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ABSTRACT

Anomaly detection focuses on identifying samples that deviate from the norm.
When working with high-dimensional data such as images, a crucial requirement
for detecting anomalous patterns is learning lower-dimensional representations
that capture concepts of normality. Recent advances in self-supervised learn-
ing have shown great promise in this regard. However, many successful self-
supervised anomaly detection methods assume prior knowledge about anomalies
to create synthetic outliers during training. Yet, in real-world applications, we
often do not know what to expect from unseen data, and we can solely leverage
knowledge about normal data. In this work, we propose CON2, which learns rep-
resentations through context augmentations that allow us to observe samples from
two distinct perspectives while keeping the invariances of normal data. CON2

learns rich representations of context-augmented samples by clustering them ac-
cording to their context while simultaneously aligning their positions across clus-
ters. At test time, representations of anomalies that do not adhere to the invari-
ances of normal data then deviate from their respective context cluster. Learning
representations in such a way thus allows us to detect anomalies without making
assumptions about anomalous data.

1 INTRODUCTION

Reliably detecting anomalies is essential in many safety-critical fields such as healthcare (Schlegl
et al., 2017; Ryser et al., 2022), finance (Golmohammadi & Zaiane, 2015), industrial fault detection
(Atha & Jahanshahi, 2018; Zhao et al., 2019), or cyber-security (Xin et al., 2018). A common real-
world example of anomaly detection is the standard screening scenario, where doctors regularly
examine the general population for anomalies that would indicate a health risk. Standard screening
datasets thus predominantly comprise samples from healthy people, as most screened individuals do
not exhibit any diseases. Detecting anomalies in this setting is challenging, as anomalies can arise
from an arbitrary set of potentially rare diseases or measurement errors, while we predominantly
encounter normal samples from healthy people in the dataset. The field of anomaly detection tackles
such problems by learning representations that reflect normality during training and, at test time,
detecting anomalies as deviations from the learned normal structure (Ruff et al., 2021).

Recent works have demonstrated that learning a representation space containing features that tightly
represent normality is essential for anomaly detection (Ruff et al., 2018; Oza & Patel, 2018;
Sabokrou et al., 2020). Current state-of-the-art methods carefully design synthetic anomalies and
explicitly encourage anomalous representations to be different from normal ones (Tack et al., 2020;
Wang et al., 2023). However, anomalies can be diverse and unexpected, making it difficult to simu-
late them in real-world settings.

This work presents a novel anomaly detection objective, CON2
1, which learns informative, tightly

clustered representations of normal samples. We illustrate an overview of the algorithm in Figure 1.
Unlike previous works, which focus on prior knowledge about anomalies, the proposed CON2 mod-
els properties of normal samples, which is particularly useful in more specialized data, such as in the
medical domain, which we demonstrate in our experiments. CON2 leverages context augmentations
that let us observe samples in different contexts while preserving their normal content. Our new
CON2 objective clusters representations according to these contexts while encouraging similar rep-

1The code is attached to this submission and will be made publicly available upon acceptance.
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Figure 1: Overview of CON2. Samples get context augmented and passed through an encoder. The
context contrasting loss (Equation (2)) ensures context-specific representations (∎ and ∎ clusters)
while the content alignment loss (Equation (3)) encourages a context independent structure ( )
within each context cluster. We learn representations in a contrastive fashion, matching correspond-
ing positive ( ) and discriminating between negative ( ) pairs of representations separately for
context contrasting and content alignment.

resentations within each cluster. Consequently, CON2 ensures a highly informative structure within
each cluster by preserving the relative normality of samples independent of their context.

Our main contributions include the definition of context augmentations to model invariances in
normal data and the introduction of CON2, which uses context augmentations to learn informative,
tightly clustered representations of normal data. We further present the anomaly score function SNND
that measures the anomalousness of new samples given representations from CON2. Additionally,
we propose the SLH anomaly score, which offers a more compute efficient alternative to our initial
anomaly score. Finally, we demonstrate the advantage of modeling invariances of normal data in
our experiments, where we present strong results when performing anomaly detection on specialized
medical and more general natural image datasets.

In the next section, we provide an overview of related work and draw a comparison to our approach
before proceeding to introduce our method.

2 RELATED WORK

Learning useful normal representations of high-dimensional data to perform anomaly detection has
recently become a popular line of research. Prior work has tackled the problem from various angles,
for instance, using hypersphere compression (Ruff et al., 2018). Other popular methods define
pretext tasks such as learning reconstruction models (Chen et al., 2017; Zong et al., 2018; You
et al., 2019) or predicting data transformations (Golan & El-Yaniv, 2018; Hendrycks et al., 2019b;
Bergman & Hoshen, 2019). While these approaches had some success in the past, the learned
representations are not very informative. On the other hand, methods learning more informative
representations through self-supervised learning have recently been shown to improve over prior
work (Sun et al., 2022; Sehwag et al., 2021).

Another line of work focuses on estimating the training density with the help of generative models,
detecting anomalies as samples from low probability regions (An & Cho, 2015; Schlegl et al., 2019;
Nachman & Shih, 2020; Mirzaei et al., 2022). However, these methods tend to generalize better to
unseen distributions than to the observed training distribution (Nalisnick et al., 2018), which proves
problematic for anomaly detection.

In addition to the traditional setting, where we assume training data without any labels, some recent
works weaken this restriction and assume access to a limited number of labeled samples. This
setting is called anomaly detection with Outlier Exposure (OE) (Hendrycks et al., 2019a), and it has
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Figure 2: Examples of the context augmentations used throughout our experiments. Flip denotes
vertical flipping, Invert denotes the transformation that replaces each pixel value x with 1 − x, and
Equalize stands for histogram equalization. In our experiments, Flip and Invert fulfill alignment and
distinctiveness for almost all datasets, while Equalize can sometimes violate distinctiveness.

been shown that already a few labeled samples can greatly boost performance over an unlabeled
dataset (Ruff et al., 2020; Qiu et al., 2022; Liznerski et al., 2022). Using large, pretrained models
as feature extractors is a special case of OE, as additional data is not explicitly accessible. Some
approaches have been introduced that use representations from pretrained models directly in zero-
shot fashion (Bergman et al., 2020; Liznerski et al., 2022; Jeong et al., 2023; Zhou et al., 2024),
while others demonstrate the benefit of fine-tuning (Cohen & Avidan, 2022; Reiss & Hoshen, 2023;
Li et al., 2023). OE has been very successful in the past, often outperforming traditional anomaly
detection settings across many benchmarks, though at the cost of either requiring labeled samples
or vast amounts of data for pretraining, which are both often not available or hard to obtain in more
specialized domains.

Another setting that has recently gained popularity is out-of-distribution (OOD) detection. In OOD
detection, we have additional information about our dataset in the form of labels. Anomaly detection
is a special case of OOD detection with only a single label. While the problem is similar, most
approaches that tackle OOD detection make specific use of a classifier trained on the dataset labels
(Hendrycks & Gimpel, 2017; Lee et al., 2018; Wang et al., 2022), which cannot directly be applied
in the anomaly detection setting, as training a classifier on a single class is not straightforward.

In comparison, our method operates in the traditional anomaly detection setting and can be applied
to datasets without knowledge about anomalies. Further, while we assume access to a dataset con-
taining normal samples, our method does not rely on additional labels, as they can be difficult and
expensive to obtain, particularly in more specialized settings.

3 METHODS

In the following, we introduce the notion of context augmentations and then present our CON2 ob-
jective, which leverages these augmentations to learn tightly clustered, informative representations.
We then explain how to use these representations to detect anomalies at test time.

3.1 CONTEXT AUGMENTATION

The intuition behind context augmentation comes from the observation that certain transformations
can augment a sample into another context, creating a distinct new view without altering its infor-
mation content. For example, inverting an image, i.e., exchanging every pixel value x with the value
1−x, neither adds nor destroys any information (alignment) but instead allows us to observe the same
sample from a different perspective. In the following, we want to learn these invariances while still
being able to distinguish between the two transformations to learn symmetric representation clusters
for both the original and the augmented sample space. In the previous example, this only works if
the inverted version of an image does not naturally appear in the dataset already (distinctiveness).
Otherwise, it is impossible to distinguish between original and transformed instances properly.

We define two requirements that let us determine whether a transformation is suitable as a context
augmentation for a given dataset. Let X ⊂ X be our dataset, let tC ∶ X → X be a data augmentation,
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Figure 3: Two-dimensional PCA embedding of the train, normal test (a), and anomalous test samples
(b) after training CON2 on the car class of CIFAR10. The lines connecting representations mark
embeddings corresponding to the same sample in different contexts. The parallel lines indicate that
sample representations are positioned approximately at the same location across context clusters for
the normal test samples, while anomalies do not exhibit the same invariances as normal samples and
thus fail to adhere well to the learned structure.

and let tC(X) = {tC(x) ∣ x ∈ X} be the dataset transformed by tC . The function tC is a context
augmentation if it fulfills the following two properties:

Distinctiveness For two samples x ∼ pX from the original and xC ∼ ptC(X) from the context
augmented data distribution, we have that ptC(X)(x) ≈ 0 and pX(xC) ≈ 0, i.e., there is a clear dis-
tinction between the original and the context augmented distribution after applying tC . For instance,
if our normal class consists of images of melanoma, flipping the image violates distinctiveness, as
melanoma can be photographed from any angle. Conversely, histogram equalizing or color inversion
of the image satisfies distinctiveness, as the resulting color distribution is distinct from the original
samples of such a dataset.

Alignment Let x,x′ ∈X , and let d(x,x′) denote an appropriate similarity measure for samples in
the input space. Then, we require that d(x,x′) ≈ d(tC(x), tC(x′)), i.e., originally similar normal
samples should stay just as similar in the new context, meaning that the original and the context-
augmented normal distributions should align. For instance, masking part of a torso x-ray image
would violate alignment, as we could potentially remove important regions, such as the lungs, from
the image altogether. On the other hand, two vertically flipped x-rays are as similar to each other as
their original counterparts.

While it may be dataset-dependent whether a transformation, such as histogram equalization (Equal-
ize), fulfills these conditions, there are transformations, such as vertical flipping (Flip) or color in-
version (Invert), that seem to fulfill distinctiveness and alignment across a broad range of datasets.
We present some examples of context augmentations in Figure 2.

3.2 CONTEXT CONTRASTING

Our method learns representations in a contrastive fashion (van den Oord et al., 2019). Contrastive
learning is a popular approach for self-supervised representation learning. Typically, it relies on the
definition of positive and negative pairs of samples and learns to maximize the similarity of repre-
sentations of positive pairs while pushing apart representations of negative pairs. Popular contrastive
approaches, such as SimCLR (Chen et al., 2020) or SupCon (Khosla et al., 2020), achieve this by
incorporating a form of instance discrimination in their loss function. Here, we define the instance
discrimination loss as

ℓ(x,x′,X) = − log exp (sim(x,x′)/τ)
∑

x′′∈X ∶ x′′≠x

exp (sim(x,x′′)/τ) , (1)

where we consider sim(x,x′) to be the cosine similarity between two samples x,x′ ∈ X . We refer
to Appendix A.1 for more background about contrastive learning.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

In the following, we present our novel CON2 objective, which leverages the distinctiveness and
alignment assumptions of context augmentations to learn informative representations, which we
will later use for anomaly detection. Specifically, we apply distinctiveness to learn context-specific
representation clusters. Alignment further allows us to distinguish samples from each other while
encouraging a similar relative location of a sample across clusters. We present an example under-
lining this intuition in Figure 3, where we show our representation space after training a model with
CON2 on the samples of the car class of CIFAR10.

Assume a set of samples Xtrain, a context augmentation tC , a set of augmentations T that models
invariances of the dataset like in Chen et al. (2020), and let

XC = {(x,0) ∣ x ∈Xtrain} ∪ {(tC(x),1) ∣ x ∈Xtrain}

denote the dataset after applying context augmentation tC , labeling each sample with its context. For
t, t′ ∼ T and xCi ∈ XC , let x̃2i = t(xCi ) and x̃2i+1 = t′(xCi ) denote two transformations of the same
context-augmented sample using random augmentations from T and let the set of all such pairs be

X̃C = {(t (xC) , y) , (t′ (xC) , y) ∣ (xC , y) ∈XC ∧ t, t′ ∼ T } .

Further, we denote f(X̃C) ∶= {(f(x), y) ∣ x ∈ X̃C} for any function f . CON2 then consists of two
parts, context contrasting and content alignment.

Context Contrasting By leveraging the distinctiveness property of context augmentations, we can
learn tightly concentrated, context-specific representation clusters with our context contrasting loss.
For a given sample x, we derive its representation gθ(x) using an encoder gθ. We then define the
context contrasting loss as

LContext(X̃C) =
1

4N
∑

(x̃i,yi)∈X̃C

1

2N − 1 ∑
(x̃j ,yj)∈X̃C
x̃j≠x̃i∧yi=yj

ℓ(fΦ(x̃i), fΦ(x̃j), fΦ(X̃C)), (2)

where fΦ = hϕ(gθ(x)) and hϕ is a projection head that gets discarded after training similar to Chen
et al. (2020). Intuitively, context contrasting encourages representations of the same context to be
clustered together while pushing other context clusters away, similar to the class representations in
supervised contrastive learning (SupCon) (Khosla et al., 2020).

Content Alignment While LContext allows us to learn context-dependent representation clusters,
it does not enforce a specific structure within each cluster. To make the cluster structure more
informative, CON2 leverages the alignment property of context augmentations to align represen-
tations across clusters through context-independent instance discrimination. More specifically, let
Λ(i) = {2i,2i + 1,4i,4i + 1}, i.e., Λ(i) corresponds to all indices2 of samples in X̃C which are
augmentations of the original sample xi ∈X . We then define the content alignment loss as

LContent(X̃C) =
1

N

N

∑
k=1

1

12
∑

i∈Λ(k)

∑
j∈Λ(k)∖i

ℓ(fΨ(x̃i), fΨ(x̃j), fΨ(X̃C)), (3)

where fΨ(x) = hψ(gθ(x)), and hψ denotes a projection head that is independent of hϕ. Content
alignment ensures that all representations of the same normal sample can be matched across different
contexts, encouraging alignment of the representations within each context cluster.

Finally, we combine context contrasting and content alignment to our loss function CON2, which
enables us to learn context-specific, content-aligned representations of normality:

LCon2(X̃C) = LContext(X̃C) + αLContent(X̃C) (4)

To account for the different scalings of LContext and LContent, we introduce a weighting factor α ∈ R+.
Figure 1 provides a visual overview of how we apply CON2 to learn representations.

2Indexing in correspondence to previous section. Strict ordering is not necessary.
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3.3 ANOMALY DETECTION

In the anomaly detection setting, we typically assume an unlabeled training set containing predom-
inantly normal samples, whereas we want to discriminate between normal and anomalous samples
at test time (Ruff et al., 2021). To detect anomalies, we typically define an anomaly score function
S that maps a given sample’s representation onto a scalar, determining its anomalousness. We can
then define a threshold on this anomaly score, predicting anomaly for samples above the threshold
and normal for samples below. We provide additional background about the anomaly detection
setting in Appendix A.2.

To detect anomalies using the representations of CON2, we define two anomaly score functions
that measure how well a test sample adheres to the context representation clusters. One of the
most popular and straightforward approaches to achieve this is a non-parametric nearest neighbor
approach (Bergman et al., 2020; Sun et al., 2022). Our first score adopts a similar procedure using
the cosine similarity. Specifically, let us define the cosine distance between the training set Xtrain
and a given test sample x with transformation t as

sNND(x; t) = − max
x′∈Xtrain

⟨gθ(t(x)), gθ(t(x′))⟩
∥gθ(t(x))∥∥gθ(t(x′))∥

. (5)

Intuitively, the better a new sample aligns with the context cluster given by augmentation t, the more
likely we are to consider it to be normal. In turn, for samples with a lower cosine similarity, it seems
to either be difficult to assign the correct context cluster, or they do not share much of the normal
information within the correct context cluster. While this approach works well in practice, it is rather
memory-inefficient, as we need to store the representations of all samples in Xtrain.

To adapt our approach to settings with resource constraints, we further introduce a likelihood-based
score function sLH. To make this score function as lightweight as possible, we assume that represen-
tations within each context cluster are distributed according to a multivariate Gaussian, which allows
us to efficiently estimate the empirical mean and covariance from the training set and evaluate the
probability density to derive an anomaly score. Contrastive approaches typically tend to learn rep-
resentations with relatively large norms, which may lead to numerical instabilities when estimating
the covariance matrix. Our sLH thus estimates the empirical mean and covariance on the normalized
representations. In particular, let

Z
(t)
train = {

gθ(t(x))
∥gθ(t(x))∥

∣ x ∈Xtrain} (6)

be the normalized representations of the training set augmented with some augmentation t. We
then compute the density of a multivariate normal distribution based on the empirical mean and
covariance,

µ (Z(t)train) and Σ (Z(t)train) . (7)

We then define

sLH(x; t) = − log(N (
gθ(t(x))
∥gθ(t(x))∥

∣ µ (Z(t)train) ,Σ (Z
(t)
train))) . (8)

We further leverage that our model can differentiate between the two contexts and learns invariances
across different augmentations from T by applying test-time augmentations, similar to previous
works (Tack et al., 2020; Wang et al., 2023), which further improves our anomaly detection perfor-
mance. More specifically, let Ttest = {t1, . . . , tA} be a set of A test time augmentations. We define
our final anomaly score functions S{NND,LH} ∶ X → R as

S{NND,LH}(x) =
1

A

⎛
⎝

A/2

∑
i=1

s{NND,LH}(x; ti) +
A

∑
i=A/2

s{NND,LH}(x; ti ○ tC)
⎞
⎠
, (9)

where ○ defines the composition of two functions (Peirce, 1852).

4 EXPERIMENTS

In the following, we present how CON2 allows us to learn highly informative representations of
normality by incorporating prior knowledge about invariances of normal data. After briefly intro-
ducing our baselines, we demonstrate how we can leverage this knowledge in a realistic medical
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setting, showcasing the applicability of our method to a specialized domain where prior knowledge
about anomalies is typically hard to obtain. Further, we present the generality of our method by
comparing it to baselines on popular natural image datasets in the one-class classification setting,
where anomaly detection with CON2 consistently exhibits strong performance across various
settings. We refer to Appendices C and D for more details regarding the choice of hyperparameters
and our datasets.

Baselines We compare our work to various recent contrastive anomaly detection baselines, in-
cluding SSD (Sehwag et al., 2021), CSI (Tack et al., 2020), and UniCon-HA (Wang et al., 2023).
SSD works by learning representations using SimCLR and detecting anomalies with a Mahalanobis
distance-based anomaly score. Similarly, CSI and UniCon-HA learn representations with SimCLR
but additionally design synthetic anomalies using rotation transformations. CSI leverages these
synthetic anomalies using an additional classifier to discriminate between normal and synthetic
anomaly samples and detects anomalies at test time with a score that combines nearest neighbor
distance, sample norm, and classifier confidence. UniCon-HA does not require an additional clas-
sifier but instead clusters all normal samples close to each other while minimizing the similarity
of synthetic anomaly representations and normal training samples. UniCon-HA also modifies the
instance discrimination loss to weight positive and negative pairs according to the distance between
representations. It further introduces a hierarchical augmentation scheme that lets them apply their
loss on different layers of their neural network architecture using layer-specific augmentation strate-
gies. We also compare against a baseline that learns SimCLR embeddings and detects samples in
nearest neighbor fashion similar to KNN+ (Sun et al., 2022), which was originally developed for
out-of-distribution detection. Finally, we also compare to anomaly detection using CLIP (Radford
et al., 2021; Liznerski et al., 2022), which detects anomalies by using a pretrained CLIP model
and comparing image embeddings with text embeddings describing the normal class. Apart from
CLIP-AD, we conduct all experiments with the ResNet18 architecture (He et al., 2016) to ensure
comparability between methods.

4.1 MEDICAL ANOMALY DETECTION

Table 1: Anomaly detection results on two real-world medical
imaging datasets. We train each model with three different seeds
and report the mean ± standard deviation.

Method Score S Pneumonia Melanoma

CLIP-AD SCLIP 71.2 77.2

SimCLR SNND 91.0±0.9 72.9±2.8

SSD SMahalanobis 90.9±0.2 79.0±2.2

CSI SCSI 73.9±1.6 92.3±0.2

UniCon-HA SUniCon 86.4±0.1 91.1±0.8

CON2 (Equalize)
SLH

93.0±0.3 94.0±0.3

CON2 (Invert) 90.6±1.0 93.0±0.4

CON2 (Flip) 91.5±0.6 92.9±0.5

CON2 (Equalize)
SNND

93.9±0.3 94.5±0.2

CON2 (Invert) 91.1±0.7 94.1±0.4

CON2 (Flip) 92.8±1.1 93.4±1.1

In this experiment, we demon-
strate how incorporating prior
knowledge about invariances
of normal data through context
augmentations with CON2 leads
to strong anomaly detection
performance on two challenging
medical imaging datasets. We
compare the performance of
CON2 with recent unsupervised
anomaly detection methods.
Additionally, we also compare
to CLIP-AD (Liznerski et al.,
2022), which relies on a pre-
trained CLIP model (Radford
et al., 2021) and thus incorpo-
rates a form of outlier exposure
as explained in Section 2.

We train CON2 on the healthy samples of a real-world medical chest x-ray dataset (Kermany
et al., 2018) and a melanoma imaging dataset (Javid, 2022), discriminating between unseen healthy
and anomalous samples at test time. Here, we model invariances of normal samples with the
three context augmentations Flip, Invert, and Equalize mentioned in Section 3.1. We run each
experiment across three seeds, train on healthy samples, and apply our anomaly score functions to
the representations of test samples to detect anomalies. We report the mean and standard deviation
of the resulting area under the receiver operating characteristics curves (AUROC) in Table 1.

We can see that our CON2 consistently exhibits a strong performance with both SLH and SNND across
all three context augmentations. However, we note a significant performance decrease with Flip on

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: AUROCs of CIFAR10 when setting one class as normal and detecting the rest as anoma-
lous. We compare CON2 with the Invert and Flip context augmentations with SNND to other con-
trastive anomaly detection methods. Both the Invert and Flip context augmentations fulfill our
assumptions, resulting in good performances across all classes. Our method further outperforms our
baselines in most classes. CON2 with Flip has the highest average across all methods considered.

the Melanoma dataset. This performance decrease most likely stems from the fact that Flip violates
distinctiveness on melanoma images as they could be taken from any angle. Apart from CON2

(Flip) on Melanoma, our method outperforms all baselines, confirming that modeling invariances
of normal data offers a clear advantage in specialized settings. We further note that the CLIP-AD
method, which exhibits impressive performance on natural image datasets (see Appendix E.2), lacks
behind most of our baselines, indicating that, even in the age of foundation models, unsupervised
anomaly detection methods are still important in specialized domains.

4.2 NATURAL IMAGE BENCHMARKS

In addition to the results on the more specialized medical imaging domain, our method also exhibits
robust performance on more traditional natural imaging benchmark datasets. In this experiment,
we train CON2 on the CIFAR10, CIFAR100 (Krizhevsky et al., 2009), ImageNet30 (Russakovsky
et al., 2015; Hendrycks et al., 2019b), Dogs vs. Cats (Cukierski, 2013), and Muffin vs. Chihuahua
(Cortinhas, 2023) datasets in the one-class classification setting (Ruff et al., 2021). In the one-class
classification setting, we typically work on multi-class classification datasets where we consider one
of the classes as the normal class and the rest as anomalies. In particular, we train our model on
the training samples of the normal class and want to differentiate between unseen samples of this
normal class and all other classes at test time. Here, we train each model across three seeds for each
class of each dataset, reporting the mean and standard deviation of the resulting AUROCs.

On natural images, the Equalize context augmentation does not satisfy distinctiveness, as this trans-
formation often results in scenes that seem slightly differently illuminated (see Figure 2 for some
examples). We thus only present results of CON2 with Flip and Invert context augmentations. In
Section 4.1, we saw that the more efficient SLH anomaly score exhibits relatively strong performance,
however, SNND typically performs slightly better and we thus only report SNND in this section. Fur-
ther, we note that CLIP-AD exhibits a strong performance on natural image datasets as, during
training, CLIP has been exposed to samples that are similar to anomalies of this one-class classi-
fication setting. It is thus hard to compare CLIP-AD to our method and baselines, which were all
trained without outlier exposure, on natural image datasets and we thus do not compare to CLIP-AD
in this section. For completeness, we report the full results including including both scores, CON2

with Equalize, and CLIP-AD results for all datasets in Appendix E.2.

In Figure 4, we compare the performance of CON2 and our baselines across the different one-class
settings of CIFAR10. CON2 outperforms our baselines on almost all classes, where CON2 (Flip)
with an average AUROC of 95.3 performs better than CON2 (Invert), which exhibits an average
AUROC of 94.6. We suspect that Invert exhibits similar issues as Equalize in some instances, i.e., it
may not always fully satisfy the distinctiveness assumption.
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Figure 5: One class classification results for CIFAR100, ImageNet30, Dogs vs. Cats, and Muffin vs.
Chihuahua. Our method consistently outperforms our baselines on CIFAR100 and Dogs vs. Cats
while exhibiting more robust performance across different normal classes with a similar average
performance to CSI on ImageNet30 and Muffin vs. Chihuahua. Additionally, we provide results in-
cluding CON2 (Best), which demonstrates how carefully selecting context augmentations satisfying
the assumptions of Section 3.1 further improves the capabilities of anomaly detection with CON2.

We further provide results on one-class CIFAR100, ImageNet30, Dogs vs. Cats, and Muffin vs.
Chihuahua in Figure 5. There, in addition to the Invert and Flip context augmentation, we also
provide results for CON2 (Best), which selects the context augmentation individually for each class,
depending on which satisfies alignment and distinctiveness better for the current normal class. Our
method compares well against established baselines on natural images, matching or improving the
state-of-the-art. Similar to what we saw on CIFAR10, CON2 displays a robust performance across
the board. Our approach outperforms baselines on CIFAR100 and Dogs vs. Cats while matching the
performance on ImageNet30 and Muffin vs. Chihuahua while exhibiting much more consistent per-
formance across different normal classes as can be seen from the much lower variance displayed in
Figure 5. We can also see that selecting the context augmentation that best fits the normal class can
improve the performance. However, we also achieve strong performance if the context augmentation
violates alignment and distinctiveness on only some samples of the dataset. We provide further abla-
tions, including experiments on applying multiple context augmentations, demonstrating that a sin-
gle context augmentation is sufficient, and additional one-class classification results in Appendix E.

5 CONCLUSION

In this work, we presented a novel approach to anomaly detection, focusing on learning represen-
tations of normality by leveraging prior knowledge about invariances in the normal data rather than
simulating anomalous data as in previous works. Employing knowledge about the invariances of nor-
mal data is more realistic and provides a stronger foundation for anomaly detection, particularly in
specialized domains such as healthcare, where anomalous data is rare or hard to simulate accurately.

CON2 learns dense, highly informative context clusters that capture the properties of normal data.
These clusters provide rich representations and ensure that a sample’s relative positioning is consis-
tent across clusters, strengthening the model’s ability to differentiate between normal and anomalous
data. This results in a more structured representation space, making our approach well-suited for
anomaly detection tasks with our anomaly score functions.

We demonstrated the efficacy of our approach on two real-world medical imaging datasets, where
our method achieved impressive results. This highlights the applicability of CON2 in safety-
critical applications where robust anomaly detection is essential. Additionally, our approach exhib-
ited strong performance on natural imaging datasets, consistently outperforming baseline methods,
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demonstrating its versatility across different domains. Further, our method highlights the impor-
tance of domain-specific approaches in specialized fields like healthcare, where tailored models can
outperform foundation model-based approaches such as CLIP-AD, despite their success in more
general settings.

In conclusion, CON2 represents a significant advancement in anomaly detection by learning struc-
tured representations of normal data without relying on anomalous data. This approach is partic-
ularly valuable in specialized, high-stakes settings, offering robust and effective solutions across
various application domains.
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Marius Kloft, Thomas G. Dietterich, and Klaus-Robert Müller. A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE, 109(5):756–795, 2021. 1, 6, 8, 15, 18

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Com-
puter Vision, 115(3):211–252, December 2015. ISSN 0920-5691, 1573-1405. doi: 10.1007/
s11263-015-0816-y. 8, 17

Alain Ryser, Laura Manduchi, Fabian Laumer, Holger Michel, Sven Wellmann, and Julia E. Vogt.
Anomaly Detection in Echocardiograms with Dynamic Variational Trajectory Models. In Pro-
ceedings of the 7th Machine Learning for Healthcare Conference, pp. 425–458. PMLR, Decem-
ber 2022. 1

Mohammad Sabokrou, Mahmood Fathy, Guoying Zhao, and Ehsan Adeli. Deep end-to-end one-
class classifier. IEEE transactions on neural networks and learning systems, 32(2):675–684,
2020. 1
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A BACKGROUND

In this section, we provide some terminology for contrastive learning and background about the
anomaly detection setting.

A.1 CONTRASTIVE LEARNING

Recently, contrastive learning has emerged as a popular approach for representation learning
(van den Oord et al., 2019; Chen et al., 2020). By design, contrastive learning has the capability to
learn representations that are agnostic to certain invariances (von Kügelgen et al., 2021; Daunhawer
et al., 2023), which makes contrastive learning a particularly interesting choice to learn informative
representations of normal samples (Tack et al., 2020; Wang et al., 2023), as it allows us to incor-
porate prior knowledge about our data into the representing learning process in the form of data
augmentations. More specifically, invariances are learned by forming positive and negative pairs
over the training dataset by applying data augmentations that should retain the relevant content of a
sample.

The goal of contrastive learning is to learn an encoding function gθ(x) , where representations of
positive pairs of samples are close and negative pairs are far from each other. For a given pair of
samples x,x′ ∈ X , we can define the instance discrimination loss as (Sohn, 2016; Wu et al., 2018;
van den Oord et al., 2019)

ℓ(x,x′,X) = − log exp (sim(x,x′)/τ)
∑

x′′∈X ∶ x′′≠x

exp (sim(x,x′′)/τ) .

As mentioned in Section 3.2, we consider the function sim(x,x′) to correspond to the cosine sim-
ilarity between the two input vectors, as this is one of the most popular choices in the contrastive
learning literature.

One of the most prominent contrastive methods is SimCLR (Chen et al., 2020), which creates posi-
tive pairs through sample augmentations. There exists a supervised extension called SupCon (Khosla
et al., 2020), which incorporates class labels into the SimCLR loss. For a given set of augmenta-
tions T , a dataset X = {(xi, yi)}Ni=1, and an augmented dataset X̃ where ∣X̃ ∣ = 2N and (x̃2i, yi),
(x̃2i+1, yi) ∈ X̃ denote two transformations of the same sample using random augmentations from
T , SimCLR and SupCon introduce the following loss functions:

LSimCLR(X̃) =
1

2N

N

∑
i=1

(ℓ(fΘ(x̃2i), fΘ(x̃2i+1), fΘ(X̃)) + ℓ(fΘ(x̃2i+1), fΘ(x̃2i), fΘ(X̃)) ,

LSupCon(X̃) = ∑
(x̃i,yi)∈X̃

1

N(yi) − 1
∑

(x̃j ,yj)∈X̃ ∶
x̃j≠x̃i∧yi=yj

ℓ(fΘ(x̃i), fΘ(x̃j), fΘ(X̃)) .

Here, we denote fΘ(x) = hθ′(gθ(x)), where z = gθ(x) is a feature extractor and hθ′(z) is a
projection head that is typically only used during training (Chen et al., 2020). Further, we define
fΘ(X̃) = {fΘ(x̃) ∣ (x̃, y) ∈ X̃} and N(y) = ∣{(x̃i, yi) ∣ (x̃i, yi) ∈ X̃ ∧ yi = y}∣ is the number of
samples in X̃ with label y.

A.2 ANOMALY DETECTION

In the anomaly detection setting, we are given an unlabeled dataset {x1, . . . ,xn} = X ⊂ X , while
assuming that most samples are normal, i.e., the dataset is practically free of outliers (Ruff et al.,
2021). The goal is to learn a model from the given dataset that discriminates between normal and
anomalous data at test time.

In this work, we assume the challenging case where our dataset is completely free of anomalies.
Hence, we aim to discriminate between the normal class and a completely unobserved set of anoma-
lies at test time. This setting is sometimes called one-class classification or novelty detection.

To achieve this goal, one straightforward approach is to approximate the distribution pX (x) directly
using generative models (An & Cho, 2015; Schlegl et al., 2019). Because we assume normal data to
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Table 2: Average compute hours for the experiments for each dataset and method per run. SimCLR
and SSD use the same representations, so we can evaluate both methods in one go and list their
compute hours together.

Method
Dataset CIFAR10 CIFAR100 ImageNet30 Dogs vs. Cats Muffin vs. Chihuahua Pneumonia Melanoma

SimCLR/SSD 4 2 3 9 3 3 5
CSI 8 4 4 14 5 8 6
UniCon-HA 16 16 8 18 7 12 18
CON2 5 3 4 11 4 5 6

lie in high-density regions of pX , we can discriminate between normal and anomalous samples by
applying a threshold function pX (x) ≤ τ , where τ ∈ R is an often task-specific threshold (Bishop,
1994). As density-based approaches are often difficult to apply to high-dimensional data directly
(Nalisnick et al., 2018), we follow a slightly different line of work.

In this paper, we focus on learning a function gθ ∶ X → Z that provides us with representations that
capture the normal attributes of samples in the dataset (Sehwag et al., 2021; Tack et al., 2020; Wang
et al., 2023), by mapping normal samples close to each other in representation space. On the other
hand, anomalies that lack the learned normal structure should be mapped to a different part of the
representation space.

Given gθ(x), a popular approach to detect anomalies is by defining a scoring function S ∶ Z → R
(Breunig et al., 2000; Schölkopf et al., 2001; Tax & Duin, 2004; Liu et al., 2008). The score function
maps a representation onto a metric that estimates the anomalousness of a sample. To identify
anomalies at test time, we can use S similarly to the density pX , i.e., we consider a new sample x
to be normal if S(gθ(x)) ≤ τ , whereas S(gθ(x)) > τ means x is an anomaly.

B COMPUTE & CODE

We run all our experiments on single GPUs on a compute cluster using a combination of RTX2080Ti,
RTX3090, and RTX4090 GPUs. Each experiment can be run with 4 CPU workers and 16 GB of
memory. We provide an overview of the compute for our experiments in Table 2. Our experiments
are written using PyTorch (Ansel et al., 2024) with Lightning (Falcon & The PyTorch Lightning
team, 2019).

In the following, we list for each of our methods and baselines how we arrive at results and which
code we use.

CON2: We implement CON2 using PyTorch (Ansel et al., 2024) together with Lightning (Falcon &
The PyTorch Lightning team, 2019). To evaluate our method, we use various open-source Python
libraries such as NumPy (Harris et al., 2020), scikit-learn (Pedregosa et al., 2011), Pandas (McK-
inney, 2010; team, 2020), or SciPy (Virtanen et al., 2020). Parts of the implementation of the
CON2 objective are based on code provided by Khosla et al. (2020) (https://github.com/
HobbitLong/SupContrast).

SimCLR: For this baseline, we implement SimCLR (Chen et al., 2020) and compute anomaly scores
in a similar fashion as (Sun et al., 2022). For this baseline, we rely on similar packages as CON2.

SSD: We use the same representations as for SimCLR but evaluate by following the procedure
outlined in Sehwag et al. (2021).

CSI: To run experiments for CSI, we used the code provided in https://github.com/
alinlab/CSI, implementing new dataloaders for the missing datasets.

UniCon-HA: We conducted experiments by running code provided by Wang et al. (2023) imple-
menting new dataloaders for the missing datasets. We thank the authors for sharing their code with
us.
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C DATASETS

In the following, we provide details about preprocessing, sources, and licenses of the datasets we
use in our experiments.

PNEUMONIA

The Pneumonia dataset was originally published by Kermany et al. (2018) and consists of 5′863 lung
xrays, which are labeled with Pneumonia and Normal labels. We first resize images to 256 and apply
center-cropping to feed 224×224 images to our model. We ran all our experiments on the Pneumonia
dataset with a batch size of 128. The dataset can be downloaded from https://www.kaggle.
com/datasets/paultimothymooney/chest-xray-pneumonia and is published under
CC BY 4.0 license.

MELANOMA

We use the Melanoma dataset of Javid (2022), which consists of 10′600 images of
Melanoma labeled with being benign or malignant. We resize each image to size
128 × 128 before passing them to the model with batch size 128. The dataset is
publicly available at https://www.kaggle.com/datasets/hasnainjaved/
melanoma-skin-cancer-dataset-of-10000-images and is published under the
CC0: Public Domain license.

CIFAR10/CIFAR100

CIFAR10 and CIFAR100 are natural image datasets with 32 × 32 samples. Both datasets consist
of a total of 60′000 samples, with a total of 10 and 100 samples for CIFAR10 and CIFAR100, re-
spectively. As CIFAR100 comes with only 600 samples per class, the dataset authors additionally
define a set of 20 superclasses, aggregating 5 labels each. In our one-class classification experi-
ments on CIFAR100 we use the superclasses to ensure a manageable number of runs and a sufficient
amount of training data. We ran all our experiments on CIFAR10 and CIFAR100 with a batch
size of 512. Both datasets were published by Krizhevsky et al. (2009) and can be downloaded
from https://www.cs.toronto.edu/˜kriz/cifar.html. To the best of our knowl-
edge, these datasets come without a license.

IMAGENET30

The ImageNet30 dataset is a subset of the original ImageNet dataset (Russakovsky et al., 2015).
It was created by Hendrycks et al. (2019b) for the purpose of one-class classification. The dataset
consists of 42′000 natural images where each is labeled with one of 30 classes. We preprocess the
dataset by resizing the shorter edge to 256 pixels, from which we randomly crop a 224 × 224 image
patch every time we load an image for training. We ran all our experiments on ImageNet with a
batch size of 128. The dataset can be downloaded from https://github.com/hendrycks/
ss-ood, which comes with the MIT License. Further, while we could not find a license for Ima-
geNet, terms of use are provided on https://image-net.org/.

DOGS VS. CATS

The Dogs vs. Cats was originally introduced in a Kaggle challenge by Microsoft Research (Cukier-
ski, 2013) and consists of 25′000 images of cats and dogs. We preprocess the dataset by resizing the
shorter edge to 128 pixels and then perform center cropping, feeding the resulting 128 × 128 image
to our model. We ran all our experiments on Dogs vs. Cats with a batch size of 256. The dataset
can be downloaded from https://www.kaggle.com/competitions/dogs-vs-cats/
data. To the best of our knowledge, there is no official license for the dataset, but the Kaggle
page points to the Kaggle Competition rules https://www.kaggle.com/competitions/
dogs-vs-cats/rules in the license section.
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CHIHUAHUA VS. MUFFIN

The Chihuahua vs. Muffin dataset consists of 6′000 images scraped from Google Images. We
preprocess the dataset similar to ImageNet30, resizing the shorter edge of the images to 128 pix-
els while feeding random 128 × 128 sized image crops to the model during training. We ran all
our experiments on Chihuahua vs. Muffin with a batch size of 256. The dataset was published
by Cortinhas (2023) and can be downloaded from https://www.kaggle.com/datasets/
samuelcortinhas/muffin-vs-chihuahua-image-classification/data. Ac-
cording to the datasets Kaggle page, the dataset is licensed under CC0: Public Domain.

In addition to the preprocessing mentioned above, we normalize each image with a mean and stan-
dard deviation of 0.5 after applying the augmentations of CON2.

D EXPERIMENTAL DETAILS

Setting We evaluate our method in the so-called one-class classification setting (Ruff et al., 2021).
More specifically, during training we assume to have access to only the normal (healthy) class. At
test time, the goal is to detect whether a new sample stems from the normal class seen during training
or whether it seems anomalous, i.e., deviates from the training distribution.

Metrics Typically, there is a high-class imbalance between normal and anomalous samples in the
one-class classification setting. Further, setting an appropriate threshold for the anomaly score is
often task-dependent. Therefore, a popular approach to evaluating the performance of anomaly
detection methods is to use the area under the receiver operator characteristic curve (AUROC) (Ruff
et al., 2021). This metric is threshold agnostic and robust to class imbalance.

For all our experiments, we report mean and standard deviation over three seeds per class of the
dataset. Note that the average results of a dataset are aggregated over different one-class classifica-
tion settings, one per class of the dataset.

Hyperparameters Similar to our method, all baselines make use of test-time augmentations. By
default, both CSI and UniCon-HA use 40 test time augmentations, which we adopt for all baselines.
In our experiments, we set the augmentation class T to the set of augmentations introduced by Chen
et al. (2020). For the context augmentation, we experiment with vertical flips (Flip), inverting the
pixels of an image (Invert), i.e., tInvert(xij) = 1 − xij , and histogram equalization (Equalize), see
Figure 2 for an illustration.

We choose hyperparameters for CON2 based on their performance on the CIFAR10 dataset and keep
them constant across all experiments. We linearly anneal the hyperparameter α in LCON2 from 0 to 1
over the course of training to encourage the model to first learn the context-specific cluster structure
while gradually aligning representations over the course of training. We optimize our loss using the
AdamW optimizer (Loshchilov & Hutter, 2019) with β1 = 0.9, β2 = 0.999, weight decay λ = 0.001,
and using a learning rate of 10−3 with a cosine annealing (Loshchilov & Hutter, 2017) schedule. We
run all experiments for 2048 epochs.

E ABLATIONS

In this section, we provide some additional experiments going beyond only two context clusters
(Appendix E.1) and a more detailed overview of the results on natural images (Section 4.2).

E.1 MULTIPLE CONTEXT AUGMENTATIONS

Our formulation in Section 3.1 can easily be extended beyond only one additional context by slightly
adjusting LContext. However, in addition to a loss in efficiency due to requiring more memory, we
did not find additional context augmentations to provide a performance benefit, as can be seen in
Figure 6. There, we ran an ablation with different numbers of context augmentations on different
classes of CIFAR10 and ImageNet30. In particular, we trained the adapted CON2 loss for 2, 3, 4,
5, 6, 7, and 8 context augmentations, which we derived by combining Flip, Invert, and Equalize
from our previous experiments. Adding more augmentations does not seem to harm cases where we
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Figure 6: Ablation illustrating the effect of adding more context augmentations. While the perfor-
mance of well-performing normal classes, such as ImageNet30 Ambulance or CIFAR10 Car stays
consistent when adding more augmentations, we see a decrease for normal classes such as Ima-
geNet30 Toaster or CIFAR10 Cat that already perform poor to begin with.

Table 3: One class classification results for CIFAR10, CIFAR100, ImageNet30, Dogs vs. Cats, and
Muffin vs. Chihuahua. For each dataset, we train models over three different seeds per dataset class.
We report mean and standard deviation over all the different one-class settings per dataset.

Method Score CIFAR10 CIFAR100 ImageNet30 Dogs vs. Cats Muffin vs. Chihuahua

CLIP-AD (OE) SCLIP 98.5±1.0 95.1±2.7 99.9±0.2 99.7±0.2 98.6±2.0

SimCLR SNND 89.2±6.7 81.6±8.5 74.7±12.2 84.7±2.2 85.2±9.8

SSD SMahalanobis 87.4±8.1 79.2±9.4 76.8±13.0 84.5±0.6 81.3±13.1

CSI SCSI 94.6±4.0 90.2±4.9 92.3±8.1 90.3±0.4 95.2±2.3

UniCon-HA SUniCon-HA 94.4±4.0 90.9±4.4 85.5±12.0 67.9±6.2 91.9±1.3

CON2 (Equalize) SLH 91.1±5.8 86.4±6.0 85.1±13.0 79.5±1.7 85.8±11.2

SNND 91.5±5.6 87.8±4.8 86.2±12.1 83.2±1.2 88.3±8.3

CON2 (Invert) SLH 93.7±4.3 89.7±5.2 90.2±9.4 87.9±0.6 91.7±4.3

SNND 94.6±3.6 90.9±4.7 90.7±8.9 88.8±1.4 94.3±2.7

CON2 (Flip) SLH 94.7±3.5 89.8±5.2 89.4±11.1 90.3±0.8 93.4±2.6

SNND 95.3±2.9 90.8±4.8 90.5±10.4 90.9±1.4 94.9±2.0

experience good performance in the first place, however, we observe a diminishing performance for
slightly more challenging classes.

E.2 ADDITIONAL ONE CLASS CLASSIFICATION RESULTS

In Section 4.2, we present figures with results of CON2 on CIFAR10, CIFAR100, ImageNet30, Cats
vs. Dogs, and Muffin vs. Chihuahua. For completeness, we also present a table containing the full
results of CON2 on all three context augmentations mentioned in Section 3.1 and both scores from
Section 3.3 in Table 3. We further present results aggregated over individual one-class classification
settings of CIFAR10, CIFAR100, ImageNet30, Cats vs. Dogs, and Muffin vs. Chihuahua for CON2

on all datasets. We present results for CIFAR10 in Table 4, for all 20 superclasses of CIFAR100 in
Table 5, for ImageNet30 in Table 6, for Dogs vs. Cats in Table 7, and for Muffin vs. Chihuahua in
Table 8.

E.3 CONTRIBUTIONS OF INDIVIDUAL LOSS PARTS

We perform an ablation study where we evaluate the contribution of the loss components LContent(⋅)
(see also Equation (3)) and LContext(⋅) (see also Equation (2)). We see that combining the content
loss with the novel context loss leads to performance improvements on both evaluated datasets,
Pneumonia and Melanoma.
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Table 4: AUROCS for each class of CIFAR10 for
both of our scores when applying the Flip context
augmentation. For each setting, we evaluated our
method across three seeds.

Normal
Class

CON2 (Equalize) CON2 (Invert) CON2 (Flip)
SLH SNND SLH SNND SLH SNND

0 89.7±0.4 91.3±0.6 90.3±0.5 92.5±0.3 90.3±0.9 92.5±0.7

1 98.4±0.0 98.5±0.2 99.2±0.1 99.4±0.0 99.3±0.0 99.4±0.0

2 87.0±0.2 88.7±0.5 88.3±0.4 90.5±0.1 91.6±0.6 92.4±0.6

3 77.7±1.0 78.5±2.1 86.2±0.5 88.5±0.4 88.7±0.3 90.7±0.3

4 90.2±0.8 90.1±0.6 90.8±0.3 91.2±0.5 93.1±0.5 92.9±1.1

5 88.5±0.3 87.7±0.6 93.9±0.2 94.5±0.3 94.7±0.2 95.1±0.1

6 96.4±0.3 96.0±0.7 97.3±0.2 97.5±0.2 96.5±0.1 96.0±0.3

7 95.6±0.3 95.9±0.3 97.6±0.1 98.1±0.1 98.6±0.0 98.7±0.0

8 93.2±0.3 94.4±0.2 96.3±0.1 97.1±0.1 97.0±0.3 97.5±0.2

9 94.1±0.3 93.5±0.1 96.7±0.3 97.0±0.3 97.1±0.1 97.3±0.1

Table 5: AUROCS for each superclass of CI-
FAR100 for both of our scores when applying the
Flip context augmentation. For each setting, we
evaluated our method across three seeds.

Normal
Class

CON2 (Equalize) CON2 (Invert) CON2 (Flip)
SLH SNND SLH SNND SLH SNND

0 85.6±1.4 86.8±0.6 84.9±0.5 86.2±0.4 84.5±0.6 86.0±0.7

1 84.9±1.2 87.2±1.7 87.4±0.5 88.1±0.3 87.3±0.7 87.9±0.9

2 94.4±0.5 94.8±0.6 95.8±0.2 96.4±0.1 94.8±0.3 95.0±0.4

3 80.6±1.4 83.9±0.8 88.4±0.2 89.2±0.7 90.3±0.7 90.4±1.0

4 95.4±0.8 95.9±0.9 96.6±0.1 97.2±0.1 95.0±0.1 96.1±0.2

5 70.7±2.4 78.5±3.1 82.8±0.3 86.2±0.7 81.8±1.3 85.9±1.0

6 80.3±1.2 80.5±0.9 89.6±0.7 90.4±0.5 90.3±0.8 90.4±1.3

7 88.6±0.8 89.5±0.5 88.5±0.1 89.7±0.2 86.5±0.8 87.6±0.6

8 88.9±0.2 89.7±0.4 91.3±0.4 92.3±0.2 90.8±0.4 91.6±0.4

9 90.2±1.4 91.5±1.5 94.5±0.4 95.7±0.4 94.8±0.2 95.6±0.3

10 82.5±4.2 84.0±4.5 88.9±0.3 90.4±0.5 85.4±0.9 88.5±0.7

11 87.3±1.6 87.6±1.5 90.3±0.2 90.9±0.3 91.1±0.3 91.1±0.5

12 86.8±1.0 87.8±1.7 88.7±0.7 89.7±0.3 91.0±0.2 91.5±0.2

13 82.7±1.7 85.5±0.7 80.7±1.1 84.3±1.2 82.6±0.6 84.4±1.1

14 90.9±0.8 90.3±0.6 95.7±0.3 96.2±0.2 96.7±0.2 97.2±0.1

15 81.1±1.0 82.0±0.2 79.8±0.4 80.2±0.5 80.5±0.3 81.2±0.8

16 83.8±0.6 85.2±0.4 85.3±0.5 87.2±0.5 85.6±0.6 86.1±0.8

17 95.3±1.5 95.8±1.5 98.0±0.1 98.3±0.1 97.7±0.4 98.3±0.3

18 91.1±1.5 90.2±2.1 94.9±0.2 95.4±0.2 95.9±0.0 96.1±0.1

19 86.7±0.3 88.2±0.6 92.5±0.3 93.9±0.2 93.8±0.3 94.7±0.3

Table 6: AUROCS for each class of ImageNet30 for both of our scores when applying the Flip
context augmentation. For each setting, we evaluated our method across three seeds.

Normal
Class

CON2 (Equalize) CON2 (Invert) CON2 (Flip)
SLH SNND SLH SNND SLH SNND

0 91.0±0.5 92.7±0.5 94.8±0.7 94.7±0.9 92.1±0.7 92.4±1.3

1 97.8±0.2 98.7±0.2 98.5±0.2 99.2±0.1 99.1±0.1 99.5±0.1

2 99.6±0.1 99.5±0.1 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0

3 82.8±1.1 82.1±2.0 82.9±1.2 79.1±0.9 82.6±0.6 82.6±1.0

4 90.5±0.3 90.1±0.7 95.0±0.1 94.8±0.2 94.7±0.2 95.6±0.5

5 91.0±2.2 93.3±1.7 93.6±0.3 94.4±0.2 94.8±0.4 96.7±0.4

6 94.8±0.7 95.5±0.3 97.1±0.1 98.0±0.1 96.4±0.2 96.9±0.1

7 67.9±1.7 68.7±0.3 77.1±1.0 78.5±0.8 75.8±1.5 76.5±1.6

8 95.4±0.2 95.7±0.4 93.4±0.7 92.7±1.3 96.6±0.5 96.9±0.3

9 74.8±1.0 77.7±1.1 86.8±0.3 88.9±0.3 84.9±0.8 86.6±0.6

10 97.8±0.2 97.8±0.1 99.2±0.1 99.3±0.0 99.0±0.2 99.0±0.2

11 82.4±1.4 82.4±1.6 85.4±0.3 84.4±0.5 89.2±1.0 90.2±0.7

12 90.3±0.4 93.0±0.6 95.5±0.2 97.3±0.1 96.6±0.2 97.6±0.3

13 91.9±0.7 91.8±0.5 95.2±0.3 95.5±0.2 94.0±0.5 94.0±0.3

14 85.1±0.1 86.6±0.7 91.6±0.6 91.9±0.5 93.3±0.3 94.2±0.2

15 90.9±0.9 89.3±1.3 93.9±0.6 92.7±0.2 93.2±1.9 93.1±2.0

16 96.6±0.4 97.5±0.3 98.9±0.1 99.2±0.1 99.0±0.1 99.5±0.2

17 45.7±1.1 51.2±2.3 59.0±1.0 62.9±1.0 50.9±1.1 55.2±0.6

18 78.4±0.7 80.3±0.9 89.2±0.3 89.8±0.5 92.2±0.6 93.1±0.4

19 59.6±2.4 61.4±2.7 75.1±0.7 76.3±0.5 67.1±3.4 68.5±3.7

20 86.3±1.0 86.2±0.6 92.2±0.5 93.0±0.6 94.2±0.4 94.9±0.6

21 86.5±0.3 87.0±0.9 95.7±0.3 96.4±0.1 95.7±0.2 96.2±0.2

22 95.3±0.5 94.4±0.8 96.7±0.5 96.1±0.3 97.3±0.3 97.4±0.2

23 94.1±0.4 94.5±0.4 96.3±0.2 96.7±0.3 96.4±0.1 96.9±0.2

24 72.0±1.3 73.7±0.7 90.3±0.3 92.4±0.5 88.3±1.0 90.9±1.1

25 83.3±2.2 85.3±1.8 84.6±1.3 84.1±1.5 73.6±2.3 74.1±1.0

26 95.1±0.2 95.2±0.5 93.3±0.4 92.3±0.6 89.1±0.8 88.7±0.9

27 91.6±0.9 91.3±1.0 96.3±0.2 96.8±0.3 97.0±0.3 97.5±0.2

28 57.3±1.5 61.4±2.5 69.0±1.3 72.1±1.8 73.8±2.8 77.7±3.4

29 87.0±1.1 91.4±1.1 88.5±1.7 90.8±2.1 86.1±1.0 91.3±1.4

Table 7: AUROCS for the two classes ”Dog” and
”Cat” for both of our scores when applying the
Flip context augmentation. For each setting, we
evaluated our method across three seeds.

Normal
Class

CON2 (Equalize) CON2 (Invert) CON2 (Flip)
SLH SNND SLH SNND SLH SNND

0 78.4±1.7 84.1±0.9 88.3±0.1 90.0±0.2 91.0±0.1 92.1±0.2

1 80.6±0.9 82.3±0.5 87.4±0.4 87.6±0.4 89.7±0.4 89.7±0.2

Table 8: AUROCS for the two classes ”Muffin”
and ”Chihuahua” for both of our scores when ap-
plying the Flip context augmentation. For each
setting, we evaluated our method across three
seeds.

Normal
Class

CON2 (Equalize) CON2 (Invert) CON2 (Flip)
SLH SNND SLH SNND SLH SNND

0 94.0±0.8 94.4±1.1 95.6±0.3 96.8±0.2 95.8±0.2 96.7±0.3

1 73.6±1.3 79.2±0.3 87.8±0.5 91.8±0.3 91.1±0.7 93.1±0.3
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1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Method Score Pneumonia Melanoma

LContent
SLH

92.3 ± 0.9 92.8 ± 0.2
LContext 79.9 ± 1.3 92.7 ± 0.5
LCon2 93.0 ± 0.3 94.0 ± 0.3
LContent

SNND

89.6 ± 0.4 93.1 ± 0.3
LContext 81.4 ± 1.6 92.5 ± 0.8
LCon2 93.9 ± 0.3 94.5 ± 0.2

Table 9: Evaluating the individual loss terms against each other when using the Equalize context
augmentation on the medical datasets.

21


	Introduction
	Related Work
	Methods
	Context Augmentation
	Context Contrasting
	Anomaly Detection

	Experiments
	Medical Anomaly Detection
	Natural Image Benchmarks

	Conclusion
	Background
	Contrastive Learning
	Anomaly Detection

	Compute & Code
	Datasets
	Experimental Details
	Ablations
	Multiple Context Augmentations
	Additional One Class Classification Results
	Contributions of Individual Loss Parts


