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Abstract

Generative models are invaluable in many fields of science because of their ability to capture1

high-dimensional and complicated distributions, such as photo-realistic images, protein2

structures, and connectomes. How do we evaluate the samples these models generate?3

This work aims to provide an accessible entry point to understanding popular notions of4

sample-based statistical distances, requiring only foundational knowledge in mathematics5

and statistics. We focus on four commonly used notions of statistical distances representing6

different methodologies: Using low-dimensional projections (Sliced-Wasserstein; SW), ob-7

taining a distance using classifiers (Classifier Two-Sample Tests; C2ST), using embeddings8

through kernels (Maximum Mean Discrepancy; MMD), or neural networks (Fréchet Inception9

Distance; FID). We highlight the intuition behind each distance and explain their merits,10

scalability, complexity, and pitfalls. To demonstrate how these distances are used in practice,11

we evaluate generative models from different scientific domains, namely a model of decision12

making and a model generating medical images. We showcase that distinct distances can13

give different results on similar data. Through this guide, we aim to help researchers to use,14

interpret, and evaluate statistical distances for generative models in science.15

1 Introduction16

Generative models that produce samples of complex, high-dimensional data, have recently come to the17

forefront of public awareness due to their utility in a variety of scientific, clinical, engineering, and commercial18

domains (Bond-Taylor et al., 2021). Prominent examples include StableDiffusion (SD) and DALL-E for19

generating photo-realistic images (Rombach et al., 2022a), WaveNet (Oord et al., 2016) for audio synthesis, and20

Generative Pre-trained Transformer (GPT; Radford et al. 2018; 2019; Brown et al. 2020) for text generation.21

Besides this new wave of generative models, different scientific disciplines have a long history of building22

data generating models which capture specific processes. For example in neuroscience, In neuroscience, for23

example, the occurrence of action potentials is modeled at all different levels of detail (e.g., single neuron24

voltage dynamics (Hodgkin & Huxley, 1952) or at a phenomenological level (Pillow et al., 2008)), whereas in25

e.g., astrophysics there exist various models to simulate galaxy formation (Somerville & Davé, 2015). Along26

with generating novel synthetic samples, generative models can be leveraged for specific tasks, such as sample27

generation conditioned on class labels (e.g., diseased vs. healthy brain scans, molecules that can or cannot be28

synthesized; Urbina et al. 2022, class-conditional image generation; van den Oord et al. 2016; Dockhorn et al.29

2022, forecasting future states of a dynamical system; Durstewitz et al. 2023; Jacobs et al. 2023; Brenner et al.30

2022), data imputation (e.g., Vetter et al. 2023; Lugmayr et al. 2022), data augmentation for downstream31

tasks (Rommel et al., 2022), and many more (see also Table S1).32

These powerful capabilities are enabled by the premise that generative models accurately learn a can produce33

samples from the high-dimensional distribution from which we assume our dataset was sampled. The34

dimensions can correspond to anything from individual pixels or graphs to arbitrary features of physical35

or abstract objects. When aiming to build generative models that better capture the true underlying data36

distribution, we need to answer a key question: How accurately does do samples from our generative model37

mimic those from the true data distribution?38
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Figure 1: The need for statistical distances in scientific generative modeling. (a) An example
target distribution, ptrue(x), and two learned distributions (p1(x) and p2(x)) of different models trained to
capture ptrue(x). All three distributions share the same mean and marginal variances, despite having distinct
shapes. However, an appropriate sample-based distribution distance D can determine that p2(x) is more
similar to ptrue(x). (b) Scientific applications often require evaluating high-dimensional distributions, such
as distributions for images or tabular data. In this example, each point represents an X-ray image, where
each dimension is one pixel.

Manual inspection of generated samples can be a good first check, e.g., in image or audio generation, where39

we can directly assess the visual likeness or sound quality of the samples (Gerhard et al., 2013; Vallez et al.,40

2022; Jayasumana et al., 2023). In general, however, we would like to have quantitative distances to measure41

quantitatively compare the similarity of distributions, for instance to compare and benchmark different42

benchmark different generative models. Many measures have been proposed that provide a quantitative43

way to assess the similarity of two distributions based on various aspects of their moments , spread, central44

tendency, and or the overall probability density (Fig. 1). Some of these measures require likelihood evaluations,45

as is possible with generative models such as Gaussian Mixture Models, Normalizing Flows, Variational46

Autoencoders, autoregressive models or diffusion models (Bishop, 2006; Papamakarios et al., 2021; Box et al.,47

2015; Kingma & Welling, 2014; Yenduri et al., 2023; Ho et al., 2020; Song et al., 2021). However, many48

contemporary machine learning models (e.g., Generative Adversarial Networks and Energy-Based Models;49

Goodfellow et al. 2014; Rezende et al. 2014; Hinton et al. 2006) and scientific simulators (e.g., single neuron50

voltage dynamics; Hodgkin & Huxley 1952) only define the likelihood implicitly, i.e., we can not explicitly51

evaluate their likelihood. In this work we focus on Statistical distances that can be applied to computed52

based on samples only are therefore invaluable for comparing both classes of models, i. e. distances that can53

be computed only based on generated samples. generative models (and to real data) in scientific contexts.54

Here, we provide a guide to understanding commonly used sample-based statistical distances. Note that55

with distance, we do not necessarily refer to a distance metric in the mathematical sense (i.e., satisfying56

symmetry and the triangle inequality) but to a general measure of dissimilarity between two distributions.57

Our goal is not to provide a comprehensive review of statistical distances, as there are already a number of58

excellent resources for that purpose, especially in specific domains of application (Borji, 2019; Xu et al., 2018;59

Lopez-Paz Oquab, 2016; Lueckmann et al., 2021). We refer readers to those works for a deeper dive into60

mathematical properties and empirical comparisons (Cox et al., 1984; Gibbs Su, 2002; Basseville, 2013; Cai61

Lim, 2022; Muandet et al., 2017; Theis et al., 2016; Betzalel et al., 2022). In this guide , we instead focus on62

four commonly applied sample-based distances in the machine learning literature for evaluating eventually63

high-dimensional generative models. They represent different methodologies for defining statistical distance:64

Using low-dimensional projections (Sliced-Wasserstein; SW), obtaining a distance using classifiers (Classifier65

Two-Sample Tests; C2ST), using embeddings through kernels (Maximum Mean Discrepancy; MMD) or66

neural networks (Fréchet Inception Distance; FID). We aim to provide an intuition for how and when to67

apply these distances, and to build a solid foundation for navigating the extensive literature on statistical68

distances. Here, we present a guide that aims to serve as an accessible entry point to understanding commonly69

used sample-based statistical distances. Towards this goal, we provide explanations, comparisons, and example70

applications of four commonly applied distances: Sliced-Wasserstein (SW), Classifier Two-Sample Tests71
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(C2ST), Maximum Mean Discrepancy (MMD), and Fréchet Inception Distance (FID). With these resources,72

we aim to empower researchers to choose, implement, and evaluate the usage and outcomes of statistical73

distances for generative models in science. Note that, with distance, we do not necessarily refer to a distance74

metric in the mathematical sense (i.e., satisfying symmetry and the triangle inequality) but to a general75

measure of dissimilarity between two distributions (however, as we will point out, some of the distances we76

consider are in fact metrics).77

Towards this goal, we provide for The general and didactic nature of this guide means it can neither be78

comprehensive nor provide a clear-cut answer as to which distance is ‘best’, as there are numerous choices and79

the ‘ideal’ one strongly depends on the domain of application. On that front, previous articles have provided80

useful and extensive reviews for specific use cases. For example, Theis et al. (2016) discusses commonly81

used criteria for evaluating generative models of images, Borji (2019); Xu et al. (2018); Yang et al. (2023)82

compare metrics specific to evaluating GANs (including e.g., specialized variants of the FID), Basseville83

(2013) provides an extensive overview of previous works on divergences, and Gibbs & Su (2002) analyses the84

theoretical relationships among ’classic’ distances (including e.g., Wasserstein and KL-divergence). However,85

by going through four different classes of sample-based distances in detail and systematically comparing them86

on synthetic and real-world applications we aim to provide a solid foundation for navigating the extensive87

literature on statistical distances, and to enable readers to reason about other related distances not covered88

here.89

The outline of this guide is as follows: First, we provide an intuitive and graphical explanation for each90

of the four distances an intuitive and graphical explanation (Section 2). We then perform a systematic91

evaluation of their robustness as a function of dataset size, data dimensionality, and other factors, such as92

data multimodality (Section 3). Finally, in Section 4, we demonstrate how these distances can be applied to93

compare generative models in different scientific domains: We evaluate low dimensional models of decision94

making in behavioral neuroscience and generative models of medical X-ray images. We show the importance95

of using multiple complementary distances, as distinct distances can give different results when comparing the96

same sets of samples. By presenting these resources, we aim to empower researchers to choose, implement,97

and evaluate the use and outcomes of statistical distances for generative models in science.98

2 Sample-based statistical distances99

In this section, we provide an overview of four classes of sample-based statistical distances commonly used in100

machine learning literature. Each class takes a different approach to overcoming the challenges inherent in101

comparing samples from high-dimensional and complex distributions. Throughout the section, we assume102

that we want to evaluate the distance between two datasets of samples, denoted as {x1, x2, . . . , xn} ∼ p1(x)103

and {y1, y2, . . . , ym} ∼ p2(y), where p1(x) and p2(y) are two probability distributions. These can be either104

two generative models, or a generative model and the underlying distribution of the observed data.105

2.1 Slicing-based: Sliced-Wasserstein (SW) distance106

Computing distance between distributions suffers from the curse of dimensionality, where the computational107

cost of computing the distance increases very rapidly as the dimensionality of the data increases. This108

problem is especially restricting when the distance is used as part of a loss function in optimization problems,109

since in this case it needs to be evaluated many times. This has prompted the notion of “sliced” distances,110

which have become increasingly popular in recent years (Kolouri et al., 2019; Nadjahi et al., 2020; Goldfeld111

& Greenewald, 2021). The main idea behind slicing is that for many existing statistical distances we can112

efficiently evaluate the distance in low-dimensional spaces, especially in one dimension. Therefore, the “slices”113

are typically one-dimensional lines through the data space (Fig. 2a). All data points from each distribution114

are projected onto this line by finding their nearest point on the line, giving a one-dimensional distribution115

of projected data points (Fig. 2b). The distance measure of interest between the resulting one-dimensional116

distributions can then be computed efficiently. However, computing the random projection could lead to117

an unreliable measure of distance: Distinct distributions can produce the same one-dimensional projections.118

Therefore, we repeat the slicing process for many different slices and average the resulting distances. More119

formally, we compute the expected distance in one dimension between the projections of the respective120

3



Under review as submission to TMLR

1D projectionsSlicinga b

−1 0 1

−1 0 1

−1 0 1

−1 0 1

p1

p2

Figure 2: Schematic for the Sliced-Wasserstein distance. (a) Samples from two two-dimensional
distributions along with example slices. The “slicing” is done by sampling random directions from the
unit sphere and projecting the samples from the higher-dimensional distribution onto that direction. (b)
One-dimensional projections of the two distributions corresponding to the two random slices in (a). For each
pair of projections, the empirical Wasserstein distance is computed. Unlike in higher dimensions, this can be
done efficiently for one-dimensional distributions.

total cost = 2.8 total cost = 1.9

cost
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Figure 3: Computing Wasserstein distance. Two transport maps mapping the samples from a distribution
p1 (black) to samples from another distribution p2 (blue), shown by arrows. The color of the arrow corresponds
to the cost (Euclidean distance) between xi and yi. (a) Randomly chosen transport map. (b) The optimal
transport map, giving the smallest total cost. The total cost for the optimal map in (b) is the Wasserstein
distance between these two sets of samples.

distributions onto (uniformly) random directions on the unit sphere. As long as the distance of choice is121

a valid metric in one dimension, the sliced distance defined in this way is guaranteed to be a valid metric122

as well (Nadjahi et al., 2020, Proposition 1 (iii)). The most popular example of a sliced distance metric123

is the Sliced-Wasserstein (SW) distance (Fig. 2). However, we note that slicing has also been done for124

other distance measures, such as MMD with a specific choice of kernel (?) (Hertrich et al., 2024) and mutual125

information (Goldfeld & Greenewald, 2021). We provide a formal definition of the Wasserstein distance below,126

and of the Sliced-Wasserstein distance in Appendix A.3.127

Definition of Wasserstein or earth mover distanceDistance Wasserstein distance is typically defined128

between two measures µ, ν. This definition is given in Appendix A.3, and here we provide the definition in129

the common case that µ and ν admit probability density functions p1 and p2 respectively. Let M ⊆ Rd, and130

|| · ||q be the q-norm in Rd. Then the Wasserstein-q norm can be written as131

Wq(p1, p2) = inf
γ∼Γ(p1,p2)

(
Ex1,x2∼γ ||x1 − x2||qq

) 1
q , (1)

where Γ(p1, p2) is the set of all couplings, that is all possible “transportation plans”, between p1 and p2.132

γ ∈ Γ(p1, p2) is a joint distribution over (x1, x2) with respective marginals p1 and p2 over x1 and x2.133
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Sample-Based Wasserstein Distance In practice, Eq. (1) is analytically solvable for only a few distribu-134

tions. Therefore, Wasserstein distance is typically estimated from finite samples from p1 and p2. However,135

sample-based estimates of the Wasserstein distance are biased, and the convergence to the true Wasserstein136

distance is exponentially slower as the dimensionality of the distribution increases (Fournier & Guillin, 2015;137

Papp & Sherlock, 2022)138

Intuitively, if two given probability distributions are thought of as two piles of dirt, the Wasserstein distance139

measures the (minimal) cost of “transporting” one pile of dirt to another (Panaretos & Zemel, 2019). The140

formal definition of the Wasserstein distance for continuous distributions, derived from optimal transport, is141

described in Section A.3. Here, we provide a more intuitive definition given a fixed set of samples from two142

distributions. Suppose we have samples {x1, . . . , xN} ⊂ Rd sampled from a distribution p1 and {y1, ..., yN} ⊂143

Rd sampled from another distribution p2. Given any distance metric between two vectors in Rd, D(·, ·), we144

can construct the cost matrix C, as the matrix of pairwise distances between the samples xi and yj :145

C =

D(x1, y1) . . . D(x1, yN )
... . . . ...

D(xN , y1) . . . D(xN , yN )

 (2)

Recalling the earth-mover distance analogy, we want to map each xi to exactly one yj , in such a way that146

the cost of doing so is minimized. The minimum transport map is then defining the Wasserstein distance (for147

the metric D) between the two empirical distributions. Throughout this work, we use the commonly used148

Euclidean metric, L2, leading to the Wasserstein-2 and Sliced Wasserstein-2 distances. More precisely, we149

define a “transport map” to be a permutation matrix, π ∈ {0, 1}N×N , which is a matrix with exactly one150

nonzero entry in each row. The entry πij = 1 means that we transport the point xi to the point yj . Then151

finding the transport map that minimizes the overall cost can be stated as152

π∗ = min
π

∑
ij

πijCij . (3)

A randomly chosen transport map for small datasets in R2 is shown in Fig. 3a. Fortunately, the optimal153

solution to Eq. (3) can be solved exactly using the Hungarian method (Kuhn, 1955), leading to the assignment154

shown in Fig. 3b.155

Slicing Wasserstein brings efficiency Solving the optimal transport problem (Eq. (3)) with the Hungarian156

method has a time complexity of O(N3) in the number of samples N (although faster approximations157

exists(O(N2 logN) approximations exist, see Peyré et al. 2017). However, in the special case where the data158

is one-dimensional, the Wasserstein distance can be calculated by sorting the two datasets, obtaining the159

order statistics {x(1), .., x(N)} and {y(1), ..., y(N)} and computing the sum of the distances
∑
iD(x(i), y(i)).160

This has a time complexity of O(N log(N)). Thus, slicing the Wasserstein distance with one-dimensional161

projections becomes very efficient. While the value of the SW distance does not converge to the Wasserstein162

distance, even in the case of an infinite number of data samples and slices, the SW distance is a metric (in163

the mathematical sense) as long as D is a metric on Rd and it acts as a lower bound to the Wasserstein164

distance (Nadjahi, 2021).165

The Wasserstein distance and its sliced variant have several attractive properties: they can be computed166

differentiably; their computations do not rely heavily on choices of hyperparameters; and the sliced variant167

is very fast to compute. However, a disadvantage of the Wasserstein distance is its transparency: The168

numerical value of the Wasserstein distance has no intuitive interpretation due to its definition in terms of169

optimal transport mapsHowever, a disadvantage of the Wasserstein distance is that its numerical value has170

no intuitive interpretation. Therefore, it is typically used to compare whether some distances are larger or171

smaller than others, instead of making qualitative statements about two distributions. Additionally, per172

definition, the sliced variant is insensitive to differences within orthogonal subspaces of the slices. To still173

capture differences in all dimensions, naively, one would have to increase the number of slices (in the worst174

case) exponentially with the dimension, diminishing computational efficiency. However, other approaches175

exist to reduce this problem for nonlinear (Kolouri et al., 2019) or other specific (Deshpande et al., 2019;176
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Figure 4: Classifier Two-Sample Test (C2ST). (a) The C2ST classifier problem: identifying the source
distribution of a given sample. The optimal classifier predicts the higher-density distribution at every observed
sample value, resulting in a majority of samples being correctly classified. (b) When probability densities
of the distributions are not known, the optimal classifier is approximated by training a classifier, e.g., a
neural network, to discriminate samples from the two distributions. (c) C2ST values vary from 0.5 when
distributions exactly overlap (left) to 1.0 when distributions are completely separable (right).

2018) slices. Furthermore, slicing may also be relaxed to other kinds of data specific projections, such as177

Fourier features for stationary time series or locally connected projections for images (Du et al., 2023; Cazelles178

et al., 2020).179

2.2 Classifier-based: Classifier Two-Sample Test (C2ST)180

The Classifier Two-Sample Test (C2ST) uses a classifier that discriminates between samples from two181

distributions (Fig. 4a) (Lopez-Paz & Oquab, 2016; Friedman, 2003). The distance between the distributions182

can then be quantified with various measures of classifier performance. For example, one would train a183

classifier c(x) to distinguish samples from the generative model and the data, and then evaluate the C2ST184

as 1
2 [Ep(x)[1(c(x) = 0)] + Eq(x)[1(c(x) = 1)]]. The classification accuracy provides a particularly intuitive185

and interpretable measure of the similarity of the distributions. If the classification accuracy is 0.5, i.e., the186

classifier is at chance level, the distributions are indistinguishable to the classifier (Fig. 4c, left), while higher187

accuracy indicate differences in the distributions (Fig. 4c, middle). If the C2ST is 1.0, the two distributions188

have no (or very little) overlap in their supports (Fig. 4c, right). Given two distributions, the C2ST has a189

‘true’ (optimal) value, which is the maximum classification accuracy attainable by any classifier (Fig. 4a).190

This optimal value can be computed if both distributions allow evaluating their densities, but this is not191

usually possible if only data samples are available. In that case, one aims to train a classifier, such as a neural192

network (Fig. 4b), that is as close to the optimal classifier as possible.193

One of the main benefits of the C2ST is that its value is highly interpretable (the accuracy of the classifier).194

C2ST can also be used to test the statistical significance of the difference between two sets of samples. Unlike195

other measures, however, C2ST can be expensive to compute because it requires training a classifier and using196

the classification accuracy as a differentiable training objective is not straightforward (see Section A.6.1).197

Furthermore, the value is dependent on the capacity of the classifier, and hence on many hyperparameters198

such as classifier architecture or training procedure. This dependence on a trained classifier ensures that C2ST199

estimates are biased, though the variety of possible classifier architectures means theoretical guarantees such as200

sample complexity are difficult to determine. In our experiments, we used a scikit-learn Multi-Layer-Perceptron201

Multi-Layer Perceptron classifier, combined with a five-fold cross-validation routine to estimate the accuracy202

returned (Pedregosa et al., 2011).203

Common failure modes As mentioned above, for any realistic scenario, the C2ST is computed by training204

a classifier. The resulting C2ST will only be a good measure of distance between real and generated data205

if the classifier is close or equal to the optimal classifier. To demonstrate the behavior of the C2ST if this206

is not the case, we fitted a Gaussian distribution to data that was sampled from a Mixture of Gaussians207
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Figure 5: Failure modes and behavior of C2ST. (a) Data (top left) and Gaussian maximum-likelihood
estimate (bottom left). C2ST wrongly returns 0.5 (no difference between the densities) if too few samples are
used (top right) or the neural network is poorly chosen (bottom right). (b) For high-dimensional densities,
despite the marginals between data (black) and model (gray) seeming well-aligned, small differences (here a
mean shift of 0.25 std. in every dimension) allow the classifier to more easily distinguish the distributions as
dimensionality increases, yielding correct but surprisingly high C2ST. (c) On MNIST, the C2ST between
data (top) and a Gaussian generative model (middle) as well as of a Mixture of Gaussians (MoG, bottom) is
1.0, although the MoG is perceptually more aligned with the data.

(Fig. 5a, left). The optimal C2ST between these two distributions is 0.65 (which can be computed because208

Gaussians and Mixtures of Gaussians allow evaluating densities). If the C2ST is estimated with a neural209

network, however, we observe that this C2ST can be systematically underestimated: for example, when only210

few samples from the data and generative model are available, the neural network predicts a C2ST of 0.5211

(Fig. 5a, top right) – in other words, it predicts that the generative model and the data follow the same212

distribution. Similarly, if the neural network is not expressive enough, e.g., with too few hidden units, the213

classifier will return a low C2ST, around 0.5 (Fig. 5a, bottom right). These issues can make the C2ST easy214

to misuse: In many cases, reporting a low C2ST is desirable for generative models since it indicates that the215

model perfectly matches data, but one can achieve a low C2ST simply by not investing sufficient time into216

obtaining a strong classifier.217

C2ST can remain very high even for seemingly good generative models We previously argued that218

the C2ST is an interpretable measure – while this is generally true, the C2ST can sometimes be surprisingly219

high even if the generative model seems well aligned with the data. For example, when the generative model220

aligns very well with the data for every marginal, the C2ST can still be high if the data is high-dimensional221

(Fig. 5b). Because of this, it can be difficult to achieve low C2ST values on high-dimensional data. To further222

demonstrate this, we fitted a Gaussian distribution and a mixture of 20 Gaussian distributions to the ‘ones’223

of the MNIST dataset. Although the Mixture of Gaussians (Fig. 5c, bottom row) looks better than a single224

Gaussian (Fig. 5c, middle row), both densities have a C2ST of 1.0 to the data (obtained with a ResNet on225

≈4k held-out test datapoints).226

Other C2ST variants While we focus on a standard C2ST definition by using classification accuracy227

as the C2ST distance (Lopez-Paz & Oquab, 2016), any other performance metric for binary classification228

could be used (Raschka, 2014). Kim et al. (2019) even argue argues that classic accuracy is sub-optimal229

due to the “binarization” of the class probabilities and proceeds to instead use the mean squared error230

between the predicted and ‘target’ value of 0.5. Other approaches instead construct a likelihood ratio231

statistic (Pandeva et al., 2022). Additionally, instead of using the estimated class probabilities, Cheng232

& Cloninger (2022) consider using the average difference in logits (i.e., activations in the last hidden233

layer).However, classification accuracy is still the most commonly used variant of C2ST.234
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Figure 6: Maximum mean discrepancy (MMD). (a) Two example distributions p1(x), p2(x) and
observed data ptrue(x) that we want to compare. (b) MMD can be defined as the difference between the
expectations of some embedding function φ(x). If we take the identity as embedding (φ(1)(x) = x; left), we
end up computing the differences between the means of the distributions, which are all equal for the three
distributions. If we add a quadratic feature (φ(x)(2) = [x, x2]T; right), we can distinguish distributions with
different variances. Note that we still have MMD2[φ(2), p2, ptrue] = 0, despite p2 being different from ptrue
(c) Using the kernel trick we can avoid computing the embeddings all together but use implicit embeddings
that capture all relevant features of the distributions.

We note that the learned classifier in C2ST can be applied to estimations of a density ratio p(x)
q(x) , that is235

referred to as the likelihood ratio trick (Hastie et al., 2001; Sugiyama et al., 2012). Density ratio estimation236

has attracted a great deal of attention in the statistics and machine learning communities since it can be237

employed for estimating divergences between two distributions, such as the Kullback–Leibler divergence238

(Titsias & Ruiz, 2019; ?) and Pearson divergence (Srivastava et al., 2020). Finally, we note that the classifier239

in C2ST is used as discriminator in Generative Adversarial Networks (GAN) Goodfellow et al. (2014).240

2.3 Kernel-based: maximum mean discrepancy (MMD)241

MMD is a popular distance metric that is applicable to a variety of data domains, including high-dimensional242

continuous data spaces, strings of text as well as graphs (Borgwardt et al., 2006; Gretton et al., 2012a;243

Muandet et al., 2017). It has been used to evaluate generative models (Sutherland et al., 2021; Borji, 2019;244

Lueckmann et al., 2021) and also has the ability to indicate where the model and the true distribution245

differ (Lloyd & Ghahramani, 2015). The distance provided by MMD can straightforwardly be used to test246

whether the difference between two sets of high-dimensional samples is statistically significant (Gretton et al.,247

2012a).248

To assess whether two set sets of samples are drawn from the same distribution, MMD makes use of a249

kernel function to (implicitly) embed the samples via an embedding function φ, also called a feature map. If250

we choose the right kernel, we can end up embedding our samples in a space where the properties of the251

underlying distributions are easily compared. We will motivate the use of the kernel in MMD by illustrating252

different explicit embeddings before introducing the implicit embedding via a kernel k. Note that this253

explanation is inspired by Sutherland (2019).254

In a first step, we can define MMD as the difference between the means of the embedding of two distributions
p1 and p2:

MMD2[φ, p1, p2] = ‖Ep1(x)[φ(x)]− Ep2(y)[φ(y)]‖2,
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for any embedding function φ.255

If we want to compare samples of real numbers from two distributions p1 and p2 (Fig. 6a), we can think
about different embedding functions φ to compare these. The simplest possible function φ(1) : R→ R is the
identity mapping φ(1)(x) = x (Fig 6b, left). However, in this case, the MMD will simply be the absolute
difference between the means (first moments) of the distributions (for details, see Section A.2):

MMD[φ(1), p1, p2] = |µp1 − µp2 |.

As both models and the true distribution in Fig. 6 have the same mean, this does not yet let us allow us
to discriminate between them. If we now expand our embedding with a quadratic term, φ(2) : R→ R2 as
φ(2)(x) =

[
x
x2

]
(Fig 6b, right), the MMD yields (for details, see Section A.2)

MMD2[φ(2), p1, p2] = (µp1 − µp2)2 + (µ2
p1

+ σ2
p1
− µ2

p2
− σ2

p2
)2.

In this case, we can also distinguish distributions with different variances (second moments). This allows us
to differentiate between two out of three distributions (Fig. 6). If we want to distinguish between all three
distributions, we could keep adding additional features to φ to capture higher and higher moments. However,
this seems like it could get infeasible – if we want to make sure two probability distributions are exactly
equal, i.e., have exactly the same moments, we would need to add infinitely many moments. Luckily, there is
a trick we can exploit. First, we can rewrite MMD in terms of inner products of features (denoted with 〈·, ·〉;
for details, see Section A.2) as

MMD2[φ, p1, p2] = Ep1(x),p′1(x′)[〈φ(x), φ(x′)〉] + Ep2(y),p′2(y′)[〈φ(y), φ(y′)〉]− 2Ep1(x),p2(y)[〈φ(x), φ(y)〉]

We can now rewrite the inner product 〈φ(x), φ(x′)〉 in terms of a kernel function k: 〈φ(x), φ(x′)〉 = k(x, x′).
Thus, if we can find a kernel for our feature map, we can avoid explicitly computing the features altogether
but instead, we directly compute

MMD2[k, p1, p2] = Ep1(x),p′1(x′)[k(x, x′)] + Ep2(y),p′2(y′)[k(y, y′)]− 2Ep1(x),p2(y)[k(x, y)].

Evaluating the kernel function instead of explicitly calculating the features is often called the kernel trick256

(Fig. 6c). If we can define a kernel whose corresponding embedding captures all, potentially infinitely many257

moments, we would have an MMD that is zero only if two distributions are exactly equal and the MMD258

becomes a metric. These kernels are called characteristic (Section A.2, Gretton et al. 2012a), and include259

the commonly used Gaussian kernel: kG(x, x′) = exp(−‖x−x
′‖2

2σ2 )(see, e. g., Sriperumbudur et al. (2009) for260

other characteristic kernel choices). . A number of other kernels can also be used (see e.g., Sriperumbudur261

et al. (2009)). For instance, using a Euclidean distance-based kernel, MMD can be shown to be equivalent to262

the standard energy distance (Székely & Rizzo, 2013). In fact, a wider equivalence between MMD and the263

generalized energy distance has been established, using certain distance-induced kernels (Sejdinovic et al.,264

2013).265

MMD in practice Typically, the kernel version of MMD is used, which is straightforwardly estimated
with its empirical(unbiased) , unbiased, estimate:

MMD2 = 1
m(m− 1)

m∑
i

∑
j 6=i

k(xi, xj) + 1
n(n− 1)

n∑
i

∑
j 6=i

k(yi, yj)−
2
mn

∑
i,j

k(xi, yj).

MMD in this form can be applied to many forms of data, as long as we can define a kernel, which can include266

graphs (Vishwanathan et al., 2010; Gärtner, 2003) or strings of text (Lodhi et al., 2002), in addition to267

vectors and matrices.268

When we estimate the MMD with a finite number of samples, the selection of the right kernel and its269

parameters becomes crucial. For example, when using a Gaussian kernel, one has to choose the bandwidth σ.270

The MMD approaches zero if we take σ to be close to zero (then kG(x, x′) = 1 if x = x′ else kG(x, x′)→ 0)271

9
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Figure 7: Network-based metrics. Instead of directly computing distances in data space, complex data
e.g., natural images of dogs sampled from p1(x) and aircraft sampled from p2(y), are jointly embedded into a
vector space. The embedding function can, for example, be a deep neural network. The resulting distributions
in feature space are then compared by a classical measure of choice D.

or if σ is large (then kG(x, x′) → 1 ∀ x, x′) (Gretton et al., 2012a). A common heuristic to remedy this272

parameter choice is picking the bandwidth based on the scale of the data. The median heuristic set sets the273

bandwidth to the median distance between points in the aggregate sample (Gretton et al., 2012a). Another274

common approach is based on cross-validation, or data splitting (Gretton et al., 2012a;b; Jitkrittum et al.,275

2016; Sutherland et al., 2021): The dataset is divided, with a hold-out set used for kernel selection, and the276

other part used for evaluating MMD. While the data splitting method does not involve any heuristic, it can277

lead to errors in MMD since it reduces the number of data points available for estimating the MMD. Recent278

work attempts to choose hyperparameters without employing data splitting or any heuristic (Biggs et al.,279

2023; Schrab et al., 2023; Kübler et al., 2022b;a).280

While we aim in general often aim for a kernel that captures the (dis)similarity between the data points well,281

such a kernel can be domain specific domain-specific or specifically designed for downstream analysis tasks.282

The similarity between two strings (e.g., DNA sequences , or text) canfor instance , for instance, be estimated283

by looking at the frequency of small subsequences (Leslie et al., 2001; Lodhi et al., 2002).It is furthermore284

Furthermore, it is possible to aggregate simpler kernels into a more expressive one (Gretton et al., 2012b), or285

to use a deep kernel (i.e., based on neural networks) that can exploit features of particular data modality286

modalities such as images (Liu et al., 2020; Gao et al., 2021).287

2.4 Network-based: Embedding-space measures288

Distribution comparisons on structured data spaces, such as the a set of natural images, present unique289

challenges. Such data is usually high-dimensional (high-resolution images) and contains localized correlations.290

Furthermore, images of different object classes (such as airplanes and dogs) share low-level features in the291

form of edges and textural details but differ in semantic meaning. Similar challenges occur for time-series292

data, natural language text, and other complex data type (Smith & Smith, 2020; Jeha et al., 2021).293

In this section, we take rely on the example of natural images, but the presented framework generalizes to other294

data types. Naive distances would operate on a per-pixel basis, leading to scenarios where, for example, white295

dogs and black dogs are considered vastly different despite both being categorized as dogs. As we would like296

to have a distance measure that operates based on details relevant to the comparison, we can leverage neural297

networks trained on a large image dataset that captures features ranging from low-level to high-level semantic298

details: While earlier layers in a convolutional neural network focus on edge detection, color comparison,299

and texture detection, later layers learn to detect high-level features, such as a dog’s nose or the wing of300

an airplane, which thought to be relevant for a meaningful comparison. Embedding-based distances use301

these activations of neural network layers as an embedding to compare the image distributions. The most302

popular distance in this class is the Fréchet Inception Distance (FID) (Heusel et al., 2017), used to evaluate303
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generative models for images. The FID uses a convolutional neural netnetworks’s embeddings (specifically304

InceptionV3 (Szegedy et al., 2015a)) to extract the relevant features, applies a Gaussian approximation in305

the embedding space, and computes the Wasserstein distance on this approximation.306

An A FID-like measure, in essence, requires a suitable embedding network f : X → Rd, where f transforms307

the data from the original high-dimensional space X into a lower-dimensional, feature-rich representation in308

Rd (Fig. 7). Once the data samples are mapped into this reduced space through the embedding network,309

the two sets of embedded samples can be compared using the appropriate distance. When evaluating310

generative models for natural images, it is common to approximate the embedded distributions with Gaussian311

distributions by estimating their respective mean µ and covariances Σ. Under this Gaussian approximation,312

the squared Wasserstein distance (also known as the Fréchet distance) can be analytically computed as313

W 2((µ1,Σ1), (µ2,Σ2)) = ‖µ1 − µ2‖2 + Tr
(

Σ1 + Σ2 − 2 (Σ1Σ2)
1
2
)
.

314

W 2((µ1,Σ1), (µ2,Σ2)) = ‖µ1 − µ2‖2 + Tr
(

Σ1 + Σ2 − 2 (Σ1Σ2)
1
2
)
. (4)

In principle, any appropriate metric can be used in place of the Fréchet distance.315

Jayasumana et al. (2023) show that the MMD (Section 2.3) can be better suited as a metric in the316

embedding space, as it perceptually matches human judgement on assessing image quality and coverage in317

generative models. In principle, any appropriate metric can be used in place of the Fréchet distance. For318

instance, Jayasumana et al. (2023); Bińkowski et al. (2021); Xu et al. (2018) use MMD as a metric in the319

embedding space, and the MMD-based Inception Distance is often referred to as Kernel Inception Distance320

(KID). KID is known to have some advantages over FID: unlike FID, KID has a simple, unbiased estimator321

and does not assume any parametric forms for the distributions. Moreover, KID requires a smaller sample for322

reliable estimation compared to FID. Since KID involves MMD, we must carefully select the proper kernel323

and its hyperparameter when applying it. A related and commonly used quality measure for images is the324

Inception Score (Salimans et al., 2016). In contrast to the FID, this measure uses the average InceptionV3325

predicted class probabilities and compares them with the true marginal class distribution. Note that while326

both this score and the FID can agree with traditional distances (e.g., certain divergences), they might327

evaluate models differently (Betzalel et al., 2022); see Barratt & Sharma (2018) for further limitations of the328

Inception Score.329

Limitations One of the biggest limitations is the requirement of a suitable embedding netnetwork. Newer330

and more robust networks, such as the image network of the CLIP (Radford et al., 2021) vision-language model,331

provide better and semantically more consistent embeddings (Betzalel et al., 2022) than the InceptionV3332

network. However, as the embedding network is generally non-injective, identical distributions in the333

embedding space may not necessarily translate to identical distributions in the original space. Previous research334

has demonstrated the FID’s sensitivity to preprocessing such as image resizing and compression (Parmar335

et al., 2022). Additionally, FID estimates are biased for finite sample sizes, making comparisons unreliable336

due to dependency on the generative model. However, methods to obtain a more unbiased estimate have337

been proposed (FID∞; Chong & Forsyth 2020; Betzalel et al. 2022).338

3 Comparison and scalability339

When evaluating (or training) generative models, it is important to understand that different statistical340

distances penalize pay attention to different features of the generated samples. They mightfor instance , for341

instance, weigh differently how important it is to have large sample variability versus how well the modes342

of the true distribution are captured(as can be illustrated . We illustrated the trade-off of the first two343

properties by optimizing a mis-specified model using the different distances, see Fig. S2 and Theis et al. 2016).344

Thus, using different statistical distances to evaluate the quality of generative models can lead to different345

conclusions. .346

These differences can be even more pronounced in applications where we only have a limited amount of data347

points, e.g., identifying rare cell types (Marouf et al., 2020), or where we have very high-dimensional data,348
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Figure 8: Scalability of different statistical distances with sample size and dimensionality. (a,b)
Comparison of sample sets with varying sample size (between 50 and 4k samples per set) of a ‘true’ distribution,
either with a second dataset of the same distribution or with a sample set from an approximated/shifted
distribution. We show the mean and standard deviation over five runs of randomly sampled data. Note that
the subscript for MMD distances (bottom) denotes the bandwidth of the Gaussian kernel used for a given
dataset and we report the squared distance for MMD. (a) Distances for the 2d-MoG example shown in Fig. 1
compared to samples from a unimodal uni-modal Gaussian approximation with the same mean and covariance.
(b) Distances for a ten-dimensional standard normal distribution, for which the first dimension is shifted by
one for the shifted dataset. (c) Distances based on 10k samples from a standard normal distribution with
varying dimensions (between 5 and 1000). As in (b), the first dimension is shifted by one for the ‘shifted’
dataset. We show the mean and standard deviation over five runs of randomly sampled data. One MMD
bandwidth was selected for all n-dimensional datasets.

e.g., neural population recordings in neuroscience (Stringer et al., 2019). In such cases, one needs to ensure349

that the distance measures can reliably distinguish different distributions for the given sample set size while350

remaining computationally tractable. In the following sections, we investigate the sensitivity of the three351

presented distances which do not rely on embeddings, when it comes to distinguishing data sets with varying352

numbers of samples (Section 3.1) and varying numbers of dimensions (Section 3.2). As the absolute values of353

the distance measures are often hard to interpret and different measures are on different scales, we examined354

the relative distances by comparing two or more models to the true data. We, therefore, applied the distances355

to compare samples from a ‘true’ distribution against itself (intra-dataset) and against samples from another356

distribution that is either an approximation or a shifted version of the true distribution (inter-dataset).357

In our experiments, we focused on inter- and intra-dataset comparisons for the following three datasets:358

First, we compared the two-dimensional Mixture of Gaussians (“2d-MoG”) dataset introduced in Fig. 1359

with samples from a unimodal Gaussian approximation with the same mean and covariance as the true360

data samples. Second, we compared samples from a ten-dimensional standard normal distribution with a361

shifted normal distribution for which the first dimension is shifted by one (“10-dim Gaussian”). And last,362

we compared a standard normal distribution with varying dimensionality to shifted distributions for which363

we respectively shifted the first dimension for the inter-dataset comparison (“n-dim Gaussian”). We used364

default parameters for the SW and C2ST measures while adjusting the bandwidth parameter for the MMD365
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measure for each of the three comparisons. Finally, as FID and other network-based distances do require366

an embedding network, we investigate the scaling properties specific to FID on the ImageNet dataset (in367

Section 3.3).368

3.1 Varying number of samples369

We explored the robustness of the distances to low sample sizes on the 2d-MoG and the 10-dim Gaussian370

dataset. We found that for the 2d-MoG dataset, all measures failed to reflect the dissimilarity of the371

distributions at the lowest sample size of 50 samples (Fig. 8a). However, C2ST’s behavior differs from MMD372

and SW, with C2ST indicating that the distributions are similar (C2ST ≈ 0.5) for both intra- (true) and373

inter-dataset (approx.) comparisons while the other two distances indicate they are different (distance 6= 0).374

The malfunction of C2ST can be harder to detect in such cases, compared to the one of MMD and SW. While375

the latter is easily identified by the incorrect intra-dataset results, the malfunction of C2ST is hard to detect376

for unknown distributions. For all measures, computed values quickly stabilized by a sample size of 1000 and377

yielded the expected results of low intra-dataset differences and high inter-dataset differences.378

For the 10-dim Gaussian dataset, we observed that all distances can identify samples from the same distribution379

as more similar than samples from different distributions (Fig. 8b); while all three distances struggle with low380

sample sizes (see also Supp. Fig. S4), given enough samples, they all become robust, with no measure being381

clearly superior to the others. For the 2d-MoG experiment, more samples are required to clearly detect the382

difference between the two distributions (Fig. 8a) as compared to the case where the mean in one dimension383

is shifted (Fig. 8b). Intuitively, the larger the differences in the distributions we want to compare, the fewer384

samples we need to detect these differences (see additional experiments Supp. Fig. S4).385

3.2 Varying dimensionality386

We further tested how the distances scale with the data dimension using n-dimensional standard normal387

distributions. In the first experiment, the shifted distribution differed only in the first dimension, which388

was mean-shifted by one. As the dimensionality increases, all distances reliably indicate no difference in389

intra-dataset comparisons , but C2ST is the only measure that consistently identifies the inter-dataset390

difference (Fig. 8c). Note that this dataset is different from Fig. 5b, where mean shifts were applied to391

every dimension. When we changed the structure of the data distribution (e.g., by changing the mean of all392

dimensions or their variances, see Supp. Fig. S5), we observed a similar picture with some particularities:393

While the SW distance with a fixed number of slices has difficulties if the disparity between the distribution394

is only in one dimension, its performance drastically improves for differences in all dimensions, which is395

expected from the random projections SW is performing. C2ST seems to robustly detect differences even in396

high dimensions in these modified datasets, though previous experiments showed that this measure can be397

oversensitive to small changes in high dimensions (Fig. 5b,c). Lastly, MMD is not robust across different398

dimensions for a Gaussian kernel with a fixed bandwidth. We could make the MMD robust across dimensions399

by using median heuristic (Section 2.3), where we would increase the chosen bandwidth such that it stays on400

the order of the euclidean distance between datapoints. Note that MMD can in generalin general, MMD can401

be highly sensitive to its hyperparameters, and an appropriate value kernel- and hyperparameter choice. In402

addition, an appropriate setting depends not only on the dimensionality of the data (Supp. Fig. S6and S7,403

S7, and S8), but also on the structure of the distributions (Supp. Fig. S5). SW distance, on the other hand,404

is robust to number of random projections used (Supp. Fig. S1 and A.4).405

3.3 FID-like distance comparison on ImageNet406

To also explore scaling properties of FID-like distances, we used images from the ImageNet dataset and407

embedded them with the InceptionV3 network (Deng et al., 2009; Szegedy et al., 2015b), following the408

implementation of Heusel et al. (2017). In addition to the 100, 000 images in the ImageNet test dataset409

(1000 classes, 100 images per class), we generated high-quality synthetic samples using a state-of-the-art410

diffusion model as described by Dockhorn et al. (2022). We first produced 50, 000 samples with the base411

unconditional version of this model. Using a conditional generative model, we additionally generated 100, 000412

class-conditional images (i.e., 100 per class), exactly matching the class distribution of the test-settest set.413
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Figure 9: Comparison of distances for ImageNet. (a) A comparison between the ImageNet test set and
samples generated by an unconditional diffusion model , with varying sample sizes. (b) Distance evaluation
on dog classes (D) versus non-dog classes (~D), highlighting differences in image representation between these
two categories of real data. (c) Distances between sets of randomly selected images vs. varying number
of included classes of images (from 10 to 1,000) from the test set, using synthetic samples created by a
conditional diffusion model.

All of these images were embedded using the pre-trained InceptionV3 network (Szegedy et al., 2015a),414

transforming the raw images into a 2048-dimensional feature space.415

Calculating the FID involves computing the mean and covariance of the distributions in the embedding space416

and then calculating the squared Wasserstein distance analytically. However, we broadened our evaluation by417

applying additional distances to the distributions in the embedding space. While SW distance, C2ST, and418

FID effectively highlight the greater dissimilarity of synthetic samples to real images (i.e., the ImageNet test419

set) ( Fig. 9a) even for low sample sizes, the distinctiveness of the FID becomes only apparent when analyzing420

more than around 2000 samples. Estimating the full covariance matrix of the 2048-dim 2048-dimensional421

features with fewer samples leads to degeneracy and, thus, to numerical issues computing the square root.422

Common implementationshence , hence, generally recommend using more than 2048 samples (Heusel et al.,423

2018a;b). As also shown by Jayasumana et al. (2023); Betzalel et al. (2022), the Gaussian assumption in the424

FID is violated and can lead to problematic behavior. In contrast, the other distances reliably estimate a425

larger inter-dataset distance in regimes with few samples.426

In our subsequent analysis, we aimed to determine the effectiveness of various distances in discriminating427

between images from different classes by comparing the distances between different levels in the WordNet428

hierarchy (Miller, 1995). To this end, we focused on comparing images of dogs (D) with those of non-dog (~D)429

images (Fig. 9b). All investigated distances, except FID, were successful in identifying images from different430

classes as being more distinct than images from the same class. The FID comparison between data with431

multiple classes (~D vs. ~D) is higher than across dog classes and other classes (D vs. ~D). This shows that432

comparing two image classes can be problematic with FID, which is usually used to compare two distributions433

over many image classes (i.e., over natural images).434

To examine the effects only including a subset of classes from the dataset (i.e., modes of the distribution), we435

employed a test set and a conditional synthetic dataset, each comprising 1,000 1000 classes with 100 samples436

per class. Our analysis involved comparing the complete test set against synthetic datasets that included437

only subsets of classes (Fig. 9c). For comparison purposes and as a control measure, we also conducted438

a scenario where, instead of selectively excluding classes, we randomly removed an equivalent number of439

images from the dataset. This approach revealed that limiting the dataset to a small number of classes440

compromised the performance across all evaluated distances, in contrast to the outcomes observed when441

randomly excluding a subset of images. To achieve performance comparable to that observed with random442

removals, it was necessary to include at least 800 classes in the comparison. As the InceptionV3 network443

is, in essence, trained to classify ImageNet images (Szegedy et al., 2015a) (under certain regularization444

schemes), hence the extracted high-level features may also be very sensitive to class-dependent image features445
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Table 1: Summary of practical and theoretical properties of metrics in terms of number of samples
N and data dimensionality D. Sample complexity here refers to the convergence rate of the sample-based
estimate to the true value of the metric. *Bound based on Ghosal & Sen (2019); Nguyen & Ho (2024) for
SWD and Gretton et al. (2012a) for MMD. †Best case scenario. In practice, the computational cost of
training a neural network scales superlinearly with both sample size and data dimensionality. ‡ General case
(see Sec. 2.3, 3.4 for details).※Cost of calculating the square root of the covariance matrix in Eq. 4.

SW C2ST MMD FID
Sample Complexity (N) O(N−1/2)* N/A O(N−1/2)* N/A
Computational Complexity (N) O(N logN) O(N)† O(N2)‡ O(N2)
Computational Complexity (D) O(D) O(D)† O(D) O(D3)※

Estimator unbiased? no no yes no

and not necessarily for general image quality. This behavior can be observed in Fig. 9c and was recently446

explored by Kynkäänniemi et al. (2022). By replacing InceptionV3 with other embedding networks (e.g.CLIP447

, CLIP, which is trained to match images to captions)corresponding text), this class sensitivity can be reduced448

(Kynkäänniemi et al., 2022).449

We generated images using an additional consistency model (CS) for unconditional image generation (Song450

et al., 2023) to investigate how the metrics compare images created by different generative models. This451

model was trained on ImageNet 64x64 as GENIE (Dockhorn et al., 2022). Additionally, we included the452

models: BigGAN Brock et al. (2018), ablated diffusion model (ADM) Dhariwal & Nichol (2021), Glide (Nichol453

et al., 2021), Vector Quantized Diffusion Model (VQDM) Gu et al. (2022), Wukong Wukong (2022), Stable454

diffusion 1.5 ( SD1.5) Rombach et al. (2022b) and Midjourney Midjourney (2022) (details in Appendix A.11).455

We evaluated the metrics (and multiple commonly used variants of KID and C2ST) for each model against456

the ImageNet test set (see Table S3).457

While there is some agreement between the metrics regarding which model generates images closest to the458

ImageNet test set, there are also differences in the relative ordering across different metrics. As expected, the459

most recent unconditional models trained directly on ImagenNet 64x64 performed best in our evaluation460

(GENIE, CS), better than the two other unconditional generative models (BigGAN, ADM). The other models461

are text-to-image and thus only prompted to generate images from specific ImageNet classes (GLIDE, VQDM,462

Wukong, SD1.5, Midjourney). Interestingly, the prompted models performed better than older unconditional463

models (BigGAN, ADM) most of the time. Recall that all we evaluate is the similarity to the ImageNet test464

set; prompted versions might produce images from the correct classes but might contain differences in style465

or appearance compared to actual images in ImageNet. Despite the demonstrated class-sensitivity (Fig. 9c),466

the InceptionV3 embeddings are thus also sensitive to different "styles" of natural images. We want to note467

that in this case, being closer to ImageNet does not necessarily mean generating better images (based on468

human perception), but rather creating images that are more ImageNet-like.469

3.4 Computational Sample and computational complexity470

While we only considered the sensitivity and specificity of the different distances in the previ-471

ous paragraphs, we want to highlight that they differ also in their computational complexityalso472

differ in their sample and computational complexities (Table 1). With respect to the num-473

ber of samples N , MMD and FID have a complexity of O(N2)(note . Note that for MMD474

the computational cost can be reduced, potentially at the cost of making approximation;475

Gretton et al. 2012a; Gretton et al. 2015; Gretton et al. 2021; Gretton et al. 2023; Gretton et al. 2023;be.g.,476

by increasing variance or for a specific kernel choice (Gretton et al., 2012a; Zhao & Meng, 2015; Cheng &477

Xie, 2021; Bodenham & Kawahara, 2023; Bharti et al., 2023; Gretton et al., 2012b)). While SW distance478

scales with O(N logN) (Nadjahi, 2021), it is difficult to make principled assessments of the computational479

complexity for C2ST, as it is highly dependent on the chosen classifier. But However, as more samples lead480

to larger training and test datasets, the sample size is likely to influence the compute time. Similarly, the481

computational complexity of computing these distances increases as the dimensionality of the data increases,482
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with non-trivial scaling depending on the task and hyperparameters chosen . chosen hyperparameter. We483

also report the theoretical convergence of sample-based estimates for SW distance and MMD, which are484

subject to active research. We report bounds from recent works (Ghosal & Sen, 2019; Gretton et al., 2012a).485

We do not report sample complexities for C2ST and FID, as these strongly depend on the choice of classifier486

and embedding network, respectively.487

Note that despite their differences, all presented distances are reasonably tractable in the settings of our488

experiments, whereas the scaling experiments might be computationally unfeasible for other distances489

or datasets. We therefore Therefore, we strongly recommend carefully considering the complexity of the490

measure before conducting experiments on high-dimensional or very large datasets. We report the practical491

computation times for our experiments in Appendix A.9.492

3.5 Mode coverage properties493

Mode coverage is the ability of a model to capture and generate diverse data, i.e., from multiple modes of the494

underlying distribution if multiple modes exist instead of from a single one (Fig. S3). If models mode collapse495

they might have learned to generate realistic but unvaried samples (Fig. S2). The community has focused on496

evaluation of mode coverage with different metrics driven by the development of GANs (Goodfellow et al.,497

2014; Gui et al., 2020; Saad et al., 2022). Empirically, in training generative models, mode coverage has been498

found to trade off with sample quality and speed, illustrating the generative learning trilemma (Xiao et al.,499

2021). All presented metrics can distinguish between a collapsed and a full distribution (Fig. 9), an empirical500

finding also reported in previous work (Che et al., 2016; Li et al., 2017; Deshpande et al., 2018; Borji, 2019).501

However, their sensitivity relies on different factors: SWD captures different modes when they are separated502

in one-dimensional projections, MMD depends on appropriate kernel choice, FID on expressive embeddings,503

and C2ST on well-trained classifiers. Other metrics used to quantify mode collapse include precision and504

recall (Kynkäänniemi et al., 2019).505

4 Scientific applications506

To demonstrate how the presented distances apply to evaluating generative models of scientific applications,507

we focus here on two examples: decision modeling in cognitive neuroscience and medical imaging. For each508

application, we used two generative models or simulators to sample synthetic data. We then compared509

the synthetic samples to real data (hold-out test set) using the discussed distances. To obtain baseline510

values for each distance, we computed distances between subsets of real data. For SW distance, MMD, and511

FID we anticipated values proximal to zero, while for the C2ST, we expected a value around 0.5. These512

baseline assessments provide a lower threshold of model fidelity to which we compared the deviation of513

model-generated samples.514

4.1 Models of primate decision making515

We explored the fidelity of two generative models in replicating primate decision times during a motion-516

discrimination task (Roitman & Shadlen, 2002). We evaluated two versions of a Drift-Diffusion Model517

(DDM; Fig. 10a) (Ratcliff, 1978), a frequently used model in cognitive neuroscience. The two versions differ518

with respect to the drift rate, which is the speed and direction at which evidence accumulates towards a519

decision, and the decision boundaries, which determine how much evidence is needed to make a decision.520

Specifically, the first version (DDM1) uses a drift rate that varies linearly with position and time , and521

decision boundaries that decay exponentially over time, whereas the second version (DDM2) uses a drift522

rate and decision boundaries that are constant over time (for details, see Section A.12). We fitted each523

model against empirical primate decision times with the use of the pyDDM toolbox (Shinn et al., 2020),524

generated one-dimensional synthetic datasets, and compared each dataset to the actual primate decision time525

distributions. While the resulting distributions of decision times are visually similar (Fig. 10b), the DDM-526

generated distributions DDM1 and DDM2 are noticeably broader compared to the more tightly clustered527

real decision times. Moreover, the DDM1 distribution appears more similar to the real distribution than528

that of DDM2, which is shifted towards the left. As expected, the DDM1 model more precisely mimics the529
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test

Figure 10: Comparing models of primate decision making. (a) Schematic of a drift-diffusion Drift-
Diffusion model (DDM), a classical neuroscientific model of decision making behavior. Overall, evidence drives
the model toward one of two choices (drift), but sensory and environmental noise result in random fluctuations
in evidence integration (diffusion). (b) Distributions of primate decision times from the real dataset test set
(black), and two fitted models of varying complexity: DDM1 (gray) and DDM2 (gold). (c) SW distance,
C2ST, MMD (bandwidth=0.5) between subsets of the three generated and real data distributions. FID is not
applicable in these comparisons, because the data are one-dimensional distributions. Scatter-points indicate
comparisons between ten random subsets from each dataset. Thick horizontal bars indicate median values.

test

Figure 11: Comparing generated and real X-ray images. (a) Sketch of the embedded distributions
of X-ray images from the three different datasets: test set of real dataset (black), Progressive Growing
Generative Adversarial Network (PGGAN) (grey), and Stable Diffusion (SD) model (gold). (b) Examples
from real and generated X-ray images. Three full-view examples from each distribution and four examples
magnifying the top right corner. (c) SW distance, C2ST, MMD (bandwidth=50), and FID between samples
of the three real and generated distributions of embedded X-ray images. Scatter-points indicate comparisons
between ten random subsets from each dataset. Thick horizontal bars indicate median values.

real data distribution, as compared to the DDM2, across the median values of the SW distance, MMD, and530

C2ST distances (Fig. 10c). For C2ST, DDM1 and the real data distribution are even indistinguishable, with531

median C2ST values around 0.5. This suggests that SW and MMD provide a more nuanced differentiation532

between the models.533
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4.2 Chest X-ray image generation534

In the second application we turned to a high dimensional high-dimensional example, in which we compared535

synthetic X-ray images generated by a Progressive Growing Generative Adversarial Network (PGGAN) model536

(Segal et al., 2021) and by a StableDiffusion (SD) model (Malik & Humair, 2023) to real chest X-ray images537

from the ChestX-ray14 dataset (Wang et al., 2017). Each image has a total dimension of 1024× 1024 pixels.538

From visual inspection, we note two observations: First, the images produced by the SD model are clearer539

and sharper than either the real images or those generated by the PGGAN. Second, generated images contain540

unrealistic artifacts that distinguish them from real X-ray images (Fig. 11b). For instance, in real images, the541

top often contains annotations including e.g., patient id, side of the body, or the date the X-ray was taken.542

These textual elements often contain artifacts or, in case of SD, are completely unrealistic. To compare these543

high-dimensional images, we embedded them in a 512-dimensional embedding space using the CheXzero544

network (Tiu et al., 2022), a CLIP (Radford et al., 2021) network fine-tuned for chest X-ray images. We545

opted for using this specialized network instead of the standard InceptionV3 network as it might overcome546

biases introduced by classification task training (Kynkäänniemi et al., 2022). As expected, samples generated547

by PGGAN are closer to the real data across all distances compared to SD-generated data (Fig. 11c), likely548

due to the unrealistic sharpness and more obvious textual artifacts of the SD-generated images. However,549

C2ST is even high between PGGAN outputs and the real data, suggesting that the high-dimensionality of550

the data increases the sensitivity of this measure. Taken together, our results suggest that PGGAN is more551

accurate in generating realistic X-ray images compared to SD.552

Our findings highlight show that using different metrics can support different conclusions. For instance,553

C2ST suggests equality between DDM1 and real decision time data, whereas SW distance and MMD metrics554

indicate a larger difference between DDM1 and the real data. Similarly, in analyzing X-ray image generation,555

SW distance, MMD, and FID metrics suggest a high similarity between PGGAN-generated and real images,556

whereas C2ST indicates a strong difference. Thus, we want to highlight the importance of using multiple557

complementary distances for best results and understanding of model limitations.558

5 Discussion559

This work describes and explores four commonly applied sample-based distances representing different560

methodologies for defining statistical distance: Using low-dimensional projections (SW), obtaining a distance561

using classifiers (C2ST), using embeddings through kernels (MMD) or neural networks (FID). Despite their562

operational differences, they are all based on a fundamental concept: simplifying complex distributions563

into more manageable feature representations to facilitate comparison. Sliced distances effectively reduce564

multidimensional distributions to a set of one-dimensional distributions, where classical metrics are more easily565

applied or calculated. MMD uses kernels to (implicitly) project samples into a higher dimensional feature566

space, in which comparing mean values becomes more expressive. Classifier-based methods (C2ST) transform567

the task of distribution comparison into a classification problem; comparison is made by investigating how568

well a classifier can distinguish the distributions. Lastly, network-based distances, such as FID, explicitly569

map samples into a representative feature space and compare distributions directly within this space.570

In the paragraphs below, we highlight the features and limitations of these investigated distances. Additionally,571

we discuss the relationships between these metrics and connect them to current related work.572

Sliced Distances Sliced distances stand out for their computational efficiency in evaluating distributional573

discrepancies. However, when distributions differ primarily in lower-dimensional subspaces, sliced distances574

might not detect these subtle differences without a large number of slices (see Fig. 8c). There are approaches to575

reduce this effect by considering other projections than simple linear slices, as described in Section 2.1. Due to576

its computational efficiency and differentiability, the SW distance can also be used as a loss function to train577

generative models (Wu et al., 2019; Deshpande et al., 2018; 2019; Liutkus et al., 2019; Vetter et al., 2024).578

In our experiments, the metric did show convincing results and in contrast to the MMD, C2ST, and FID, SW579

distance does not require to choose specific hyperparameters for which results can differ drastically. Although580

currently not extensively used in literature for evaluation, this makes the SW distance efficient, scalable, and581
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an objective baseline for general distribution comparisons. Yet, this also makes it less flexible to adapt to582

specific features of interest. Although, the Yet, this also makes it less flexible to adapt to specific features of583

interest. The Wasserstein and SW distances are not interpretable, and admit only biased sample-based esti-584

mates. This can be a limitation for some tasks. However, Although currently not extensively used in literature585

for evaluation, this makes the SW distance efficient, scalable, and an objective baseline for general distribution586

comparisons.ue to its computational efficiency and differentiability, the SW distance is commonly used as a loss587

function to train generative models, such as GANs (Deshpande et al., 2018; Wu et al., 2019), Autoencoders (Wu588

et al., 2019), nonparametric flows (Liutkus et al., 2019), normalizing flows (Dai & Seljak, 2021), and multi-layer589

perceptrons (Vetter et al., 2024). Although the majority of research on sliced distances focus focuses on sliced590

Wasserstein metrics, slicing other metrics is also possible. For a certain subset of choices, equivalence to MMDs591

can be established (Kolouri et al., 2019)( Feydy et al. (2019); Kolouri et al. (2019); Hertrich et al. (2024).592

Classifier Two-Sample Test (C2ST) C2ST distinguishes itself by producing an interpretable value:593

classification accuracy. This characteristic makes C2ST particularly appealing for practical applications,594

as it is easy to explain and interpret. A notable drawback is the computational demand associated with595

training a classifier, which can be substantial. Moreover, C2ST’s effectiveness is critically dependent on the596

selection and training of a suitable classifier. Interpreting results reported for C2ST requires knowledge of the597

classifier used and its appropriateness for the data at hand. Furthermore, automated training pipelines may598

encounter failures, such as when the trained classifier performs worse than chance, often due to overfitting to599

cross-validation folds (see also Section A.5). On the other hand, it is able to even detect subtle differences600

within two distributions in high dimensions. Even if there is a difference in only a single out of a thousand601

dimensions (for which SW distance and MMD might struggle), C2ST is able detect it (see Fig. 8c). This602

might be desirable, but can also be problematic. When comparing images, slight variations in a few pixels603

may not be visually noticeable, potentially making them unimportant to the researcher. In high-dimensional604

complex data, such slight variations are quite likely. Thus C2ST can be close to 1.0 in the high-dimensional605

setting, making it practically useless for evaluation (see Fig. 5c, 11c). The C2ST can be shown to be a MMD606

with a specific kernel function parameterized by the classifier (Liu et al., 2020).607

MMD The Maximum Mean Discrepancy is a strong tool for comparing two groups of data by looking608

at their average values in a special feature space. The effectiveness of MMD largely depends on the kernel609

function chosen (implicitly representing the feature space), which affects how well it can spot differences610

between various types of data. Inappropriate kernel choice can leave the metric insensitive to subtle differences611

in the distribution (Gretton et al., 2012b; Sriperumbudur et al., 2009) (see Fig. 8). The MMD can be estimated612

efficiently and is differentiable, and thus often used as a loss function for training generative models (Arbel613

et al., 2019; Li et al., 2017; Bińkowski et al., 2021; Briol et al., 2019). Yet, a kernel must satisfy certain614

criteria, e.g., positive definiteness, making the design of new kernel functions challenging. Such constraints are615

relaxed for FID-like metrics, which focus on explicit representations of the embedding, whereas (kernel) MMD616

instead focuses on implicit representations. One advantage, however, is that the implicit embedding allows for617

infinite dimensional feature spaces (through characteristic kernel functions). These can be proven to be able618

to discriminate any two distinct distributions, something that is impossible through explicit representations619

used by the FID. Recently, Kübler et al. (2022a) proposed a method to estimate MMD via a witness function620

that determines MMD (Appendix A.2). This method is closely related to C2ST in that both two estimate a621

discrepancy among distributions via a classifier (Kübler et al., 2022a, Section 5).622

Network-based Network-based approaches for evaluating distributions focus on the analysis of complex623

data, emphasizing the importance of capturing high-level, semantically meaningful features. These methods624

leverage neural networks to project data into a lower-dimensional, feature-rich space where traditional625

statistical distances can be applied more effectively. This is particularly important for tasks where the visual626

or semantic quality of the data is important, making them a popular choice for assessing generative models627

in domains such as image and text generation. The primary challenge lies in the design of suitable network628

architectures that can extract relevant features for accurate distribution comparison. Even more important629

than for the C2ST, this network must be well-established and shared which is a necessary but not sufficient630

criterion (Chong & Forsyth, 2020) to compare different results. While such well-established defaults exist for631

images (Szegedy et al., 2015a; Radford et al., 2021), this is not the case for other domains. For example, the632
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time series generation community did not yet establish a default, and embedding nets networks are either633

trained or chosen by the authors (Smith & Smith, 2020; Jeha et al., 2021). We showed demonstrated that634

the class-sensitivity of FID (Section 3.3) tends often leads to model collapse(such as GANs), but might not635

necessarily reflect general , as seen in GANs. However, it may not accurately reflect the overall image quality.636

In factFor example, Betzalel et al. (2022); Kynkäänniemi et al. (2022); Jayasumana et al. (2023) found that637

relevant features sometimes can disagree with human judgment and that CLIP embeddings align more closely638

to what humans perceive as favorable or unfavorable. Yet, FID features have been shown to align much639

better with human perception than traditional metrics (Zhang et al., 2018).640

Recent developments in network-based approaches include the use of Central Kernel Alignment (CKA; Cortes641

et al. 2012) to compute the distance between network-embedded samples. CKA scores show considerable642

stability when evaluated with different choices of network architectures and layers (Yang et al., 2023). Another643

newly introduced metric, Mauve (Pillutla et al., 2021; Liu et al., 2021; Pillutla et al., 2023), can, for instance,644

be used to measure how close machine-generated text is to human language using an external language model645

to embed the samples from each distribution. This metric uses divergence frontiers to take into account the646

trade-off between quality and diversity when evaluating generative models.647

Closing remarks Ultimately, the choice of distance hinges on the nature of the data under consideration and648

the specific characteristics of it one aims to compare. Given a specific particular dataset and problem, one will649

likely have it may be necessary to look beyond the distances discussed in this paper. For exampleinstance, in the650

realm of human-centric data like such as images and audio, the perceptual indistinguishability of distributions651

is importantcrucial (Gerhard et al., 2013; Zhang et al., 2018). Time series data, characterized by its with its652

inherent temporal structure, demand metrics that account for requires metrics that accommodate temporal653

shifts and variations in a manner that does not disproportionately penalize without disproportionately654

penalizing minor discrepancies in timing, such as Dynamic Time Warping (Müller, 2007) , or by using655

frequency informationor frequency-based methods (Hess et al., 2023). In general however, irrespective656

Additional recent works propose new distances based on fields such as topology (Barannikov et al. 2021).657

In general, regardless of the specific use-caseuse case, it is advisable to use multiple distances in order distance658

measures to obtain a full picture, as using a single distances individually could support comprehensive view,659

as relying on a single measure may lead to competing conclusions about the model that is to be evaluatedunder660

evaluation.661

Throughout this paper, we have explained and analyzed four approaches of to measuring statistical distance.662

While this is represents only a small subset of all possible distances availablemeasures, we hope to have663

provided the foundational knowledge with which researchers can researchers need to find, understand, and664

interpret statistical distances specific relevant to their own scientific applicationapplications.665

Code availability666

All code for replicating and running our analysis is available at: https://anonymous.4open.science/r/tmlr-667

anonymized-6AC5/.668
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A Appendix1035

A.1 Generative Models in Science1036

Table S1: Example generative models in science. Simulators include mechanistic models, DNN based
models e.g. VAEs, GANs, Diffusion models. This is not an exhaustive list regarding disciplines using
generative models nor generative models used in the listed disciplines.

ML model Simulator
Biology
- single cell sequencing [1–5] [6–11]
- cellular biology [12] [13–15] [16–19]
Geoscience
- ice flow modelling [20–24] [25–27]
- Numerical weather prediction [28–30] [31–33]
Chemistry
- molecule generation [34] [35–45]
Astronomy
- astronomical images [46–48] [49; 50]

A.2 Details about Maximum Mean Discrepancy1037

Here we provide different formulations and examples of MMD.1038

Definition A.1 (Feature Map Definition of MMD)

MMD2[φ, p1, p2] = ‖Ep1(x)[φ(x)]− Ep2(y)[φ(y)]‖2H, (5)

where p1(x) and p2(y) are the probability distributions of random variables x, y ∈ X , and φ : X → H.1039

Generally X and H are defined as a topological space, and the reproducing kernel Hilbert space (RKHS),1040

respectively, but readers can simply think of the euclidean space RN for the first examples in the main text.1041

For the identity feature map φ(1) : R→ R, φ(1)(x) = x, MMD can be computed as1042

MMD2[φ(1), p1, p2] = ‖Ep1(x)[x]− Ep2(y)[y]‖2R
= (Ep1(x)[x]− Ep2(y)[y])2

MMD[φ(1), p1, p2] = |µp1 − µp2 |.

And for the quadratic polynomial feature map φ(2) : R→ R2, φ(2)(x) =
[
x
x2

]
, MMD can be computed as

MMD2[φ(2), p1, p2] = ‖Ep1(x)[
[
x
x2

]
]− Ep2(y)[

[
y
y2

]
]‖2R

= ‖
[

µp1

µ2
p1

+ σ2
p1

]
−
[

µp2

µ2
p2

+ σ2
p2

]
‖2R

MMD2[φ(2), p1, p2] = (µp1 − µp2)2 + (µ2
p1

+ σ2
p1
− µ2

p2
− σ2

p2
)2.

Definition A.2 (Kernel Definition of MMD)

MMD2[φ, p1, p2] = ‖Ep1(x)[φ(x)]− Ep2(y)[φ(y)]‖2H
= 〈Ep1(x)[φ(x)],Ep1(x)[φ(x)]〉H + 〈Ep2(y)[φ(y)],Ep2(y)[φ(y)]〉H − 2〈Ep1(x)[φ(x)],Ep2(y)[φ(y)]〉H
= Ep1(x),p′1(x′)[〈φ(x), φ(x′)〉H] + Ep2(y),p′2(y′)[〈φ(y), φ(y′)〉H]− 2Ep1(x),p2(y)[〈φ(x), φ(y)〉H]

MMD2[k, p1, p2] = Ep1(x),p′1(x′)[k(x, x′)] + Ep2(y),p′2(y′)[k(y, y′)]− 2Ep1(x),p2(y)[k(x, y)].
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The definition of MMD can be rewritten through the notion kernel mean embedding. For given distribution p(x),
the kernel mean embedding Ep(x)[k(x, u)] ∈ H is an element in RKHS that satisfies 〈Ep(x)[k(x, u)], f(u)〉H =
Ep(x)[f(x)] for any f ∈ H with argument u ∈ X . The embedding Ep(x)[k(x, u)] is known to be determined
uniquely if a corresponding kernel is bounded, i.e., ‖k(x, x′)‖H <∞ for any x. Then, as shown in Gretton
et al. (2012a), MMD2 can be represented as

MMD2[k, p1, p2] = ‖Ep1(x)[k(x, u)]− Ep2(y)[k(y, u)]‖2H.

MMD can also be defined more generally as the integral probability metric.1043

Definition A.3 (Supremum Definition of MMD)

MMD[F , p1, p2] = sup
f∈F

(Ep1(x)[f(x)]− Ep2(y)[f(y)]). (6)

Here, F is a class of functions f : X → R. Where we take F as the unit ball in an RKHS H with associated1044

kernel k(x, x′) (Gretton et al., 2012a), the function that attains supremum (the witness function) is1045

f(u) =
Ep1(x)[k(x, u)]− Ep2(y)[k(y, u)]
‖Ep1(x)[k(x, u)]− Ep2(y)[k(y, u)]‖H

.

Assigning f(u) into (Eq. (6)), we have

MMD2[F , p1, p2] =
(

sup
f∈F

(Ep1(x′)[f(x′)]− Ep2(y′)[f(y′)])
)2

=
(Ep1(x),p′1(x′)[k(x, x′)] + Ep2(y),p′2(y′)[k(y, y′)]− 2Ep1(x),p2(y)[k(x, y)]

‖Ep(x)[k(x, u)]− Ep2(y)[k(y, u)]‖H

)2

=
(‖Ep1(x)[k(x, u)]− Ep2(y)[k(y, u)]‖2H
‖Ep1(x)[k(x, u)]− Ep2(y)[k(y, u)]‖H

)2

= ‖Ep1(x)[k(x, u)]− Ep2(y)[k(y, u)]‖2H,

which is equal to the kernel definition of MMD.1046

Definition A.4 (Characteristic Kernel) A kernel is called characteristic when the kernel mean embedding

p(x) 7→ f(u) = Ep(x)[k(x, u)] ∈ H

is injective (Sriperumbudur et al., 2011; Fukumizu et al., 2008).1047

This means that, if a characteristic kernel is used, the embedding into the RKHS can uniquely preserve all
information about a distribution. In our evaluation, we utilize the Gaussian kernel, one of the well-known
characteristic kernels. Another example of a characteristic kernel is the Laplacian kernel, which is defined by

k(x, x′) := exp
(
− β|x− x′|

)
.

Note that linear and polynomial kernels are not characteristic, while they are quite popular in natural1048

language processing.1049

A.3 Details about Formal Definition of Wasserstein and Sliced-Wasserstein distancesDistance1050

Formally, the Wasserstein distance is described in measure-theoretic terms. We first state this definition, and1051

then provide an accessible interpretation in the common case that the measures have well-defined probability1052

density functions.1053
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Let (M,ρ) be a Polish space, µ, ν ∈ P (M) be two probability measures, and let q ∈ [1,+∞). Then the
Wasserstein-q distance between µ and ν is defined as

Wq(µ, ν) =
(

inf
γ∈Γ(µ,ν)

Ex1,x2∼γρ(x, y)q
)1/q

,

where Γ(µ, ν) is the set of all couplings between µ, ν.1054

Consider the case where M ⊆ Rd, ρ is the q-norm || · ||q, and µ and ν have well-defined probability density1055

functions p1 and p2 respectivelyThe Sliced-Wasserstein distance is closely connected to the Radon transform1056

(Helgason, 1980). We direct readers to Bonneel et al. (2015) for details. Here we provide a shorter definition1057

following Definition 2.9 of Nadjahi (2021).1058

Suppose that M ⊂ Rd, and denote by Sd−1 = {θ ∈ Rd : ||θ||2 = 1} be the unit sphere with respect to the
Euclidean norm. Let u∗ : X → R be a the linear form given by u∗(x) = 〈u, x〉, and q ∈ [1,+∞). Then
the Wasserstein-Sliced-Wasserstein distance (of order qnorm can be written as ) is defined for any measures
µ, ν ∈ Pq(X) as

WSW q(p1µ, p2ν) = inf
γ∼Γ(p1,p2)

(
Ex1,x2∼γ ||x1 − x2||

∫
Sd−1

W q
q(u∗#µ, u∗#ν)dU(u)

)
1
q 1/q,

where Γ(p1, p2) is the set of all couplings, that is all possible “transportation plans”, between p1, p2.1059

γ ∈ Γ(p1, p2) is a joint distribution over (x1, x2) with respective marginals p1 and p2 over x1 and x2. Where1060

U is the uniform distribution on Sd−1, and for any u ∈ Sd−1, u∗# denotes the push-forward operator of u∗.1061

The Sliced-Wasserstein distanceis similarly defined in measure-theoretic terms for the measures As for the1062

Wasserstein distance, the definition becomes more intuitive in the case where µ and ν . We refer the reader1063

to Nadjahi (2021) for details. In the less general case described above, we can similarly provide a more1064

intuitive definition. In admit the probability density functions (p1 and p2 respectively). In particular, the1065

random projection directions described in 2.1 u are uniformly random vectors u ∈ Sd−1, the unit sphere in1066

Rd. Projecting in Sd−1. Therefore, projecting the distributions p1 and p2 onto u induces one-dimensional1067

distributions pu1 and pu2 with samples uTxi, where x1 ∼ p1 and x2 ∼ p2. The Sliced-Wasserstein-q distance1068

can then be written as1069

SWq(p1, p2) = Eu∼U(Sd−1)[Wq(pu1 , pu2 )],
1070

SWq(p1, p2) =
(
Eu∼U(Sd−1)[W q

q (pu1 , pu2 )]
)1/q

. (7)

where U(Sd−1) is the uniform distribution over vectors on the unit sphere Sd−1.1071

A.4 Dependence of SW Distance on Number of Projections1072

All SW distance experiments in the main text were performed with the SW distance approximate with 1001073

random projections to approximate the expectation Eq. (7). Here, we additionally show the dependence1074

of the SW distance approximation with finite projections on the d-dim Gaussian example (see Sec.±3), for1075

d ∈ {10, 100, 1000} (Fig S1). While the sample-based approximation to the analytic 1-dimensional Wasserstein1076

distance is biased (Sec. 2.1), the Monte Carlo approximation to the expectation Eq. (7) is an unbiased estimate1077

of the sample-based Wasserstein distance. We observe that for very high (1000)-dimensional distributions,1078

the SW distance estimate converges quickly, and the choice of 100 random projections for the computation of1079

the SW distance is appropriate.1080

A.5 C2ST scores below 0.51081

In practice the C2ST score can sometimes turn out to be below .5. That is, the trained classifier performs1082

systematically worse than a random classifier. A potential reason for this effect is the existence of near1083

duplicates or copies between the two different sets. Before training the classifier, these duplicates are assigned1084

opposite class labels. When a given pair of such duplicates is then split into one that belongs to the training1085
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Figure S1: The SW distance estimate is not strongly sensitive to the number of random
projections. We compare the SW distance estimate for the {10, 100, 1000}-dimensional Gaussian task
with 1 shifted dimension (Sec. 3) as we increase the number of random projections used in the estimation.
As the number of projections increases, the variance of the SW distance estimate decreases, but across all
dimensionalities considered, the SW distance estimate has converged by 100 random projections.

Figure S2: Trade-offs illustrated through optimization of a miss-specified model. We fitted a
misspecified model (a two-dimensional Gaussian) by using different distances to a multi-modal distribution
(similar to Theis et al. 2016). Note, that for a well-specified model each distance would give a perfect fit
(Section A.6.2). In the optimization we minimized the SW distance, the C2ST classifiability, and the MMD
with a Gaussian Kernel (details in Section A.6.1). Plotted are the contour lines of .25, .75, 1, and 2.5 standard
deviations of the fitted Gaussians. The model optimised with SW is mass-covering: it covers both modes
and therefore also assigns density to low-density regions of the true distribution, thus producing varied, but
potentially unlikely samples. The models optimised with C2ST and MMD are mode-seeking: they have high
densities only in the largest mode of the true distribution, and thus produces likely, but unvaried samples.

set and one that belongs to the test set, the classifier is biased towards predicting the wrong class for the1086

duplicate in the test set. This effect is particularly noticeable if the classifier was not carefully regularized1087

during training, and thus memorized the class label of the duplicate in the training set.1088

A.6 Sliced-Wasserstein, MMD and C2ST as optimization target1089

A.6.1 Fitting a Gaussian with gradient descent1090

We provide an illustrative example of which distributions are obtained when using Wasserstein, MMD and1091

C2ST distances as a goodness of fit criterion, for both a miss-specified example, in Fig. S2 and well-specified1092

example Fig. S3. We can see that in the miss-specified example different distances make different trade-offs,1093

for example whether they are mode-seeking, and produce likely but unvaried samples, or are mode-covering,1094

where they produce varied, but also potentially unlikely samples.1095

For Wasserstein, optimisation has been studied more formally in previous work (Bernton et al., 2019; Yi1096

& Liu, 2023). Wasserstein was used as training objective in Arjovsky et al. (2017) and MMD was used as1097
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training objective in Bińkowski et al. (2021); Dziugaite et al. (2015); Li et al. (2015). Optimizing the C2ST1098

classifier at the same time as the parameters of our generative model is similar to training a GAN (Goodfellow1099

et al., 2014), but for simplicity we instead optimized for the closed-form optimal C2ST as for this toy example1100

we have access to true densities. While FID can be used as optimization target in principle (Mathiasen &1101

Hvilshøj, 2021), its applicability to our toy example here is less obvious, so we excluded it here.1102

In order to fit the (miss-specified) Gaussian model,

p(x) = N (µ,Σ)

to the ground truth distribution ptrue, which is a mixture of Gaussians, we proceed as follows. Let CCT
1103

denote the Cholesky decomposition of Σ. We compute gradients with respect to µ and C by using the1104

reparameterization trick; by generating samples as µ+ Cε, with ε ∼ N (0, I).1105

For Wasserstein we used as loss the Sliced Wasserstein distance, for MMD, we used a Gaussian Kernel with1106

bandwidth set according the median heuristic.1107

For C2ST, we can evaluate the probability densities of samples from both the learned Gaussian and the1108

ground truth mixture of Gaussians, so we minimize the accuracy of the closed-form optimal classifier. For1109

each sample, we evaluate the log-probability density of the sample under each distribution, softmax the two1110

resulting values, and use those as the classifier predicted probabilities. We then use binary cross-entropy as1111

the loss function.1112

We used the ADAM optimizer (Kingma & Ba, 2015), with learning rate=0.01 and default momentums, using1113

2500 epochs of 10000 samples.1114

A.6.2 Fitting a mixture of Gaussians with Expectation-Maximisation1115

We also include an example where the model we fit is well-specified, which in this case means it is also a1116

mixture of two Gaussians (Fig. S3. As directly optimizing a mixture distribution with gradient descent is not1117

straightforward, we used an Expectation-Maximization algorithm (where we use the distances instead of the1118

log-likelihood in the maximisation step)1119

Our model is specified by1120

p(x) = w1N (µ1,Σ1) + w2N (µ2,Σ2)

which we can write as a latent-variable model, where the latent variables are the cluster assignments:

p(x) =
2∑
k=1

p(x|z = k)p(z = k),

with p(x|z = k) = N (µk,Σk) and p(z = k) = wk.1121

We then iteratively performed the following two steps to optimise the model.1122

E-step: For each of the N datapoints x̂i from ptrue, we calculated the probability of it belonging to mixture1123

component 1 or 2:1124

p(z = k|x̂i) = p(x̂i|z = k)p(z = k)∑2
k′ p(x̂i|z = k′)p(z = k′)

.

M-step: We updated the mixture weights according to:

wk = 1
N

N∑
i

p(z = k|x̂i)
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Figure S3: Optimising distances in a well-specified model setting When fitting a well-specified model
(here, a mixture of two Gaussians), by using different distances in the loss, we can see that each model
converges to the global optimum. Plotted are the contour lines of .25, .75, 1, and 2.5 standard deviations of
the fitted Gaussians multiplied by their corresponding mixture weight.

Next, for each of the N datapoints, we first sampled a cluster assignment according to zi ∼ p(z|x̂i). Then for1125

each group of Nk datapoints assigned to cluster k we sampled Nk times according to xi ∼ p(x|zi), again using1126

the reparameterisation trick. As before we computed the loss using a statistical distance, now separately for1127

the two groups of samples assigned to either mixture component, and used gradient to optimise µk,Σk1128

Again, we used the ADAM optimizer (Kingma & Ba, 2015), with learning rate=0.01 and default momentums,1129

using 2000 epochs of 5000 samples.1130
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Figure S4: The larger the difference between two distributions the fewer samples suffice to tell
the true and shifted distribution apart. We compare sample sets with varying sample sizes (between 8
and 80 samples per set) of a ’true’ distribution either with a second dataset of the same distribution or with
a sample set from an approximated/shifted distribution. We show the mean and standard deviation over
five runs of randomly sampled data. (a) Distances for the 2d-MoG example shown in Fig. 1 compared to
samples from a unimodal Gaussian approximation with the same mean and covariance. (b) Distances for a
ten-dimensional standard normal distribution, for which the first dimension is shifted by one for the shifted
example. (c) Distances for a ten-dimensional standard normal distribution, for which all dimensions are
shifted by one for the shifted example.

A.7 Additional scaling experiments with different sample size budgets and ranges1131

In Fig. 8, we evaluated the robustness of the measures against the number of samples and the dimensionality1132

of the data. We observed notably poor performance of the measures in scenarios with limited data. Here, we1133

further examine the performance of the distances across datasets of varying sample sizes, particularly for1134

small sample set sizes, ranging from only 8 to 80 samples per set (Fig. S4). We examine three distinct data1135

configurations where the distinction between the true and approximated distributions progressively increases1136

from subpanels S4 a to c. Across all distances, it becomes evident that the larger the disparity between the1137

two distributions, the fewer samples are needed for differentiation. In the experiment where all dimensions1138

are mean-shifted by one, a sample size of 8 is sufficient to distinguish between the distributions. However,1139

for less distinct distributions, such as the unimodal Gaussian or a mean-shift by one in only one dimension1140

(Supp. Fig. S4 a, b), all distances exhibit poor performance in distinguishing between the distributions.1141
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Figure S5: The impact of dimensionality varies across distances, with certain distances facing
particular challenges in higher dimensional spaces. We compare sample sets of varying dimensionality
(between 5 and 1000) of a ’‘true’ distribution either with a second dataset of the same distribution or with a
sample set from an approximated/shifted distribution. The sample size is fixed to 10k for all experiments
and we show the mean and standard deviation over five runs of randomly sampled data. The bandwidth
parameter in Gaussian Kernel MMD is set to 10 for all experiments. (a) Distances for a sample set from an
n-dimensional standard normal distribution, for which the first dimension is shifted by one. (b) Distances for
a sample set from an n-dimensional standard normal distribution, for which all dimensions are shifted by one.
(c) Distances for a sample set from an n-dimensional standard normal distribution, for which variances are
increased by one for all dimensions.

A.8 Additional scaling experiments for different dimensionality of the data1142

When comparing the robustness of the measures with respect to the dimensionality of the data in Fig. 8,1143

we observed a degradation in the ability to distinguish between distributions as dimensionalities increased.1144

Notably, only the C2ST measure retained the capability to distinguish between the two distributions in higher1145

dimensions which is aligned with the intuition that a classifier can easily pick up on differences in a single1146

dimension. Extending this analysis, Fig. S5 presents similar experiments conducted on datasets where we1147

compare an n-dimensional standard normal distribution with one where either all dimensions are mean-shifted1148

by one (thus aligning with the C2ST experiment in Fig. 5b) or where all variances are increased by one.1149

Fig. S5a corresponds to the experiment outlined in Fig. 8c on dimensionality. The bandwidth parameter1150

for the MMD distance has been adjusted to suit the particular data configuration and is represented1151

by the integer in the y-axis label. Generally, we notice that the Sliced-Wasserstein distance and MMD1152

face difficulties in higher-dimensional spaces, especially when handling distributions that are only slightly1153

distinct if the respective hyperparameters are kept constant across dimensions. In contrast, the C2ST dis-1154

tance consistently demonstrates good performance across all three experiments and for all ranges of dimensions.1155

1156

A.9 Comparisons of practical compute times of different measures1157
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Before computing such measures, in particular for scaling experiments such as the ones presented here, where1158

measures are calculated across a large range of sample sizes N and data dimensions D, the practical compute1159

time of the chosen measures should be considered. Depending on the downstream application, it might1160

be time-critical to quickly evaluate distances which might favor some measures over others. Aligned with1161

theoretical considerations regarding sampling complexity etc. as presented in Table 1), empirical compute1162

times vary between the different measures. Given that empirical computational times for a single measure1163

itself vary depending on the exact implementation, compute infrastructure, and problem at hand, we list1164

approximated compute times for running the scaling experiments in Table S2. The calculated runtime1165

combines both the comparisons of the ‘true‘ and the ‘shifted‘ or ‘approximated‘ experiments. Each experiment1166

contains five repeats across different sampled data subsets. The sample size experiment contains eight different1167

sample size values N (50, 100, 200, 500, 1000, 2000, 3000, 4000), and the dimensionality experiment scales1168

tests six different D (5, 10, 50, 100, 500, 1000). For more details, see Section 3. The version of C2ST we1169

use here, which is based on NN-based classifiers, takes orders of magnitude longer to compute than SW and1170

MMD. Note, however, that alternative implementations and classifier variants could speed this up.1171

sample size experiment dimensionality experiment
2-dim MoGs 10-dim Gaussian n-dim Gaussian

SWD 0.3 s 0.3 s 1.5 s
C2ST 150 s 300 s 1500 s
MMD 3 s 3 s 80 s

Table S2: CPU wallclock run times for the comparison scaling experiments in Fig.8. The runtime combines
both the comparisons of the true vs. the shifted or approximated distribution. Values are rounded estimates.
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A.10 Sensitivity of the MMD bandwidth parameterkernel choices and hyperparameters1172

The general formulation of MMD allows for a wide range of kernel choices, each potentially with their own1173

hyperparameters. These choices can have significant effect on its behavior. We provide some experiments1174

demonstrating of the importance of well-tuned bandwidth parameters for Gaussian Kernel MMD as well as1175

the impact of different kernels.1176
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Figure S6: The bandwidth parameter in Gaussian Kernel MMD is a sensitive parameter that
requires careful selection for each dataset. The sample size is fixed to 10k for all experiments and we
show the mean and standard deviation over five runs of randomly sampled data. (a) MMD2 MMD2 distance
with varying bandwidth parameters between 0.1 and 5 for the 2d-MoG example compared to samples from a
unimodal Gaussian approximation with the same mean and covariance. (b) MMD2 MMD2 distance with
varying bandwidth parameters between 0.1 and 20 for a 10-dimensional standard normal distribution, for
which the first dimension is shifted by one for the shifted example. (c) MMD2 MMD2 distance with varying
bandwidth parameters between 1 and 40 for a 100-dimensional standard normal distribution, for which the
first dimension is shifted by one for the shifted example.

We first vary the bandwidth parameter with fixed sample sizes for the three example datasets used in Section1177

3 (Fig. S6). We show that the estimated MMD values vary significantly across bandwidths, and both setting1178

the bandwidth too low or too high yield poor results. However, we note that the values yielded by the median1179

heuristic (bandwidths of 1, 5, and 10 for the three datasets, respectively, as shown in the main text) are quite1180

near the peaks of the curves at which MMD most effectively distinguishes the distributions.1181

We then choose a set of bandwidth parameters to compare across the scaling experiments of Section 3 (Fig.1182

S7). Again, poor choices of bandwidth values give misleading results, but bandwidth choices guided by the1183

median heuristic generally perform well.1184

Finally, we vary the kernel choice across the scaling experiments of Section 3 (Fig. S7), using both a linear1185

kernel (MMDlin) and the distance-induced kernel corresponding to the standard energy distance (MMDen).1186

As expected, the linear kernel fails to distinguish distributions with matching means (2d-MoG) but performs1187

reasonably well for distributions with mean-offsets even at high dimensions. The energy kernel performs1188

similarly to the Gaussian kernel, without the added dependence on sensitive hyperparameters.1189
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Figure S7: Evaluating the effect of varying bandwidth parameters in Gaussian Kernel MMD
for different sample sizes and dataset dimensionalities. (a,b) We compare sample sets with varying
sample sizes (between 50 and 4k samples per set) of a ’true’ distribution either with a second dataset of
the same distribution or with a sample set from an approximated/shifted distribution. We show the mean
and standard deviation over five runs of randomly sampled data. (a) MMD2 MMD2 distance with varying
bandwidth parameters (0.5, 1, 2) for the 2d-MoG example shown in Fig. 1 compared to samples from a
unimodal Gaussian approximation with the same mean and covariance. (b) MMD2 MMD2 distance with
varying bandwidth parameters (1, 3, 5) for a ten dimensional standard normal distribution, for which the first
dimension is shifted by one for the shifted example. (c) MMD2 MMD2 distance with varying bandwidth
parameters (5, 10, 40) based on 10k samples from a standard normal distributions with varying dimensions
(between 5 and 1000). As in (b) the first dimension is shifted by one for the ’shifted’ dataset. Here we show
one run due to computational costs.
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Figure S8: Comparison of Gaussian Kernel MMD to different MMD kernels without tunable
parameters. We compare the performance of MMD2 as presented in Fig.8 with a Gaussian kernel with
bandwidth parameters adjusted for each dataset (1,5,10) (top row) to an MMD implementation with a linear
kernel (middle row, MMDlin; k(x, y) = 〈x, y〉) and an energy-distance based kernel, i.e., the kernel induced
by the euclidean distance Sejdinovic et al. (2013) (bottom row, MMDen; k(x, y) = ‖x‖p + ‖x‖p − ‖x− y‖p,
with p = 2). The experiments, parameters for the Gaussian kernel bandwidth (indicated in the y-labels), and
sample sizes etc. are identical to Fig. 8.
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A.11 Additional results for ImageNet generative models1190

We generated 50,000 images using an unconditional diffusion model explicitly trained on ImageNet 64x64, as1191

well as 100,000 class-conditional images from a conditional variant of the same model (Dockhorn et al., 2022)1192

(we refer to it as GENIE). For additional comparison, we also generated 50,000 images using a consistency1193

model explicitly trained on ImageNet 64x64 (Song et al., 2023) (we refer to it as CM). We compare these1194

generated images to the ImageNet 64x64 test set.1195

For further comparison, we also evaluated image-generative models not specifically trained to reproduce1196

ImageNet but designed for general-purpose image generation, such as Stable Diffusion and Midjourney1197

(Rombach et al., 2022b; Midjourney, 2022). While these models might generate images that are more1198

appealing to human observers, they do not necessarily produce images that align with the images contained1199

in the ImageNet test set. We use the recently published million-scale dataset GenImage (Zhu et al., 2023).1200

Especially, we include the models BigGAN Brock et al. (2018), ablated diffusion model (ADM) Dhariwal1201

& Nichol (2021), Glide (Nichol et al., 2021), Vector Quantized Diffusion Model (VQDM) Gu et al. (2022),1202

Wukong Wukong (2022), Stable diffusion 1.5 (SD1.5) Rombach et al. (2022b) and Midjourney Midjourney1203

(2022).1204

It’s important to note that not all models are specifically trained to capture ImageNet 64x64 images. For1205

instance, models like Stable Diffusion and Midjourney are trained on much larger datasets (Schuhmann et al.,1206

2022; Lin et al., 2014). Additionally, most of the models mentioned, except for ADM and BigGAN, are1207

text-to-image generative models. To minimize significant distribution shifts, these models were prompted1208

with the phrase "photo of [ImageNet class]" Zhu et al. (2023). Furthermore, all the other models generate1209

images of larger resolution, which we resized to 64x64. Hence, we also only compare low-resolution features1210

of natural images.1211

We evaluate each of the metrics on three random subsets, each consisting of 40,000 image embeddings. We1212

show the average value for each model and metric in Table S3. Interestingly, both what is considered "closest"1213

to ImageNet, as well as the relative ranking differs for different metrics, although with some consistent1214

trends. Overall, the most recent unconditional models trained on ImageNet 64x64 perform best, as expected.1215

However, which one is considered best differs for different metrics. Metrics that consider similar features of1216

the distribution i.e., FID and MMDpoly (statistics up to order 2 or 3) prefer GENIE, whereas universally1217

consistent metrics do prefer CM (SWD and MMD64). The estimated C2ST values differ based on the chosen1218

classifier.1219

Overall, this analysis highlights that the choice of metric (i.e., what features it compares) and the specific1220

implementation details (such as the classifier in C2ST estimates) matter and can lead to varying results.1221

Table S3: Evaluating discrepancy to the ImageNet test set.Each row presents various metrics computed
on the Inception v3 embeddings of images. Columns correspond to different generative models. The initial
three models are trained on ImageNet 64x64, serving as the reference point for comparison. Subsequent
models are trained on alternative datasets or higher-resolution versions. In bold, we highlight the lowest
value for each section of the table.

GENIE CM BigGAN ADM Glide VQDM WK SD1.5 Midjourney
FID 5.1 · 100 5.3 · 100 1.2 · 101 1.1 · 101 1.1 · 101 9.8 · 100 1.1 · 101 1.2 · 101 1.0 · 101

SWD 2.3 · 10−2 2.2 · 10−2 5.3 · 10−2 5.1 · 10−2 4.9 · 10−2 4.0 · 10−2 4.8 · 10−2 5.0 · 10−2 4.5 · 10−2
MMD64 7.0 · 10−5 6.3 · 10−5 1.9 · 10−4 1.9 · 10−4 1.8 · 10−4 1.5 · 10−4 1.9 · 10−4 1.9 · 10−4 1.7 · 10−4
MMDlin 2.5 · 10−1 2.3 · 10−1 6.3 · 10−1 6.3 · 10−1 6.2 · 10−1 5.2 · 10−1 6.2 · 10−1 6.4 · 10−1 6.1 · 10−1
MMDpoly 1.1 · 104 1.6 · 104 3.1 · 104 3.4 · 104 3.2 · 104 2.2 · 104 3.7 · 104 3.1 · 104 2.9 · 104

C2STknn 0.70 0.69 0.81 0.82 0.82 0.82 0.83 0.83 0.82
C2STnn 0.72 0.77 0.87 0.85 0.85 0.85 0.86 0.86 0.95
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A.12 Details about scientific application examples1222

For the motion discrimination task, we used the decision times of a single animal during both correct and1223

erroneous trials with dot motion coherence of 12.8%, leading to a one-dimensional dataset of 587 samples.1224

1023 samples. From these 80% were used as a train set and 20% as a test set DDMs were implemented using1225

the pyDDM toolbox (Shinn et al., 2020). DDM1 used a linear drift and exponential decision boundaries. In1226

contrast, DDM2 used a constant drift and a constant decision boundary. Both were sampled 1,000 times to1227

create the two synthetic datasets. The real chest X-ray dataset consists of 70,153 train samples and 25,5961228

test samples, the generated datasets from PGGAN and SD consist of 10,000 and 2,352 samples respectively.1229

In both applications we computed metrics between pairs of 10 random subsets from the compared distributions1230

(scatter points on the violin plots). We computed the MMD with a bandwidth of 50 for the medical imaging1231

datasets and a bandwidth of 0.5 for the decision time dataset.1232
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