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ABSTRACT

Machine-learning methods have enabled RNA modification detection from
nanopore direct RNA sequencing. However, the existing nanopore-based RNA
modification detection tools are limited, as each modification model requires a
large amount of data and compute resources for training. Here we developed
arowana, a transformer-based training framework for basecaller and RNA modifi-
cation detection. We trained arowana modification callers and showed their ability
to detect nine modifications stemming from the four nucleotide bases accurately.
This demonstrates arowana’s potential to be expanded to other modifications.

1 INTRODUCTION

Naturally occurring RNA modifications are chemically modified nucleotide bases from co- and post-
transcriptional processing. These RNA modifications including pseudouridine (ψ), 5-methylcytidine
(m5C), and N6-methyladenosine (m6A) affect various biological processes, some of which are as-
sociated with diseases including cancers (Roundtree et al. (2017b); Hong et al. (2022); Song et al.
(2022); Roundtree et al. (2017a)). Apart from these naturally existing ones, RNA modifications are
vital to commercial RNA products, including therapeutics, composed of synthetic RNAs replacing
unmodified uracil with N1-methyl-pseudouridine (m1ψ) or 5-methoxyuridine (mo5U) to lower the
products’ immunogenicity, ensuring product efficacy and safety (Karikó et al. (2008); Morais et al.
(2021)).

Conventionally, RNA modifications are measured by mass spectrometry, but mostly in rRNAs and
tRNAs due to its unscalable sample preparation requirement. Short-read-sequencing-based epi-
transcriptomic profiling methods have widened RNA modification detection in various organisms,
enabling the generation of epitranscriptomic maps. Still, the convoluted wet-lab procedures re-
quired by these methods limit RNA modification detection adoption across laboratories. Nanopore
direct RNA sequencing has made RNA modification detection accessible, where neural-network-
based modification callers differentiate the nanopore-emitted current signals from the transloca-
tion of modified and unmodified nucleotides with high accuracy (Zhang et al. (2022); Wan et al.
(2022); Zhao et al. (2022); Jain et al. (2022); Begik et al. (2022)). Still, these models require a large
amount of data and compute resources for training; hence, existing models for the latest direct RNA-
sequencing RNA004 chemistry only limit to detecting m6A, m5C, Inosine, and ψ (ONT-Dorado;
ONT-Remora).

The transformer architecture has shown success in speech-to-text translation, which is similar to
basecalling nanopore current signals to their corresponding nucleotide bases. Moreover, the trans-
former decoder representations learn rich information from model training and can serve as trans-
ferable features for downstream machine-learning tasks (Radford et al. (2023); Chemudupati et al.
(2023)). Adapting OpenAI’s Whisper speech-to-text transformer model for nanopore basecalling,
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we developed arowana, a direct RNA sequencing-specific basecaller and modification-caller training
framework, which trains logistic regression classifiers with the transformer decoder representations
(Radford et al. (2023); Chemudupati et al. (2023)). We trained arowana modification callers from
in vitro-transcription-generated modified samples and showed that the arowana modification callers
can accurately detect nine modifications from the four nucleotides (A, C, G, T) at a single-molecule
level. arowana demonstrates that decoder representations serve well as informative features and can
achieve high accuracy even with a simple model. This eliminates the need to train complex models
for modification detection, showing arowana’s potential to train modification callers for any RNA
modifications of interest.

2 METHODS

Figure 1: The arowana basecaller and modification caller training framework.

2.1 PRETRAINING THE AROWANA BASECALLER

2.1.1 TRAINING DATA

The arowana basecaller was trained using HEK293T RNA004 direct RNA sequencing data from the
Singapore Nanopore Expression Project (SGNEx) (Chen et al. (2021)), which includes pod5, fastq,
and bam files. We use 10 randomly selected signal and sequence segments from each of the 13,500
genes with more than 10 signal and sequence segments for training the arowana basecaller.

2.1.2 DATA PROCESSING FOR MODEL TRAINING

The pod5 files were merged into one pod5 file with the pod5 merge command. The pod5 files
were converted to blow5 files with blue-crab version v0.2.0 with the p2s command. Segmentation
was performed with f5c version 1.2. The reads from the fastq file and the raw signals from blow5
file were indexed with the f5c index command. Then, f5c eventalign was run with the options –
rna –min-mapq 0 –min-recalib-events 100 –signal-index –scale-event –print-read-names, and the
–kmer model was used to specify the RNA004 kmer model. The output eventalign.txt file from f5c
eventalign was then processed with the arowana basecall train prep command, where each read is
separated into segments with 3,000 or fewer signal units and 150 or fewer nucleotides. The output of
arowana basecall train prep contains the following information for training the arowana basecaller:
read id, transcript id, the start and end of the signal, and the start and end positions of the sequence
based on the reference sequence.
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2.1.3 MODEL ARCHITECTURE

We adapted OpenAI’s open-source Whisper speech-to-text model, where we use eight encoder lay-
ers and eight decoder layers, to convert direct-RNA-sequencing signals to nucleotides [14]. The
arowana-adapted Whisper model takes in 3,000 signal unit segments to predict each nucleotide of
each sequence sequentially with beam search based on five tokens corresponding to the nucleotides
(A, C, G, T) and the end of sequence token (E). The predicted segments of each read are merged and
aligned to the reference sequences with mappy version 2.28.

We also adapted Whisper to additionally output the decoder’s representations, which are in the
dimensions of NR = 150 × 256, with 256 features corresponding to each of the 150 nucleotide
positions (Radford et al. (2023)). As some sequence segments are shorter than 150 nucleotides,
we trim the representations corresponding to the length of the sequence segment and merge the
trimmed representations from all sequence segments from each read. With parasail version 1.3.4, we
perform pairwise alignment of each basecalled sequence to their mappy-aligned reference sequence
and assign the representations based on the reference nucleotide.

2.1.4 MODEL TRAINING

We trained the arowana basecaller for 30 epochs with 1 NVIDIA® RTX™ 5000 Ada 16GB GDDR6
GPU for one week. The following hyperparameters were used for training: a learning rate of 9e-5,
an effective batch size of 62, and total accumulation steps of 32.

2.1.5 MODEL DISTILLING

We distilled the arowana basecaller by freezing the weights of the encoder layers and removing the
intermediate decoder layers, updating the weights of the first and last decoder layers (Supplementary
Figure 1). We trained the distilled arowana basecaller using all reads from the HEK293T RNA004
direct RNA sequencing data from the Singapore Nanopore Expression Project (SGNEx) for five
epochs with 1 NVIDIA® RTX™ 5000 Ada 16GB GDDR6 for 18 days. The following hyperpa-
rameters were used for training: a learning rate of 9e-5, an effective batch size of 400, and total
accumulation steps of 32.

2.2 TRAINING THE AROWANA MODIFICATION-CALLER

2.2.1 TRAINING DATA

Training data consists of direct RNA-Seq data generated (1) using unmodified RNA for the RNA
sequence of interest, and (2) using modified RNA for the RNA sequence and the modification of
interest. We designed two synthetic sequence libraries with two strategies: sequences containing
all possible kmers and sequences representing human cDNAs, and we generated data for nine RNA
modifications of interest (m1A, m6A, f5C, m5C, thG, ψ, m1ψ, mo5U, and s2U). Both DNA libraries
were pooled in equimolar concentrations and transcribed in vitro with modified and unmodified
nucleotides. For the unmodified RNA, only unmodified nucleotides were incorporated during in
vitro transcription. For the modified RNAs, one out of the four nucleotides (i.e. one of the A,
U, C, or G nucleotide identities) was substituted with modified nucleotides while the other three
nucleotides remained unmodified. The transcribed RNAs were then subjected to nanopore direct
RNA sequencing via Oxford Nanopore Technology nanopore sequencing, and the resulting pod5
files were directly inputted to the arowana basecaller, which outputs the basecalled sequence and
decoder representations for each read.

2.2.2 MODEL ARCHITECTURE

Previous studies have shown that models trained from a diverse distribution of data extract infor-
mative representations (Chemudupati et al. (2023); Baevski et al. (2020); Hsu et al. (2021); Huang
et al. (2022); Chen et al. (2022)). The authors from a study (Chemudupati et al. (2023)) showed
that passing the weighted sum of Whisper’s decoder representations to downstream layers allows
accurate prediction in downstream machine-learning tasks.

Here, similarly, the arowana basecaller has learned from a diverse distribution of sequences from
13,500 human genes and is generalisable to basecall synthetic sequences not seen in the human
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transcriptome. Hence, the arowana basecaller should extract informative representations that are
transferable to our downstream machine-learning task of predicting the presence of a modification,
even with a simple logistic regression model.

From the arowana basecaller, we obtain the reference-sequence-refined basecalled sequence and
the decoder representations corresponding to each nucleotide. For each modification, we use the
decoder representations corresponding to the specific nucleotide (A, C, G, or T) as features, where
each nucleotide has 256 features. We directly utilise the 256 decoder-representation features to train
logistic-regression-based modification detection models with linear model.LogisticRegression from
scikit-learn version 1.4.0.

2.2.3 MODEL TRAINING AND EVALUATION

Before model training and evaluation, we split each sample into five sets, whose sequence contexts
do not overlap. With these five sets, we performed a 5-fold cross-validation of the modification
models. For each round, we used four sets for training and held out the remaining set for testing.

For each arowana modification caller, representations of sites from the unmodified sample were
labeled as unmodified (yi,j = 0), and representations of sites from the modified samples with the
modified base were labeled as modified (yi,j = 1). We merged the representations of sites from the
unmodified sample and the modified samples for each nucleotide for model training.

We trained logistic-regression-based modification callers for m1A, m6A, f5C, m5C, thG, ψ, m1ψ,
mo5U, and s2U with the representations from the unmodified sample and each modified sample.
For all training, we set scikit-learn.linear model.LogisticRegression random state parameter at 0.

3 EXPERIMENTS

Figure 2: Evaluation of arowana’s modification callers’ performance. a. Shown are the ROC curves
and AUC of the read-level predicted probability modified across nine modifications. b. Shown is
the modification ratio estimation across nine modifications based on arowana’s predicted modified
probability.

3.1 EVALUATING THE AROWANA’S MODIFICATION CALLING MODELS

We evaluated arowana’s modification callers by splitting each direct RNA-sequencing sample into
independent training and test data (See Methods) to ensure that the sequence context from the train-
ing and test sets are mutually exclusive. We ran the arowana mod inference command on the test set
using the model trained with the training set and evaluated the training-set-trained models’ ability
to distinguish between unmodified and modified reads with the python packages scikit-learn and
matplotlib to calculate the ROC curves and the Area under the ROC curves.
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Across all modifications, the arowana modification classifiers achieve an average accuracy of ROC
AUC 0.895 when classifying unmodified and modified sites (Figure 2a), showing arowana modifica-
tion classifiers allow accurate single-molecule detection of nine modifications across all nucleotide
bases.

3.2 ESTIMATING MODIFICATION RATIOS

We estimated the modification ratios for samples from the test set with the arowana modification
callers. We randomly picked 1,000 sites from the unmodified and modified samples at differ-
ent modified-to-unmodified ratios (0:100, 25;75, 50:50, 75:25, and 100:0) and ran the arowana
mod inference command on each simulated mixture.

To calculate modification ratios for each modification, we used the 90th percentile predicted mod-
ified probability from the modified sample as a threshold and calculated the fraction of sites with
modified probability above the threshold, which we denote as the modification ratio. We then nor-
malised the modification ratios to be relative to the 100:0 and the 0:100 modified-to-unmodified
ratios with the following equation:

psite =
psite −min(pall)

max(pall)−min(pall)
(1)

We obtained the modification ratios from ten rounds of sampling and inferencing and used the
python package seaborn to plot the box plots across the samples.

Across the nine modifications, the normalised modification ratios closely resemble the expected
proportion from the mixtures with 0%, 25%, 50%, 75%, and 100% modified sites (Figure 2b). This
shows that arowana modification callers can accurately estimate the proportion of modified sites in
samples with various modifications.

4 DISCUSSION

In summary, we developed arowana, a transformer-based, direct-RNA-sequencing-specific base-
caller, and logistic-regression-based modification-caller training framework utilising the informative
transformer decoder representations as features. We trained modification callers for nine modifica-
tions from all four bases and showed their highly accurate single-molecule modification prediction
and modified site proportion estimation. Together, our work shows that the decoder representations
from the arowana basecaller serve as informative features for modification calling even with a simple
model, hence, removing the requirement of training data- and compute-resource-intensive models
for accurate RNA modification detection. Still, the current version of arowana is only evaluated on
synthetic sequences not natural transcriptome, so additional evaluation has to be done to confirm
arowana’s applicability in natural transcriptome.

As we have shown arowana modification callers’ success in detecting nine modifications, the pre-
trained models for the nine modifications are available to users through the arowana mod inference
command. Furthermore, we provide the arowana mod train command for users to train arowana
modification callers for any modifications. Through this command, users can directly provide raw
signals from direct RNA-sequencing runs in pod5 format to train arowana modification callers for
any modifications of interest. We believe that arowana will open up the profiling of more RNA
modifications.
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8 SUPPLEMENTARY FIGURE

Supplementary Figure 1. Distilling the arowana basecaller.
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