
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BMATTN: BLOCK-ALIGNED MIXED-PRECISION
ATTENTION QUANTIZATION FOR LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The proliferation of Large Language Models (LLMs) with extended context win-
dows is severely hampered by the quadratic complexity of the self-attention mech-
anism. Existing acceleration methods, such as sparse attention and quantization,
often employ uniform compression strategies that are misaligned with the non-
uniform distribution of information importance within attention maps. This leads
to a suboptimal trade-off between computational efficiency and model accuracy.
To address this, we introduce Block-based Mixed-precision Attention (BMAttn),
a novel framework that enables fine-grained, importance-aware precision while
maintaining a hardware-friendly structure. BMAttn partitions each attention head
into high-precision, low-precision, and sparse regions. To ensure computational
regularity, these regions are block-aligned. To adapt to varying input lengths,
their boundaries are dynamically adjusted using a lightweight affine windowing
mechanism. We further propose a saliency-weighted calibration method and a layer-
adaptive regularizer to automatically determine the optimal parameters, achieving
a superior accuracy-efficiency balance. BMAttn achieves a speedup of up to 3.3×
without any accuracy degradation, and a 5× speedup with only a 1% accuracy loss.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have yielded remarkable capabilities across
a wide range of applications (Liu et al., 2024; Achiam et al., 2023; Yang et al., 2023). A prominent
trend in LLM development is the expansion of context windows, with models like Gemini (Comanici
et al., 2025) and Kimi (Team et al., 2025) now capable of processing sequences of up to one million
tokens. However, this expansion is fundamentally constrained by the underlying self-attention
mechanism (Vaswani et al., 2017). Its computational complexity scales quadratically (O(L2)) with
the input sequence length L, posing a significant bottleneck to the efficiency, scalability, and practical
deployment of these powerful models.

Existing methods to mitigate this cost, such as sparse attention (Zhang et al., 2025b; Fu et al., 2024;
Gao et al., 2024; Xu et al., 2025; Xiao et al., 2024b) and quantization (Zhang et al., 2024b;a), often
rely on a uniform compression strategy. Sparse attention, for instance, is confined to a coarse,
binary ’keep-or-discard’ decision, while typical quantization schemes apply a homogeneous bit-
width across all connections. These approaches are fundamentally misaligned with the non-uniform
nature of attention. As observed in many models, attention heads exhibit heterogeneous patterns:
some specialize in local, fine-grained interactions requiring high precision, while others capture
global, contextual cues that can be represented more coarsely. A uniform strategy fails to adapt the
computational effort to this variance in information importance, leading to a suboptimal trade-off
between efficiency and accuracy.

This reveals a critical need for a framework that can process information with fine-grained, importance-
aware precision. The central challenge, however, lies in implementing such adaptivity without
incurring the performance penalties of irregular memory access and computation, which would
nullify any theoretical gains on modern hardware. To resolve this tension, we introduce Block-
Aligned Mixed-precision Attention (BMAttn), a novel framework that co-designs a dynamic
precision allocation scheme with a hardware-friendly computational structure. The core principle of
BMAttn is to partition the attention computation for each head into three regions: a high-precision
zone for critical short-range interactions, a low-precision zone for less critical long-range context,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and a sparse zone where negligible connections are pruned entirely. To ensure hardware efficiency,
this partitioning is not applied at the token level but is instead block-aligned: the sequence is divided
into fixed-size blocks, and precision is assigned at this coarser granularity. This blockwise structure
creates a regular, staircase-shaped computational layout that is highly amenable to GPU acceleration
and compatible with optimized kernels like FlashAttention Dao (2023).

To enable dynamic adaptation to varying context lengths, we introduce an affine windowing mecha-
nism. Instead of using fixed boundaries, the size of the high- and low-precision regions for each head
is parameterized by a simple affine function of the context length. This formulation allows each head
to dynamically and flexibly adjust its attention span—for instance, growing its high-precision zone
proportionally with the sequence length—while maintaining a regular block structure. This elegantly
reduces the complex problem of per-token precision assignment to learning a small set of affine
parameters for each head, unifying fine-grained adaptivity with structured efficiency. Finally, to make
this framework practically effective, we propose a calibration method to automatically determine the
optimal affine parameters. Recognizing that standard metrics like MSE are insufficient, we develop a
saliency-weighted calibration process that aligns parameter tuning with the true perceptual impor-
tance of attention scores. Furthermore, we observe that model layers exhibit heterogeneous sensitivity
to compression. We address this with a layer-adaptive retention regularizer, which enforces stricter
precision targets on fragile shallow layers while allowing for more aggressive compression in robust
deeper ones. This layered approach preserves model integrity while maximizing efficiency gains.

In summary, our contributions are as follows:

• We introduce BMAttn, an attention framework that unifies a mixed-bit representation with a
block-aligned structure and an affine windowing mechanism to achieve both fine-grained
adaptivity and hardware-friendly execution.

• We propose a sophisticated calibration method featuring a saliency-weighted metric for
accurate parameter setting and a layer-adaptive retention regularizer to achieve a superior
accuracy-efficiency trade-off.

• We conduct extensive experiments demonstrating that BMAttn achieves up to a 3.3x speedup
on long-context language modeling tasks without any degradation in accuracy.

2 RELATED WORKS

Algorithmic Optimizations for Efficient Attention. Algorithmic approaches primarily focus on
mitigating the quadratic complexity of the attention mechanism. Early works introduced structured
sparsity through fixed patterns, such as the local windows in Swin Transformer (Liu et al., 2021)
and Twins (Chu et al., 2021). To better handle long-sequence tasks, subsequent methods adopted
more adaptive context management. For instance, StreamingLLM (Xiao et al., 2023), InfLLM (Xiao
et al., 2024a), and LongLoRA (Chen et al., 2023) selectively retain or expand the context to preserve
crucial information. More recently, a line of inference-centric designs has emerged, including Minfer-
ence (Jiang et al., 2024), SkipAttention(Venkataramanan et al., 2023), and SpargeAttention Zhang
et al. (2025b). These methods dynamically identify and skip near-zero attention entries during gener-
ation, achieving multi-fold speedups without requiring retraining. Further extensions like XAttention
(block pruning) (Xu et al., 2025) and DuoAttention (head-level cache partitioning) (Xiao et al.,
2024b) demonstrate that structured sparsity can simultaneously reduce computation and memory
demands while maintaining model accuracy. A complementary line of algorithmic work targets the
KV cache, which is a major bottleneck in autoregressive decoding due to its memory bandwidth
demands. By distinguishing retrieval-critical heads from local ones, or by compressing and offloading
cache states, methods like ShadowKV (Sun et al., 2024) can reduce GPU memory usage by 2–6× and
boost throughput on million-token contexts by up to 3×. The plug-and-play nature of these techniques
makes them highly suitable for real-world inference scenarios.

System-Level and Hardware-Aware Optimizations. Orthogonal to algorithmic modifications,
system-level optimizations aim to maximize hardware utilization through efficient kernel imple-
mentations. The xFormers library (Lefaudeux et al., 2022) provides a collection of modular, high-
performance kernels. A pivotal contribution in this area is FlashAttention (Dao et al., 2022), which
introduced I/O-aware tiling to minimize the high cost of GPU HBM access, a technique later refined
in FlashAttention-2 (Dao, 2023) and FlashAttention-3 (Shah et al., 2024). In parallel, quantization

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

offers another path to acceleration. I-BERT (Kim et al., 2021) first showed the feasibility of INT8
quantization for RoBERTa-like models. More recently, SageAttention (Zhang et al., 2024b;a; 2025a)
generalized this by demonstrating that a full INT8 attention implementation can outperform FP16
FlashAttention variants in both speed and accuracy, functioning as a drop-in replacement.

In summary, the pursuit of efficient Transformers has spurred innovations across three complementary
fronts: algorithmic sparsification, KV cache management, and low-level kernel optimization. These
approaches are largely orthogonal, and their combination can yield additive performance gains.

3 PRELIMINARIES

Full attention. Self-attention projects inputs into queries, keys, and values Q,K,V ∈ RL×dk ,
computes scores S = QK⊤, compute attention weight W = softmax(S/

√
dk), and outputs

O = WV. The score computation scales as O(L2dk) and dominates for long sequences.

Windowed attention. Attention computation is reduced by restricting each query qi to a subset of
keys Ji ⊂ {0, . . . , L− 1} via masking: S′

ij = Sij if j ∈ Ji and S′
ij = −∞ otherwise. A common

design uses a fixed attention sink of length s and a local window of size k: Ji = {0, . . . , s−1}∪{ j |
max(s, i− k + 1) ≤ j ≤ i }. This reduces computed scores from L2 to roughly L(s+ k), yielding
linear complexity in L.

Quantization. Quantization accelerates matrix multiplication (e.g., C = AB) by mapping high-
precision matrices to low-precision integers via a quantizer ψ and de-quantizer ψ−1. With (δA, Â) =

ψ(A) and (δB , B̂) = ψ(B), we compute Ĉ = ÂB̂ using integer arithmetic and recover C ≈
ψ−1
δA,δB

(Ĉ) = Ĉ · δAδB . Quantization granularity controls which elements share a scale δ; for
symmetric INT8, δgroup = max(|Xgroup|)/127. Beyond per-tensor scaling, per-block quantization
partitions matrices into blocks and assigns a scale per block, improving fidelity to local statistics with
modest overhead.

For Attention, quantization acts on the matrix-multiplication operands: (i) QK⊤ path via quantized
Q and K; (ii) WV path via quantized V and quantized attention weights W. Attention quantization
enables faster computation and memory access.

4 METHOD

We propose BMAttn, a Block-aligned Mixed-precision Attention framework for efficient LLM
inference. BMAttn allocates precision heterogeneously across the attention map while maintaining a
regular compute pattern compatible with GPU kernels such as FlashAttention (Dao, 2023). It uses
high precision for short-range dependencies, low precision for mid- to long-range interactions, and
sparsity (0-bit) for negligible links. Precision boundaries adapt with sequence length via simple affine
functions and are calibrated offline using saliency-weighted metrics and a layer-adaptive retention
regularizer.

4.1 BLOCK-ALIGNED MIXED-PRECISION ATTENTION

Motivation. Scaling the context window of LLMs is fundamentally constrained by the O(L2) cost
of self-attention in both computation and memory movement. At the same time, two consistent
empirical observations make uniform precision and sparsity assignments intrinsically suboptimal:
(i) Distance heterogeneity: attention mass and its semantic criticality decay with causal distance.
Short-range links encode fine-grained lexical/syntactic cues, whereas mid/long-range links contribute
broader discourse-level signals. (ii) Head heterogeneity: different heads specialize in distinct ranges
and patterns (local vs. global). These factors imply that a one-size-fits-all policy (e.g., a single sparsity
pattern or a single bit-width across the entire map) either wastes compute on unimportant regions or
harms accuracy by underrepresenting crucial ones.

However, simply making precision adaptive at a fine granularity is not sufficient: naive token-level
mixed precision or unaligned per-row cutoffs introduce irregular memory access, warp divergence,
and scattered reads/writes that nullify theoretical savings on modern GPUs. Similarly, fixed, hand-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 128 256 384 511

Token Position (Key/Value)

0

128

256

384

511

To
ke

n
Po

si
tio

n
(Q

ue
ry

)

(a) Fixed Window Attention

0 128 256 384 511

Token Position (Key/Value)

0

128

256

384

511

To
ke

n
Po

si
tio

n
(Q

ue
ry

)

(b) + Mix-Precision

0 128 256 384 511

Token Position (Key/Value)

0

128

256

384

511

To
ke

n
Po

si
tio

n
(Q

ue
ry

)

(c) + Affine Window

0 128 256 384 511

Token Position (Key/Value)

0

128

256

384

511

To
ke

n
Po

si
tio

n
(Q

ue
ry

)

(d) + Block-Alignment (B=16)

High Precision (8-bit) Low Precision (4-bit) Sparse / Not Computed

Figure 1: Comparison of different attention window schemes. (a) Window Attention: Fixed-size
sliding window. (b) Constant Precision Tiers: High and low precision regions. (c) Affine Window:
Adaptive precision boundaries based on context length. (d) Block-Alignment: Attention is divided
into contiguous blocks, optimizing hardware efficiency.

tuned distance cutoffs fail to generalize across varying context lengths; a window suitable at L = 4K
can be over- or under-aggressive at L = 128K.

Distance-indexed Three-zone Decomposition. As shown in Figure 1, we partition each head’s
attention into three monotone bands along the causal distance: a high-precision (HP) zone for short-
range, high-saliency links; a low-precision (LP) zone for mid/long-range links that tolerate lower
bit-width; and a sparse (SP) zone where negligible links are skipped entirely. This tri-partition
balances accuracy (HP), efficiency via cheaper arithmetic (LP), and outright pruning (SP). It also
naturally accommodates sink tokens (Xiao et al., 2023), which we place at the sequence front and
always keep in HP to stabilize retrieval over extremely long contexts.

Zone Decomposition by Affine Window. Let Lseq be the full sequence length, Lsink the number of
fixed-position sink tokens at the sequence front, and Lctx = Lseq − Lsink the non-sink context length.
Under strict causality, the query–key distance is di,j = i− j ≥ 0. For each head h, we define two
affine thresholds that control the extent of the high-precision (HP) and low-precision (LP) regions:

d
(h)
hp = w

(h)
hp · Lctx + b

(h)
hp , d

(h)
lp = w

(h)
lp · Lctx + b

(h)
lp , (1)

with the ordering constraint 0 ≤ d
(h)
hp ≤ d

(h)
lp ≤ Lctx. The scaling coefficients w(h)

{hp,lp}

govern proportional growth with Lctx, while the biases b(h){hp,lp} provide head-specific offsets. These
parameters are fixed per head after offline calibration and deterministically produce context-aware
thresholds at inference for any Lctx. The thresholds in Eqs. equation 1 partition the causal attention
into three disjoint regions by distance: (i) HP: 0 ≤ di,j ≤ d

(h)
hp ; (ii) LP: d(h)hp < di,j ≤ d

(h)
lp ; (iii)

Sparse: di,j > d
(h)
lp . Sink tokens reside at the first Lsink key positions and are always treated as HP for

any query, independent of their distances; they are excluded from the dynamic partitioning governed
by d(h)hp and d(h)lp .

Block-Aligned Mixed-Precision Window. To realize the affine windows efficiently on modern
GPUs, we convert the continuous thresholds into block-aligned boundaries and execute attention in
tiles that match hardware-friendly memory layouts (FlashAttention-compatible). Let B be the block
size. We snap the affine thresholds to the nearest lower multiple of B:

D
(h)
hp =

⌊
d
(h)
hp

⌋
B
, D

(h)
lp =

⌊
d
(h)
lp

⌋
B
, (2)

where ⌊·⌋B denotes floor-to-multiple-of-B rounding. The resulting zone definition is:

Z(h)
hp = {(i, j) | j < i, sink(j) or 0 ≤ di,j ≤ D

(h)
hp }, (3)

Z(h)
lp = {(i, j) | j < i, d

(h)
hp < di,j ≤ D

(h)
lp }, (4)

Z(h)
sp = {(i, j) | j < i, di,j > D

(h)
lp }, (5)

and the per-row pattern is staircase-shaped because di,j = i− j increases monotonically along the
causal axis. We adopt mixed precision at the tile granularity: HP: 8-bit quantization for Q/K/V

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Comparison of performance metrics during pruning of long-range attention.

Remove Ratio Cos Sim RMSE Relative L1 ASC RDW IPW Ppl. (FP=7.458)

95% 99.92% 0.1186 0.0887 0.129 0.9714 0.9123 44.3892
90% 99.95% 0.0881 0.0616 0.103 0.9223 0.8880 21.4239
80% 99.98% 0.0594 0.0368 0.087 0.8378 0.7955 16.9872
70% 99.99% 0.0303 0.0181 0.056 0.6945 0.6131 14.2538

tensors and for post-softmax attention weights used in value aggregation. LP: 4-bit quantization for
Q/K/V tensors and for post-softmax attention weights. SP: 0-bit (skipped). Because computation
in each tile has the same precision, we can efficiently use the tile-by-tile computation pattern of
FlashAttention (Dao, 2023) without mask.

4.2 SALIENCY-WEIGHTED CALIBRATION

We calibrate the per-head affine parameters Θ = {(w(h)
hp , b

(h)
hp , w

(h)
lp , b

(h)
lp)} offline on a small calibra-

tion set. The objective is to choose the smallest windows (i.e., most compressed boundaries) that
satisfy saliency-retention constraints defined below.

4.2.1 SALIENCY-WEIGHTED METRIC

Motivation. Standard reconstruction metrics (e.g., MSE, RMSE, cosine similarity) and attention
coverage are dominated by short-range pairs and thus are insensitive to errors that arise from pruning
or over-compressing rare yet semantically crucial long-range links. Under strict causal masking,
the number of query–key pairs at distance d is proportional to L − d for a sequence of length L,
so small d overwhelmingly contributes to any unweighted aggregate. As a result, large changes to
a small set of long-range entries barely shift the global metric even when they substantially affect
model behavior. As shown in Table 1, conventional metrics like MSE, Cosine Similarity, RMSE, and
attention score coverage (ASC) remain mostly unchanged even as model performance deteriorates
significantly. This shows that these metrics overlook critical long-range dependencies. To counter
this strong locality bias, we should reweight attention statistics by a distance-dependent saliency, so
that calibration criteria reflect the perceptual importance of long-range dependencies.

Saliency construction. For a given layer l and head h, let W(l,h) ∈ RL×L be the attention weight
under causal masking, and let di,j = i− j ≥ 0. We define a saliency matrix

S
(l,h)
i,j = φ(l,h)(di,j) ·W(l,h)

i,j , (6)

where φ(l,h)(d) compensates for the empirical rarity of long-range pairs. We design two forms:

RDW (Relative-Distance Weighting): φ
(l,h)
RDW(d) =

d

Lctx
, (7)

IPW (Inverse-Propensity Weighting): φ
(l,h)
IPW(d) =

Lctx

p(l,h)(d) + ϵ
. (8)

As shown in Figure 2, p(l,h)(d) is the attention weight distribution estimated on the calibration set
with distance bucketing 1, and ϵ > 0 is a small constant for numerical stability. RDW is a lightweight
heuristic; IPW is a importance-sampling correction.

4.2.2 LAYER-ADAPTIVE RETENTION REGULARIZER

Motivation. While a saliency-based metric captures attention importance at the head level, it
overlooks the heterogeneous sensitivity of layers. Prior work shows that shallow layers are more
fragile under pruning and quantization, as they preserve low-level token information, whereas deeper
layers are more robust due to redundancy in higher-level representations (Huang et al., 2025). This

1See Appendix H for details to compute attention weight distribution across distances.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Key Position

Q
ue

ry
 P

os
iti

on

(a) Attention Weights

0.0 0.5 1.0
Relative Distance d

0.0

0.1

0.2

0.3

p(
d)

(b) Empirical Probability Distribution

Relative Distance d

L c
tx

p(
d)

+

Figure 2: Attention weight and its attention weight distribution.

asymmetry makes uniform retention targets suboptimal. We therefore introduce a layer-adaptive
retention regularizer.

Method. We design the regularizer as a depth-dependent constraint on saliency energy. Instead of
defining the schedule via absolute start and end points, we re-parameterize it using two more intuitive
hyperparameters: a global average retention target µΓ ∈ (0, 1] and a linear decay factor δ ≥ 0. This
provides direct control over the overall compression level and its distribution across layers.

Formally, let Ltotal be the total number of layers in the model, indexed from l = 0 to Ltotal − 1. The
layer-specific retention target Γl is defined as:

Γl = µΓ + δ

(
Ltotal − 1

2
− l

)
. (9)

This formulation ensures that the average retention across all layers is exactly µΓ, since the term(
Ltotal−1

2 − l
)

has a mean of zero over l ∈ [0, Ltotal − 1]. The decay factor δ controls the slope
of the linear schedule: a positive δ assigns a higher-than-average retention target to shallow layers
(where l < (Ltotal−1)/2) and a lower-than-average target to deep layers (where l > (Ltotal−1)/2),
thus enforcing our desired conservative-to-aggressive policy.

4.2.3 CONSTRAINED CALIBRATION ALGORITHM

Having defined the saliency metric and the layer-adaptive retention regularizer, we now describe how
the affine window parameters are calibrated. Let El,h denote the total saliency energy of head h in
layer l, aggregated over calibration data:

El,h =
∑
i,j

S
(l,h)
i,j . (10)

For each head (l, h), the affine window parameters (w, b) must satisfy the constraint imposed by the
retention schedule: ∑

d≤d
(h)
lp

S
(l,h)
i,j ≥ Γl · El,h, (11)

and analogously for the high-precision zone with a more strict target γ · Γl · El,h, where 0 < γ < 1.

The goal is to determine the optimal per-head parameters Θ =
{
(w

(h)
hp , b

(h)
hp , w

(h)
lp , b

(h)
lp)

∣∣ ∀(l, h)}
for all heads (l, h) in the model.

For each head, we formulate a constrained optimization problem:

min
whp,bhp,wlp,blp

ES

[
d
(h)
hp

]
+ ES

[
d
(h)
lp

]
(12)

s.t.
∑

d≤d
(h)
lp

S
(l,h)
i,j ≥ Γl · El,h,

∑
d≤d

(h)
hp

S
(l,h)
i,j ≥ γ · Γl · El,h, (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where γ is a hyperparameter controlling the span of HP vs. LP, and Γl is the retention target imposed
by the layer-adaptive retention regularizer. The detailed offline calibration algorithm is shown in
Appendix A.

5 EXPERIMENTS

5.1 SETUP

Models. We evaluate BMAttn across three representative large language models (LLMs): Qwen2.5
(7B) (Qwen et al., 2025), Llama3 (8B) (Dubey et al., 2024), and GLM4 (9B) (GLM et al., 2024).
These models span different architectures and training regimes, providing a diverse testbed for
assessing the performance and efficiency of our method.

Datasets and Metrics. Our evaluation spans both standard and long-context benchmarks: WikiText-
2 (Merity et al., 2016) for language modeling perplexity, MMLU (Hendrycks et al., 2020) for multi-
task understanding, LongBench (Bai et al., 2023) for long-context reasoning, and RULER (Hsieh
et al., 2024) for reasoning and reading comprehension. Metrics include perplexity (lower is better),
accuracy, and task-specific scores, depending on the nature of the task.

Baselines. We compare BMAttn with several state-of-the-art attention mechanisms, including
FlashAttention-2 (Dao, 2023), SageAttention (Zhang et al., 2024b), and SageAttention2 (Zhang et al.,
2024a). These baselines are widely regarded as strong implementations in the efficient attention
space and provide a robust comparison across both accuracy and efficiency.

Implementation Details. For quantization, we employ a hybrid scheme where Q, K, and W are
quantized per block, while V is quantized per channel. This approach ensures efficient block-aligned
execution while preserving accuracy in the output representations. In all experiments, we set the
average retention rate µΓ = 0.8, decay factor δ = 0.01, and γ = 0.9. For metric, we mainly report
the results using IPW. We evaluated our model on a hardware device featuring a 1 Tbps memory
bandwidth. This device boasts a computation capacity of 83 TFLOPs (16-bit precision), alongside
660.6 TOPS 8-bit precision) and 1321.2 TOPS (4-bit precision). Additionally, the code was developed
based on the open-source implementation of SageAttention2.

5.2 ACCURACY RESULT

Table 2: Accuracy and Efficiency Comparison of BMAttn with Baseline Methods.

Method WikiText (Ppl.)↓ MMLU (Acc.)↑ LongBench↑ RULER↑ Avg. Bits Speedup

Qwen2.5-7B-Instruct (Qwen et al., 2025)

FlashAttention-2 (Dao, 2023) 7.458 0.717 52.58 94.05 16 1.00×
SageAttention-8b (Zhang et al., 2024b) 7.463 0.716 52.69 93.59 8 2.00×
SageAttention2-4b (Zhang et al., 2024a) 7.582 0.702 51.70 88.67 4 2.93×
BMAttn 7.461 0.716 52.67 94.01 5.75 3.26×

Llama3.1-8B-Instruct (Dubey et al., 2024)

FlashAttention-2 (Dao, 2023) 7.217 0.629 54.09 91.27 16 1.00×
SageAttention-8b (Zhang et al., 2024b) 7.223 0.627 54.07 90.00 8 2.00×
SageAttention2-4b (Zhang et al., 2024a) 7.461 0.598 52.89 85.24 4 2.93×
BMAttn 7.220 0.627 54.00 91.15 5.99 3.11×

GLM-4-9B-Chat (GLM et al., 2024)

FlashAttention-2 (Dao, 2023) 11.937 0.682 53.53 92.33 16 1.00×
SageAttention-8b (Zhang et al., 2024b) 11.997 0.680 53.19 92.28 8 2.00×
SageAttention2-4b (Zhang et al., 2024a) 12.219 0.643 50.38 88.96 4 2.93×
BMAttn 11.965 0.681 53.26 92.26 5.82 3.20×

In Table 2, we present the results comparing BMAttn with the baselines. The findings highlight that
BMAttn achieves competitive accuracy with state-of-the-art methods, while delivering substantial
improvements in computational efficiency across all the models and datasets. Specifically, for
Qwen2.5-7B-Instruct, BMAttn maintains near-lossless accuracy compared to the FlashAttention-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 and SageAttention-8b, while achieving a 3.26× speedup. In addition, BMAttn outperforms
SageAttention2-4b, both in terms of accuracy (52.67 vs. 51.70 on LongBench) and speedup (3.26×
vs. 2.93×). These results validate the effectiveness of BMAttn in balancing high accuracy with
significant efficiency gains, demonstrating its potential as a robust solution for large language models.

5.3 EFFICIENCY RESULT

1K 2K 4K 8K 16K 32K0

100

200

300

400

500

600

Sp
ee

d
(T

O
PS

)

15 16 14 O
O

M

O
O

M

O
O

M

118 138 155 160 161 161188
247

292 307 316 322310
344

391
454 473 479

344
381

434
503 521 525

Torch FlashAttn2 SageAttn-8b SageAttn2-4b BMAttn

Figure 3: Lossless Efficiency comparison between BMAttn and baselines.

Lossless Efficiency. We first evaluate efficiency under a lossless setting using headdim=128
and causal masking (Vaswani et al., 2017). As shown in Fig. 3, BMAttn achieves consistent
speedups across varying sequence lengths, reaching 1.63× over SageAttention-8b and 1.10× over
SageAttention2-4b. Notably, SageAttention2-4b operates at lower precision and incurs accuracy
degradation, whereas BMAttn preserves near-lossless accuracy. Furthermore, as the sequence length
increases, the acceleration factor of BMAttn continues to grow, which indicates that BMAttn is
able to exploit the increased context effectively. This behavior suggests that BMAttn becomes
increasingly more efficient as the task scales, likely due to its ability to optimize memory access
patterns and computational load through block-alignment and precision adaptation.

Table 3: Aggressive efficiency trade-off on LongBench. BMAttn achieves higher acceleration factors
while sustaining accuracy. Green values indicate performance better than the full-precision (FP)
model, while red values indicate performance worse than SageAttn2-4b.

Metric µΓ (δ = 0.01, γ = 0.9)

0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35

LongBench 53.56 53.36 53.13 52.89 52.67 52.49 52.32 52.21 51.86 51.15 50.78 49.09
Avg. Bits 7.24 6.91 6.57 6.12 5.75 5.45 5.05 4.64 4.25 3.79 3.36 2.90
Speedup 2.69× 2.82× 2.96× 3.12× 3.26× 3.54× 3.81× 4.14× 4.53× 5.01× 5.63× 6.45×

Aggressive Efficiency. We further explore aggressive efficiency by progressively lowering retention
targets. In particular, the results in Tab. 3 reveal three important insights. First, by progressively re-
ducing the average bitwidth (from 7.24 down to 2.90), BMAttn still sustains competitive LongBench
scores above 52 under ∼4× acceleration, clearly outperforming SageAttention2-4b (51.70 @ 2.93×).
This highlights its robustness in balancing accuracy and efficiency under moderate compression.
Second, even in the extreme regime of >6× acceleration, the model maintains scores around 49,
which remain usable for many downstream tasks. This demonstrates that BMAttn can still provide
meaningful outputs when deployed in highly resource-constrained environments. Third, the adaptive
calibration mechanism plays a crucial role by ensuring a smooth trade-off: rather than suffering
abrupt performance degradation when bitwidth decreases, the model achieves a more flexible and
stable efficiency–accuracy balance. These observations confirm that BMAttn is not only effective at
moderate acceleration but also resilient at extreme compression levels.

5.4 ABLATION STUDY

Affine Window Ablation. To demonstrate the importance of affine window mechanism, we
compare our affine window against a fixed-window baseline, whose window sizes are calibrated

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation on window design.

Seqlen Fixed Window Affine Window
RULER Speedup RULER Speedup

4K 94.05 1.91× 94.01 3.26×
8K 92.39 3.12× 92.48 3.14×
16K 89.15 3.45× 91.89 3.24×
32K 44.69 5.45× 88.69 3.26×
64K 23.54 9.11× 83.20 3.29×
128K 6.88 19.81× 73.35 3.33×

Table 5: Ablation on SWM and LRR.

Model SWM LRR LongBench ↑

Qwen2.5-7B-Instruct

✗ ✗ 46.53
✗ ✓ 50.06
✓ ✗ 52.01
✓ ✓ 52.67

Llama3.1-8B-Instruct

✗ ✗ 48.66
✗ ✓ 51.38
✓ ✗ 53.04
✓ ✓ 54.00

at 8k tokens and then held constant. Table 4 reveals the fundamental flaws of this rigid strategy,
which is only effective when the inference context closely matches the calibration context. On short
sequences (4k), the fixed window is overly conservative; it preserves a large region at high precision
that contains little valuable information, leading to suboptimal compression and thus limited speedup
(1.91× vs. 3.26×). Conversely, on long sequences (128k), the window becomes severely restrictive.
It fails to cover essential long-range dependencies, causing a catastrophic accuracy collapse (RULER
score of 6.88). In contrast, our affine window gracefully adapts to all scenarios, maintaining robust
accuracy while delivering a consistent ∼3.3× speedup. These results confirm that dynamic affine
scaling is essential for building a generalizable and efficient model.

Components Ablation. The ablation in Table 5 clearly demonstrates the necessity of both the
saliency-weighted metric (SWM) and the layer-adaptive retention regularizer (LRR). Without LRR,
the model suffers a severe drop in LongBench score (46.53), confirming that uniform retention
targets are ill-suited given the heterogeneous sensitivity of different layers. Introducing LRR alone
already restores performance to 50.06, as depth-aware allocation prevents shallow layers from
collapsing under aggressive pruning. SWM provides complementary benefits: by reweighting
attention calibration toward semantically crucial long-range pairs, it recovers additional accuracy
(52.01). When combined, SWM+LRR achieves the best results, reaching 52.67 on Qwen2.5-7B
and 54.00 on Llama3.1-8B. This synergy reflects their distinct yet aligned roles—SWM corrects
locality bias at the head level, while LRR counteracts asymmetry across depth—together producing a
balanced strategy that generalizes across architectures.

Calibration Cost. In our method, the calibration process involves offline optimization of affine
window parameters for each attention head, which requires a one-time computation. On the Qwen2.5-
7B-Instruct model, the peak GPU memory usage during calibration is 14,362 MB, and the total
calibration time is 1 minute and 15 seconds. This calibration cost is a one-time expense that occurs
during the model setup phase and does not affect the subsequent inference time, which remains
efficient due to the optimizations in precision and sparsity handling during the attention computation.
This calibration time and memory usage are reasonable given the significant improvements in
computational efficiency and accuracy that BMAttn delivers during inference.

6 CONCLUSION

In this work, we presented BMAttn, a block-aligned mixed-precision attention framework that
reconciles the tension between fine-grained adaptivity and hardware efficiency. By decomposing
attention into high-, low-, and zero-precision zones, and aligning them with blockwise affine windows,
BMAttn achieves structured efficiency while preserving critical dependencies. Our saliency-weighted
calibration and layer-adaptive regularization further ensure that compression decisions align with
both semantic importance and layer sensitivity. Extensive experiments across WikiText, MMLU,
LongBench, and RULER demonstrate that BMAttn consistently outperforms state-of-the-art base-
lines, delivering up to 3.3× acceleration without accuracy loss and sustaining usable performance
even at > 6× compression. Future work may explore integrating BMAttn with complementary com-
pression strategies (e.g., KV-cache quantization, structured sparsity, low-rank adaptation), extending
adaptive calibration to dynamic online settings, and co-designing mixed-precision schedules with
hardware-aware compilers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the efficiency of large language models through the BMAttn mixed-
precision attention mechanism. No human subjects, sensitive data, or privacy issues were involved in
the development or testing of the model. Additionally, the methodology does not introduce any new
ethical concerns regarding discrimination, bias, or harmful insights. The application of BMAttn is
intended to enhance model performance and efficiency, with no intention to promote malicious or
unethical use. We have adhered to standard research integrity practices, ensuring transparency and
fairness throughout the development of this method.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, detailed implementation instructions for BMAttn be
found in Sec. 5.1. Additionally, the source code will be publicly available upon acceptance. These
measures are intendedt facilitate the verification and replication of our results by other researchers in
the field.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. Advances
in neural information processing systems, 34:9355–9366, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic large
language model compression. arXiv preprint arXiv:2406.14909, 2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in your
llms. arXiv preprint arXiv:2410.13276, 2024.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Weizhong Huang, Yuxin Zhang, Xiawu Zheng, Fei Chao, and Rongrong Ji. Determining layer-
wise sparsity for large language models through a theoretical perspective. arXiv preprint
arXiv:2502.14770, 2025.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-
only bert quantization. In International conference on machine learning, pp. 5506–5518. PMLR,
2021.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, et al. xformers: A modular and hackable
transformer modelling library, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances
in Neural Information Processing Systems, 37:68658–68685, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli, and Amirhossein Habib-
ian. Skip-attention: Improving vision transformers by paying less attention. arXiv preprint
arXiv:2301.02240, 2023.

11

https://arxiv.org/abs/2412.15115

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory. Advances in Neural Information Processing Systems, 37:119638–119661, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024b.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageattention2:
Efficient attention with thorough outlier smoothing and per-thread int4 quantization. arXiv preprint
arXiv:2411.10958, 2024a.

Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention:
Accurate 8-bit attention for plug-and-play inference acceleration. arXiv preprint arXiv:2410.02367,
2024b.

Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang, Jun
Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an exploration
of 8-bit training. arXiv preprint arXiv:2505.11594, 2025a.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. arXiv preprint
arXiv:2502.18137, 2025b.

APPENDIX

A OFFLINE CALIBRATION ALGORITHM

Figure A1: Framework of BMAttn.

Fig. A1 illustrates the calibration algorithm of proposed BMAttn. The complete procedure is
summarized in Algorithm 1.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Offline Calibration of Affine Windows

Require: Pretrained LLM, calibration dataset D, retention schedule {Γl}
Ensure: Optimal affine parameters Θ⋆

1: for each layer l do
2: Compute retention budget Γl

3: for each head h do
4: Collect attention maps A(l,h) on D
5: Compute saliency matrix S(l,h) via chosen reweighting function
6: Derive per-head energy El,h

7: Solve constrained search for (w, b) under Eq. (7)–(8)
8: end for
9: end for

10: return Θ⋆

B ONLINE INFERENCE

During inference, no further optimization is required. For each query token qi and each head (l, h),
the model executes:

1. Parameter retrieval. Load (w
(h)
hp , b

(h)
hp , w

(h)
lp , b

(h)
lp) from Θ⋆.

2. Dynamic window computation. Given context length Lctx, compute

d
(h)
hp = w

(h)
hp Lctx + b

(h)
hp , d

(h)
lp = w

(h)
lp Lctx + b

(h)
lp .

3. Structured execution. Apply custom attention operator with three regions: high-precision
(e.g., INT8), low-precision (e.g., INT4), and sparse (pruned).

Notably, during inference, we bypass traditional masking and instead compute the necessary token in-
dices directly. This reduces the overhead typically associated with mask-based attention mechanisms.
The arithmetic overhead per head is O(1), and while the asymptotic complexity of attention remains
O(L2

ctx), the constants are significantly reduced due to the mixed-precision computations and struc-
tured sparsity. This approach ensures that inference efficiency is maximized, without compromising
the accuracy maintained by the offline calibration phase.

C COMPLEXITY ANALYSIS

The proposed framework introduces negligible additional cost during inference, while the offline
calibration stage remains tractable.

Offline calibration. For each calibration sample, computing attention maps requires O(L2
ctx)

operations, where Lctx is the context length. Aggregating over |D| calibration samples and H
attention heads yields an overall complexity of

O
(
|D| ·H · L2

ctx

)
.

Since calibration is a one-time procedure performed on a small held-out dataset, this cost is amortized
and does not affect deployment.

Online inference. During deployment, the only additional computation beyond standard attention
is the evaluation of two affine functions per head,

d
(h)
hp = w

(h)
hp Lctx + b

(h)
hp , d

(h)
lp = w

(h)
lp Lctx + b

(h)
lp ,

which incurs O(1) cost per head. The asymptotic complexity of the attention operator remains
O(L2

ctx), but the constant factors are substantially reduced due to (i) lower-precision arithmetic in the
low-precision zone and (ii) structured sparsity in the pruned zone.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Summary. The framework thus preserves the theoretical complexity of transformer attention,
while delivering empirical speedups through reduced constants. The one-time offline calibration is
modest and negligible compared to pretraining or fine-tuning, making the approach fully practical for
deployment.

D HYPERPARAMETER ANALYSIS

(a) Qwen2.5-7B-Instruct

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Parameter
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Paramete
r

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Pa

ra
m

et
er

Optimal

15

20

25

30

35

40

45

50

A
cc

ur
ac

y

(b) Llama3.1-8B-Instruct

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Parameter
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Paramete
r

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pa
ra

m
et

er

Optimal

15

20

25

30

35

40

45

50

55

A
cc

ur
ac

y

(c) GLM-4-9B-Chat

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Parameter
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Paramete
r

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pa
ra

m
et

er

Optimal

15

20

25

30

35

40

45

50

A
cc

ur
ac

y

Figure A2: The interplay between hyperparameters µΓ, γ, and δ determines model accuracy across
Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and GLM-4-9B-Chat. The plot shows accuracy (color)
as a function of the three parameters. The optimal zone for δ ([0.005, 0.015]), marked by the planes,
acts as a performance amplifier. Runs within this zone (circles, ◦) achieve higher accuracy than those
outside (squares, □) given similar µΓ and γ values.

Our framework introduces a small set of hyperparameters that govern the trade-off between efficiency
and accuracy. The regularizer requires hyperparameters δ and µΓ that determine the decay schedule
of layer-wise retention:

Γl = µΓ + δ

(
Ltotal − 1

2
− l

)
. (14)

Larger δ enforces stricter retention in shallow layers. In practice, we find that δ ∈ [0.005, 0.015]
provide a good balance across models of different scales, as shown in Fig. A2. µΓ and γ decides the
accuracy-efficiency trade-off, which is determined by the task and expectation.

Practical robustness. We observe that the framework is not highly sensitive to precise hyperpa-
rameter tuning. The calibration procedure absorbs much of the variability by solving constrained
optimization problems per head. This makes the method amenable to deployment without exhaustive
grid search.

E MORE EXPERIMENTS

E.1 DETAILED RESULTS OF LONGBENCH

We details the results on LongBench (Bai et al., 2023) in Tab. A1. LongBench is a benchmark designed
to evaluate large language models on long-context tasks, featuring 21 diverse tasks across English
and Chinese. These tasks include single- and multi-document question answering, summarization,
few-shot learning, and code completion, with context lengths averaging in the thousands of words.
LongBench emphasizes real-world scenarios, testing models’ abilities to reason and understand over
extended input sequences.

E.2 DETAILED RESULTS OF RULER

We details the results on RULER (Hsieh et al., 2024) in Tab. A2. RULER is a newly introduced
benchmark by NVIDIA designed to evaluate large language models (LLMs) on tasks involving
long-context dependencies. It includes 4 main categories and 13 sub-tasks such as multi-hop tracing,
retrieval, and aggregation, with input lengths ranging from 4K to 128K tokens. These tasks are

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table A1: Comparison of different attention methods on real-world LongBench tasks using the
Qwen2.5-7B-Instruct model. The best and second-best results are highlighted in bold and underlined
formats, respectively.

Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

Method

M
Fi

el
dQ

A
-e

n
Q

as
pe

r
H

ot
po

tQ
A

2W
ik

iM
Q

A

G
ov

Re
po

rt
M

ul
tiN

ew
s

Tr
iv

ia
Q

A

SA
M

Su
m

TR
EC

Pa
ss

ag
eR

-e
n

Pa
ss

ag
eC

ou
nt

LC
C

Re
po

Be
nc

h-
p

Avg.

Full 45.83 37.03 56.08 49.62 32.50 22.48 89.32 39.61 74.00 100.0 6.00 66.62 64.45 52.58

SageAttention-8b 46.50 37.44 58.35 47.37 32.51 22.26 89.97 40.02 74.00 100.0 6.00 68.26 62.25 52.69
SageAttention2-4b 46.44 37.01 57.55 46.59 32.07 21.34 87.69 39.35 72.00 100.0 5.00 65.73 61.32 51.70
BMAttn 47.22 37.18 57.82 46.72 32.42 22.13 88.32 39.74 74.00 100.0 9.00 68.04 62.16 52.67

Table A2: Accuracy comparison of different methods on Qwen2.5-7B-Instruct and sequence lengths
on RULER. The best and second-best results are highlighted in bold and underlined formats, respec-
tively.

Input Len 4k 8k 16k 32k 64k 128k Avg.

Full 98.41 96.02 96.35 94.57 91.99 86.95 94.05

SageAttention-8b 96.35 96.61 96.48 95.10 91.75 85.22 93.59
SageAttention2-4b 96.32 95.99 91.84 90.21 81.17 76.49 88.67
BMAttn 98.02 96.81 96.45 95.17 92.02 85.59 94.01

challenging due to long-range dependencies, noisy inputs, and the need for models to handle complex
reasoning. RULER emphasizes the concept of ”effective context length,” which measures how well
models maintain performance across increasing context sizes, making it highly relevant for testing
attention approximations and compression methods in real-world scenarios.

E.3 CALIBRATION DATA ABLATION

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Speedup

50

52

54

L
on

gB
en

ch

LongBench RULER Qasper

Figure A3: Longbench results of different calibration data.

Fig. A3 illustrates the performance of our method using different calibration datasets (LongBench,
RULER, and Qasper), with LongBench as the baseline. At low compression rates, the performance
remains consistent across all calibration datasets, indicating that our method is robust to the choice of
calibration data. However, as compression increases, we observe a slight degradation in performance
when using RULER or Qasper compared to LongBench. This degradation is minor, and the overall
performance remains competitive. These results show that while LongBench provides a slight
advantage at higher compression rates, our method remains robust and performs well across different
calibration datasets, with minimal impact on performance at lower compression levels.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

FA
2

sag
e-8

sag
e-4

spa
rge

BMAttn
0

1

2

3

4

5

L
at

en
cy

 (m
s)

2.9 2.9 2.8

4.5

2.8

Sequence Length: 1k

FA
2

sag
e-8

sag
e-4

spa
rge

BMAttn
0

1

2

3

4

5

6

7

8

6.0 5.9 5.8

7.2

5.8

Sequence Length: 2k

FA
2

sag
e-8

sag
e-4

spa
rge

BMAttn
0

2

4

6

8

10

12

14

16

12.5
12.0 11.9

13.6

11.9

Sequence Length: 4k

FA
2

sag
e-8

sag
e-4

spa
rge

BMAttn
0

5

10

15

20

25

30

L
at

en
cy

 (m
s)

25.9
24.2 23.6

25.0
23.5

Sequence Length: 8k

FA
2

sag
e-8

sag
e-4

spa
rge

BMAttn
0

10

20

30

40

50

60

70

59.3

52.3
49.9

51.8
49.4

Sequence Length: 16k

FA
2

sag
e-8

sag
e-4

spa
rge

BMAttn
0

20

40

60

80

100

120

140

160
144.0

116.7
107.8 108.7 106.2

Sequence Length: 32k

GEMM Attention

Figure A4: GEMM and Attention latency results of different methods.

Table A3: End to end latency ↓ (ms) and speedup ↑ results of different methods across different
sequence lengths. The best results are highlighted in bold format.

Method
SeqLen

1k 2k 4k 8k 16k 32k

Latency Speedup Latency Speedup Latency Speedup Latency Speedup Latency Speedup Latency Speedup

FA2 3.091 - 6.390 - 13.341 - 27.881 - 63.176 - 151.772 -
SA-8b 3.058 1.01× 6.265 1.02× 12.872 1.03× 26.148 1.06× 56.143 1.12× 124.496 1.21×
SA2-4b 3.036 1.01× 6.221 1.02× 12.738 1.04× 25.538 1.09× 53.718 1.17× 115.556 1.31×
Sparge 4.729 0.65× 7.604 0.84× 14.433 0.92× 26.943 1.03× 55.627 1.13× 116.481 1.30×
BMAttn 3.033 1.01× 6.210 1.02× 12.699 1.05× 25.413 1.09× 53.268 1.18× 113.949 1.33×

E.4 MORE EFFICIENCY RESULTS

Fig. A4 shows the latency breakdown for GEMM and Attention components for each method at
different sequence lengths. BMAttn consistently demonstrates competitive performance with low
latency, outperforming other methods in the Attention phase. Tab. A3 presents the end-to-end latency
and speedup results across methods and sequence lengths. For SpargeAttn, we set topk=0.5 to ensure
a similar accuracy with BMAttn. BMAttn shows significant improvements, achieving up to 1.33×
speedup at sequence length 32k compared to FA2, with minimal latency across all sequence lengths.
The speedup consistently improves as sequence length increases, highlighting BMAttn’s end-to-end
efficiency in handling larger context lengths.

E.5 COMPARISON WITH SPARGEATTN

Tab. A4 presents a detailed comparison between our method, BMAttn, and SpargeAttn. For
SpargeAttn, we set topk=0.5, while BMAttn employs the same hyperparameters as in the main
body of the paper. In terms of accuracy, BMAttn and SpargeAttn exhibit similar performance, with
BMAttn outperforming SpargeAttn on Wikitext, Longbench, and RULER, particularly on RULER
(94.01 vs 93.88). However, BMAttn achieves a higher acceleration factor (3.26× vs 2.83×). Notably,
the experiment uses the latest SpargeAttn kernel, which incorporates the SageAttn++-8bit kernel.
This further highlights the superiority of our approach over the standard SpargeAttn.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A4: Accuracy and Efficiency Comparison of BMAttn with SpargeAttn.

Method WikiText (Ppl.)↓ MMLU (Acc.)↑ LongBench↑ RULER↑ Speedup

Qwen2.5-7B-Instruct (Qwen et al., 2025)

SpargeAttn (topk=0.5) (Zhang et al. (2025b)) 7.465 0.717 52.65 93.88 2.83×
BMAttn 7.461 0.716 52.67 94.01 3.26×

Figure A5: Kernel design.

F KERNEL DESIGN

Overview. To achieve genuine wall-clock reduction, we introduce a unified, high-performance,
hand-written CUDA kernel that simultaneously supports the heterogeneous low-precision and sparsity
patterns described in BMAttn. The kernel ingests multiple activations for Q and K at different
precisions (with their associated per-block or per-channel scales), while V remains in FP8. Following
established practice, quantization may be fused into RMSNorm to minimize memory traffic and
quantization overhead. In contrast to mask-based approaches that materialize a dense attention-
score mask to encode sparsity and precision, our kernel traverses the mixed-precision pattern via
precomputed block indices and uniform per-CTA loop counts. This design avoids warp divergence
and gather/scatter entirely. Causality is enforced arithmetically in tile coordinates, not by referencing
any dense boolean tensor.

Tile Geometry and Compute Units. Our tiling and fusion strategy is FlashAttention-style. For
example, on RTX 4090, we employ block shapes BLK Q=128, BLK K=64 and BLK V=128 to align
with quantization granularity and shared-memory capacity. Mixed-precision tiles are kept block-
aligned and are integer multiples of the intrinsic MMA shapes. At the PTX intrinsic level, we care-
fully select mma.m16n8k16.dtype.s8.s8.s32, mma.m16n8k32.dtype.s4.s4.s32
and mma.m16n8k16.dtype.f8.f8.f32 instructions to saturate the tensor pipeline.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Seq Len Latency (ms) TOPS
Ours SAGE Ours SAGE

32768 10.03 9.716 439.66 452.73
65536 38.34 37.43 458.92 470.13

Table A5: We set all blocks with same precision config: QK int8, PV fp8 to demonstrate indexing
overhead.

Indexing-Driven Mixed-Precision Scheduling. To specify, at runtime, which block are computed
at which precision, we maintain lightweight metadata in the form of per-precision index arrays and
per-query-block valid-counts. A common alternative is to allocate a mask with the same shape as
the attention matrix to decide block precision (as in FlexAttention). However, such masks incur
significant memory usage and nontrivial overhead. Our indexing-driven approach maintains, for each
query block, one index list per precision (e.g., int4 and int8) together with their loop bounds,
and streams over these lists sequentially. Because streaming softmax is associative/commutative
with respect to tile accumulation, we can process one precision first and then the other without
enforcing any contiguous physical-address order. Consequently, we partition the attention mainloop
by precision zones and never insert runtime conditionals inside the mainloop. All lanes within a warp
follow identical iteration counts and visit the same block sequence, so there is no warp divergence;
memory traffic is tile-contiguous and coalesced, hence no gather operations on irregular coordinates.
Micro-benchmarks show that the overhead introduced by indexing is typically under 5%.

Online Quantization and Dequantization. Unlike full-precision attention, the QK accumulation
proceeds in s32. We therefore perform dequantization immediately before softmax by multiplying
the integer scores with a tile-level scale: In our work, the quantization granularity is deliberately
chosen to be block-aligned: all threads in a tile read the same scalar scale and apply the multiplication
in local registers. This algorithm–system co-design is central to BMAttn’s combined accuracy and
efficiency: the dequantization cost is negligible relative to the integer MMA. After softmax, we
quantize the tile P to FP8 as needed, and exploit FP8 Tensor Cores for the PV stage, thereby achieving
a second acceleration phase on low-precision hardware pathways.

Summary. By unifying mixed-precision computation and sparse-skipping within a single kernel
with compact index lists, we avoid the costs of dense masks, runtime conditionals, and irregular
memory access. The result is a regular, divergence-free multi-phase computation with tile-contiguous
memory operations, enabling high Tensor Core occupancy and bandwidth efficiency.

G PROOFS

In this section, we provide the complete proof that the inverse probability weighting (IPW) method is
an unbiased estimator in the context of attention mechanisms.

Theorem 1 (IPW is an Unbiased Estimator). Let A[i, j] be the attention score at position (i, j) in
the attention matrix. Using the inverse probability weighting (IPW) method with the weight function
WIPW(d) =

1
P (d) , the weighted attention score Â[i, j] is an unbiased estimator of the true attention

score A[i, j]. Specifically, we have:

E[Â[i, j]] = A[i, j]

where P (d) is the empirical probability distribution of attention distances d.

Proof. We start by defining the weighted attention score at position (i, j) as:

Â[i, j] =
1

P (di,j)
·A[i, j]

where di,j = |i− j| is the distance between the query and key positions, and P (di,j) is the empirical
probability distribution of distances d in the attention matrix Aavg.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To prove that Â[i, j] is an unbiased estimator, we need to show that:

E[Â[i, j]] = A[i, j]

Since A[i, j] is a fixed known value, we can factor it out of the expectation:

E[Â[i, j]] = A[i, j] · E
[

1

P (di,j)

]
To prove that Â[i, j] is unbiased, we need:

E
[

1

P (di,j)

]
= 1

Since P (d) is a probability distribution, it satisfies the normalization condition:∫ ∞

0

P (d) dd = 1

Therefore, the expectation of the inverse of P (d) is:

E
[

1

P (d)

]
= 1

Thus, we have:
E[Â[i, j]] = A[i, j]

which proves that the IPW method is an unbiased estimator of the true attention score.

Corollary 1 (Significance of Unbiased Estimation). The unbiasedness of the IPW estimator ensures
that the weighted attention scores accurately reflect the true attention distribution. In particular,
this correction accounts for the locality bias in the attention mechanism, making the estimator more
robust in capturing long-range dependencies.

Proof. Since E[Â[i, j]] = A[i, j], the weighted attention matrix Â provides an unbiased estimate
of the true attention matrix A. This ensures that any adjustments made to account for long-range
dependencies, which are underrepresented in the raw attention matrix due to locality bias, are
statistically valid. Consequently, the IPW estimator corrects for these biases and provides a more
accurate reflection of the true information content across all token distances.

H ATTENTION WEIGHT DISTRIBUTION ACROSS RELATIVE DISTANCES

To estimate p(l,h)(d) robustly, we perform distance bucketing on a calibration set S. Let the bucket
width be ∆; relative distances are grouped by

k =
⌊
d /∆

⌋
, Bk = { d | k∆ ≤ d < (k + 1)∆ }. (15)

For each (l, h), we first aggregate the attention weight mass in bucket Bk across the calibration set:

M
(l,h)
k =

∑
x∈S

∑
i≥j, di,j∈Bk

W
(l,h)
i,j (x), (16)

and normalize to obtain the empirical attention-weight distribution over distance:

p(l,h)(k) =
M

(l,h)
k∑

k′ M
(l,h)
k′

. (17)

We then define p(l,h)(d) ≡ p(l,h)(k) for d ∈ Bk. Intuitively, this procedure does not count pairs;
instead, it measures how much attention mass is placed at each distance, bucketed by d. Long-range
buckets that are rarely attended (low p(l,h)) are upweighted by IPW. The factor Lctx keeps the
magnitude of φIPW on the same scale as RDW.

I USE OF LLM

In preparing this paper, large language models (LLMs) were employed solely for language refinement
purposes, such as polishing grammar, improving clarity, and adapting the tone to academic writing
conventions. All technical ideas, experimental designs, and results were conceived, implemented,
and analyzed by the authors. The LLMs were not involved in generating research content, designing
methods, or interpreting findings.

19

	Introduction
	Related Works
	Preliminaries
	Method
	Block-Aligned Mixed-Precision Attention
	Saliency-Weighted Calibration
	Saliency-Weighted Metric
	Layer-Adaptive Retention Regularizer
	Constrained Calibration Algorithm

	Experiments
	Setup
	Accuracy Result
	Efficiency Result
	Ablation Study

	Conclusion
	Offline Calibration Algorithm
	Online Inference
	Complexity Analysis
	Hyperparameter Analysis
	More Experiments
	Detailed Results of LongBench
	Detailed Results of RULER
	Calibration Data Ablation
	More Efficiency Results
	Comparison with SpargeAttn

	Kernel Design
	Proofs
	Attention weight distribution across relative distances
	Use of LLM

