-agent manner, namely,

max ft(S), s.t. S ⊆ V and |S ∩ Vi| = 1,∀i ∈ N . (8)

Furthermore, numerous studies [91, 115, 126] have verified that this facility-location objective
function ft is monotone submodular. As a result, the problem (8) can be equivalently reformulated
as the problem (1) in Section 2, i.e.,

max ft(S), s.t. S ⊆ V and |S ∩ Vi| ≤ 1,∀i ∈ N .
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Figure 2: Comparison of the running average utility and the runing average number of targets within 1
unit as well as the running average distance of Top-5 nearest targets of OSG, MA-OSMA, MA-OSEA,
MA-OSEA with our proposed MA-SPL and MA-MPL algorithms on the multi-target tracking scenario
with ‘Random’:‘Adversarial’:‘Polyline’=8:1:1.
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Figure 3: Comparison of the running average utility and the runing average number of targets within 1
unit as well as the running average distance of Top-5 nearest targets of OSG, MA-OSMA, MA-OSEA,
MA-OSEA with our proposed MA-SPL and MA-MPL algorithms on the multi-target tracking scenario
with ‘Random’:‘Adversarial’:‘Polyline’=6:3:1.
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Figure 4: Comparison of the running average utility and the runing average number of targets within 1
unit as well as the running average distance of Top-5 nearest targets of OSG, MA-OSMA, MA-OSEA,
MA-OSEA with our proposed MA-SPL and MA-MPL algorithms on the multi-target tracking scenario
with ‘Random’:‘Adversarial’:‘Polyline’=4:5:1.

In simulations, we initialize the starting positions of all agents and targets randomly within 20-
unit radius circle centered at the origin. Furthermore, we consider different proportions of ‘Ran-
dom’, ‘Polyline’, and ‘Adversarial’ targets. Specifically, we set the proportions of targets as
‘Random’:‘Adversarial’:‘Polyline’=8:1:1 in Figure 2 and 6:3:1 in Figure 3 as well as 4:5:1 in Figure 4.
Like [126], we also use the suffixes to represent two different choices for communication graphs,
where ‘c’ stands for a complete graph and ‘r’ denotes an Erdos-Renyi random graph with average
degree 4. According to the results in Figure 2(a), Figure 3(a) and Figure 4(a), we can find that
the average utility of our proposed MA-SPL algorithm can significantly exceed the state-of-the-art
MA-OSMA and MA-OSEA algorithms in [126], which is consistent with our Theorem 4, that
is to say, our proposed MA-SPL algorithm can achieve a tight (1 − c

e )-approximation guarantee
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for submodular objectives, while the MA-OSMA and MA-OSEA in [126] only can guarantee a
sub-optimal ( 1−e−c

c )-approximation. Like [126], in Figure 2(b), Figure 3(b) and Figure 4(b), we
also compare the average distance from agents to their closest five targets of our proposed MA-SPL
and MA-MPL algorithms against OSG [115], MA-OSMA and MA-OSEA algorithms. Similarly, we
observe that our proposed MA-SPL can effectively reduce the average distance between agents and
targets. Furthermore, from Figure 2(c), Figure 3(c), and Figure 4(c), we also can infer that, compared
with OSG, MA-OSMA, and MA-OSEA algorithms, our proposed MA-SPL can make more targets
gather within 1 unit of agents. It is worth noting that as the proportion of ‘Adversarial’ targets
increases, both the maximum runing average utility and the maximum running average number of
targets within 1 unit exhibit a downward trend.

C.2 Target Tracking under Extended Kalman-Filter Framework

In previous Appendix C.1, we considered a simplified multi-target tracking model, that is, we assume
that the monitoring quality of each moving target j only depends on its nearest agent. However,
in many real-world scenarios, due to agents’ different sensing capabilities and varying observation
angles, relying solely on the information collected by the nearest agent for accurately tracking the
state of each target is unrealistic. Instead, we generally need to aggregate the data from multiple
agents to comprehensively reconstruct the targets’ behaviors.

Recently, in order to obtain an accurate estimation of every target’s location, [55, 56] employed
an extend Kalman-filter(EKF) framework to process the observations of multiple distinct agents.
Specifically, let us consider a target tracking task using a swarm of agents(UAVs) equipped with
GPS and radar systems. In this scenario, at each time t ∈ [T ], each agent i can measure the range to
each target j throughout its radar system and also can obtain its own position information from GPS.
Furthermore, like the work [55], we also assume that the range measurements of the radar systems
follow a quadratic model, namely,

r(θ,s,i)→j(t) =
1

2
∥o(θ,s,i)(t)− oj(t)∥22 + ξ(θ,s,i)→j(t), (9)

where the symbol r(θ,s,i)→j(t) denotes the range measurement of agent i to target j after agent i
executes the action (θ, s, i), oj(t) is the location of target j, ξ(θ,s,i)→j(t) is the additive independent
noise and the symbol o(θ,s,i)(t) represents the new position of agent i after moving from its previous
location at time t− 1 with a movement angle θ and speed s.

Note that when the new position o(θ,s,i)(t) and the range measurement r(θ,s,i)→j(t) are known, we can
view Equation (9) as a random quadratic experiment of the unknown location oj(t). In other words,
different action (θ, s, i) can lead to distinct random quadratic observation of the unknown parameter
oj(t). Inspired by this perspective, we can formulated the action selection problem in multi-target
tracking task as an experimental design problem, which aims at selecting a feasible subset from the
whole collection of experiments {r(θ,s,i)→j(t) =

1
2∥o(θ,s,i)(t)−oj(t)∥22+ξ(θ,s,i)→j(t)

∣∣∣(θ, s, i) ∈ V}
such that the measurements of these selected sub-experiments can accurately estimate the location of
every target. Particularly, under the classical Van Trees’ inequality [108], the work [55] established
a lower bound for the covariance matrix associated with the EKF estimator of the location oj(t).
Specifically, at time step t ∈ [T ], if we consider the sub-experiment S ⊆ V , then the lower-bound
matrix Bj

S(t) in the Van Trees’ inequality for the EKF estimate of the unknown location oj(t) can be
expressed as (Please refer to Theorem 2 in [55]):

Bj
S(t) =

 ∑
(θ,s,i)∈S

1

σ2
(θ,s,i)→j(t)

(
P + z(θ,s,i)→jzT(θ,s,i)→j

)
+ Ij(t)

−1

, (10)

where z(θ,s,i)→j ≜ o(θ,s,i)(t)−oj(t−1)−E (oj(t)− oj(t− 1)), σ2
(θ,s,i)→j(t) ≜ Var

(
ξ(θ,s,i)→j(t)

)
,

P ≜ Cov (oj(t)− oj(t− 1)) and Ij(t) is the Fisher information matrix associated with the normal-
ized random gap

(
oj(t)− oj(t− 1)− E (oj(t)− oj(t− 1))

)
. Note that in Equation (10), the tuple

(θ, s, i) represents not only a selected action but also an observation experiment.

With this lower-bound covariance matrix Bj
S(t), we then can utilize various so-called alphabetical

criteria [16, 17] to design a utility function for selecting a superior action set such that the resulting

34



0 100 200 300 400 500
Time Step

0.458

0.460

0.462

0.464

Av
er

ag
e 

U
til

ity

RANDOM
MA-SPL-1-c
MA-SPL-0.1-c
MA-MPL-c

MA-SPL-1-r
MA-SPL-0.1-r
MA-MPL-r

(a) Average Utility

0 100 200 300 400 500
Time Step

0.458

0.459

0.460

0.461

0.462

0.463

0.464

Av
er

ag
e 

U
til

ity

400 420 440 460 480
0.4634

0.4636

0.4638

= 1.0
= 0.9
= 0.8
= 0.7
= 0.6

= 0.5
= 0.4
= 0.3
= 0.2
= 0.1

(b) Complete Graph

0 100 200 300 400 500
Time Step

0.458

0.459

0.460

0.461

0.462

0.463

Av
er

ag
e 

U
til

ity

400 420 440 460 480

0.4626

0.4628

0.4630

= 1.0
= 0.9
= 0.8
= 0.7
= 0.6

= 0.5
= 0.4
= 0.3
= 0.2
= 0.1

(c) Erdos-Renyi Graph

Figure 5: In Figure 5(a), we compare the running average utility of our proposed MA-SPL and MA-MPL
algorithms with that of the ‘RANDOM’ baseline in a multi-target tracking simulation with A-optimal
objective functions. In ‘RANDOM’ baseline, each agent i randomly selects an action from its own
action set Vi at every iteration. As for Figure 5(b) and Figure 5(c), we illustrate the impact of different
DR ratios α ∈ {0.1, 0.2, . . . , 1} on MA-SPL algorithm. Particularly in Figure 5(b), we considers a
complete communication graph among agents, whereas we employs an Erdos-Renyi graph with an
average degree of 4 in Figure 5(c). Note that Figure 5(a) only shows the results for the best scenario
(α = 0.1) and the worst-case scenario (α = 1) for our proposed MA-SPL algorithm.

EKF estimation can accurately approximate the location of each target. One commonly used strategy
is to employ the A-optimality, i.e., we consider minimizing the trace of the lower-bound covariance
matrix Bj

S(t) or equivalently maximize:

ft(S) =

30∑
j=1

(
Tr
(
I−1
j (t)

)
− Tr

(
Bj
S(t)

))
(11)

where “Tr” is the trace of matrix and we also consider 30 moving targets in simulation.

Thus, under the A-optimality criterion, we can model the agents’ action selection task as a special
instance of the multi-agent online coordination problem with the set objective function ft defined in
Equation (11). Furthermore, according to recent studies [53, 55, 106], we can show that the utility
function ft in Equation (11) is monotone α-weakly DR-submodular and (γ, β)-weakly submodular
(See Theorem 6 in [55] and Theorem C.2 in [106]).

In our simulations, to simplify the computation of the lower-bound matrix Bj
S(t), we model the

movement of each target as a two-dimensional Brownian motion. Specifically, we set oj(t) ≜
oj(t− 1) + 0.02 ∗ N (02, I2) where I2 is the 2-dimensional identity matrix. Moreover, we assume
that the noise ξ(θ,s,i)→j follows an independent normal distribution, i.e., ξ(θ,s,i)→j ∼ N (0, 0.01).
As for agents, at every iteration t ∈ [T ], we adjust their speeds from a set of 2, 7, or 12 units/s and
simultaneously change their movement directions from “up”, “down”, “left”, “right”, or “diagonally”.
As a result, the action set Vi available to each agent i ∈ [20] can be mathematically formulated as:

Vi = {(θ, s, i) : s ∈ {2, 7, 12}units/s, θ ∈ {π
4
,
π

2
,
3π

4
, π, . . . , 2π}},∀i ∈ [20],

where θ denotes the movement angle , s is the speed and i represents the unique identifier.

Given the unknown diminishing-return(DR) ratio α of our investigated set function ft, we test 10
different configurations from α = 0.1 to α = 1 for our proposed MA-SPL and then present the results
in Figure 5(b) and Figure 5(c). Particularly in Figure 5(b), we considers a complete communication
graph among agents, whereas we employs an Erdos-Renyi graph with an average degree of 4 in
Figure 5(c). Subsequently, we compare the results of the best-case scenario (α = 0.1) and the
worst-case scenario (α = 1) of our proposed MA-SPL algorithm with the parameter-free MA-MPL
algorithm and ‘RANDOM’ baseline in Figure 5(a). According to the curves in Figure 5(a), we can
find that the running average utility of our proposed MA-MPL and MA-SPL algorithms can significantly
exceed the baseline ‘RANDOM’ algorithm, which is in accord with our Theorem 4 and Theorem 5.
Moreover, we also find that the parameter-free MA-MPL algorithm can effectively outperform the
MA-SPL algorithm associated with a 0.1-network search. It is worth noting that no previous works
explore the MA-OC problem with weakly submodular objectives. Thus, we adopt the ‘RANDOM’
algorithm as a baseline in Figure 5(a). In ‘RANDOM’, each agent i randomly selects an action from
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its own action set Vi. Like the previous Appendix C.1, we also use the suffixes to represent two
different choices for communication graphs in Figure 5(a), where ‘c’ stands for a complete graph and
‘r’ denotes an Erdos-Renyi random graph with average degree 4.

C.3 More Details on Experimental Setups

This subsection discusses some additional details about our experiments.

At first, we describe the parameter configurations about our proposed ‘MA-SPL’, ‘MA-MPL’, ‘MA-
OSMA’ and ‘MA-OSEA’. Specifically, we make the following setups:

• In ‘MA-SPL’, namely, the Algorithm 1, we set the step size ηt =
1√
T

and employ a 10 batch
of stochastic estimation to approximate the surrogate gradient of our proposed policy-based
continuous extension in Section 5.1. As for the projection in Line 19 of Algorithm 1, we
utilize the CVX optimization solver [49].

• In ‘MA-MPL’, namely, the Algorithm 2 of Appendix B, we set the batch size L = 10 and the
number of oracles K = 15. As for the online linear maximization oracle, we utilize the
online gradient ascent algorithm [116, 134] with step size η = O( 1√

T
).

• In ‘MA-OSMA’, namely Algorithm 1 of [126], we consider the Euclidean distance with
ϕ(x) =

∥x∥2
2

2 , set the step size ηt =
1√
T

and implement a 10 batch of stochastic estimation
to approximate the surrogate gradient of multi-linear extension. Similarly, we also use the
CVX solver for projection operations.

• In ‘MA-OSEA’, namely Algorithm 2 of [126], we also set the step size ηt = 1√
T

and
consider the mixing parameter γ = 1/T 1.5.

As for the communication graph G, we consider two different setups:

• ‘Complete graph’ where we set the weight wij = 1
n ,∀i, j ∈ [n] where n = |N | is the

number of agents.
• ‘Erdos-Renyi random graph with average degree 4 where if the edge (i, j) is an edge of

the graph, we set wij ≜ 1/(1 + max(di, dj)) where di is the degree of agent i ∈ N and
when (i, j) is not an edge of the graph and i ̸= j, we consider wij = 0. Finally, we set
wii ≜ 1−

∑
j∈Ni

wij where Ni is the neighboring nodes of agent i.

Furthermore, for all curves related to MA-SPL, MA-MPL, MA-OSMA, MA-OSEA and OSG, we
repeat these algorithms five runs and then report the average result. Note that, in Figure 2(a),
Figure 3(a), Figure 4(a) and Figure 5(a), the running average utility at any time t is defined as(∑

t1∈[t]
ft(∪i∈[n]{ai(t1)})

t

)
where ai(t1) is the action chosen by agent i ∈ [n] at time t1.

D Proof of Theorem 1

In this section, we prove the Theorem 1.

1): From Definition 1, we have that

∂Ft

∂πi,m
(π1, . . . , πn)

=
∑

aj∈Vj∪{∅},∀j∈N

(
ft
(
∪n
j=1 {aj}

)∂ (∏n
j=1 p(aj |πj)

)
∂πi,m

)
=

∑
aj∈Vj∪{∅},∀j∈N

(
ft
(
∪n
j=1 {aj}

)∂p(ai|πi)

∂πi,m

∏
j ̸=i,j∈N

p(aj |πj)
)
.

(12)

Note that p(vi,m|πi) = πi,m,∀i ∈ [n],∀m ∈ [κi] and p(∅|πi) = 1−
∑Ki

m=1 πi,m,∀i ∈ N . Therefore,
we have ∂p(ai|πi)

∂πi,m
= 1 when ai = vi,m, ∂p(ai|πi)

∂πi,m
= −1 when ai = ∅ and ∂p(ai|πi)

∂πi,m
= 0 when
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ai /∈ {vi,m, ∅}. Then, according to Eq.(12), we can get the following equality:
∂Ft

∂πi,m
(π1, . . . , πn)

=
∑

aj∈Vj∪{∅},∀j∈N

(
ft
(
∪n
j=1 {aj}

)∂p(ai|πi)

∂πi,m

∏
j ̸=i,j∈N

p(aj |πj)
)

=
∑

aj∈Vj∪{∅},∀j ̸=i

∑
ai∈Vi

(
ft
(
∪n
j=1 {aj}

)∂p(ai|πi)

∂πi,m

∏
j ̸=i,j∈N

p(aj |πj)
)

=
∑

aj∈Vj∪{∅},∀j ̸=i

(ft({vi,m}
⋃

(∪j ̸=i{aj})
)
− ft

(
∪j ̸=i,j∈N {aj}

)) ∏
j ̸=i,j∈N

p(aj |πj)


=

∑
aj∈Vj∪{∅},∀j ̸=i

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
) ∏
j ̸=i,j∈N

p(aj |πj)


= Eaj∼πj ,∀j∈N

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
))

,

(13)
where aj ∼ πj indicates that action aj is randomly selected from Vj ∪ {∅} based on the policy πj .

2): When ft is monotone, we can know that ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
)

≥ 0 such that
∂Ft

∂πi,m
(π1, . . . , πn) ≥ 0. In other words, for any (π1, . . . , πn) ∈

∏n
i=1 ∆κi

, we have
∇Ft(π1, . . . , πn) ≥ 0, namely, for any two point (πa

1 , . . . , πa
n) ∈

∏n
i=1 ∆κi

and (πb
1, . . . , πb

n) ∈∏n
i=1 ∆κi , if πa

i ≤ πb
i for any i ∈ N , we have Ft(π

a
1 , . . . , πa

n) ≤ Ft(π
b
1, . . . , πb

n). So Ft is monotone.

3): For any fixed two policy vector (πa
1 , . . . , πa

n) ∈
∏n

i=1 ∆κi
and (πb

1, . . . , πb
n) ∈

∏n
i=1 ∆κi

where
πa
i ≤ πb

i ,∀i ∈ N , we consider an unified sampling strategy to generate actions. Before that, we set
each πa

i = (πa
i,1, . . . , π

a
i,κi

) and πb
i = (πb

i,1, . . . , π
b
i,κi

),∀i ∈ N . At first, we transfer the sampling
process according to policy πa

i to a uniform random variable Xi ∈ [0, 1], namely,

a(Xi, π
a
i ) ≜



vi,1 If Xi ∈ [0, πa
i,1)

vi,m If Xi ∈ [

m−1∑
k=1

πa
i,k,

m∑
k=1

πa
i,k) for any integer m ∈ [2, κi]

∅ If Xi ≥
κi∑
k=1

πa
i,k

(14)

When Xi is an uniform random variable over range [0, 1], it is easy to check that the a(Xi, πa
i )

follows the same law as the policy πa
i , that is, Pr(a(Xi, πa

i ) = vi,m) = πa
i,m and Pr(a(Xi, πa

i ) =

∅) = 1−
∑κi

m=1 π
a
i,m where the symbol ‘Pr’ denotes the probability.

Similarly, we also can transfer the sampling process according to policy πb
i to two independent

uniform random variables Xi, Y ∈ [0, 1], namely,

a(Xi, Y, π
a
i , π

b
i ) ≜



a(Xi, π
a
i ) If Xi <

κi∑
k=1

πa
i,k

vi,1 If Xi ≥
κi∑
k=1

πa
i,k and Y ∈ [0,

πb
i,1 − πa

i,1

1−
∑κi

k=1 π
a
i,k

)

vi,m If Xi ≥
κi∑
k=1

πa
i,k and Y ∈

[∑m−1
k=1 (πb

i,k − πa
i,k)

1−
∑κi

k=1 π
a
i,k

,

∑m
k=1(π

b
i,k − πa

i,k)

1−
∑κi

k=1 π
a
i,k

)
,∀m ∈ [2, κi]

∅ If Xi ≥
κi∑
k=1

πa
i,k and Y ≥

κi∑
k=1

(πb
i,k − πa

i,k)

(15)
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From part 1) and fixed a sequence of independent uniform variables Xi, Yi,∀i ∈ N , we can have that
∂Ft

∂πi,m
(πa

1 , . . . , π
a
n) = EXi

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {a(Xi, π
a
i )}
))

,

and
∂Ft

∂πi,m
(πb

1, . . . , π
b
n) = E(Xi,Yi)

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {a(Xi, Yi, π
a
i , π

b
i )}
))

.

From Eq.(14) and Eq.(15), we can know that {a(Xi, πa
i )} ⊆ {a(Xi, Yi, πa

i , πb
i )} such that

∪j ̸=i,j∈N {a(Xi, πa
i )} ⊆ ∪j ̸=i,j∈N {a(Xi, Yi, πa

i , πb
i )}. Then, from the definition of α-DR submod-

ularity, we have that ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {a(Xi, πa
i )}
)
≥ αft

(
vi,m

∣∣ ∪j ̸=i,j∈N {a(Xi, Yi, πa
i , πb

i )}
)
,

so ∇Ft(π
a
1 , . . . , πa

n) ≥ α∇Ft(π
b
1, . . . , πb

n).

4): For any subset S within the constraint of problem (1) and any point (π1, . . . , πn) ∈
∏n

i=1 ∆κi
,

when ft is monotone (γ, β)-weakly monotone submodular, we firstly can show that for any two
actions a1, a2 ∈ V and the subset B ⊆ V , we have that

γ
(
ft(a1|B ∪ {a2}) + ft(a2|B)

)
= γ

(
ft(B ∪ {a1, a2})− f(B)

)
≤ ft(a1|B) + ft(a2|B),

such that
ft(a1|B) ≥ γft(a1|B ∪ {a2})− (1− γ)ft(a2|B). (16)

Therefore, we can show that∑
(i,m):vi,m∈S

∂Ft

∂πi,m
(π1, . . . , πn)

=
∑

(i,m):vi,m∈S

Eaj∼πj ,∀j∈N

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
))

≥
∑

(i,m):vi,m∈S

Eaj∼πj ,∀j∈N

(
γft
(
vi,m

∣∣ ∪j∈N {aj}
)
− (1− γ)ft

(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
,

(17)

where the first equality follows from part 1) of Theorem 1 and the second inequality comes from the
Eq.(16). Then, from the γ-weakly submodularity,∑

(i,m):vi,m∈S

Eaj∼πj ,∀j∈N

(
ft
(
vi,m

∣∣ ∪j∈N {aj}
))

≥ γEaj∼πj ,∀j∈N

(
γft
(
S
∣∣ ∪j∈N {aj}

))
≥ γ

(
ft(S)− Ft(π1, . . . , πn)

)
,

(18)

where the final inequality follows from the monotonicity.

Furthermore, from the β-weakly upper submodularity,we also have,∑
(i,m):vi,m∈S

Eaj∼πj ,∀j∈N

(
ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
≤
∑
i∈N

Eaj∼πj ,∀j∈N

(
ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
≤ βEaj∼πj ,∀j∈N

(
ft
(
∪j∈N {aj}

)
− ft(∅)

)
= βFt(π1, . . . , πn),

(19)

where the second inequality follows from the definition of β-upper submodularity.

Merging Eq.(19) and Eq.(18) into Eq.(17), we have that∑
(i,m):vi,m∈S

∂Ft

∂πi,m
(π1, . . . , πn)

≥
∑

(i,m):vi,m∈S

Eaj∼πj ,∀j∈N

(
γft
(
vi,m

∣∣ ∪j∈N {aj}
)
− (1− γ)ft

(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
≥ (γ2

(
ft(S)− Ft(π1, . . . , πn)

)
− (1− γ)βFt(π1, . . . , πn))

= γ2ft(S)−
(
(1− γ)β + γ2

)
Ft(π1, . . . , πn)).
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As for ft is monotone α-weakly DR-submodular, we also can show that∑
(i,m):vi,m∈S

∂Ft

∂πi,m
(π1, . . . , πn) = Eaj∼πj ,∀j∈N

( ∑
(i,m):vi,m∈S

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
))

≥ αEaj∼πj ,∀j∈N

(
ft (S| ∪j∈N {aj})

)
≥ α (ft(S)− Ft(π1, . . . , πn)) ,

where the first inequality follows from the α-DR submodularity and the final inequality comes from
the monotonicity of ft.

E Proof of Theorem 2

In this section, we verify the Theorem 2.

Before that, we firstly suppose that the symbol 1S represents the indicator function over the subset
S ⊆ V , namely, for any action vi,m ∈ S, the vector 1S sets the corresponding probability for this
action vi,m as 1. Note that, when S satisfies the constraints of problem (1), namely, |S ∩ Vi| ≤ 1, we
can infer that 1S ∈

∏n
i=1 ∆κi

.

E.1 Proof of Part 2) and Part 3) in Theorem 2

With the previously defined symbol 1S , we can rewrite the 4) of Theorem 1 as:

i): when ft is monotone α-weakly DR-submodular, the following inequality holds:

α
(
ft(S)− Ft(π1, . . . , πn)

)
≤ ⟨1S ,∇Ft(π1, . . . , πn)⟩;

ii): when ft is monotone (γ, β)-weakly submodular, we can show that(
γ2ft(S)− (β(1− γ) + γ2)Ft(π1, . . . , πn)

)
≤ ⟨1S ,∇Ft(π1, . . . , πn)⟩.

In order to prove Theorem 2, we next show the relationship between ⟨(π1, . . . , πn),∇Ft(π1, . . . , πn)⟩
and Ft(π1, . . . , πn).

From Eq.(13), if πi = (πi,1, . . . , πi,κi
),∀i ∈ N , we can show

⟨(π1, . . . , πn),∇Ft(π1, . . . , πn)⟩

=

n∑
i=1

κi∑
m=1

πi,m
∂Ft

∂πi,m
(π1, . . . , πn)

=

n∑
i=1

κi∑
m=1

πi,mEaj∼πj ,∀j∈N

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
))

=

n∑
i=1

κi∑
m=1

πi,m

∑
aj∈Vj∪{∅},∀j ̸=i

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
) ∏
j ̸=i,j∈N

p(aj |πj)


=

n∑
i=1

κi∑
m=1

p(vi,m|πi)
∑

aj∈Vj∪{∅},∀j ̸=i

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
) ∏
j ̸=i,j∈N

p(aj |πj)


=

n∑
i=1

κi∑
m=1

 ∑
aj∈Vj∪{∅},∀j ̸=i

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
)
p(vi,m|πi) ∗

∏
j ̸=i,j∈N

p(aj |πj)


=

n∑
i=1

∑
ai∈Vi∪{∅}

 ∑
aj∈Vj∪{∅},∀j ̸=i

ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

) ∏
j∈N

p(aj |πj)


=

n∑
i=1

Eaj∼πj ,∀j∈N

(
ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
,

(20)
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where the second equality follows from the 1) of Theorem 1, the third equality comes from the final
equality of the Eq.(13), the fourth equality follows from p(vi,m|πi) = πi,m and the final equality
from the fact that the random element ai is drawn from the policy πi.

Therefore, if the original set function ft is β-weakly submodular from above, we can show that

⟨(π1, . . . , πn),∇Ft(π1, . . . , πn)⟩

=

n∑
i=1

Eaj∼πj ,∀j∈N

(
ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
= Eaj∼πj ,∀j∈N

( n∑
i=1

ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
≤ βEaj∼πj ,∀j∈N

(
ft(∪j∈N {aj})− ft(∅)

)
= βFt(π1, . . . , πn).

(21)

Therefore, by merging Eq.(21) and the 4) of Theorem 1, when the set function ft is monotone and
(γ, β)-weakly submodular, for any subset S within the constraint of problem (1) and (π1, . . . , πn) ∈∏n

i=1 ∆κi , we have that

⟨1S − (π1, . . . , πn),∇Ft(π1, . . . , πn)⟩ ≥ γ2ft(S)− (β + β(1− γ) + γ2)Ft(π1, . . . , πn).

Similarly, from the definition of α-weakly DR-submodular function, we know that α-weakly DR-
submodular function automatically satisfies the conditions for being 1

α -weakly submodular from
above, we also have that, when ft is monotone α-weakly DR-submodular,

⟨1S − (π1, . . . , πn),∇Ft(π1, . . . , πn)⟩ ≥ αft(S)− (α+
1

α
)Ft(π1, . . . , πn).

Therefore, when (πs
1, . . . , πs

n) is a stationary point of Ft over the domain
∏n

i=1 ∆κi , we have

i): ft is monotone (γ, β)-weakly submodular, for any S within the constraint of problem (1),

γ2ft(S)− (β + β(1− γ) + γ2)Ft(π
s
1, . . . , π

s
n) ≤ ⟨1S − (πs

1, . . . , π
s
n),∇Ft(π

s
1, . . . , π

s
n)⟩ ≤ 0.

In other words,

Ft(π
s
1, . . . , π

s
n) ≥

γ2

β + β(1− γ) + γ2
ft(S

∗),

where S∗ is the optimal subset of problem (1).

We get the 3) in Theorem 2.

Similarly, ii): when ft is monotone α-weakly DR-submodular, for any S within the constraint of
problem (1),

αft(S)− (α+
1

α
)Ft(π

s
1, . . . , π

s
n) ≤ ⟨1S − (πs

1, . . . , π
s
n),∇Ft(π

s
1, . . . , π

s
n)⟩ ≤ 0.

In other words,

Ft(π
s
1, . . . , π

s
n) ≥

α2

1 + α
ft(S

∗).

where S∗ is the optimal subset of problem (1).

We get the 2) in Theorem 2.

E.2 Proof of Part 1) in Theorem 2

In this subsection, we prove the part 1) in Theorem 2.

From Eq.(17), we have

⟨1S ,∇Ft(π1, . . . , πn)⟩ =
∑

(i,m):vi,m∈S

Eaj∼πj ,∀j∈N

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
))

.
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From Eq.(20), we have

⟨(π1, . . . , πn),∇Ft(π1, . . . , πn)⟩ =
n∑

i=1

Eaj∼πj ,∀j∈N

(
ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
.

Therefore, we have that

⟨1S − (π1, . . . , πn),∇Ft(π1, . . . , πn)⟩

=
∑

(i,m):vi,m∈S

Eaj∼πj ,∀j∈N

(
ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
))

−
n∑

i=1

Eaj∼πj ,∀j∈N

(
ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))

= Eaj∼πj ,∀j∈N

( ∑
(i,m):vi,m∈S

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
)
−

n∑
i=1

ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
= Eaj∼πj ,∀j∈N

( ∑
vi,m∈(S\∪j∈N {aj})

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
)
−

∑
ai∈(∪j∈N {aj}\S)

ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))
.

(22)

When ft is monotone submodular, we have∑
vi,m∈(S\∪j∈N {aj})

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
)
≥ ft

(
∪j∈N {aj}) ∪ S

)
− ft(∪j∈N {aj}). (23)

Furthermore, from the definition of curvature c, we also have

ft
(
∪j∈N {aj}) ∪ S

)
− ft(S) ≥ (1− c)

(
ft(∪j∈N {aj})− ft(∪j∈N {aj} ∩ S)

)
, (24)

where this inequality follows from
(
∪j∈N {aj}) ∪ S

)
\ S =

(
∪j∈N {aj})

)
\
(
∪j∈N {aj} ∩ S

)
.

Similarly, from the submodularity, we have∑
ai∈(∪j∈N {aj}\S)

ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

)
≤
(
ft(∪j∈N {aj})− ft(∪j∈N {aj} ∩ S)

)
, (25)

where the inequality comes from that
(
∪j∈N {aj} ∩ S

)
⊆
(
∪j ̸=i,j∈N {aj}

)
if ai ∈ ∪j∈N {aj} \ S.

Merging Eq.(23),Eq.(24) and Eq.(25) into Eq.(22), we can show that

⟨1S − (π1, . . . , πn),∇Ft(π1, . . . , πn)⟩

= Eaj∼πj ,∀j∈N

( ∑
vi,m∈S\∪j∈N {aj}

ft
(
vi,m

∣∣ ∪j ̸=i,j∈N {aj}
)
−

∑
ai∈∪j∈N {aj}\S

ft
(
ai
∣∣ ∪j ̸=i,j∈N {aj}

))

≥ Eaj∼πj ,∀j∈N

(
ft(S)− ft(∪j∈N {aj})− c

(
ft(∪j∈N {aj})− ft(∪j∈N {aj} ∩ S)

))
≥ Eaj∼πj ,∀j∈N

(
ft(S)− (1 + c)ft(∪j∈N {aj})

)
= ft(S)− (1 + c)Ft(π1, . . . , πn).

Thus, if (πs
1, . . . , πs

n) is a stationary point of Ft over the domain
∏n

i=1 ∆κi
, when ft is monotone

submodular with curvature c, we have, for any S in the constraint of problem (1), we have

ft(S)− (1 + c)Ft(π
s
1, . . . , π

s
n) ≤ ⟨1S − (πs

1, . . . , π
s
n),∇Ft(π

s
1, . . . , π

s
n)⟩ ≤ 0.

So,

Ft(π
s
1, . . . , π

s
n) ≥

1

1 + c
ft(S

∗),

where S∗ is the optimal subset of problem (1).
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E.3 A Policy-based Continuous Extension with 1/2-Approximation Stationary Point

In this subsection we consider a special set function.

At first, let the universe set U consist of n − 1 elements {x1, . . . , xn−1} and n − k elements
{y1, . . . , yn−k}, all of weight 1, and n− 1 elements {ϵ1, . . . , ϵn−1} of arbitrarily small weight ϵ > 0.
Then, we define two different types of sets namely, Ai and Ai+n for any i ∈ [n], that is to say ,

Ai ≜ {ϵi} for 1 ≤ i ≤ n− 1, An ≜ {x1, . . . , xn−1},
An+i ≜ {xi} for 1 ≤ i ≤ n− 1, A2n ≜ {y1, . . . , yn−k}.

After that, we define a coverage set function f : 2V → R+ over these 2n distinct set
{A1, . . . , An, An+1, . . . , A2n} where V = [2n]. Specifically,for any subset S ⊆ V ,

f(S) ≜
∑

v∈
⋃

i∈S Ai

w(v), (26)

where w(v) is the weight of element v.

Moreover, we consider a partition constraint that contains at most one of {Ai, An+i} for any i ∈ [n].
If we set Vi ≜ {i, i + n} and V ≜

⋃
i∈[n] Vi ≜ [2n], we naturally obtain the following coverage

maximization problem:
max
S⊆V

f(S) s.t. |S ∩ Vi| ≤ 1 ∀i ∈ [n]. (27)

Note that this problem (27) is a special case of the concern problem (1). From the result of [38],
we know that the coverage function f in Equation (26) is a submodular set function, namely,
α = β = γ = 1.

A key feature of the coverage maximization problem (27) is that [38] found that the standard
greedy [85] will be stuck at a local maximum subset {A1, . . . , An} where S = [n] and f(S) =
(1+ϵ)n. In contrast, when ϵ is very small, the optimal subset for the problem (27) is {An+1, . . . , A2n}
where S = {n+1, . . . , 2n} and f(S) = 2n−k−1. Note that limn→∞ limϵ→0 and k→0

(1+ϵ)n
2n−k−1 = 1

2 .
Motivated by this finding of [38], we also can show that the point 1[n] ≜ (1, . . . , 1︸ ︷︷ ︸

n

, 0, . . . , 0) is a

local stationary point of the policy-based continuous extension of the set function f in Equation (26).
More specifically, we have the following theorem:

Theorem 6. The point 1[n] is a stationary point of the policy-based continuous extension F of the

set function f in Equation (26). Moreover, we can show F (1[n])

f({n+1,...,2n}) =
(1+ϵ)n
2n−k−1 → 1

2 .

Remark 11. This theorem indicates that when the objective set function is submodular, namely,
c = α = γ = β = 1, the approximation guarantees established in Theorem 2 is tight.

Proof. At first, for any i ∈ [n], we assume πi = (πi,1, πi,2). Then, according to Definition 1, we
have that the policy-based continuous extension F of the set function f in Equation (26) can be
formulated as:

F (π1, . . . , πn) ≜
n∑

i=1

∑
ai∈Vi∪{∅}

(
f
(
∪n
i=1 {ai}

) n∏
i=1

p(ai|πi)
)
, (28)

where p(i|πi) = πi,1, p(n+ i|πi) = πi,2 and p(∅|πi) = 1− πi,1 − πi,2.

From part 1) of Theorem 1, we also can show that,

∂F

∂πi,1
(1[n]) = ϵ for 1 ≤ i ≤ n− 1,

∂F

∂πn,1
(1[n]) = n− 1,

∂F

∂πi,2
(1[n]) = 0 for 1 ≤ i ≤ n− 1,

∂F

∂πn,2
(1[n]) = n− k.
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As a result, for any (π1, . . . , πn) ∈
∏n

i=1 ∆2, we have〈
(π1, . . . , πn)− 1[n],∇F (1[n])

〉
=

n∑
i=1

(
πi,1

∂F

∂πi,1
(1[n]) + πi,2

∂F

∂πi,2
(1[n])

)
−

n∑
i=1

∂F

∂πi,1
(1[n])

=

n∑
i=1

(
πi,1

∂F

∂πi,1
(1[n]) + πi,2

∂F

∂πi,2
(1[n])

)
− (1 + ϵ)(n− 1)

= ϵ

n−1∑
i=1

πi,1 + (n− 1)πn,1 + (n− k)πn,2 − (1 + ϵ)(n− 1)

= ϵ

n−1∑
i=1

πi,1 + (n− 1)(πn,1 + πn,2) +
(
(n− k)− (n− 1)

)
πn,2 − (1 + ϵ)(n− 1)

= ϵ

n−1∑
i=1

(πi,1 − 1) +
(
(n− k)− (n− 1)

)
πi,2 − (n− 1)(1− πn,1 − πn,2)

= ϵ

n−1∑
i=1

(πi,1 − 1) + (1− k)πi,2 − (n− 1)(1− πn,1 − πn,2) ≤ 0,

where the final inequality follows from 1 − k ≤ 0 and 1 − πn,1 − πn,2 ≥ 0. As a result, from
Definition 2, we can know that the point 1[n] is a stationary point of the policy-based continuous

extension F . Note that F(1[n]) = f([n]) = (1 + ϵ)(n − 1) such that F (1[n])

f({n+1,...,2n}) = (1+ϵ)n
2n−k−1 .

Particularly when k → 0, ϵ → 0 and n → ∞, F (1[n])

f({n+1,...,2n}) =
(1+ϵ)n
2n−k−1 → 1

2 .

F Proof of Theorem 3

In this section, we cut the proof of Theorem 3 in two distinct subsections. Specifically, Appendix F.1
provides the proof for parts 1) and 2), while Appendix F.2 addresses the part 3).

F.1 Proof of Part 1) and Part 2) in Theorem 3

Before verifying the parts 1) and 2), we firstly prove the following theorem:

Theorem 7. Given a monotone set function ft, for its policy-based continuous extension Ft introduced
in Definition 1, if we consider a surrogate function F s

t :
∏n

i=1 ∆κi
→ R+ whose gradient at

each point x ∈
∏n

i=1 ∆κi
is a weighted average of the gradient ∇Ft(z ∗ x), namely, ∇F s

t (x) ≜∫ 1

0
w(z)∇Ft(z ∗ x)dz where w(z) is a positive weight function over [0, 1], we have that:

i): Whenft is α-weakly DR-submodular and w(z) = eα(z−1), for any policy vector (π1, . . . , πn) ∈∏n
i=1 ∆κi

and any subset S within the constraint of problem (1), then the following inequality holds:〈
1S − (π1, . . . , πn),∇F s

t (π1, . . . , πn)
〉

=

〈
1S − (π1, . . . , πn),

∫ 1

0

eα(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
≥
(
1− e−α

)
ft(S)− Ft(π1, . . . , πn);

(29)

ii): When ft is (γ, β)-weakly submodular and w(z) = eϕ(γ,β)(z−1) where ϕ(γ, β) = β(1− γ) + γ2,
for any policy vector (π1, . . . , πn) ∈

∏n
i=1 ∆κi

and any subset S within the constraint of problem (1),
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then the following inequality holds:〈
1S − (π1, . . . , πn),∇F s

t (π1, . . . , πn)
〉

=

〈
1S − (π1, . . . , πn),

∫ 1

0

eϕ(γ,β)(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
≥
(
γ2(1− e−ϕ(γ,β))

ϕ(γ, β)

)
ft(S)− Ft(π1, . . . , πn).

(30)

Proof. For i): At first, we verify the following relationship:

〈
(π1, . . . , πn),

∫ 1

0

eα(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
=

∫ 1

0

eα(z−1)
〈
(π1, . . . , πn),∇Ft (z ∗ (π1, . . . , πn))

〉
dz

=

∫ 1

0

eα(z−1) dFt (z ∗ (π1, . . . , πn))

dz
dz

=

∫ 1

0

eα(z−1)dFt (z ∗ (π1, . . . , πn))

= eα(z−1)Ft (z ∗ (π1, . . . , πn)) |z=1
z=0 −

∫ 1

0

Ft (z ∗ (π1, . . . , πn)) d
(
eα(z−1)

)
= Ft(π1, . . . , πn)− α

∫ 1

0

eα(z−1)Ft (z ∗ (π1, . . . , πn)) dz,

where the final equality follows from Ft(0) = 0.

Then, we have the following inequality:

〈
1S ,

∫ 1

0

eα(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
=

∫ 1

0

eα(z−1)
〈
1S ,∇Ft (z ∗ (π1, . . . , πn))

〉
dz

≥ α

∫ 1

0

eα(z−1)
(
ft(S)− Ft

(
z ∗ (π1, . . . , πn)

))
dz

=
(
α

∫ 1

0

eα(z−1)dz
)
ft(S)− α

∫ 1

0

eα(z−1)Ft (z ∗ (π1, . . . , πn)) dz

=
(
1− e−α

)
ft(S)− α

∫ 1

0

eα(z−1)Ft (z ∗ (π1, . . . , πn)) dz,

where the first inequality follows from the part 4) of Theorem 1.

As a result, we have〈
1S − (π1, . . . , πn),

∫ 1

0

eα(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
≥
(
1− e−α

)
ft(S)−Ft(π1, . . . , πn).

As for ii): Similarly, when ft is monotone (γ, β)-weakly submodular and w(z) = eϕ(γ,β)(z−1) where
ϕ(γ, β) = β(1− γ) + γ2, we have
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〈
(π1, . . . , πn),

∫ 1

0

eϕ(γ,β)(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
=

∫ 1

0

eϕ(γ,β)(z−1)dFt (z ∗ (π1, . . . , πn))

= eϕ(γ,β)(z−1)Ft (z ∗ (π1, . . . , πn)) |z=1
z=0 − ϕ(γ, β)

∫ 1

0

eϕ(γ,β)(z−1)Ft (z ∗ (π1, . . . , πn)) dz

= Ft(π1, . . . , πn)− ϕ(γ, β)

∫ 1

0

eϕ(γ,β)(z−1)Ft (z ∗ (π1, . . . , πn)) dz.

Then, we also have〈
1S ,

∫ 1

0

eϕ(γ,β)(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
=

∫ 1

0

eϕ(γ,β)(z−1)
〈
1S ,∇Ft (z ∗ (π1, . . . , πn))

〉
dz

≥
∫ 1

0

eϕ(γ,β)(z−1)
(
γ2ft(S)− ϕ(γ, β)Ft

(
z ∗ (π1, . . . , πn)

))
dz

=
(
γ2

∫ 1

0

eϕ(γ,β)(z−1)dz
)
ft(S)− ϕ(γ, β)

∫ 1

0

eϕ(γ,β)(z−1)Ft (z ∗ (π1, . . . , πn)) dz

=

(
γ2(1− e−ϕ(γ,β))

ϕ(γ, β)

)
ft(S)− ϕ(γ, β)

∫ 1

0

eϕ(γ,β)(z−1)Ft (z ∗ (π1, . . . , πn)) dz,

where the first inequality follows from the part 4) of Theorem 1.

As a result, we have〈
1S − (π1, . . . , πn),

∫ 1

0

eϕ(γ,β)(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
≥
(
γ2(1− e−ϕ(γ,β))

ϕ(γ, β)

)
ft(S)−Ft(π1, . . . , πn).

From Definition 2, we can show that, when the policy vector (πs
1, . . . , πs

n) is the stationary point of
the surrogate objective F s

t over domain
∏n

i=1 ∆κi
and S satisfies the constraint of problem (1), due

to 1S ∈
∏n

i=1 ∆κi , the following inequality holds:〈
1S − (πs

1, . . . , π
s
n),

∫ 1

0

w(z)∇Ft (z ∗ (πs
1, . . . , π

s
n)) dz

〉
≤ 0,

where w(z) is the corresponding weight function.

Then, following Theorem 7, we can show that whenft is monotone α-weakly DR-submodular and
w(z) = eα(z−1), for any policy vector (π1, . . . , πn) ∈

∏n
i=1 ∆κi

and any subset S within the
constraint of problem (1),

Ft(π
s
1, . . . , π

s
n) ≥

(
1− e−α

)
ft(S).

So we get the result of part 1) of Theorem 3. Similarly, from ii) of Theorem 7, we also can achieve
the part 2) of Theorem 3.

F.2 Proof of Part 3) in Theorem 3

In this subsection, we prove 3) in Theorem 3.

At first, we define a modular function gt over V , namely, for any subset S ⊆ V , gt(S) ≜∑
a∈S ft (a|V \ {a}). Then, when ft is monotone submodular, we can show that the set function

(ft − gt) is also a monotone submodular function. That is,
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Theorem 8. For a monotone submodular function ft : V → R+, we define a modular function
gt(S) ≜

∑
a∈S ft (a|V \ {a}) ,∀S ⊆ V , then we also can show that the set function (ft − gt) is

monotone submodular and non-negative.

Proof. Because the set function (ft − gt) is the sum of a submodular function ft and a modular
function −gt, (ft − gt) must be submodular [105]. Then, we show the monotonicity of the set
function (ft − gt). At first, for any subset S ⊆ V and any action a ∈ V \ S, we have that

(ft − gt) (a|S) = ft (a|S)− gt (a|S) = ft (a|S)− ft (a|V \ {a}) ≥ 0, (31)

where the final inequality follows from the submodularity of ft.

From Eq.(31), we can know that (ft − gt) is monotone. Moreover, due to ft(∅) = gt(∅) = 0,
(ft − gt) is non-negative.

Next, we show the policy-based continuous extension of our aforementioned modular function gt.
Theorem 9. Given a monotone submodular function ft : V → R+, we define its related modular
function as gt(S) ≜

∑
a∈S ft (a|V \ {a}) ,∀S ⊆ V . Then we can show that the policy-based

continuous extension of gt is as follows: Gt(π1, . . . , πn) ≜
∑n

i=1

∑κi

m=1

(
ft
(
vi,k|V −{vi,m}

))
πi,m

if πi = (πi,1, . . . , πi,κi
) ∈ ∆κi

,∀i ∈ N .

Proof. By the definition of gt and Definition 1, we can show that

Gt(π1, . . . , πn) =
∑

ai∈Vi∪{∅},∀i∈N

(
gt
(
∪n
i=1 {ai}

) n∏
i=1

p(ai|πi)
)

=
∑

ai∈Vi∪{∅},∀i∈N

(( n∑
i=1

ft(ai|V \ {ai})
) n∏

i=1

p(ai|πi)
)

=

n∑
i=1

∑
ai∈Vi∪{∅}

ft(ai|V ⊆ {ai})p(ai|πi)

=

n∑
i=1

κi∑
m=1

(
ft
(
vi,k|V − {vi,m}

))
πi,m,

where the final equality follows from Vi = {vi,1, . . . , vi,κi},∀i ∈ N .

From Theorem 8, we know that, when ft is monotone submodular, so is (ft − gt). Then, if we apply
Theorem 7 to the monotone submodular function (ft − gt), we can have the following relationship:

Lemma 1. Given a monotone submodular set function ft, we define a modular function gt(S) ≜∑
a∈S ft (a|V \ {a}) ,∀S ⊆ V . then, for any policy vector (π1, . . . , πn) ∈

∏n
i=1 ∆κi

and any subset
S within the constraint of problem (1), the following inequality holds:〈

1S − (π1, . . . , πn),

∫ 1

0

ez−1∇ (Ft −Gt) (z ∗ (π1, . . . , πn)) dz

〉
≥ (1− 1/e) (ft − gt) (S)− (Ft −Gt) (π1, . . . , πn),

(32)

where Ft and Gt is the corresponding policy-based continuous extension of ft and gt, respectively.
Remark 12. Note that the submodular objective function is also 1-weakly DR-submodular fucntion.
Thus, the results of Lemma 1 come from Theorem 7 and Theorem 8.

Moreover, from the definition of Gt in Theorem 9, we know that Gt is a linear function over∏
i=1 ∆κi

such that〈
1S − (π1, . . . , πn),∇Gt(π1, . . . , πn)

〉
= Gt(1S)−Gt(π1, . . . , πn) = gt(S)−Gt(π1, . . . , πn).

(33)

Merging Eq.(32) and Eq.(33), we get the following theorem:
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Theorem 10. Given a monotone submodular set function ft with curvature c, for its policy-
based continuous extension Ft introduced in Definition 1, if we consider a surrogate function
F s
t :
∏n

i=1 ∆κi
→ R+ whose gradient at each point x ∈

∏n
i=1 ∆κi

is a weighted average of the
gradient ∇Ft(z ∗ x), namely, ∇F s

t (x) ≜
∫ 1

0
e(z−1)∇Ft(z ∗ x)dz, we have that, for any policy

vector (π1, . . . , πn) ∈
∏n

i=1 ∆κi
and any subset S within the constraint of problem (1), the following

inequality holds:〈
1S − (π1, . . . , πn),∇

(
F s
t +

Gt

e

)
(π1, . . . , πn)

〉
=

〈
1S − (π1, . . . , πn),

∇Gt(π1, . . . , πn)

e
+

∫ 1

0

eα(z−1)∇Ft (z ∗ (π1, . . . , πn)) dz

〉
≥
(
1− c

e

)
ft(S)− Ft(π1, . . . , πn).

(34)

Proof. According to Eq.(32) and Eq.(33), we have that〈
1S − (π1, . . . , πn),∇Gt(π1, . . . , πn) +

∫ 1

0

ez−1∇ (Ft −Gt) (z ∗ (π1, . . . , πn)) dz

〉
≥ (1− 1/e)ft(S) +

gt(S)

e
− Ft((π1, . . . , πn)

≥ (1− 1/e)ft(S) +
(1− c)ft(S)

e
− Ft((π1, . . . , πn)

= (1− c/e)ft(S)− Ft((π1, . . . , πn),

(35)

where the final inequality follows from the definition of curvature c (See Lemma 2.1. in [105]).

Moreover, due to that Gt is a linear function, we have∫ 1

0

ez−1∇ (Ft −Gt) (z ∗ (π1, . . . , πn)) dz

=

∫ 1

0

ez−1∇Ft (z ∗ (π1, . . . , πn)) dz −
∫ 1

0

ez−1dz∇Gt(π1, . . . , πn)

=

∫ 1

0

ez−1∇Ft (z ∗ (π1, . . . , πn)) dz − (1− 1/e)∇Gt(π1, . . . , πn),

(36)

where the first equality follows from ∇Gt (z ∗ (π1, . . . , πn)) = ∇Gt(π1, . . . , πn).

Merging Eq.(35) and Eq.(36), we get the Eq.(34).

From the result of Theorem 10, for any stationary point (πs
1, . . . , πs

n) of the objective (F s
t + Gt

e )
over

∏n
i=1 ∆κi

and any subset S within the constraint of problem (1), then we have the following
inequality:

0 ≥
〈
1S − (πs

1, . . . , π
s
n),∇

(
F s
t +

Gt

e

)
(πs

1, . . . , π
s
n)
〉
≥
(
1− c

e

)
ft(S)− Ft(π

s
1, . . . , π

s
n).

In other words, Ft(π
s
1, . . . , πs

n) ≥
(
1− c

e

)
ft(S

∗) where S∗ is the optimal subset of problem (1).

G Convergence Analysis of MA-SPL Algorithm

In this section, we verify Theorem 4.

Before that, we firstly show that the surrogate gradient estimations in Line 16 of Algorithm 1, namely,
di(t) is bounded and our proposed policy-based continuous extension Ft is smooth.
Lemma 2. If we set M as the maximum marginal contribution of each monotone set function ft,
namely, M ≜ maxS⊆V,e∈V\S,t∈[T ] (ft(e|S)),then we have ∥di(t)∥2 ≤ √

κi(
∫ 1

0
w(z)dz + 1

e )M
where di(t) is the surrogate gradient estimations in Line 16 of Algorithm 1.
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Proof. From Lines 13-15, we know that di,m(t) ≜ (
∫ 1

z=0
w(z)dz)ft

(
vi,m

∣∣Si(t)
)

or di,m(t) ≜(
(
∫ 1

z=0
w(z)dz)ft

(
vi,m

∣∣Si(t)
)
+ e−1ft(vi,m|V − {vi,m})

)
. Thus, we have |di,m(t)| ≤

(
∫ 1

0
w(z)dz + 1

e )M for any i ∈ N and m ∈ [κi] such that ∥di(t)∥2 =
√∑2

m=1 |di,m(t)|2 ≤
√
κi(
∫ 1

0
w(z)dz + 1

e )M .

Before investigating the smoothness of our proposed policy-based continuous extension Ft, we firstly
show its second-order partial derivative, i.e.,

Lemma 3. For any vector (π1, . . . , πn) ∈
∏n

i=1 ∆κi
, the second-order derivative of Ft at variables

πi1,m1
, πi2,m2

,∀i1 ∈ N ,∀m1 ∈ [κi1 ],∀i2 ∈ N ,∀m2 ∈ [κi2 ], can be defined as:

i): When i1 = i2, ∂2Ft

∂πi1,m1
∂πi1,m2

(π1, . . . , πn) = 0;

ii): When i1 ̸= i2,

∂2Ft

∂πi1,m1
∂πi2,m2

(πi,1(t), . . . , πi,n(t))

= Eai∼πi,∀i∈N

(
ft

(
vi1,m1

∣∣( ∪i/∈{i1,i2} {ai}
)
∪ {vi2,m2

}
)
− ft

(
vi1,m1

∣∣ ∪i/∈{i1,i2} {ai}
))

.

Remark 13. From the Lemma 3, if we set M as the maximum marginal contribution of each
monotone set function ft, namely, M ≜ maxS⊆V,e∈V\S,t∈[T ] (ft(e|S)), then we can show that
| ∂2Ft

∂πi1,m1∂πi2,m2
(πi,1(t), . . . , πi,n(t))| ≤ M .

Lemma 4. If we set M as the maximum marginal contribution of each monotone set function ft,
namely, M ≜ maxS⊆V,e∈V\S,t∈[T ] (ft(e|S)), then we can show that the Hessian matrix of the
policy-based continuous extension Ft of the previous monotone set function ft satisfies that,

∥∇2Ft(π1, . . . , πn)∥22,∞ ≤ M2
n∑

i=1

κi, (37)

where (π1, . . . , πn) ∈
∏n

i=1 ∆κi .

Remark 14. For any matrix A ∈ Rn×n, the (2,∞)-norm of A is defined as ∥A∥2,∞ = sup{∥Ax∥∞ :
x ∈ Rn, ∥x∥2 = 1} where ∥ · ∥2 denotes the L2 norm.

Proof. From the definition of the norm ∥ · ∥2,∞, we can show that

∥∇2Ft(π1, . . . , πn)∥22,∞ = max
j∈N

∥∇2Ft(π1, . . . , πn)[j, :]∥22 ≤ M2
n∑

i=1

κi,

where ∇2Ft(π1, . . . , πn)[j, :] is the j-th line of the Hessian matrix ∇2Ft(π1, . . . , πn) and the final
inequality follows from Remark 13.

From Lemma 4, we can show that our proposed policy-based continuous extension Ft is
(M

∑n
i=1 κi)-smooth, namely,

Lemma 5. If we set M as the maximum marginal contribution of each monotone set function ft,
namely, M ≜ maxS⊆V,e∈V\S,t∈[T ] (ft(e|S)), then we can show that our proposed policy-based
continuous extension Ft is (M

∑n
i=1 κi)-smooth.
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Proof. For any two point (πa
1 , . . . , πa

n) ∈
∏n

i=1 ∆κi and (πb
1, . . . , πb

n) ∈
∏n

i=1 ∆κi , if πa
i ≤ πb

i for
any i ∈ N , the following inequality holds:

∥∇Ft(π
a
1 , . . . , π

a
n)−∇Ft(π

b
1, . . . , π

b
n)∥2

= ∥
∫ 1

0

∇2Ft(π
a
1 + λπ

b
1, . . . , π

a
n + λπ

b
n)dλ(π

a
1 − π

b
1, . . . , π

a
n − π

b
n)∥2

≤

(
n∑

i=1

κi

)1/2

∥
∫ 1

0

∇2Ft(π
a
1 + λπ

b
1, . . . , π

a
n + λπ

b
n)(π

a
1 − π

b
1, . . . , π

a
n − π

b
n)dλ∥∞

≤ M(

n∑
i=1

κi)∥(πa
1 , . . . , π

a
n)− (πb

1, . . . , π
b
n)∥2,

where the first inequality comes from ∥x∥2 ≤
√
n∥x∥∞ for any n-dimensional vector x and the final

inequality follows from the Eq.(37). Thus, Ft is (M
∑n

i=1 κi)-smooth.

With Lemma 2 and Lemma 5, we next prove Theorem 4. At first, we show that each policy vector
(πi,1(t), . . . , πi,n(t)),∀i ∈ N ,∀t ∈ [T ] of Algorithm 1 is included in the constraint

∏n
i=1 ∆κi . That

is, we have the following lemma:

Lemma 6. In Algorithm 1, Under Assumption 1, (πi,1(t), . . . , πi,n(t)) ∈
∏n

i=1 ∆κi
.

Proof. We prove this theorem by induction. At first, from the Line 2 in Algorithm 1, we know
that xi,j(1) ∈ ∆κj

for any i, j ∈ N , so (πi,1(1), . . . , πi,n(1)) ∈
∏n

i=1 ∆κi
,∀i ∈ N . Then, if for

some t ∈ [T ], (πi,1(t), . . . , πi,n(t)) ∈
∏n

i=1 ∆κi
. From Line 17, we know that πi,m(t + 1) :=∑

j∈Ni∪{i} wijπj,m(t) for any m ̸= i. Then, due to Assumption 1, we have
∑

j∈Ni∪{i} wij = 1

and wij ≥ 0 such that πi,m(t + 1) ∈ ∆κm ,∀m ̸= i. Moreover, from Line 19, we also know that
uppii,i(t+ 1) ∈ ∆κi . Thus, (πi,1(t+ 1), . . . , πi,n(t+ 1)) ∈

∏n
i=1 ∆κi .

Before going into the proof of Theorem 4, we define some commonly used symbols, namely,

π̄·,j(t) ≜

∑n
i=1 πi,j(t)

n
, π

cate
·,j (t) ≜ [π1,j(t); π2,j(t); . . . ; πn,j(t)] ∈ Rn∗κj , ∀j ∈ N ;

zi,m(t) ≜
∑

j∈Ni∪{i}

wijπj,m(t), ∀i,m ∈ N ;

z̄·,j(t) ≜

∑n
i=1 zi,j(t)

n
, zcate·,j (t) ≜ [z1,j(t); z2,j(t); . . . ; zn,j(t)] ∈ Rn∗κj , ∀j ∈ N ;

ri,j(t) ≜ πi,j(t+ 1)− zi,j(t), rcate·,j (t) ≜ [r1,j(t); r2,j(t); . . . ; rn,j(t)] ∈ Rn∗κj , ∀j ∈ N .

With these symbols, we can verify that

Lemma 7. E(∥ri,j(t)∥2) = E(∥πi,j(t+ 1)− zi,j(t)∥2) ≤
√
κi(
∫ 1

0
w(z)dz + 1

e )ηtM where M is
the maximum marginal contribution of each monotone set function ft.

Proof. When i ̸= j, from Line 17, we know that πi,j(t + 1) = zi,j(t) such that ri,j(t) = 0κj and
E(∥ri,j(t)∥2) = 0 ≤ √

κi(
∫ 1

0
w(z)dz + 1

e )ηtM . As for i = j, from Line 18 and Line 19, we have

πi,i(t+ 1) := argmin
b∈∆κi

∥b− (zi,i(t) + ηtdi(t)) ∥2.

Note that zi,i(t) ∈ ∆κj . Thus, we have

∥πi,i(t+1)−zi,i(t)∥2 ≤ ∥zi,i(t)−(zi,i(t) + ηtdi(t)) ∥2 = ηt∥di(t)∥2 ≤
√
κi(

∫ 1

0

w(z)dz+
1

e
)ηtM,

(38)
where the final inequality follows from Lemma 2.

49



Lemma 8. Under Assumption 1, for any t ∈ [T ] and i ∈ N , we have that∑
i∈N

E(∥πi,j(t+ 1)− π̄·,j(t+ 1)∥) ≤
t∑

m=1

√
nβt−m(

∫ 1

0

w(z)dz +
1

e
)ηmM,

∑
i∈N

E(∥zi,j(t+ 1)− π̄·,j(t+ 1)∥) ≤
t∑

m=1

√
nβt−m(

∫ 1

0

w(z)dz +
1

e
)ηmM,

where τ ≜ max(|λ2(W)|, |λn(W)|) is the second largest magnitude of the eigenvalues of the weight
matrix W.

Proof. From the definition of ri,j(t), we can show that

xi,j(t+ 1) = ri,j(t) + zi,j(t) = ri,j(t) +
∑

k∈Ni∪{i}

wikxk,j . (39)

As a result, from the Eq.(39), we also have that

π
cate
·,j (t+ 1) = rcate·,j (t) + (W ⊗ Iκj

)πcate
·,j (t)

=

t∑
m=1

(W ⊗ Iκj
)t−mrcate·,j (m)

=

t∑
m=1

(Wt−m ⊗ Iκj )r
cate
·,j (m),

(40)

where the symbol ⊗ denotes the Kronecker product.

If we also define π̄cate
·,j (t) = [π̄·,j(t); π̄·,j(t); . . . ; π̄·,j(t)] ∈ Rnκj and from the Eq.(40), we also have

that

π̄
cate
·,j (t) =

(
1n1

T
n

n
⊗ Iκj

)
π
cate
·,j (t)

=

t∑
m=1

(
1n1

T
n

n
⊗ Iκj

)rcate·,j (m).

(41)

Then, from the Eq.(40) and Eq.(41), we have that , for any i ∈ N ,

π
cate
·,j (t+ 1)− π̄

cate
·,j (t) =

t∑
m=1

∑
j∈Ni∪{i}

(
[Wt−m]ij −

1

N

)
rcate·,j (m). (42)

Eq.(42) indicates that

E
(∥∥π

cate
·,j (t+ 1)− π̄

cate
·,j (t)

∥∥) = E

∥∥∥∥∥∥
t∑

m=1

∑
j∈Ni∪{i}

(
[Wt−m]ij −

1

n

)
rcate·,j (m)

∥∥∥∥∥∥


≤ E

 t∑
m=1

∑
j∈Ni∪{i}

|
(
[Wt−m]ij −

1

n

)
| ∗ ∥rcate·,j (m)∥2


≤

t∑
m=1

∑
j∈Ni∪{i}

|
(
[Wt−m]ij −

1

n

)
|
√
κi(

∫ 1

0

w(z)dz +
1

e
)ηmM

≤
t∑

m=1

√
nτ t−m(

∫ 1

0

w(z)dz +
1

e
)ηmM,

where the second inequality comes from Lemma 7 and the final inequality follows from∑
j∈Ni∪{i} |[Wt−m]ij − 1

n | ≤
√
nτ t−m(See Proposition 1 in [84]). Due to zi,j(t +

1) =
∑

k∈Ni∪{i} wikπk,j(t + 1) we also can have E(∥zi,j(t + 1) − π̄·,j(t + 1)∥2) ≤∑
j∈Ni∪{i} wijE(∥πi,j(t+ 1)− π̄·,j(t+ 1)∥2) ≤

∑t
m=1

√
nτ t−m(

∫ 1

0
w(z)dz + 1

e )ηmM .
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Lemma 9. When each objective function ft is monotone submodular with curva-
ture c, α-weakly DR-submodular or (γ, β)-weakly submodular, we set the ratio ρ =(
1− c

e

)
, (1− e−α) ,

(
γ2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2

)
, respectively. Moreover, we use the symbol M to

denote the maximum marginal contribution of each monotone set function ft, namely, M ≜
maxS⊆V,e∈V\S,t∈[T ] (ft(e|S)). Then, under Assumption 1, if each set function ft is bounded
∀t ∈ [T ], the following inequality holds for Algorithm 1:

ρ

T∑
t=1

ft(A∗
t )−

T∑
t=1

Ft(π̄·,1(t), . . . , π̄·,n(t)) ≤ 5M2n
5
2 (

n∑
i=1

κi)(

∫ 1

0

w(z)dz +
1

e
)2

T∑
t=1

t∑
m=1

τ t−mηm

+ n
√
κi(

∫ 1

0

w(z)dz +
1

e
)M

T∑
t=1

ηt
2

+

T∑
t=1

1

2ηt

n∑
i=1

(
∥zi,i(t)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
.

where A∗
t is the optimal solution of problem (1) and τ ≜ max(|λ2(W)|, |λn(W)|) is the second

largest magnitude of the eigenvalues of the weight matrix W.

Proof. In order to unify the proofs in different setting, i.e., submodular objective with cur-
vature c, α-weakly DR-submodular objective and (γ, β)-weakly submodular objective, we de-
fine some auxiliary symbols. At first, when each objective function ft is monotone submod-
ular with curvature c, α-weakly DR-submodular or (γ, β)-weakly submodular, we set ρ =(
1− c

e

)
, (1− e−α) ,

(
γ2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2

)
, respectively. Moreover, compared to weakly sub-

modular scenarios, Theorem 3 designs a different auxiliary function for submodular scenar-
ios. Therefore, when each ft is monotone submodular with curvature cor weakly submodular,
we define F a

t = F s
t or F a

t =
(
F s
t + Gt

e

)
, respectively. Note that the F s

t is the surrogate
function considered in Theorem 3 for different settings and Gt is a linear function defined as
Gt(π1, . . . , πn) ≜

∑n
i=1

∑κi

m=1

(
ft
(
vi,k|V − {vi,m}

))
πi,m.

From Theorem 7 and Theorem 10, we have that

ρft(A∗
t )− Ft(π̄·,1(t), . . . , π̄·,n(t))

≤
〈
∇F a

t (π̄·,1(t), . . . , π̄·,n(t)),1A∗
t
− (π̄·,1(t), . . . , π̄·,n(t))

〉
=
〈
∇F a

t (π̄·,1(t), . . . , π̄·,n(t))−
∑
i∈N

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

,1A∗
t
− (π̄·,1(t), . . . , π̄·,n(t))

〉
︸ ︷︷ ︸

1⃝

+
〈∑

i∈N

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

,1A∗
t
− (πi,1(t), . . . , πi,1(t))

〉
︸ ︷︷ ︸

2⃝

+
〈∑

i∈N

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

, (πi,1(t), . . . , πi,1(t))− (π̄·,1(t), . . . , π̄·,n(t))
〉

︸ ︷︷ ︸
3⃝

(43)
where the symbol

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

is the projection over the policy πi, i.e.,[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

represents a (
∑n

i=1 κi)-dimensional vector that only keeps the first-

order derivative at variable πi,m,∀m ∈ [κi] and set other coordinates to 0, that is to say,[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

≜

(
. . . , 0, . . . ,

∂Ft

∂πi,1
(x), . . . ,

∂Ft

∂πi,κi

(x)︸ ︷︷ ︸
κi

, . . . , 0, . . .

)
,

where x ≜ (πi,1(t), . . . , πi,1(t)).
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For 1⃝, we have〈
∇F a

t (π̄·,1(t), . . . , π̄·,n(t))−
∑
i∈N

[
∇F a

t (πi,1(t), . . . , πi,n(t))
]

πi

,1A∗
t
− (π̄·,1(t), . . . , π̄·,n(t))

〉
≤

∥∥∥∥∥∇F a
t (π̄·,1(t), . . . , π̄·,n(t))−

∑
i∈N

[
∇F a

t (πi,1(t), . . . , πi,n(t))
]

πi

∥∥∥∥∥
2

∥∥1A∗
t
− (π̄·,1(t), . . . , π̄·,n(t))

∥∥
2

≤
∑
i∈N

(∥∥∥∥[∇F a
t (π̄·,1(t), . . . , π̄·,n(t))

]
πi

−
[
∇F a

t (πi,1(t), . . . , πi,n(t))
]

πi

∥∥∥∥
2

)(∥∥1A∗
t
∥2 + ∥(π̄·,1(t), . . . , π̄·,n(t))

∥∥
2

)
≤ 2n

∑
i∈N

(
∥∇F a

t (π̄·,1(t), . . . , π̄·,n(t))−∇F a
t (πi,1(t), . . . , πi,n(t))∥2

)
= 2n

∑
i∈N

(∥∥∥∥∫ 1

z=1

w(z)∇Ft(z ∗ π̄·,1(t), . . . , z ∗ π̄·,n(t))dz −
∫ 1

z=1

w(z)∇Ft(z ∗ πi,1(t), . . . , z ∗ πi,n(t))dz

∥∥∥∥
2

)
≤ 2Mn(

n∑
i=1

κi)(

∫ 1

0

w(z)zdz)∥
∑
i∈N

(
∥(πi,1(t), . . . , πi,n(t))− (π̄·,1(t), . . . , π̄·,n(t))∥2

)
≤ 2Mn(

n∑
i=1

κi)(

∫ 1

0

w(z)zdz)
∑
j∈N

∑
i∈N

∥πi,j(t)− π̄·,j(t)∥2)

≤ 2M2n
5
2 (

n∑
i=1

κi)(

∫ 1

0

w(z)zdz)(

∫ 1

0

w(z)dz +
1

e
)

t∑
m=1

τ t−mηm,

(44)
where the fourth inequality follows Lemma 5 and the final inequality from Lemma 8.

For 3⃝, under Lemma 2 and Lemma 8, we have,〈∑
i∈N

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

, (πi,1(t), . . . , πi,1(t))− (π̄·,1(t), . . . , π̄·,n(t))
〉

≤
√
κi(

∫ 1

0

w(z)dz +
1

e
)M

∑
i∈N

∑
j∈N

∥πi,j(t)− π̄·,j(t)∥2

≤
√
κiM

2n3/2(

∫ 1

0

w(z)dz +
1

e
)2

t∑
m=1

τ t−mηm.

(45)

As for 2⃝, we have,

E
(〈∑

i∈N

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

,1A∗
t
− (πi,1(t), . . . , πi,n(t))

〉)
= E

(
E

(〈∑
i∈N

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

,1A∗
t
− (πi,1(t), . . . , πi,n(t))

〉∣∣∣πi,j(t),∀i, j ∈ N

))

= E

(〈
E

(∑
i∈N

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

∣∣∣πi,j(t),∀i, j ∈ N

)
,1A∗

t
− (πi,1(t), . . . , πi,n(t))

〉)
= E

(〈
(d1(t), . . . ,dn(t)),1A∗

t
− (πi,1(t), . . . , πi,n(t))

〉)
= E

(〈
(d1(t), . . . ,dn(t)),1A∗

t
− (zi,1(t), . . . , zi,1(t))

〉)
︸ ︷︷ ︸

4⃝

+ E
(〈

(d1(t), . . . ,dn(t)), (zi,1(t), . . . , zi,n(t))− (πi,1(t), . . . , πi,n(t))
〉)

︸ ︷︷ ︸
5⃝

.

(46)
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For 5⃝, we have that,

5⃝ ≤ E
(
∥(d1(t), . . . ,dn(t))∥2 ∥(zi,1(t), . . . , zi,n(t))− (πi,1(t), . . . , πi,n(t))∥2

)
≤

√
nκiM(

∫ 1

0

w(z)dz +
1

e
)E
(
∥(zi,1(t), . . . , zi,n(t))− (πi,1(t), . . . , πi,n(t))∥2

)
≤

√
nκiM(

∫ 1

0

w(z)dz +
1

e
)E
(
∥(zi,1(t)− π̄·,1(t), . . . , zi,n(t)− π̄·,n(t))∥2

)
+
√
nκiM(

∫ 1

0

w(z)dz +
1

e
)E
(
∥(πi,1(t)− π̄·,1(t), . . . , πi,n(t)− π̄·,n(t))∥2

)
≤

√
nκiM(

∫ 1

0

w(z)dz +
1

e
)
∑
i∈N

∑
j∈N

E
(
∥πi,j(t)− π̄·,j(t)∥2 + ∥zi,j(t)− π̄·,j(t)∥2

)

≤ 2n2√κiM
2(

∫ 1

0

w(z)dz +
1

e
)2

t∑
m=1

τ t−mηm

(47)

For 4⃝: At first, from the Line 19 of Algorithm 1, we know that, for any x ∈ ∆κi , we have
∥πi,i(t+ 1)− x∥2 ≤ ∥zi,i(t) + ηtdi(t)− x∥2.

If we slightly abuse the notation 1(A∗
t∩Vi) to denote κi-dimensional indicator vector over (A∗

t ∩ Vi).
Note that 1A∗

t
is a (

∑n
i=1 κi)-dimensional indicator vector over A∗

t . Then, we have

∥πi,i(t+ 1)− 1(A∗
t∩Vi)∥

2
2

≤ ∥zi,i(t) + ηtdi(t)− 1(A∗
t∩Vi)∥

2
2

= ∥zi,i(t)− 1(A∗
t∩Vi)∥

2
2 + 2ηt

〈
di(t), zi,i(t)− 1(A∗

t∩Vi)

〉
+ η2t ∥di(t)∥22.

Therefore,〈
di(t),1(A∗

t∩Vi) − zi,i(t)
〉

≤ ηt
2
∥di(t)∥22 +

1

2ηt

(
∥zi,i(t)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
≤ ηt

2

√
κi(

∫ 1

0

w(z)dz +
1

e
)M +

1

2ηt

(
∥zi,i(t)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
,

where the final inequality follows from Lemma 2.

Note that

E
(〈

(d1(t), . . . ,dn(t)),1A∗
t
− (zi,1(t), . . . , zi,1(t))

〉)
=

n∑
i=1

E
(〈
di(t),1(A∗

t∩Vi) − zi,i(t)
〉)

≤ ηt
2
n
√
κi(

∫ 1

0

w(z)dz +
1

e
)M +

1

2ηt

n∑
i=1

(
∥zi,i(t)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
.

(48)
Merging Eq.(48), Eq.(47), Eq.(46), Eq.(45), Eq.(44) into Eq.(43), we finally have

ρft(A∗
t )− Ft(π̄·,1(t), . . . , π̄·,n(t)) ≤ 5M2n

5
2 (

n∑
i=1

κi)(

∫ 1

0

w(z)dz +
1

e
)2

t∑
m=1

βt−mηm

+
ηt
2
n
√
κi(

∫ 1

0

w(z)dz +
1

e
)M +

1

2ηt

n∑
i=1

(
∥zi,i(t)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
.

Therefore, we get Lemma 9.

Next, we prove an upper bound of
∑T

t=1
1

2ηt

∑n
i=1

(
∥zi,i(t) − 1(A∗

t∩Vi)∥22 − ∥πi,i(t + 1) −

1(A∗
t∩Vi)∥22

)
, that is to say,
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Lemma 10. Under Assumption 1, we have that

T∑
t=1

1

2ηt

n∑
i=1

(
∥zi,i(t)−1(A∗

t∩Vi)∥
2
2−∥πi,i(t+1)−1(A∗

t∩Vi)∥
2
2 ≤ 4n

ηT+1
+

T∑
t=1

n∑
i=1

6

ηt+1
E
(
∥1(A∗

t∩Vi)−1(A∗
t+1∩Vi)∥2

)
,

where A∗
t is the optimal solution of problem (1) and we slightly abuse the notation 1(A∗

t∩Vi) to denote
κi-dimensional indicator vector over (A∗

t ∩Vi). Note that 1A∗
t

is a (
∑n

i=1 κi)-dimensional indicator
vector over A∗

t .

Proof.

T∑
t=1

1

2ηt

n∑
i=1

(
∥zi,i(t)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
=

T∑
t=1

n∑
i=1

( 1

ηt
E(∥zi,i(t)− 1(A∗

t∩Vi)∥
2
2)−

1

ηt+1
E(∥zi,i(t+ 1)− 1(A∗

t+1∩Vi)∥
2
2)
)

︸ ︷︷ ︸
1⃝

+

T∑
t=1

n∑
i=1

(
1

ηt+1
E
(
∥zi,i(t+ 1)− 1(A∗

t+1∩Vi)∥
2
2 − ∥zi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

))
︸ ︷︷ ︸

2⃝

+

T∑
t=1

n∑
i=1

(
1

ηt+1
E
(
∥zi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

))
︸ ︷︷ ︸

3⃝

+

T∑
t=1

n∑
i=1

( 1

ηt+1
− 1

ηt

)
E
(
∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
︸ ︷︷ ︸

4⃝

.

Firstly, we have 1⃝≤
∑n

i=1 E(∥zi,i(1)−1(A∗
1∩Vi)

∥2
2)

η1
≤ 4n

η1
.

Moreover, we have 4⃝≤ 4n
(

1
ηT+1

− 1
η1

)
.

As for 2⃝, we have

T∑
t=1

n∑
i=1

(
1

ηt+1
E
(
∥zi,i(t+ 1)− 1(A∗

t+1∩Vi)∥
2
2 − ∥zi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

))

=

T∑
t=1

n∑
i=1

(
1

ηt+1
E
(
∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥

2
2 + 2

〈
zi,i(t+ 1)− 1(A∗

t∩Vi),1(A∗
t∩Vi) − 1(A∗

t+1∩Vi)

〉))

≤
T∑

t=1

n∑
i=1

6

ηt+1
E
(
∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2

)
,

.

where the final inequality from
〈
zi,i(t+ 1)− 1(A∗

t∩Vi),1(A∗
t∩Vi) − 1(A∗

t+1∩Vi)

〉
≤ ∥zi,i(t+ 1)−

1(A∗
t∩Vi)∥2 ∗ ∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2 ≤ 2∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2.
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Then, we have

3⃝ =

T∑
t=1

n∑
i=1

(
1

ηt+1
E
(
∥zi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

))

=

T∑
t=1

n∑
i=1

(
1

ηt+1
E
(
∥

∑
j∈Ni∪{i}

wijπj,i(t+ 1)− 1(A∗
t∩Vi)∥

2
2 − ∥πi,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

))

≤
T∑

t=1

(
1

ηt+1
E
(∑

i∈N

∑
j∈Ni∪{i}

(
wij∥πj,i(t+ 1)− 1(A∗

t∩Vi)∥
2
2

)
−
∑
i∈N

∥πi,i(t+ 1)− 1(A∗
t∩Vi)∥

2
2

))

=

T∑
t=1

(
1

ηt+1
E
(∑

i∈N

(
(
∑

j∈Ni∪{i}

wji)∥πj,i(t+ 1)− 1(A∗
t∩Vi)∥

2
2

)
−
∑
i∈N

∥πi,i(t+ 1)− 1(A∗
t∩Vi)∥

2
2

))
= 0,

where the first inequality follows from the convexity of ∥ · ∥22, the third equality is from wij = wji

and the final equality follows from Assumption 1.

We finally get

T∑
t=1

1

2ηt

n∑
i=1

(
∥zi,i(t)−1(A∗

t∩Vi)∥
2
2−∥πi,i(t+1)−1(A∗

t∩Vi)∥
2
2 ≤ 4n

ηT+1
+

T∑
t=1

n∑
i=1

6

ηt+1
E
(
∥1(A∗

t∩Vi)−1(A∗
t+1∩Vi)∥2

)
.

As a result, we can show that
Lemma 11. Under Assumption 1, when each set objective function ft is monotone submodular with
curvature c, α-weakly DR-submodular or (γ, β)-weakly submodular, if we set the weight function
w(z) according to Theorem 3, we have that

ρ

T∑
t=1

ft(A∗
t )−

T∑
t=1

E(ft (∪n
i=1{ai(t)})) ≤ 6M2n

5
2 (

n∑
i=1

κi)(

∫ 1

0

w(z)dz +
1

e
)2

T∑
t=1

t∑
m=1

βt−mηm

+ n
√
κi(

∫ 1

0

w(z)dz +
1

e
)M

T∑
t=1

ηt
2

+
4n

ηT+1
+

T∑
t=1

n∑
i=1

6

ηt+1
E
(
∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2

)
.

Proof. Merging Lemma 10 into Lemma 9, we can get that

ρ

T∑
t=1

ft(A∗
t )−

T∑
t=1

Ft(π̄·,1(t), . . . , π̄·,n(t)) ≤ 5M2n
5
2 (

n∑
i=1

κi)(

∫ 1

0

w(z)dz +
1

e
)2

T∑
t=1

t∑
m=1

τ t−mηm

+ n
√
κi(

∫ 1

0

w(z)dz +
1

e
)M

T∑
t=1

ηt
2

+
4n

ηT+1
+

T∑
t=1

n∑
i=1

6

ηt+1
E
(
∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2

)
.

From Theorem 1, we also can show that |Ft(x)− Ft(y)| ≤ nM∥x− y∥2 for any t ∈ [T ] such that
we have

|Ft(π̄·,1(t), . . . , π̄·,n(t))− Ft(π1,1(t), π2,2(t), . . . , πn,n(t))|
≤ nM∥(π̄·,1(t), . . . , π̄·,n(t))− (π1,1(t), . . . , πn,n(t))∥2

= nM

n∑
i=1

∥π̄·,i(t)− πi,i(t)∥2 ≤ nM

n∑
j=1

n∑
i=1

∥π̄·,i(t)− πj,i(t)∥2 ≤ n5/2M2(

∫ 1

0

w(z)dz +
1

e
)

t∑
m=1

τ t−mηm,

where the final inequality follows from Lemma 8.

Moreover, from the monotonicity of Ft(See 2) in Theorem 1) and Lines 5-8, we also can infer that

E (ft (∪n
i=1{ai(t)})) = Ft(p1(t), . . . ,pn(t)) ≥ Ft(π1,1(t), π2,2(t), . . . , πn,n(t)),
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where the final inequality comes from pi(t) :=
πi,i(t)

∥πi,i(t)∥1
≥ πi,i(t). Therefore, we have that

ρ

T∑
t=1

ft(A∗
t )−

T∑
t=1

E(ft (∪n
i=1{ai(t)})) ≤ 6M2n

5
2 (

n∑
i=1

κi)(

∫ 1

0

w(z)dz +
1

e
)2

T∑
t=1

t∑
m=1

τ t−mηm

+ n
√
κi(

∫ 1

0

w(z)dz +
1

e
)M

T∑
t=1

ηt
2

+
4n

ηT+1
+

T∑
t=1

n∑
i=1

6

ηt+1
E
(
∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2

)
.

From Lemma 11, if we set the step size ηt = O
(√ (1−τ)PT

T

)
where PT ≜

∑T
t=1 |A∗

t+1△A∗
t | and

△ denotes the symmetric difference, we can show that

ρ

T∑
t=1

Ft(1A∗
t
)−

T∑
t=1

E(ft (∪n
i=1{ai(t)}))

≤ O(

T∑
t=1

t∑
m=1

τ t−mηm) +O(

T∑
t=1

ηt) +O(
1

ηT+1
) +O

( T∑
t=1

n∑
i=1

1

ηt+1
E(∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2)

)
= O

(√
PTT

1− τ

)
,

where the final equality follows from PT ≜
∑T

t=1

∑n
i=1 ∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥2 ≜∑T

t=1

∑n
i=1 ∥1(A∗

t∩Vi) − 1(A∗
t+1∩Vi)∥1 ≜

∑T
t=1 |A∗

t+1△A∗
t |.

H Convergence Analysis of MA-MPL Algorithm

In this section, we prove Theorem 5.

At first, we verify that each policy vector (π(k)
i,1 (t), . . . , π

(k)
i,n(t)) ∈

∏
i=1 ∆κi , namely, we have the

following lemma:
Lemma 12. When the communication graph G(V, E) is connected, we can show that
(π

(k)
i,1 (t), . . . , π

(k)
i,n(t)) ∈

∏
i=1 ∆κi

for any i ∈ N and 0 ≤ k ≤ K as well as t ∈ [T ].

Proof. From the Line 1 of Algorithm 2, we can know that (π(0)
i,1 (t), . . . , π

(0)
i,n(t)) := 0,∀t ∈ [T ]

such that (π(0)
i,1 (t), . . . , π

(0)
i,n(t)) ∈

∏
i=1 ∆κi

. Moreover, from Lines 8, for a fixed t ∈ [T ], we know

that only agent i ∈ N can change the policy π
(k)
i,i (t). Furthermore, from Line 10, we also can

infer that, for other agent j ̸= i, its policy π
(k)
j,i (t) is copy of some past iteration of π

(k)
i,i (t), namely,

there exists a k1 ≤ k such that π
(k)
j,i (t) = π

(k1)
i,i (t). According to the Line 8 and Line 10, we have

π
(k)
i,i (t) = π

(k−1)
i,i (t) + 1

Kv
(k)
i (t), so we have π

(k)
i,i (t) =

1
K

∑k
m=1 v

(m)
i (t) ∈ ∆κi

for any k ∈ [K]

,t ∈ [T ] and i ∈ N . Therefore, we have (π
(k)
i,1 (t), . . . , π

(k)
i,n(t)) ∈

∏
i=1 ∆κi for any i ∈ N and

k ∈ [K] as well as t ∈ [T ].

Note that, from Lines 11-13, each agent i ∈ N only uses the policy π
(K)
i,i (t) to make decision,

so the real policy vector taken by all agents is (π
(K)
1,1 (t), . . . , π

(K)
n,n (t)). Motivated by this find-

ing, we next investigate some relationships between the policy vector (π(k)
1,1(t), . . . , π

(k)
n,n(t)) and

(π
(k)
i,1 (t), . . . , π

(k)
i,n(t)). That is,

Lemma 13. When the communication graph G(V, E) is connected, if we set κ ≜
∑n

i=1 κi and utilize
the symbol 1κ to denote the κ-dimensional vector whose all elements are 1, we can show that

0 ≤ 1

n

〈
1κ, (π

(k)
1,1(t), . . . , π

(k)
n,n(t))− (π

(k)
i,1 (t), . . . , π

(k)
i,n(t))

〉
≤ d(G)

K
,
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where d(G) is the diameter of a graph, that is to say, the length of the shortest path between the most
distanced nodes.

Proof. From Lines 6-10, we can show that, for fixed k ∈ [K] and t ∈ [T ], each π
(k)
i,j (t) =

π
(kj)
j,j (t) where kj ∈ [k − d(G), k]. Moreover, according to the Line 8 and Line 10, we have

π
(k)
j,j (t) = π

(k−1)
j,j (t) + 1

Kv
(k)
j (t), so we have π

(k)
j,j (t) = 1

K

∑k
m=1 v

(m)
j (t) for any k ∈ [K]

,t ∈ [T ] and i ∈ N . Therefore, we have that π
(k)
j,j (t) − π

(k)
i,j (t) = 1

K

∑j
m=kj

v
(m)
j (t) such that

0 ≤
〈
1κj , π

(k)
j,j (t)− π

(k)
i,j (t)

〉
≤ k−kj

K ≤ d(G)
K . So we have the result of Lemma 13.

Next, we investigate the relationships between (π
(k)
1,1(t), . . . , π

(k)
n,n(t)) and (π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)).

Lemma 14. When the communication graph G(V, E) is connected, we can show that

(π
(k)
1,1(t), . . . , π

(k)
n,n(t))− (π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)) =

1

K
(v

(k)
1 (t), . . . , (v(k)

n (t));

0 ≤ 1

n

〈
1κ, (π

(k)
1,1(t), . . . , π

(k)
n,n(t))− (π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

〉
≤ 1

K
,

where κ ≜
∑n

i=1 κi and d(G) is the diameter of a graph, i.e., the length of the shortest path between
the most distanced nodes.

Proof. According to the Line 8 and Line 10, we have π
(k)
j,j (t) = π

(k−1)
j,j (t) + 1

Kv
(k)
j (t). Therefore,

we get result of Lemma 14.

With Lemma 13 and Lemma 14, we next give an upper bound about the error between the gradient
∇Ft(π

(k)
1,1(t), . . . , π

(k)
n,n(t)) and ∇Ft(π

(k)
i,1 (t), . . . , π

(k)
i,n(t)).

Lemma 15. When the communication graph G(V, E) is connected, if we set M as
the maximum marginal contribution of each monotone set function ft, namely, M ≜
maxS⊆V,e∈V\S,t∈[T ] (ft(e|S)), we can show that∥∥∥∇Ft(π

(k)
1,1(t), . . . , π

(k)
n,n(t))−∇Ft(π

(k)
i,1 (t), . . . , π

(k)
i,n(t))

∥∥∥
2
≤

√
κnMd(G)

K

where κ =
∑n

i=1 κi and d(G) is the diameter of a graph, i.e., the length of the shortest path between
the most distanced nodes.

Proof. At first, we investigate the error between the first-order derivative ∂Ft

∂πi,m
(π

(k)
1,1(t), . . . , π

(k)
n,n(t))

and the first-order derivative ∂Ft

∂πi,m
(π

(k)
i,1 (t), . . . , π

(k)
i,n(t)) for some i ∈ N and m ∈ [κi].∣∣∣ ∂Ft

∂πi,m
(π

(k)
1,1(t), . . . , π

(k)
n,n(t))−

∂Ft

∂πi,m
(π

(k)
i,1 (t), . . . , π

(k)
i,n(t))

∣∣∣
=
∣∣∣ 〈(∫ 1

0

∂2Ft

∂πi,m∂π1,1
, . . . ,

∂2Ft

∂πi,m∂πn,κn

)
(x),

(
π
(k)
1,1(t)− π

(k)
i,1 (t), . . . , π

(k)
n,n(t)− π

(k)
i,n(t)

)〉 ∣∣∣
≤ M

∣∣∣ 〈1κ,
(

π
(k)
1,1(t)− π

(k)
i,1 (t), . . . , π

(k)
n,n(t)− π

(k)
i,n(t)

)〉 ∣∣∣ ≤ nMd(G)

K
,

where the first equality comes from x =
(
λπ

(k)
1,1(t) + (1− λ)π

(k)
i,1 (t), . . . , λπ

(k)
n,n(t) + (1− λ)π

(k)
i,n(t)

)
for some λ ∈ [0, 1], the first inequality follows from Remark 13 and the final inequality comes from
Lemma 13. Then, we have that∥∥∥∇Ft(π

(k)
1,1(t), . . . , π

(k)
n,n(t))−∇Ft(π

(k)
i,1 (t), . . . , π

(k)
i,n(t))

∥∥∥
2

≤
√
κmax

πi,m

∣∣∣ ∂Ft

∂πi,m
(π

(k)
1,1(t), . . . , π

(k)
n,n(t))−

∂Ft

∂πi,m
(π

(k)
i,1 (t), . . . , π

(k)
i,n(t))

∣∣∣ ≤ √
κnMd(G)

K
,

where κ =
∑n

i=1 κi and d(G) is the diameter of a graph, i.e., the length of the shortest path between
the most distanced nodes.
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Now, we prove Theorem 5.
Lemma 16. When the communication graph G(V, E) is connected, if we set M as
the maximum marginal contribution of each monotone set function ft, namely, M ≜
maxS⊆V,e∈V\S,t∈[T ] (ft(e|S)), we can show that,

i):) if ft is a monotone α-weakly submodular function:

(1− e−α)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
n,n(t))

)
≤
(
nM(

∑n
i=1 κi)

2α
+

2
√
κn2Md(G)

α

)
T

K
+

2nM
√
κ

α

T√
L

+
1

K

K∑
k=1

n∑
i=1

T∑
t=1

〈
d
(k)
i (t),1(A∗

t∩Vi) − v
(k)
i (t)

〉
;

ii):) if ft is a monotone (γ, β)-weakly submodular:

γ2(1− e−ϕ(γ,β))

ϕ(γ, β)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
n,n(t))

)
≤
(
nM(

∑n
i=1 κi)

2ϕ(γ, β)
+

2
√
κn2Md(G)

ϕ(γ, β)

)
T

K
+

2nM
√
κ

ϕ(γ, β)

T√
L

− 1

K

K∑
k=1

n∑
i=1

T∑
t=1

〈
d
(k)
i (t),1(A∗

t∩Vi) − v
(k)
i (t)

〉
,

where where we slightly abuse the notation 1(A∗
t∩Vi) to denote κi-dimensional indicator vector

over (A∗
t ∩ Vi). Note that 1A∗

t
is a (

∑n
i=1 κi)-dimensional indicator vector over A∗

t and ϕ(γ, β) =

β(1− γ) + γ2. Note the
∑n

i=1

∑T
t=1

〈
d
(k)
i (t),1(A∗

t∩Vi) − v
(k)
i (t)

〉
is the dynamic regret of linear

maximization oracle Q
(k)
i over the competitive sequence

(
1(A∗

1∩Vi), . . . ,1(A∗
T∩Vi)

)
. Therefore, we

also rewrite the previous two results as:

i):) if ft is a monotone α-weakly submodular function:

(1− e−α)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
n,n(t))

)
≤
(
nM(

∑n
i=1 κi)

2α
+

2
√
κn2Md(G)

α

)
T

K
+

2nM
√
κ

α

T√
L

+
1

K

K∑
k=1

n∑
i=1

RQ
(k)
i

(
1(A∗

1∩Vi), . . . ,1(A∗
T∩Vi)

)
;

ii):) if ft is a monotone (γ, β)-weakly submodular:

γ2(1− e−ϕ(γ,β))

ϕ(γ, β)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
n,n(t))

)
≤
(
nM(

∑n
i=1 κi)

2ϕ(γ, β)
+

2
√
κn2Md(G)

ϕ(γ, β)

)
T

K
+

2nM
√
κ

ϕ(γ, β)

T√
L

− 1

K

K∑
k=1

RQ
(k)
i

(
1(A∗

1∩Vi), . . . ,1(A∗
T∩Vi)

)
,

where RQ
(k)
i

(
1(A∗

1∩Vi), . . . ,1(A∗
T∩Vi)

)
is the dynamic regret of linear maximization oracle Q

(k)
i

over the competitive sequence
(
1(A∗

1∩Vi), . . . ,1(A∗
T∩Vi)

)
.
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Proof.

Ft(π
(k)
1,1(t), . . . , π

(k)
n,n(t))− Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

≥
〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)), (π

(k)
1,1(t)− π

(k−1)
1,1 (t), . . . , (π

(k)
1,1(t)− π

(k−1)
n,n (t))

〉
−

M(
∑n

i=1 κi)

2

∥∥∥(π
(k)
1,1(t)− π

(k−1)
1,1 (t), . . . , (π

(k)
1,1(t)− π

(k−1)
n,n (t)

)∥∥∥2
2

≥ 1

K

〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)), (v

(k)
1 (t), . . . ,v(k)

n (t))
〉
−

nM(
∑n

i=1 κi)

2K2

=
1

K

〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)),1A∗

t

〉
−

nM(
∑n

i=1 κi)

2K2

+
1

K

〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)), (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
=

1

K

〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)),1A∗

t

〉
︸ ︷︷ ︸

1⃝

−
nM(

∑n
i=1 κi)

2K2

+
1

K

〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))−

∑
i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

, (v
(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
︸ ︷︷ ︸

2⃝

+
1

K

〈∑
i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

−
(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
, (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
︸ ︷︷ ︸

3⃝

+
1

K

〈(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
, (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
,

where the first inequality follows the Lemma 5, namely, our proposed policy-based continuous
extension Ft is (M

∑n
i=1 κi)-smooth andthe symbol

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

is the projection

over the policy πi, namely,
[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

represents a (
∑n

i=1 κi)-dimensional vector

that only keeps the first-order derivative at variable πi,m,∀m ∈ [κi] and set other coordinates to 0,
that is to say,

[
∇F a

t (πi,1(t), . . . , πi,1(t))
]

πi

≜

(
. . . , 0, . . . ,

∂Ft

∂πi,1
(x), . . . ,

∂Ft

∂πi,κi

(x)︸ ︷︷ ︸
κi

, . . . , 0, . . .

)
,

where x ≜ (πi,1(t), . . . , πi,1(t)).

For 1⃝, according to 4) of Theorem 1, when ft is monotone α-weakly DR-submodular,

〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)),1A∗

t

〉
≥ α

(
ft(A∗

t )− Ft(π
(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

)
;

As for the setting that ft is monotone (γ, β)-weakly submodular, we also have

〈
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)),1A∗

t

〉
≥ γ2ft(A∗

t )−(β(1−γ)+γ2)Ft

(
π
(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t)

)
.
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For 2⃝, according to Lemma 15, we have

∣∣∣〈∇Ft(π
(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))−

∑
i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

, (v
(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉∣∣∣
=
∣∣∣〈∑

i∈N

[
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

]
πi

−
∑
i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

, (v
(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉∣∣∣
≤

∥∥∥∥∥∑
i∈N

[
∇Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

]
πi

−
∑
i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

∥∥∥∥∥
2

∥∥∥(v(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

∥∥∥
2

≤ 2n
∑
i∈N

∥∥∥∥[∇Ft(π
(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

]
πi

−
[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

∥∥∥∥
2

≤ 2n
∑
i∈N

∥∥∥∇Ft(π
(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))−∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

∥∥∥
2
≤ 2

√
κn2Md(G)

K
.

As for 3⃝,

E
∣∣∣〈∑

i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

−
(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
, (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉∣∣∣
≤ E

(∥∥∥∥∥∑
i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

−
(
d
(k)
1 (t), . . . ,d(k)

n (t)
)∥∥∥∥∥

2

∥∥∥(v(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

∥∥∥
2

)

≤ 2nE

(∥∥∥∥∥∑
i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

−
(
d
(k)
1 (t), . . . ,d(k)

n (t)
)∥∥∥∥∥

2

)

≤ 2n

√
E
(
1

L

∥∥∥(g(k)
1 (t), . . . ,g

(k)
n (t)

)∥∥∥
2

)

≤ 2n

√
κM2

L
,

where the third inequality follows Lines 15-20, namely,
(
d
(k)
1 (t), . . . ,d

(k)
n (t)

)
is L-batch stochastic

gradient for
∑

i∈N

[
∇Ft(π

(k−1)
i,1 (t), . . . , π

(k−1)
i,n (t))

]
πi

and the final inequality follows from Re-

mark 13 and κ =
∑n

i=1 κi.

Therefore, when ft is monotone α-weakly DR-submodular, we have that

E
(
Ft(π

(k)
1,1(t), . . . , π

(k)
n,n(t))− Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

)
≥ α

K
E
(
ft(A∗

t )− Ft(π
(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

)
−

nM(
∑n

i=1 κi)

2K2
− 2

√
κn2Md(G)

K2
− 2nM

K

√
κ

L

+
1

K

〈(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
, (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
.

Then, we can have that

E
(
ft(A∗

t )− Ft(π
(k)
1,1(t), . . . , π

(k)
n,n(t))

)
≤
(
1− α

K

)
E
(
ft(A∗

t )− Ft(π
(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

)
+

nM(
∑n

i=1 κi)

2K2
+

2
√
κn2Md(G)

K2
+

2nM

K

√
κ

L

− 1

K

〈(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
, (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
.
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As a result,

E
(
ft(A∗

t )− Ft(π
(K)
1,1 (t), . . . , π

(k)
n,n(t))

)
≤
(
1− α

K

)K
E
(
ft(A∗

t )− Ft(π
(0)
1,1(t), . . . , π

(k−1)
n,n (t))

)
− 1

K

K∑
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〈(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
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(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
+

K∑
m=1

(
1− α

K

)K−m
(
nM(

∑n
i=1 κi)

2K2
+

2
√
κn2Md(G)

K2
+

2nM

K

√
κ

L

)
≤
(
1− α

K

)K
E (ft(A∗

t )) +
nM(

∑n
i=1 κi)

2αK
+

2
√
κn2Md(G)

αK
+

2nM

α

√
κ

L

− 1

K

K∑
k=1

〈(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
, (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
≤ e−αE (ft(A∗

t )) +
nM(

∑n
i=1 κi)

2αK
+

2
√
κn2Md(G)

αK
+

2nM

α

√
κ

L

− 1

K

K∑
k=1

〈(
d
(k)
1 (t), . . . ,d(k)

n (t)
)
, (v

(k)
1 (t), . . . ,v(k)

n (t))− 1A∗
t

〉
,

where the second inequality follows from
∑K

m=1

(
1− α

K

)K−m ≤ K
α , Ft(0) = 0 and the final

inequality from from (1− α
K )K ≤ e−α when K ≥ 3.

So we can get the following result,

(1− e−α)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
n,n(t))

)
≤
(
nM(

∑n
i=1 κi)

2α
+

2
√
κn2Md(G)

α

)
T
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+

2nM
√
κ

α

T√
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K
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k=1

n∑
i=1

T∑
t=1

〈
d
(k)
i (t),v

(k)
i (t)− 1(A∗

t∩Vi)

〉
where we slightly abuse the notation 1(A∗

t∩Vi) to denote κi-dimensional indicator vector over (A∗
t ∩

Vi). Note that 1A∗
t

is a (
∑n

i=1 κi)-dimensional indicator vector over A∗
t .

Similarly, when ft is monotone (γ, β)-weakly submodular, we also have

E
(
Ft(π

(k)
1,1(t), . . . , π

(k)
n,n(t))− Ft(π

(k−1)
1,1 (t), . . . , π

(k−1)
n,n (t))

)
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K
E
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1,1 (t), . . . , π
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−

nM(
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√
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√
κ
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+
1

K

〈(
d
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n (t)
)
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(k)
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n (t))− 1A∗
t

〉
,

where ϕ(γ, β) = β(1− γ) + γ2.

Then, we have

E
(
γ2ft(A∗

t )− ϕ(γ, β)Ft(π
(k)
1,1(t), . . . , π

(k)
n,n(t))

)
≤
(
1− ϕ(γ, β)

K

)
E
(
γ2ft(A∗

t )− ϕ(γ, β)Ft(π
(k−1)
1,1 (t), . . . , π
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)
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(
nM(

∑n
i=1 κi)

2K2
+

2
√
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√
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d
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1 (t), . . . ,v(k)
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.
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As a result, we can get the following result,

γ2(1− e−ϕ(γ,β))

ϕ(γ, β)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
n,n(t))

)
≤
(
nM(
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2ϕ(γ, β)
+

2
√
κn2Md(G)
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)
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+
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√
κ

ϕ(γ, β)

T√
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K
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n∑
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t=1

〈
d
(k)
i (t),v

(k)
i (t)− 1(A∗

t∩Vi)

〉
,

As a result, when K =
√
T and L = T , if Assumption 2 holds, that is, each linear maximization

oracle Q
(k)
i can achieve the a regret bound of O(

√
VTT ) where VT is the variation of any feasible

path (u1, . . . ,uT ) where ut ∈ ∆κi ,∀t ∈ [T ], that is, VT ≜
∑T

t=2 ∥ut − ut−1∥2 for any path
(u1, . . . ,uT ) ∈

∏T
t=1 ∆κi

, then we can have the following results:

i): when ft is a monotone α-weakly submodular function, Algorithm 2 achieves:

(1− e−α)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
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)
≤
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nM(

∑n
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2α
+

2
√
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α

)
T

K
+
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√
κ

α

T√
L

+
1

K

K∑
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n∑
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(k)
i

(
1(A∗

1∩Vi), . . . ,1(A∗
T∩Vi)

)

≤ 1

K

K∑
k=1

n∑
i=1

O


√√√√T

T−1∑
t=1

∥∥∥1(A∗
t+1∩Vi) − 1(A∗

t∩Vi)

∥∥∥
2

+O
(
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√
T
)

≤
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O


√√√√T
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t=1

∥∥∥1A∗
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2
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√
T
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∥∥∥1A∗
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∥∥∥
2

 = O
(
d(G)

√
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)
,

where the third inequality follows from the concavity of
√
· function and the final equality comes

from PT ≜
∑T

t=1 |A∗
t+1△A∗

t | ≜
∑T−1

t=1 ∥1A∗
t
− 1A∗

t+1)
∥1 ≜

∑T−1
t=1 ∥1A∗

t
− 1A∗

t+1
∥2.

ii): Similarly, when ft is a monotone (γ, β)-weakly submodular:

γ2(1− e−ϕ(γ,β))

ϕ(γ, β)

T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft(π

(K)
1,1 (t), . . . , π

(k)
n,n(t))

)

≤ O

d(G)

√√√√T

T−1∑
t=1

∥∥∥1A∗
t+1

− 1A∗
t

∥∥∥
2

 = O
(
d(G)

√
TPT

)
.

I Limitation and Broader Impact

In this work, in order to eliminate the dependence on the unknown DR ratio and submodularity
ratio in our proposed MA-SPL algorithm, we introduce a parameter-free online algorithm named
MA-MPL for the MA-OC problem. However, this new MA-MPL algorithm typically incurs greater
communication complexity, as shown in Table 1. Notably, recent studies [74, 124] employed
a blocking procedure from [121] to reduce the number of communication in the decentralized
online Frank-Wolfe algorithm [133]. Since our MA-SPL algorithm also can be viewed a variant
of decentralized online Frank-Wolfe algorithm [133], we believe that this blocking strategy is a
promising technique to help reduce the communication complexity of our proposed MA-MPL algorithm.
We plan to explore this in future work. Furthermore, this work focuses on theoretically exploring
MA-OC problem with (γ, β)-weakly submodular and α-weakly DR-submodular objectives. So we
do not foresee any form of negative social impact induced by our work.
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