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Abstract
Event cameras offer promising advantages such as
high dynamic range and low latency, making them
well-suited for challenging lighting conditions
and fast-moving scenarios. However, reconstruct-
ing 3D scenes from raw event streams is difficult
because event data is sparse and does not carry ab-
solute color information. To release its potential
in 3D reconstruction, we propose the first event-
based generalizable 3D reconstruction framework,
called EvGGS, which reconstructs scenes as 3D
Gaussians from only event input in a feedforward
manner and can generalize to unseen cases with-
out any retraining. This framework includes a
depth estimation module, an intensity reconstruc-
tion module, and a Gaussian regression module.
These submodules connect in a cascading manner,
and we collaboratively train them with a designed
joint loss to make them mutually promote. To
facilitate related studies, we build a novel event-
based 3D dataset with various material objects and
calibrated labels of grayscale images, depth maps,
camera poses, and silhouettes. Experiments show
models that have jointly trained significantly out-
perform those trained individually. Our approach
performs better than all baselines in reconstruc-
tion quality, and depth/intensity predictions with
satisfactory rendering speed.

1. Introduction
3D reconstruction has played a critical role in computer
vision communities and is vital in many applications, e.g.
robotics, VR/AR, and graphics. Recently, several works
have proposed promising approaches that can reconstruct
high-fidelity 3D scenes from a moving RGB camera (to
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collect multiviews), such as Neural Radiance Field (NeRF)
(Mildenhall et al., 2021) and 3D Gaussian Splatting (Kerbl
et al., 2023). However, conventional RGB cameras suf-
fer from severe motion blurs when the moving speeds
of cameras are fast and cannot be used in extreme light-
ing/dark environments due to their low dynamic ranges.
The bio-inspired event cameras independently respond to
log-intensity changes for each pixel asynchronously, instead
of measuring absolute intensity synchronously at a constant
rate, like in standard cameras. These unique principles
contribute to multiple advantages of event cameras: high
dynamic ranges, low latency, and high temporal resolution.

Most existing 3D vision methods merely focus on standard
cameras and do not provide event-based solutions because
the output of event streams is very different from ordinary
images, which are composed of the polarity, pixel location,
and time stamp, occurring only at a sparse set of locations.
A few studies (Rudnev et al., 2023; Hwang et al., 2023)
attempt to combine event cameras with NeRF, but their ren-
dering results struggle with blurred edges and boundaries,
and soft fogs often exist in front of the camera lens. The
reason is NeRF encodes scenes in continuous networks,
thereby cannot effectively fit discontinuities and empties
which are common in event representations. More recently,
3DGS introduced a novel representation that formulates the
scene as 3D Gaussians with learnable parameters includ-
ing color, opacity, and covariance. 3DGS enables more
photo-realistic renderings with less memory cost and faster
rendering speeds. Likewise, 3DGS only reconstructs a scene
from per-scene optimization.

Furthermore, the above-mentioned event-based neural re-
construction methods require per-scene optimization, and
cannot generalize to unseen scenes. In contrast, some works
(Lin et al., 2022; Zheng et al., 2023a) have investigated the
generalizable NeRF and 3DGS for RGB frames. However,
no work adapts these approaches to event data at present.
This is because most generic NeRFs rely on image-based
rendering, they perform spatial interpolation across nearby
views to the target view, whereas the event stream does not
contain rich information to interpolate novel views. This
work attempts to reconstruct 3DGS from raw event data in a
feedforward manner, enabling it to generalize to unobserved
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scenarios without re-optimization.

On the other hand, depth estimation and intensity recov-
ery from raw event streams are still challenges (Jianguo
et al., 2023; Hidalgo-Carrió et al., 2020). In standard cam-
eras, stereo depth estimation relies on finding corresponding
points in different camera views to triangulate depth. How-
ever, the absence of clear correspondence between events in
different views makes stereo-matching difficult. Monocular
depth prediction often relies on color information which
event cameras do not include. While the recovery of in-
tensity images is effective when interpolating between the
given intensity images (Wang et al., 2020), the performance
dramatically degrades when only the event stream is avail-
able (Rebecq et al., 2019). In this work, we collaboratively
train these subtasks under the 3DGS framework. The 3D-
aware learning paradigm could improve the performances
of subtasks because they mutually benefit from each other
and in turn feedback on the quality of 3DGS reconstruction.

The contributions of this paper are summarized as follows:
(1) We first propose the pure event-based, generalizable
3DGS framework (EvGGS), which faithfully reconstructs
3D scenes as 3D Gaussians from raw event streams and gen-
eralizes to various unseen scenarios. The proposed method
outperforms existing event-based methods by a large mar-
gin.

(2) We propose an end-to-end collaborative learning frame-
work to jointly train event-based monocular depth estima-
tion, intensity recovery, and 3D Gaussian reconstruction by
connecting these modules in a cascading manner. Experi-
ments show that the 3D-aware training framework yields
better results than those individually trained models.

(3) To facilitate related studies, we establish a novel event-
based 3D dataset (Ev3DS) with varying material objects and
well-calibrated frame, depth, and silhouette groundtruths.

2. Related Work
2.1. Neural 3D reconstruction

Traditional explicit representation methods include point
cloud(Achlioptas et al., 2018), mesh(Liu et al., 2020a), and
voxel(Lombardi et al., 2019; Sitzmann et al., 2019). How-
ever, they are limited by their fixed topological structure. As
a solution, implicit representation has been proposed (Liu
et al., 2020b), but these methods still require the input of
surface features of the scene as prior.

NeRF(Mildenhall et al., 2020) employs an MLP to recon-
struct a scene and synthesizes images by volume rendering,
but it requires a very long time for optimization. Recently,
some studies (Cao & Johnson, 2023; Chen et al., 2022; Bar-
ron et al., 2021; Huang et al., 2023; Zheng et al., 2023b;
Lionar et al., 2021; Chen et al., 2023) have combined im-

plicit NeRF with explicit 3D representation to overcome its
issues. (Fridovich-Keil et al., 2022) and (Sun et al., 2022)
store neural features into voxel grids rather than MLP to
skip empty space. NeuMesh(Yang et al., 2022) distills the
neural field into a mesh scaffold, enabling field manipula-
tion with the mesh deformation. Ref-NeuS(Ge et al., 2023)
model sign distance field by incorporating explicit reflection
scores into NeRF. (Xu et al., 2022) and (Wang et al., 2023)
combine point clouds with NeRF to deliver better recon-
struction quality. In contrast to NeRF, (Kerbl et al., 2023)
proposed the 3D Gaussian Splatting, which demonstrates
remarkable performance in terms of rendering quality and
convergence speed.

Recently a few studies have attempted to directly apply the
neural reconstruction methods to raw event streams. (Rud-
nev et al., 2023; Hwang et al., 2023; Klenk et al., 2023;
Wang et al., 2024a) build similar pipelines which integrate
the event generation model into NeRF. Nevertheless, these
approaches still suffer from the various limitations we listed
in Sec.1. In this work, we first combine 3DGS with event-
based reconstruction, improving the quality of reconstruc-
tion from pure event data.

2.2. Generalizable neural reconstruction

Either NeRF or 3DGS require per-scene optimization be-
cause they need gradient backpropagation to adjust their in-
trinsically scene-specific parameters. To address this, some
works attempt to propose generalizable methods to con-
struct a NeRF on the fly. MVSNeRF(Chen et al., 2021) and
IBRNet(Wang et al., 2021) achieve cross-scene generaliza-
tion from only three nearby input views by building feature
augmented cost volume. ENeRF(Lin et al., 2022) utilizes
a learned depth-guided sampling strategy to improve the
rendering efficiency. NeuRay(Liu et al., 2022b) implicitly
models visibility to deal with occlusion issues. GPF (Wang
et al., 2024b) proposes to fully utilize the geometry priors
to explicitly improve the sampling and occlusion percep-
tion. Very recently, (Zheng et al., 2023a) proposed the first
generalizable 3D Gaussian framework for real-time human
novel view rendering. However, all the above generic NeRF
approaches only focus on RGB cameras, and the method for
raw event data is still blank.

2.3. Learning-based Event Depth and Image Estimation

Estimating depth from events is challenging because event
data only contains relative illumination changes, which are
not suited to feature matching across views. (Hidalgo-Carrió
et al., 2020) yields a recurrent architecture to solve this task
and show over 50% improvement compared to traditional
hand-crafted methods. EReFormer(Liu et al., 2022a) intro-
duces a spatial fusion module and a gate recurrent trans-
former for temporal modeling to predict monocular depth.
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ASnet(Jianguo et al., 2023) utilizes a group of adaptive
weighted stacks to extract depth-related features. (Brebion
et al., 2023) fuses information from an event camera and
a LiDAR. Intensity image reconstruction from only event
input has been another popular topic in event camera re-
search(Cadena et al., 2021; Paredes-Vallés & de Croon,
2021; Liu & Dragotti, 2023). E2VID(Rebecq et al., 2019)
introduced a ConvLSTM-based model, facilitating the recov-
ery of high-dynamic video. FireNet(Scheerlinck et al., 2020)
employs the GRUs to provide a more rapid and lightweight
method for event-based video reconstruction. ET-Net(Weng
et al., 2021) employed a vision transformer to reconstruct
videos from events. EVSNN(Zhu et al., 2022) proposes a
hybrid potential-assisted spiking neural network to recover
images from events efficiently.

At present, both the two tasks from events still require fur-
ther improvement. In this work, we collaboratively optimize
the two tasks under the 3D Gaussian rendering framework
to mutually promote their performance.

3. Preliminary
Since the proposed framework is related to event-based
vision and 3D Gaussian, we give brief and basic knowledge
about the two sides in this section.

3.1. 3D Gaussian Splatting
3DGS parameterize a 3D scene as a series of 3D Gaussian
primitives, each has a mean (µk), a covariance (

∑
k), an

opacity (αk) and spherical harmonics coefficients (SHk).
These primitives parameterize the 3D radiance field of the
underlying scene and can be rendered to produce novel
views via Gaussian rasterization. To facilitate optimization
by backpropagation, the covariance matrix can be decom-
posed into a rotation matrix (R) and a scaling matrix (S):

Σ = RSSTRT (1)

Assuming the camera trajectory is known, the projection of
the 3D Gaussian to 2D image plane can be described by the
view transformation (W) and the projection transformation.
To maintain the linearity of the projection, the Jacobian of
the affine approximation J of the projective transformation
is applied, as in:

Σ
′
= JWΣWTJT (2)

where the Σ
′

is the projected 2D covariance. The α-blend
is used to compute the final color of each pixel.

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (3)

The above parameters can be summarized in the follow-
ing. µ is the position of a primitive µ ∈ R3. The rotation
matrix is parameterized by a quaternion q ∈ R4. The

scale factor refers to the anisotropy stretching s ∈ R3.
The 2D opacity α ∈ [0, 1] is computed by αi(x) =
oiexp(− 1

2 (x−µi)
TΣT

i (x−µi)) where the µ and variance
are the 2D-projected mean and variance of 3D Gaussians.
The color is defined by SH.

3.2. Event Representation

Events (ek = (uk, tk, pk)) occur asynchronously at pixel
uk = (u, v) with micro-second timestamp tk. The bright-
ness changes determine the polarity (p ∈ {+1,−1}). An
event at time tk can be triggered following the equation:

∆Lk(u) =
∑

ei∈∆tk

piC (4)

where L denotes the logarithmic frame (L(t) = log(I(t))
and C refers to the constant threshold. Thus, if the C is
given, we could accumulate the events for a given period
∆t to obtain the log brightness difference in a specific pixel.
To process the event stream synchronously, we encode the
events in ∆t in a spatial-temporal voxel grid. The duration
∆t is discretized into B temporal bins. Each event trilinearly
contributes to its near voxels by its polarity, as stated in:

E(u, v, tn) =
∑
i

pi max(0, 1− |tn − t∗i |) (5)

where t∗i is determined by the number of bins and is normal-
ized to 0 to 1 t∗i = B−1

∆t (ti − t0). Following (Scheerlinck
et al., 2020), we set B = 5 in our experiments.

4. Methodology
Figure 1 illustrates the whole pipeline of our proposed ap-
proach. The primary goal of our method is to reconstruct
the 3D Gaussians of scenes in a feedforward manner from
the given event stream captured by a moving event camera.
The by-product of our method contains satisfactory depth
and intensity prediction models. The proposed framework
includes three main components: the depth and mask pre-
diction module, the intensity reconstruction module, and
the 3D Gaussian parameter regression module. We jointly
train them to enable them to benefit from other tasks. The
360-degree event stream is divided into 201 segments cor-
responding to the 201 grayscale images for each scene. A
dense depth map and a corresponding intensity map are
predicted for each event segment. It is noted that the nor-
mal event camera only detects brightness changes rather
than recognizing colors. Therefore, the event-based 3DGS
only produces the intensity parameter I ∈ R1 instead of the
spherical harmonics coefficients SH. Next, the Gaussian
regressor predicts other parameters. The depth map and
associated parameters are unprojected to the 3D space. As
shown in Figure 1, three main modules are hierarchically
linked in both feature and output spaces. The gradient can
be efficiently back-propagated through the pipeline, thus
allowing for efficient joint optimization.
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Figure 1. Overview of EvGGS. Given a 360-degree event stream and target viewpoints. we select two segments of event spatial-temporal
voxels from consecutive moments as inputs. For each source view, we employ two submodules to extract the depth and intensity
information, which serve as the 3D position and color maps. Another module aims to infer other 3D Gaussian parameters. The feature
and output of the three modules are hierarchically bridged, facilitating a smooth backpropagation through joint training.

4.1. Event-based Monocular Depth Estimation Module

The depth estimation module takes two segments of spatial-
temporal event voxel grid Ek and Ek−1 from consecutive
moments as inputs. We let the module predict the nor-
malized log disparity map. The final depth value can be
converted from the predicted disparity:

Dpred = exp(Dmax ⊙ Sig(Disp))) (6)

where D∗ refers to the associated disparity map, Sig denotes
the sigmoid activation to ensure the output value belongs
to (0, 1). We additionally attempt to directly regress nor-
malized depth value and similar results are observed in the
final experiments. For simplicity, we do not specifically
distinguish the two terms in the rest of the paper.

We implement this module with a dense UNet. Detailed
network architectures are shown in the Appendix. The
output of the UNet is fed to two output heads to predict the
normalized depth and the foreground mask. Moreover, the
output feature volume of the UNet is also maintained to pass
to the next intensity reconstruction module. The foreground
mask is multiplied with all 3D Gaussian parameter maps to
filter out the useless and empty backgrounds. The whole
process can be depicted in the following:

Fd = Φd(E(u, v, t), E(u, v, t− 1))

D,M = Sig(Hd(Fd)), Sig(Hm(Fd))

Disp = D ⊙M
(7)

where the Φd refers to the depth UNet and Fd ∈ RH×W×32

refers to the 32-dimensional output feature volume which
can be decoded to normalized depth maps and mask maps
by the corresponding heads Hd and Hm. Next, the ⊙ refers
to the element-wise multiplication.

4.2. Intensity Reconstruction Module

The intensity reconstruction module aims to offer the color
properties of 3D Gaussians (as for the event version, the
color denotes intensity.) This module receives the event
voxel grid, accumulated event frame, and the depth feature
volume from the previous module as input (Fd in Equa-
tion 7) to utilize the geometry awareness to assist appear-
ance recovery. The network architecture follows the depth
estimation module, and is UNet-like as well.

FI = ΦI(Fd ⊕ E(u, v, t)⊕ F (u, v)) (8)
where ΦI represents the UNet network with a similar archi-
tecture as that in module 1. The ⊕ denotes the concatenation
operation. Moreover, F (u, v) ∈ RH×W×3 represents the
accumulated event frame, which is produced by accumulat-
ing events at the same pixel location together, and we repeat
the operation three times for different polarity combinations
including positive, negative, positive and negative, respec-
tively, and concatenate them along the channel dimension
because the event frame contains rich boundary informa-
tion which helps recover dense intensity maps. The final
reconstructed intensity map can be obtained by
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Ipred = M⊙ Sig(HI(FI)) (9)

in which M is the predicted foreground mask in Equation 7.
The cascaded connection guarantees that geometric priors
are taken into account when the module deduces appearance.

4.3. Gaussian Parameter Regression
As stated in Section 3, the 3D Gaussian includes 5 inde-
pendent parameters µ,R,S, α, c. The first two modules
generate the 3D location and intensity, and then the regres-
sor indicated in this subsection aims to formulate the rest
parameters, i.e. scale, rotation, and opacity. This module is
a residual block with two convolutional layers.

FR = ΦR(Dpred ⊕FI ⊕ E(u, v, t)) (10)

where the FI represents the output feature volume of the
intensity module in Equation 8 and Dpred is the predicted
depth. The RR is decoded into different Gaussian parame-
ters with corresponding activation functions to constrain the
value range.

R = norm(Hr(fR))

S = exp(Hs(fR))

α = Sig(Ho(fR))

(11)

in which the Hr, Hs, and Ho represent the correspond-
ing decoder heads for different Gaussian parameters. R ∈
RH×W×4,S ∈ RH×W×3, α ∈ RH×W×1. The predicted
parameter maps have the same spatial resolution as the
original input event voxel grid, the mask M in Equation
7 is also used to filter invalid regions, Rpred = M ∗ R,
Spred = M∗ S, α = M∗ α. Moreover, the Dpred can be
unprojected from pixel space to 3D space by giving the cam-
era pose matrix P ∈ R4×4 and intrinsic matrix K ∈ R3×3

to obtain the parameter µ, as stated in Equation 12.

µ = P ·K−1 · (u, v,Dpred(u, v)) (12)

Likewise, the predicted intensity Ipred serves as the Gaus-
sian parameter c.

4.4. Training Strategy

We jointly optimize the three modules by the differentiable
rendering pipeline in an end-to-end manner. The frame-
work finally renders intensity images that can be used to
compute losses. We hierarchically bridge the three modules
by linking their feature and output layers. Thanks to the
hierarchical linkage, the gradient can smoothly backprop-
agate through the pipeline. Improved geometries provide
better contextual information about the spatial relationships
between different parts of an image and contribute to a
better semantic understanding of the image. This under-
standing helps the model differentiate between different
objects, regions, and surfaces, leading to more accurate tex-
ture reconstruction. In contrast, better texture reconstruction

implies that fine details on surfaces are captured accurately.
This detailed information is crucial for depth prediction,
especially in regions with complex structures or intricate
surfaces. Overall, better geometry and texture simultane-
ously improve the quality of the reconstructed 3D Gaussians.
Due to the above analysis, multitasks in the collaborative
learning framework mutually promote and benefit from each
other.

To mitigate the optimization complexity, we first pretrain the
depth prediction module by L1 loss. In addition, We jointly
train the whole pipeline according to the below Equation

Ljoint = argminϕ,θ,η(λ1LIθ+λ2LDϕ
+λ3LRϕ,θ,η

) (13)

where ϕ, θ, η corresponds to parameters of depth, intensity,
and regressor modules. λ1, λ2, λ3 are coefficients to balance
the loss magnitudes. We set 0.2, 0.2, and 0.6 respectively
throughout all experiments. In detail, the three losses are
described as follows:

LIθ = β1L2(Iθ, I
s
gt) + β2Lp(Iθ, I

s
gt) (14)

LDϕ
= L1(Dϕ, I

s
gt) (15)

LRη
= β1L2(Rη(Iθ, Dϕ), I

t
gt)

+ β2Lp(Rη(Iθ, Dϕ), I
t
gt)

(16)

In the above three loss equations, the superscripts s and t
denote the source view and target view respectively. Lp

is the perceptual loss (Zhang et al., 2018). β1, β2 aim to
balance the L1 and perceptual loss, we constantly set them
to 0.8 and 0.2 for all situations. Iθ, Dϕ are the predictions
of the first two modules at the source views. Rη(Iθ, Dϕ)
represents the 3D Gaussian parameter regression and ras-
terization projection to the target view based on the source
view predictions. In the inference stage, only the raw event
stream is required to be the input.

5. Experiments
5.1. Event-based 3D Dataset

Dataset Existing event-based 3D datasets such as (Rudnev
et al., 2023; Zhou et al., 2018) only contain a limited num-
ber of objects and lack high-quality intensity, depth, and
mask groundtruths because they mainly concentrate on sin-
gle scene reconstruction or sparse vision tasks. To fill the
current gaps in the community, we establish a full event-
based 3D dataset including completed labels, referred to as
Ev3DS. The dataset includes a wide variety range of mate-
rials. There are 64 objects for training and 15 objects The
dataset is constructed and rendered via Blender, it encom-
passes a multitude of photo-realistic objects, characterized
by their complex and varied geometric structures and texture
information. We have harnessed VisionBlender(Cartucho
et al., 2020) to gather dense depth, mask, and pose infor-
mation. In each scene, events are generated by a virtual
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Figure 2. Qualitative comparison of ours and other event-based 3D methods in novel view synthesis.

event camera that orbits around the origin of the object
in space. We employ V2E(Hu et al., 2021) to generate
synthetic event streams maintaining default noise configura-
tions. Additionally, to verify the robutness of the proposed
method, we establish and release a novel realistic dataset
utilizing the event camera DVXplore for further faithful
evaluations, referred to as Ev3D-R. The real-world dataset
is essential because the real event camera will raise noises
and be more sensitive to illumination changes than synthetic
event data. We evaluate the scalability and generalization of
the proposed methods on the realistic event data. Detailed
introduction of Ev3D-R can be found in the Appendix.

Metrics. We evaluate the following three subtasks includ-
ing depth estimation, intensity recovery, and novel view
synthesis. Similar to previous works, we evaluate the ab-
solute relative error, mean absolute error, square relative
error, and root mean square error as metrics for the depth
predictions in foreground regions. In addition, we evaluate
PSNR, SSIM, and LPIPS for the intensity reconstruction
and the novel view synthesis tasks as well. We here argue
that Oursi and Oursj denote our models as independently
trained and jointly trained respectively. Due to the page
limit, more results and videos can be seen in the Appendix
and Supplementary Material.

5.2. Performance of Neural Reconstruction

Baselines. In this section, we evaluate the performance of
the proposed method on the novel view synthesis. We set
three experimental settings for fair comparisons including
EventNeRF (Rudnev et al., 2023), E2VID+3DGS (E3DGS),
and E2VID+ENeRF(Lin et al., 2022) (EENeRF). Event-
NeRF is the up-to-date pure event-based NeRF method that
requires per-scene training while our method can general-
ize to unseen scenes. E2VID+3DGS denotes that we first
recover videos from events by the E2VID method then we
use the reconstructed images to optimize the 3DGS repre-
sentations. As our approach is a generic pipeline, we set
E2VID+ENeRF as the generalizable reconstruction base-
line in which ENeRF is a recently prevailing generalizable
NeRF method, which requires source images to interpo-
late the target views and renders based on a built-in depth
estimator. We retrain the ENeRF by the provided image
groundtruth at first. Then we use E2VID to recover the
intensity frame from events and input them to the ENeRF
model for synthesizing novel images. Table 1 reports all
metrics to quantitatively compare the results, which illus-
trates that our method achieves the best performance. Gen.
means whether the corresponding methods can generalize
to unobserved scenes. Real-time means the corresponding
methods can render several images within 1 second. More
analysis of this point is in the Appendix. Figure 2 presents
the qualitative results.
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Figure 3. Qualitative comparison of ours and other intensity reconstruction methods.

Compared to E2VID+ENeRF, the success can be attributed
to the collaborative training that further improves the quality
of depth and intensity prediction even though the perfor-
mance of the intensity reconstruction module and E2VID
is identical when trained individually. Compared to Event-
NeRF, EventNeRF suffers from soft fogs because NeRF
encodes the scene into a continuous network, which greatly
affects the quality of texture and geometric reconstruction
of the objects. Our process effectively solves this issue.
Compared to E2VID+3DGS, the reconstruction quality of
E2VID+3DGS entirely depends on the quality of the inten-
sity reconstruction module.

5.3. Quality of Intensity Reconstruction

Baselines. We overall evaluate the quality of the intensity
reconstruction in our framework. In this section, we se-
lect three popular image recovery algorithms, i.e. E2VID
(Rebecq et al., 2019), FireNet (Scheerlinck et al., 2020),
and EVSNN (Barchid et al., 2023). They receive raw event
data as input and reconstruct corresponding intensity maps.
Moreover, we also independently train our intensity module
as a baseline by using a fixed depth module to provide the
Fd in Equation 8. E2VID and FireNet rely on the recurrent
convolution structure while EVSNN is built upon the spik-
ing neural network. It is noted that the first three baselines
recover videos via a recurrent mechanism, they need the last
state to be an additional input, whereas our module directly
infers the corresponding images from a segment of events.
Therefore, they have to start to reconstruct from the first
frame while ours can be reconstructed from arbitrary times-
tamps. We present the qualitative comparisons in Table 2.

Table 1. Qualitative Comparisons of neural reconstruction.

Methods EventNeRF E-ENeRF E3DGS EvGGS
PSNR↑ 24.62 23.86 19.19 27.95
SSIM↑ 0.945 0.933 0.814 0.968
LPIPS↓ 0.072 0.066 0.119 0.045
Gen.
Real-time

Table 2. Qualitative Comparisons of intensity reconstruction.

Methods FireNet E2VID EVSNN EVGGSi EVGGSj

PSNR↑ 25.56 27.78 27.91 26.94 29.18
SSIM↑ 0.939 0.963 0.952 0.957 0.969
LPIPS↓ 0.056 0.0567 0.0397 0.0367 0.0324

Figure 3 additionally shows some qualitative results.

By comparing the results with the other three methods, it
can be observed that our joint training strategy achieves
superior performance in reconstructing complex textures.
It effectively reconstructs the contrast that is close to the
groundtruths and performs excellently in the local details.
Compared to our independent training case, it can be seen
that without the assistance of collaborative training, our
intensity reconstruction module cannot reconstruct the con-
trast of the scene. Although it also reconstructs clearer
textures, the reconstructed intensity images are still darker
than the groundtruths.

5.4. Quality of Depth Estimation

Baselines. In this section, we compare the depth estima-
tion modules with four different baselines that are ASNet
(Jianguo et al., 2023), EReFormer (Liu et al., 2022a), E2Dpt
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Figure 4. Qualitative comparison of ours and other depth estimation methods.

Table 3. Qualitative Comparisons of depth estimation. We magni-
fied all metrics by a factor of 1000.

Methods ASNet E2Dpt EReFormer EvGGSi EvGGSj

RMSE↓ 2.87 2.86 2.12 2.53 1.95
Abs.rel↓ 52.4 54.3 46.2 51.5 39.4
Sq.rel↓ 4.38 2.81 4.92 4.76 2.14

(Hidalgo-Carrió et al., 2020), and our independent training
strategy. ASNet is a stereo depth estimator that we give
events of the target view and its nearest view for predic-
tion. The rest are monocular depth estimators and we follow
their original event representations as input. The results are
depicted in Table 3.

We randomly select some examples to show in Figure 4.
Note that our joint training strategy achieved the best per-
formance on test sets, especially in terms of the Abs.rel
evaluation, where we achieved at least 14.7% performance
improvement compared to other baselines. As can be seen,
our method can obtain finer-grained and more globally co-
herent dense depth maps across all test sets. Our method
has a significant advantage when E2Dpt cannot predict the
correct depth information. Compared to ASNet and ERe-
Former, our method achieves better results while using a
more lightweight network structure, fully demonstrating the
superiority of our joint training strategy.

5.5. Performance on Realistic Event Data

We also evaluate our method and some baselines on Ev3D-
R. Here all methods except the EvGGS-f are trained on
the proposed synthetic dataset and directly tested on the

Table 4. Ablation studies about different training strategies. PSNR,
SSIM, and LPIPS are evaluated on the novel view synthesis.
RMSE and Abs.rel are evaluated on the depth estimation.

Methods PSNR↑ SSIM↑ LPIPS↓ RMSE↓ Abs.rel↓
w/o Joint 27.04 0.953 0.065 2.53 51.5
w/o Cascade 26.51 0.934 0.068 2.51 51.6
w/o LD 27.83 0.962 0.078 2.37 49.2
w/o LI 26.94 0.959 0.518 1.98 41.6
EvGGS 27.95 0.968 0.045 1.95 39.4

Table 5. Qualitative Comparisons on Ev3D-R.

Methods E-ENeRF FireNet EVSNN EvGGS-g EvGGS-f
PSNR↑ 23.87 23.64 24.95 26.77 27.84
SSIM↑ 0.866 0.833 0.643 0.896 0.927
LPIPS↓ 0.271 0.267 0.020 0.128 0.086

Ev3D-R. It is observed that our method demonstrates the
least sim2real gap and outperforms other baselines by a
large margin, while others experience dramatic degeneration
compared to the results on synthetic data. The EvGGS-f
shows that the performance of the proposed approach can
be further improved during fine-tuning. The quantitative
and qualitative experiment results of Ev3D-R can be found
in Table.5 and Fig.5 respectively. Here we show some
randomly selected visual results. It can be seen that the
proposed methods reconstruct a finer texture in all examples.

5.6. Ablation Studies

This subsection demonstrates the impact of different train-
ing strategies on model performance in the tasks of novel
view synthesis and depth estimation. w/o Joint denotes that
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Figure 5. Qualitative comparisons on realistic event dataset.

we only train the Gaussian regressor with the individually
trained and frozen depth estimator and intensity reconstruc-
tor. w/o Cascade means that the input does not contain the
feature map of the previous network, but only the event
voxel and prediction results from the last modules. In Table.
4, the performance of w/o Joint and w/o Cascade is signifi-
cantly degraded because submodules hardly benefit from the
others in the two settings. Besides, w/o LI and w/o LD rep-
resent the corresponding loss variants by removing LIθ and
LDϕ

respectively. Table. 4 demonstrates that the absence of
depth supervision during joint training leads to a decline in
depth estimation. Additionally, w/o LI results in a lack of
constraints for intensity reconstruction, which degrades the
performance of the subsequent cascaded Gaussian regressor
and adversely affects the other two submodules with varying
degrees.

6. Conclusion
We first propose the EvGGS, an event-based 3D reconstruc-
tion framework that reconstructs 3D Gaussians from raw
event streams and generalizes to unobserved scenes without
per-scene training. The framework includes three submod-

ules, namely depth estimator, intensity reconstructor, and
3D Gaussian regressor, they are connected hierarchically in
feature space. We propose that collaborative training under
the 3DGS framework can inject 3D awareness into the sub-
modules to make them mutually promote. We build a novel
event-based 3D dataset with well-calibrated intensity, depth,
and mask groundtruth. We experimentally prove that the
3D-aware jointly training pipeline further improves the per-
formance of the three modules, and yields better results than
the individually trained model and other baselines. More-
over, the generalizable event-based 3DGS reconstruction
framework delivers better results than all counterparts.
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A. Dataset and Code
The dataset guidance including download and retrieval is introduced in https://github.com/Mercerai/EvGGS/. We also
provide the code demonstration for the users to facilitate direct modifications by users.

B. Detailed Network Architectures
In this section, we introduce the detailed architectures and parameter selections. The framework includes three cascaded
modules, the depth estimator, the intensity reconstructor, and the Gaussian regressor. Among them, the depth estimator
and the intensity reconstructor share the same network structure that is a UNet except for their output head. We visualize
the network structure in Fig. 6. Even though they have different input tensors, the input will be transformed into the fixed
dimension via a convolution layer with 1× 1 kernels. The depth estimator contains two output heads, one for depth and
another for mask, while the intensity reconstructor has a single head to predict the greyscale images. All of them are two
independent convolution networks with two hidden layers of 1× 1 kernels.

In addition, the Gaussian regressor aims to predict the per-pixel Gaussian parameters, which is a simple convolution network
with skip connections, as Fig. 7 states. We argue that the input of this module includes the depth and intensity map, as well
as the high-level features from the last module. The input tensor contains rich high-level semantic meanings thus we do not
employ complicated architectures at this step. The ”Linear” in Fig. 7 refers to a linear projection to transform the input
dimension 39 (1 for depth, 1 for intensity, 5 for input event voxel, 32 for the high-level feature from the last module) into
the input dimension of the residual block (32). Finally, the output feature is fed to three independent heads to predict the
parameter maps with corresponding activations. The three output heads share the same structure as the previously introduced
prediction heads in the first two modules.

Figure 6. Architecture visualization of the UNet feature extraction network used in depth estimation and intensity reconstruction modules

C. Implementation Details
Our approach and all baselines are trained on a single RTX 3090 GPU by using the Adam optimizer with 1e-5 weighting
decay. The initial learning rate is set to 5e-4. We apply the StepLR schedule to adjust the learning rate by multiplying 0.9
every 12000 steps. As the intensity reconstruction module requires the depth feature map as input when training in the
collaborative framework, we use a well-trained depth estimator to offer the depth feature map when independently training
it. We train 60,000 iterations for the independent training of each submodule in comparisons. Before the collaborative
training starts, we only load the checkpoint of the depth estimator at the 60000 step. Then we set the learning rate of the
depth estimator to 1e-5, and others remain 5e-4. The entire training process took 9 hours in total.
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Figure 7. Architecture visualization of the Gaussian regressor network.

D. Visualization of Additional Comparison Results
We establish additional qualitative comparisons to further showcase our superiorities in the three subtasks including depth
estimation, intensity recovery, and novel view synthesis.

D.1. Visualization of Reconstructed 3D Objects

In this section, we want to conduct a more detailed comparison and analysis of the 3D reconstruction results. Figure.8 gives
the large detail boxes of the 3D reconstruction results. Our method consistently achieved the best performance across all
test scenes, even when some parts of the scenes had complex geometry and textures or had fewer triggered event points.
As can be seen from the first and the third rows, our method is capable of effectively reconstructing complex grid-like and
mechanical structures that methods trained on continuous event streams struggle to handle, resulting in sufficiently clear
object boundaries. In addition, our method more faithfully restores the original contrast. As the event stream only contains
changes in scene luminance, the results of the other three methods all suffer from varying degrees of loss of intensity
information. With the help of the jointly trained intensity reconstruction module, our method significantly outperforms other
methods in terms of recovering scene contrast.

Figure.9 presents surrounding views of 3D reconstruction results for several other scenes. It can be observed that our method
does not exhibit any frog or blur from arbitrary viewpoints, thus more closely approximating the groundtruths.

D.2. Visualization of Recovery Intensity Images

Figure.10 shows the local details of the intensity recovery results in the enlarged red boxes. FireNet did not recover the
intensity values correctly, and it can be observed that there are severe color bleeding effects in all five test scenes. The
intensity reconstruction of E2VID is slightly better than FireNet, especially the reconstruction of the ‘Train’ scene, which is
quite close to our joint training strategy. However, E2VID incorrectly handled the reflective parts, causing the highlights in
the image to turn completely white. Furthermore, the images reconstructed by E2VID also suffer from low contrast and
unclear geometric boundaries.

EVSNN performs the best among the methods outside of our joint training strategy, recovering the intensity values well
in all scenes except for ’Flower’ and ’Doll’. However, it can be observed that EVSNN also has the same issue as E2VID
with low contrast. The hue of the scenes reconstructed by EVSNN is noticeably lighter compared to the true intensity map.
Moreover, as these three methods rely entirely on the event stream to recover intensity values, all three baseline models are
affected in parts where there are fewer triggered event points. Our independent training strategy exhibits a strong sense
of flatness in the intensity maps recovered in multiple scenes (Robot, Train, ToyCrocodile), and it fails to distinguish the
reflective parts.
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Figure 8. Qualitative comparisons of neural reconstruction with enlarged details.

D.3. Visualizaiton of Depth Map

In this section, we conduct a detailed analysis of the depth estimation results. Figure.11 shows the qualitative comparison of
the depth estimation for other scenes. Our joint training strategy continues to achieve the best depth estimation results in all
test scenes. In terms of the Sq.rel metric, E2Dpt is outperformed only by our joint training strategy. However, it exhibits the
poorest performance concerning the Abs.rel metric. This indicates that E2Dpt can estimate a continuous and consistent
depth map without significant local errors. However, E2Dpt does not obtain the correct depth map, and it gets completely
wrong depth ranges in multiple scenarios (Shoes, Camera, Dolls, etc.). Because E2Dpt has a similar network structure to
ours, this suggests that using only event spatial-temporal voxels as input cannot extract enough scene information.

Both ASNet and EReFormer have achieved relatively higher Abs.rel and lower Sq.rel than E2Dpt. As shown in Figure.4
and 11, it can be seen that there are many areas in the depth maps predicted by EReFormer and ASNet where the depth
values are discontinuous with the surroundings. This indicates that the utilization of the event frames as input inherently
limits the models’ capacity for effective 3D scene perception extraction. In addition, due to the relatively complex network
structure of ASNet and EReFormer, we adopted the optimized UNet structure as the backbone of our depth estimator to
reduce computational load. In other words, our depth estimation module not only has the best depth prediction performance
on the test sets, but it is also more suitable for the generalizable 3DGS training pipeline than other methods.

E. Analysis of Rendering Speed
Our method benefits from the properties of 3D Gaussians, enabling real-time rendering. As stated in Table 1, EventNeRF
fails to render in real-time and only produces videos with 0.045 FPS, while the other three models E2VID+ENeRF,
E2VID+E3DGS and our EvGGS can interactively produce real-time videos, their FPS are 5, 35, 195 respectively. The
rendering speed of E-ENeRF is constrained by the volumetric rendering pipeline that is slower than the Gaussian rasterization.
E3DGS delivers the highest FPS because it has been optimized for one scene in advance. However, it still requires retraining
when one adopts it to new scenes. Our method needs to recalculate the Gaussian point cloud from scratch from the input data
for each rendering time. This is the primary reason resulting in the difference in the rendering speed when compared to the
original 3DGS. Nevertheless, by precomputing the Gaussian point cloud and retaining it in memory, we eliminate the need
for repetitive computing. Consequently, the subsequent process involves merely rasterization. Under such a precomputation
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Figure 9. Qualitative comparisons of neural reconstruction with surrounding views.
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Figure 10. Qualitative comparisons of intensity recovery with enlarged details.
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Figure 11. Qualitative comparisons of depth estimation.
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Table 6. Comparisons of training and rendering speeds.

Stage 1 Stage 2 Stage 3 EvGGS-Total E-ENeRF EventNeRF
Training time 4.5h 2h 5.5h 12h 15.5h 24h
Rendering time 0.058s 0.056s 0.118s 0.232s 0.827s 7.6s

Table 7. Quantitative Results on Unbounded and Large Scenes.

Bicycle Garden
GrayNeRF E-ENeRF EvGGS GrayNeRF E-ENeRF EvGGS

PSNR↑ 19.84 18.98 22.75 21.03 19.62 24.08
SSIM↑ 0.451 0.482 0.760 0.677 0.490 0.797
LPIPS↓ 0.492 0.459 0.413 0.435 0.511 0.398

paradigm, our approach is capable of reaching an equivalent rendering speed of 195 FPS. The qualitative comparison results
of training and rendering results are shown in Table.6. The EvGGS includes three hierarchical stages including intensity
reconstruction, depth estimation, and 3DGS regression and rendering. The rendering time can be considered the sum of
all previous modules’ inference times. Moreover, we also test the other two event-based 3D reconstruction baselines, i.e.
E-ENeRF and EventNeRF. It is noted that the EventNeRF can only optimize on a single scene, thus we only report the time
of per-scene optimization. Even though our method includes three modules, the overall training speed and inference speed
are still significantly faster than the other two models. Our model can meet the requirement of real-time rendering.

F. Additional Experiments
F.1. The Data Collection Pipeline to Obtain The Realistic Dataset: EvGGS-R

In this subsection, We briefly introduce our data collection pipeline. This realistic dataset is captured by the DVXplore event
camera. First, we render RGB images and generate corresponding depth groundtruth via Blender, this step is similar to the
synthetic dataset. Then we display the videos for these objects on a high fresh rate screen in our work studio with constant
low lighting conditions. Meanwhile, we use the DVXplore to continuously capture the screen to obtain the corresponding
realistic event stream. Before collecting data, we have already well-calibrated these devices to ensure high-level data
association by using chessboard calibration and image, depth, and event frame alignment. By using the data collection
pipeline, we can obtain a realistic event dataset with corresponding images, depths, and 3D model labels as well. Moreover,
The distribution of events captured by the real DVXplore will be more complex, realistic, and disordered, which places
higher demands on models.

F.2. Qualitative Experiments on Large Scale Scenes

To show the potential and generalization of the proposed approach, we evaluate our methods on the large scene dataset,
MipNeRF 360 (Barron et al., 2022). We test our method on the Bicycle and Garden scenes. We convert the original large-
scale RGB images into event frames by the V2E simulator(Hu et al., 2021) and evaluate our model and other event-based
baselines on that. The quantitative evaluation results are shown in Table.7.

In this table, all methods are trained on the synthetic dataset, fine-tuned on 16 views of the MipNeRF 360 dataset, and tested
on the other test views of the realistic dataset. It is seen that our method delivers better results than others, which indicates
our method can generalize to realistic event data with a small sim2real gap. Moreover, if we finetune our method on 32
distinct views, further improvement will be observed. The visualization results are shown in Fig.12.

We compare our method with GrayNeRF and E-ENeRF. GrayNeRF means we trained the original NeRF by the grayscale
images converted from the RGB images. We optimize the GrayNeRF from scratch because it is a per-scene optimization
method. Even though the GrayNeRF is directly trained on the groundtruth images within a per-scene optimization manner,
it fails to produce clear and sharp details. In contrast, the E-ENeRF and EvGGS only need to receive the raw event stream.
E-ENeRF only reconstructs super-blur images. However, our EvGGS successfully synthesizes clear backgrounds and sharp
edges and yields the best PSNR, SSIM, and LPIPS overall scenes.
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Figure 12. Qualitative comparisons on Mip360.

18



EvGGS: A Collaborative Learning Framework for Event-based Generalizable Gaussian Splatting

Table 8. Quantitative results on unbounded and large scenes.

EventNeRF EvGGS
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Drums 27.43 0.91 0.07 28.58 0.92 0.07
Ship 25.84 0.89 0.13 29.77 0.96 0.06
Chair 30.62 0.94 0.05 31.43 0.93 0.05
Ficus 31.94 0.94 0.05 32.16 0.93 0.05
Mic 31.78 0.96 0.03 32.61 0.97 0.02
Hotdog 30.26 0.94 0.04 31.29 0.95 0.04
Material 24.10 0.94 0.07 29.15 0.96 0.04
Lego 28.85 0.93 0.06 30.71 0.95 0.05

F.3. Additional Experiments on EventNeRF Dataset

we additionally evaluate the proposed approach on the dataset proposed by EventNeRF. EventNeRF includes two datasets,
one is the colored NeRF dataset, another is the real dataset. Since the real dataset does not include the image groundtruth
to compute metrics, we only test our method on the colored NeRF dataset. This dataset uses the synthetic colored event
streams, thus we add a tune mapping function at the end of our model, which is a similar way to that of the EventNeRF. The
results are shown in Table.8. It can be observed that our method delivers better performance than EventNeRF on the dataset.
The EvGGS achieves higher PSNR, LPIPS, and SSIM by a distinct margin than EventNeRF.

G. Limitations
Although the proposed collaborative learning framework largely improves the performance of the three subtasks, some
aspects can still be addressed in the future. First, to accommodate event data, we replaced the spherical harmonics in the
original 3DGS with a single intensity value, which reduces its capability to model view-dependent effects. This might be
solved by displaying and modeling the lighting direction through a separate network pathway. Second, this method cannot
effectively reconstruct specular metals.

19


