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ABSTRACT

Optical flow estimation is a crucial computer vision task often applied to safety-
critical real-world scenarios like autonomous driving and medical imaging. While
optical flow estimation accuracy has greatly benefited from the emergence of deep
learning, learning-based methods are also known for their lack of generalization
and reliability. However, reliability is paramount when optical flow methods are
employed in the real world, where safety is essential. Furthermore, a deeper un-
derstanding of the robustness and reliability of learning-based optical flow esti-
mation methods is still lacking, hindering the research community from build-
ing methods safe for real-world deployment. Thus we propose FLOWBENCH, a
robustness benchmark and evaluation tool for learning-based optical flow meth-
ods. FLOWBENCH facilitates streamlined research into the reliability of optical
flow methods by benchmarking their robustness to adversarial attacks and out-
of-distribution samples. With FLOWBENCH, we benchmark 91 methods across 3
different datasets under 7 diverse adversarial attacks and 23 established common
corruptions, making it the most comprehensive robustness analysis of optical flow
methods to date. Across this wide range of methods, we consistently find that
methods with state-of-the-art performance on established standard benchmarks
lack reliability and generalization ability. Moreover, we find interesting correla-
tions between performance, reliability, and generalization ability of optical flow
estimation methods, under various lenses such as point matching method used,
number of parameters, etc. After acceptance, FLOWBENCH will be open-source
and publicly available, including the weights of all tested models.

1 INTRODUCTION
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Figure 1: Optical flow estimation methods proposed over time and their reliability and generalization
ability. In all three plots, the y-axis represents error, i.e., lower is better. The error of optical flow
estimation methods on independent and identically distributed data samples (i.i.d.) has decreased
over time, however, their reliability and generalization ability are stagnant if not deteriorating.

The recent growth of Deep Learning (DL) has greatly benefited computer vision, in particular when
considering complex tasks such as the estimation of optical flow fields. In optical flow estimation,
a method is supposed to estimate the movement of every pixel between at least two consecutive
image frames in a subpixel-accurate manner. This task was earlier performed using model-driven
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approaches such asHorn & Schunck! (1981) and [Lucas & Kanade| (1981). However, these methods
have severe limitations leading to suboptimal estimations and, consequently, to the predominant use
of DL to perform the estimations (Dosovitskiy et al., [2015; |Ilg et al.l |2017; [Jahedi et al., 2024b)).
The performance of learning-based optical flow estimation methods has improved over the years on
independent and identically distributed data samples (i.i.d.), leading to lower errors on evaluation as
shown by Fig. [T] (left). At the same time, DL-based methods are known to be unreliable (Geirhos
et al.l 2018}, [Prasad, |2022), they tend to learn shortcuts rather than meaningful feature represen-
tations (Geirhos et al., |2020), and can be easily deteriorated even by small corruptions. This can
become a practical threat, as optical flow estimation is highly relevant in safety-critical applications
such as autonomous driving (Capito et al.l 2020; Wang et al.| [2021)), robotic surgery (Rosa et al.,
2019) and others. Thus, before deploying DL-based optical flow estimation methods, assessing their
vulnerability and generalization ability is of paramount importance to gauge their readiness. We ob-
serve in Fig.[I|that over the years, despite improvement in the performance of learning-based optical
flow estimation methods, their reliability and generalization ability are almost unchanged. Had re-
cent research been focused on these factors, the newly proposed methods could have been more
reliable and ready for practical use. Our proposed FLOWBENCH facilitates this study, streamlining
it for future research to utilize.

Many works have highlighted the importance of such a study by reducing model vulnerability (Xu
et al.l 2021b; |Croce et al., 2023 |Agnihotri et al., 2023 [Schrodi et al., 2022; [Tran et al.| [2022;
Grabinski et al., 2022), showing that robustness does follow from high accuracy (Tsipras et al.,
2019;[Schmidt et al., 2018 [Schmalfuss et al.,2022b) or improving generalization (Hendrycks et al.,
2020; [Hoffmann et al.l [2021) for various downstream tasks such as image classification, semantic
segmentation, image restoration and others. To facilitate this research, robustness benchmarking
tools and benchmarks like |Croce et al.| (2021)); Jung et al.| (2023)); Tang et al.| (2021) have been
proposed for image classification models. They look into the adversarial and Out-of-Distribution
(OOD) robustness of DL models. However, these works are limited to image classification. A
similar benchmarking tool and comprehensive benchmark for optical flow is amiss.

To bridge this gap, we propose FLOWBENCH that facilitates robustness evaluations of optical flow
models against adversarial attacks and image corruptions for OOD data and provides a unified eval-
uation scheme and streamlined code. Using FLOWBENCH, we benchmark 91 model checkpoints
over 3 commonly used optical flow estimation datasets. These model checkpoints include SotA op-
tical flow estimation methods and evaluation methods including SotA adversarial attacks and image
corruption methods. FLOWBENCH is easy to use and new methods, when proposed, can be easily
integrated to benchmark their performance. This will help researchers build better models that are
not limited to improved performance on identical and independently distributed (i.i.d.) samples and
are less vulnerable to adversarial attacks while generalizing better to image corruptions.

The main contributions of this work are as follows:

* We provide a benchmarking tool FLOWBENCH to evaluate the performance of most DL-
based optical flow estimation methods over different datasets and make 91 checkpoints
over different datasets publicly available for streamlined benchmarking while enabling the
research community to add further checkpoints.

* We benchmark the aforementioned models against SotA and other commonly used adver-
sarial attacks and common corruptions that can be easily queried using FLOWBENCH.

* We perform an in-depth analysis using FLOWBENCH and present interesting findings show-
ing that methods that are SotA on i.i.d. are remarkably less reliable and generalize worse
than other non-SotA methods.

* We analyze correlations between performance, reliability, and generalization abilities of
optical flow estimation methods, under various lenses such as point matching methods
used, and the number of learnable parameters.

* We show that the optimization of white-box adversarial attacks for optical flow estimation
can be performed even without the availability of ground truth predictions, furthering the
scope of study in their reliability.
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2 RELATED WORK

FLOWBENCH is the first robustness benchmarking tool and benchmark for optical flow estimation
methods that unifies adversarial and OOD robustness, taking inspiration from robustness bench-
marks for other vision tasks such as image classification. While several previous works provide
benchmarking tools for optical flow estimation, they only facilitate benchmarking of either adver-
sarial or OOD robustness and are less comprehensive than FLOWBENCH. FLOWBENCH leverages
the individual strengths of prior benchmarking tools, but casts them into a unified and easy-to-use
robustness benchmark. Following, we discuss these related works in detail.

2.1 ROBUSTNESS BENCHMARKING FOR IMAGE CLASSIFICATION METHODS

Goodfellow et al.| (2015) proposed the Fast Sign Gradient Method (FGSM) attack which gave rise
to the domain of adversarial attacks on image classification. Complementing adversarial attacks,
Hendrycks & Dietterich| (2019) proposed 2D Common Corruptions for image classification tasks
on the CIFAR-100 (Krizhevsky et al., |2009) and ImageNet-1k (Russakovsky et al., 2015) datasets
and their variants. Since then, most adversarial attacks and OOD Robustness works have focused
on image classification tasks, warranting a consolidated benchmarking tool and benchmark for ro-
bustness. In the case of image classification, this gap was filled by multiple works such as Robust-
Bench (Croce et al.| [2021)) and RobustArts (Tang et al., 2021). Both works make multiple image
classification model checkpoints publicly available, including checkpoints trained for improved ro-
bustness. Moreover, RobustBench is a benchmarking tool that facilitates evaluating both adversarial
and OOD robustness of image classification models. Other similar benchmarking tools exist, like
DeepFool (Moosavi-Dezfooli et al., 2016)), Torchattacks (Kiml, [2020), and Foolbox (Rauber et al.,
2020). Yet, these are merely benchmarking tools and do not provide a comprehensive benchmark -
they only facilitate evaluating adversarial robustness but not the OOD robustness of the method. As
of now, no benchmarking tool or benchmark exists for optical flow estimation methods’ robustness
evaluations. Thus, we propose FLOWBENCH which enables benchmarking adversarial and OOD ro-
bustness and makes a multitude of model checkpoints available, providing the research community
with the much needed tools.

2.2 BENCHMARKING OPTICAL FLOW ESTIMATION METHODS

Optical flow estimation has been a problem attempted to be solved for a long time. Over time mul-
tiple works have been proposed to streamline research in this direction by providing benchmarking
libraries for i.i.d. performance of proposed methods. Such libraries include mmflow (Contribu-
tors, [2021)), ptlflow (Morimitsu, |2021), and Spring (Mehl et al., [2023)). These libraries also provide
model checkpoints to facilitate evaluations. Spring, also provides a benchmark but the performance
evaluations are limited to their proposed Spring dataset. Whereas, both mmflow and ptiflow do not
provide a benchmark but enable benchmarking on multiple optical flow datasets such as FlyingTh-
ings3D (Mayer et al.| 2016), KITTI2015 (Menze & Geiger, |2015) and MPI Sintel (Butler et al.,
2012). However, the evaluation abilities of these benchmarking tools are limited to i.i.d. data. Thus,
we built FLOWBENCH, using ptiflow and publicly available model checkpoints to extend method
evaluations to adversarial and OOD Robustness consolidating research towards reliability and gen-
eralization ability of optical flow estimation methods. Additionally, FLOWBENCH is the first to
provide a comprehensive benchmark on existing optical flow estimation methods over 3 datasets
and multiple adversarial attacks and image corruptions.

2.3 ADVERSARIAL ATTACKS

As discussed in Sec. [T DL models tend to learn shortcuts to map data samples from input to target
distribution (Geirhos et al., [2020), leading to the model learning inefficient feature representations.
In their work, |Goodfellow et al.|(2015) showed that this inefficient learning of feature represen-
tations can be easily exploited. |Goodfellow et al.| (2015) added noise to the input data samples
which was optimized to increase loss using model information, such that the model was fooled into
making incorrect predictions. This demonstrated the vulnerability and unreliability of model pre-
dictions as the perturbed input samples still appeared semantically similar to the human eye. They
named this attack the Fast Sign Gradient Method (FGSM). This attack led to an increased inter-
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est by the research community to better optimize the noise inspiring multiple other works such as
Basic Iteration method (BIM) (Kurakin et al., 2018), Projected Gradient Descent (PGD) (Kurakin
et al., [2017), Auto-PGD (APGD) (Wong et al., [2020) and CosPGD (Agnihotri et al., 2024) which
were direct extensions to FGSM, and other attacks such as Perturbation-Constrained Flow Attack
(PCFA) (Schmalfuss et al.l 2022b) and Adversarial Weather (Schmalfuss et al.l |2023), which are
indirect extensions of FGSM.

3 FLOWBENCH USAGE

In the following, we describe the benchmarking tool, FLOWBENCH. It is built using [pItflow] (Morim-
1tsul [2021), and supports 36 unique architectures (new architectures added to ptlflow over time
are compatible with FLOWBENCH) and distinct datasets, namely FlyingThings3D (Mayer et al.,
2016), KITTI2015 (Menze & Geiger, 2015)), MPI Sintel (Butler et al., 2012)) (clean and final) and
Spring (Mehl et al.l |2023)) datasets (please refer Appendix for additional details on the datasets).
It enables training and evaluations on all aforementioned datasets including evaluations using SotA
adversarial attacks such as CosPGD (Agnihotri et al., [2024) and PCFA (Schmalfuss et al., 2022b),
Adversarial weather (Schmalfuss et al., [2023), and other commonly used adversarial attacks like
BIM (Kurakin et al.| 2018), PGD (Kurakin et al., 2017), FGSM (Goodfellow et al., 2015}, under
various Lipshitz ({,,) norm bounds.

Additionally, it enables evaluations for Out-of-Distribution (OOD) robustness by corrupting the in-
ference samples using 2D Common Corruptions (Hendrycks & Dietterich} [2019) and 3D Common
Corruptions (Kar et al.} [2022).

We follow the nomenclature set by RobustBench (Croce et al.l 2021) and use “threat_model” to
define the kind of evaluation to be performed. When “threat_model” is defined to be “None”, the
evaluation is performed on unperturbed and unaltered images, if the “threat_model” is defined to
be an adversarial attack, for example “PGD”, “CosPGD” or “PCFA”, then FLOWBENCH performs
an adversarial attack using the user-defined parameters. We elaborate on this in Appendix [D.1]
Whereas, if “threat_model” is defined to be “2DCommonCorruptions” or “3DCommonCorruptions”,
the FLOWBENCH performs evaluations after perturbing the images with 2D Common Corruptions
and 3D Common Corruptions respectively. We elaborate on this in Appendix If the queried
evaluation already exists in the benchmark provided by this work, then FLOWBENCH simply re-
trieves the evaluations, thus saving computation.

FLOWBENCH enables the use of all the attacks mentioned in Sec. [2.3]to help users better study the
reliability of their optical flow methods. We choose to specifically include these white-box adver-
sarial attacks as they either serve as the common benchmark for adversarial attacks in classification
literature (FGSM, BIM, PGD, APGD) or they are unique attacks proposed specifically for pixel-wise
prediction tasks (CosPGD) and optical flow estimation (PCFA and Adversarial Weather). These at-
tacks can either be Non-targeted which are designed to simply fool the model into making incorrect
predictions, irrespective of what the model eventually predicts, or can be Targeted, where the model
is fooled to make a certain prediction. Most attacks can be, designed to be either Targeted or Non-
targeted, these include, FGSM, BIM, PGD, APGD, CosPGD, and Adversarial Weather. However,
by design, some attacks are limited to being only one of the two, for example, PCFA which is a
targeted attack.

Following we show the basic commands to use FLOWBENCH. We describe each attack and common
corruption supported by FLOWBENCH in detail in Appendix [D] Please refer to Appendix [F for
details on the arguments and function calls.

3.1 MODEL Z0O

Itis a challenge to find all checkpoints, while training them is a time and compute exhaustive process.
Thus we gather available model checkpoints from various sources such as ptiflow (Morimitsul [202 1))
and mmflow (Contributors, |2021). The trained checkpoints for all models available in FLOWBENCH
can be obtained using the following lines of code:

from flowbench.evals import load_model
model = load_model (model_name='RAFT', dataset='KITTI2015")
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Each model checkpoint can be retrieved with the pair of ‘model_name’, the name of the model,
and ‘dataset’, the dataset for which the checkpoint was last finetuned. In Appendix |[E|we provide a
complete overview of all the 91 available pairs of model checkpoints and datasets.

3.2 ADVERSARIAL ATTACKS

FLOWBENCH can be used to evaluate models on the discussed adversarial attacks using the follow-
ing lines of code (please refer Appendix [F.I] for details regarding the arguments):

from flowbench.evals import evaluate

model, results = evaluate (model_name='RAFT', dataset='KITTIZ2015',
threat_model="'CosPGD', iterations=20, alpha=0.01,
epsilon=8/255, lp_norm='Linf', targeted=True,
optim_wrt="'ground_truth', retrieve_existing=True)

3.3 OOD ROBUSTNESS

FLOWBENCH can be used to evaluate models on the 2D and 3D Common Corruptions using the fol-
lowing lines of code, following is an example for the latter (please refer Appendix [F:3](2D Common
Corruptions) and Appendix [F4] (3D Common Corruption) for details regarding the arguments):

from flowbench.evals import evaluate

model, results = evaluate (model_name='RAFT', dataset='KITTI2015',
threat_model="'3DCommonCorruption',
severity=3, retrieve_existing=True)

4 METRICS FOR ANALYSIS AT SCALE

Analysis of optical flow estimation methods at the same scale as this work, especially under the lens
of reliability and generalization ability has not been attempted before. The most commonly (Schrodi
et al., [2022; |Schmalfuss et al., 2022a; |Agnihotri et al., [2024; Dosovitskiy et al., [2015]) used metric
for evaluating the performance of a method is calculating the mean End-Point-Error (EPE) between
the predicted optical flow and the ground truth for all pairs of frames in a given dataset. However,
this does not reflect the reliability and generalization ability of the method. Moreover, this work has
performed over 4500 experiments in total, and analyzing the EPE from each experiment would not
lead to a fruitful finding. Thus, we attempt to simplify this with our proposed metrics, the Reliability
Error and Generalization Ability Error.

The objective of any optical flow estimation method is to obtain an EPE of zero or as low as possible.
The larger the EPE, the worse the performance of the method. Most works (Dosovitskiy et al., 2015}
Teed & Dengl [2020; Ilg et al., 2017;|Huang et al., 2022) report the mean EPE value over a dataset as
a measure of the method’s performance. For reliability and generalization, we look at the maximum
possible value of mean EPE across attacks over multiple datasets. That is, we ask the question “What
is the worst possible performance of a given method?”. An answer to this question tells us about
the reliability and generalization ability of a method. In the following, we describe the measures for
different scenarios in detail.

4.1 GENERALIZATION ABILITY ERROR

Inspired by multiple works (Croce et al [2021; Hendrycks et al., [2020; Hoffmann et al., |2021) that
use OOD Robustness of methods for evaluating the generalization ability of the method, even evalu-
ate over every common corruptions, that is 2D Common Corruptions and 3D Common Corruptions
combined. Then, we find the maximum of the mean EPE w.r.t. the ground truth for a given method,
across all corruptions at a given severity and report this as Generalization Ability Error denoted by
GAEcverity tevel- For example, for severity 3, the measure would be denoted by GAEs3. The less
the GAE value, the better the generalization ability of the given optical flow estimation method.
These corruptions perturb the images to cause distributions and domain shifts, such shifts often
confuse the methods into making incorrect predictions.
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For calculating GAE, we use all 15 2D Common Corruptions: ‘Gaussian Noise’, Shot Noise’,
‘Impulse Noise’, ‘Defocus Blur’, ‘Frosted Glass Blur’, ‘Motion Blur’, ‘“Zoom Blur’, ‘Snow’, ‘Frost’,
‘Fog’, ‘Brightness’, ‘Contrast’, ‘Elastic Transform’, ‘Pixelate’, ‘JPEG Compression’, and eight 3D
Common Corruptions: ‘Color Quantization’, ‘Far Focus’, ‘Fog 3D’, ‘ISO Noise’, ‘Low Light’,
‘Near Focus’, ‘XY Motion Blur’, and ‘Z Motion Blur’. All the common corruptions are at severity
3. offers more 3D Common Corruptions, however computing them is resource
intensive. Thus, given our limited resources and an overlap in the corruptions between 2D Common
Corruptions and 3D Common Corruptions, we focus on generating 3D Common Corruptions that
might be unique from their 2D counterpart, require fewer sources to generate, and are interesting
from an optical flow estimation perspective.

In Appendix [A]we show that these synthetic common corruptions can indeed be used as a proxy for
possible corruptions when in the wild in the real world.

4.2 RELIABILITY ERROR

An adversarial attack is a perturbation made on the input images to fool a method into changing
its predictions while the input image looks semantically similar to a human observer. Most works
that focus on the reliability of optical flow estimation methods perform adversarial attacks, how-
ever, these works either focus on targeted attacks or on non-targeted attacks, not both at the same
time. The objective of targeted attacks is to optimally perturb the input image such that the method

predictions are changed towards a specifically desired target, for example, a target can be a 6> flow
i.e. attacking so that the flow prediction at all pixels should become zero. Conversely, non-targeted
adversarial attacks do not intend to shift the method’s predictions to a specific target, they simply
intend to fool the method into making any incorrect predictions. To streamline research into the
reliability of these methods, we perform both targeted and non-targeted attacks.

Non-Targeted Attacks. For non-targeted attacks, we measure the EPE w.r.t. the ground truth, in
this case, the higher the EPE value, the worse the performance of the optical flow estimation method.
The notation for this metric is, NARE,ttack iterations, Where NARE stands for Non-targeted Attack
Reliability Error, and the subscript informs the number of attack iterations used for optimizing the
attack. For example, when 20 attack iterations were used to optimize the attack then the metric would
be NAREsq. The higher the NARE value, the worse the reliability of the optical flow estimation
method.

Targeted Attacks.  For targeted attacks, we measure the EPE w.r.t. the target flow, however,
to standardize notations, we report the negative EPE in this case, thus, the higher the value, the
worse the performance of the optical flow estimation method. The notation for this metric is,
TARE;":Z?ZZ iterations: Where TARE stands for Targeted Attack Reliability Error and the superscript
informs about the target used (zero vector or negative of the initial flow prediction) and the subscript

informs aboui> the number of attack iterations used for optimizing the attack. For example, when
the target is 0 and 20 attack iterations were used to optimize the attack then the metric would be

=4
TAREQOO. The higher the TARE value, the worse is the reliability of the optical flow estimation
method.

For calculating TARE and NARE values we used BIM, PGD, and CosPGD attack with step size
«=0.01, perturbation budget ¢ = % under the ¢.-norm bound, as targeted and non-targeted attacks
respectively. We use {o-norm bound as we observe in Appendix [G] that there is a high correlation
between the performance of optical flow estimation methods when attacked using £.,-norm bounded
attacks and ¢5-norm bounded attacks. We use 20 attack iterations for calculating TARE and NARE
as we observe in Appendiz [G] that at a lower number of iterations, the gap in performance of
different optical flow estimation methods is small, thus an in-depth analysis would be difficult, and
we do not go beyond 20 attack iterations as computing each attack step for an adversarial attack is

very expensive, and as shown by [Agnihotri et al.| (2024) and [Schmalfuss et al.| (2022b)), 20 iterations

are enough to optimize an attack to truly understand the performance of the attacked method.

NEW



Under review as a conference paper at ICLR 2025

o Owe, Oxi . + o Oy + o0
ot * “_"‘ ar
- x
~10 9o %2, 20 hgs @ T -10 A Al
° * * ° ° %
™Me
-20 —40 -20
rs = . a
-30 -60 -30
*
0 200 400 0 200 400 -60 -40 -20
NARE NARE 7
20 20 TAREZ{
Model
e CCMR Flow1D GMFlowNet LiteFlowNet2 NeuFlow SKFlow
CRAFT = FlowFormer ® HD3 *  LiteFlowNet3 ® PWCNet *  STaRFlow
= CSFlow FlowFormer++ * IRR MS-RAFT+ * RAFT ScopeFlow
+ DICL-Flow * GMA ® LLA-Flow *  MaskFlowNetS ® RAPIDFlow +  SplatFlow
¢ DIP ® GMFlow *  LiteFlowNet ® MaskFlownet + RPKNet ® VideoFlow
+ FastFlownet

Figure 2: Analysing correlations between Targeted and Non-targeted adversarial attacks. A model
is more reliable if it has a low NARM value and a high TARM value.

5 ANALYSIS AND INTERESTING FINDINGS

To demonstrate the potential of FLOWBENCH, we use it to perform multiple analyses which provide
us with a better understanding of many optical flow estimation methods, including novel findings.
Following, we discuss the observations made in the comprehensive robustness benchmark created
using FLOWBENCH. Please refer to Appendix[B|for details on the dataset, Appendix [C|for additional
implementation details, and Appendix [G] for additional results from the benchmarking.

5.1 TARGETED V/S NON-TARGETED ADVERSARIAL ATTACKS

We benchmark the performance of all prominent DL-based optical flow estimation methods across
three datasets, namely KITTI2015, MPI Sintel (clean), and MPI Sintel (final) against SotA and com-
monly used adversarial attacks such as BIM, PGD, and CosPGD. Then, we compare the NARE and
TARE values (introduced in Sec. and find correlations in their performance. These are reli-
ability metrics, a higher NARE and a lower TARE value indicates low reliability and vice versa.
Please refer to Appendix [C] for more implementation details. We observe in Fig. [2] that there is a

iy
very high correlation between the TARE® and TARE ™ values of every optical flow estimation
method. This shows that evaluating either one of the values can serve as a reliable proxy for the
other. We use this finding in the later analysis. Additionally, in Fig. [2] we observe that most opti-
cal flow estimation methods like ScopeFlow (Bar-Haim & Wolf], [2020), MS-RAFT+ (Jahedi et al.,
2024b) and StarFlow (Godet et al.,[2021) are relatively more susceptible to targeted attacks than they
are to non-targeted attacks. On the other hand, some methods are highly susceptible to both and thus
very unreliable, these include SKFlow (Sun et al.,|2022), FastFlowNet (Kong et al.,2021), HD3 (Yin
et al.|[2019) and some SotA methods like FlowFormer (Huang et al.,2022)) and FlowFormer++ (Shi
et al.} 2023b)). Interestingly, IRR (Hur & Roth, 2019) stands out as the most reliable optical flow
estimation method as it is robust to both targeted and non-targeted adversarial attacks. While Scope-
Flow (Bar-Haim & Wolf, 2020), GMFlowNet (Zhao et al.l 2022) and MaskFlowNet (Zhao et al.,
2020) are less reliable than IRR but more reliable than the other methods.

5.2 RELIABILITY V/S GENERALIZATION

Following we analyze if there is a correlation between the reliability and generalization ability of
optical flow estimation methods. We observe in Fig. [3] that most methods that have a good per-
formance also generalize better, however methods like FlowFormer++, while having good i.i.d.
performance have a relatively poor generalization ability. As observed in Sec.[5.I] HD3 stands out
having poor performance and poor generalization ability. Interestingly, as shown by Fig.[3] there is
a correlation between the generalization ability (GAEj3 values, introduced in Sec. higher GAE
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Figure 3: Analysing correlations between reliability and generalization ability of optical flow esti-
mation methods.
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Figure 4: Analysing correlations between the point matching method used by an optical flow esti-
mation method and its corresponding performance, reliability and generalization ability.

value indicates lower generalization ability) and reliability when measured using non-targeted ad-
versarial attacks (NAREyq values). Additionally, most methods identified in Sec. |3;f| to be reliable,
for example, CSFLow, MaskFlowNet also have considerable generalization ability compared to the
other methods. However, IRR which stood out as the most reliable method has low generalization
abilities. It is interesting to note that CCMR (Jahedi et al., [2024a) offers a good trade-off as it has
reasonably good performance, reliability, and generalization abilities.

5.3 ANALYSING POINT MATCHING METHODS

Optical flow estimation methods proposed over the years use different methods for matching points
from the first frame to the next. For point matching, all works use either an Attention-based
method (Jahedi et al.| 2024al), or a Correlation-based method (Shi et al., 2022} Jiang et al., 2021b),
or a CNN based method (Dosovitskiy et al.| 2015} [Tlg et al.,|2017; Hui et al.,[2018), or a Cost Vol-
ume based method (Khairi et al., [2024)), or a combination of the two, such as Attention and Cost
Volume (Huang et al., [2022; |Shi et al.| |2023b; |Xu et al., [2023b)) or Attention and Correlation (Zhao
et al.| [2020) and others (please refer Tab. |I|for detailed categorization of each method). Thus, based
on the observations made in Sec.[5.1)and Sec.[5.2] we determined it would be interesting to observe
the relation between the point matching method used by an optical flow estimation method and its
performance, reliability, and generalization ability. In Fig. [d we observe that Attention-based meth-
ods have relatively better performance and generalization ability but are also less reliable. Whereas,
some CNN and Cost Volume-based methods might not have the best performance but they are re-
liable and have relatively better generalization abilities. However, some CNN-based methods are
highly unreliable as well.
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Figure 5: Analysing correlation between the number of learnable parameters in a DL-based optical
flow estimation method and its performance, reliability, and generalization ability. Colors show the
different optical flow methods while marker styles show the point-matching method used by them.
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Figure 6: Performance of interesting optical flow estimation methods under different non-targeted
adversarial attacks optimized using initial flow predictions on the KITTI2015 dataset.

5.4 IMPACT OF THE NUMBER OF LEARNABLE PARAMETERS

Many works for classification have shown that Deep Neural Networks with more parameters and
less vulnerable to adversarial attacks and generalize better to common corruptions (Liu et al., 2022;
Ding et al.l 2022} |Hoffmann et al., 2021). It would be interesting to see if the same holds true
for optical flow estimation methods. Thus, we analyze this in Fig. [5] and observe that while the
number of learnable parameters has an impact on the performance of the methods to some extent
(other than the exceptions of MaskFlowNet and HD3), the same does not hold for reliability and
generalization ability. Methods such as FlowFormer, FlowFormer++, and VideoFlow have relatively
more parameters than other methods however they are less reliable and have a poor generalization
ability. On the other hand, methods like STaRFlow, and LiteFlowNet3 have significantly fewer
parameters but are more reliable and generalize better than the other methods.

5.5 OPTIMIZING TARGETED ATTACKS USING INITIAL FLOW PREDICTIONS

Based on the observation in Sec. [5] we identify several interesting methods whose performance
warrants additional analysis and discussion. Following, we discuss our observations in detail.

One of the major limitations of white-box adversarial attacks is that they require access to the ground
truth to optimize the attack (Agnihotri et al.| [2024). However, access to the ground truth is not
guaranteed in every scenario. Additionally as discussed by |Schmalfuss et al.|(2022b), robustness is
a measure of the difference in a model’s prediction on perturbed input w.r.t. the model’s prediction on
clean input samples. Thus, the goal of an attack should be to fool the method into changing its initial
predictions (predictions when the method is not attacked), independent of the ground truth. Thus, we
attempt to optimize the adversarial attack w.r.t. to the initial flow prediction on the unperturbed input
sample before any attacks, as access to this is almost guaranteed. This helps us ascertain if initial
flow predictions can be used as a proxy to ground truth while optimizing attacks. Thus, in Eq. (@),
Eq. (8), Eq. (@) and there places where applicable Y'=X 2" (please refer Appendix . However,
this optimization is only possible for attacks that introduce certain randomness in the initial input
sample, as shown by Eq. (7). This allows for there to exist a non-zero loss between the predictions
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on the clean input samples and the perturbed input samples allowing for optimization. We report the
evaluations for CosPGD and PGD attack using the KITTI2015 dataset for 10 interesting methods in
Fig.[6] We choose the optical flow estimation methods on the basis of their performance in Sec. [3]
and their performance on i.i.d. samples. For additional evaluation using more models please refer
to Appendix [G] We observe in Fig. [6] that there appears a high correlation in the performance of
all considered methods under attack when optimized using the ground truth flow and the initial flow
prediction, Thus, initial flow predictions from methods do serve as a strong proxy to the ground truth
for optimizing attacks. This new finding over a big sample, helps advance study in the reliability of
optical flow methods, even when ground truth predictions are not available.

6 CONCLUSION

FLOWBENCH is the first robustness benchmarking tool and a novel benchmark for optical flow esti-
mation methods. It currently supports 91 model checkpoints, over distinct datasets, and all relevant
robustness evaluation methods including SotA adversarial attacks and image corruptions. We dis-
cuss the unique features of FLOWBENCH in detail and demonstrate that the library is user-friendly.
Adding new evaluation methods or optical flow estimation methods to FLOWBENCH is easy and
intuitive. In Sec.[5.1] we find that there is a high correlation in the performance of optical flow esti-
mation methods against targeted attacks using different targets, thus saving compute for future works
as they need to evaluate only against one target. In Sec.[5.2] we observe the methods known to be
SotA on i.i.d. samples are not reliable, and do not generalize well to image corruptions, demonstrat-
ing the gap in current research when considering real-world applications. Additionally, we observe
here that there is no apparent correlation between generalization abilities and the reliability of op-
tical flow estimation methods. In Sec.[5.3] we show that methods using attention-based pointing
matching are marginally more reliable than methods using other matching techniques, while meth-
ods using CNN and Cost Volume-based matching have marginally better generalization abilities.
This in conjecture with the previous observation helps us conclude that based on current works,
different approaches might be required to attain reliability under attacks and generalization ability
to image corruptions. In Sec.[5.4] we show that, unlike image classification, increasing the number
of learnable parameters does not help increase the robustness of optical flow estimation methods.
Lastly, we show that white-box adversarial attacks on optical flow estimation methods can be in-
dependent of the availability of ground truth information, and can harness the information in the
initial flow predictions to optimize attacks, thus overcoming a huge limitation in the field. Such an
in-depth understanding of reliability and generalization abilities to optical flow estimation methods
can only be obtained using our proposed FLOWBENCH. We are certain that FLOWBENCH will be
immensely helpful to gather more such interesting findings and its comprehensive and consolidated
nature would make things easier for the research community.

Future Work.  For optical flow estimation, patch attacks are also interesting and widely stud-
ied (Ranjan et al.l 2019} [Schrodi et al., 2022} |Scheurer et al., [2024). We plan to add such patch
attacks to FLOWBENCH in future iterations. |Schmalfuss et al.| (2022b) proposed optimizing adver-
sarial noise jointly for the consecutive image frames and also over the entire evaluation set. Only
PCFA supports such optimization regimes in FLOWBENCH, so it would be interesting to extend such
optimization to other adversarial attacks as well. |Croce et al.|(2021)) show that the training methods
used significantly impact the robustness of image classification methods. The same might be true
for optical flow estimation methods, thus robustness evaluations under the lens of different training
setups used would make an interesting extension to the analysis in this work. Lastly, traditional non-
DL-based optical flow estimation methods might be more robust to adversarial attacks than current
DL-based methods. Thus, it would be interesting to study their robustness and hopefully adapt them
to increase the reliability of current methods.

Limitations.  Benchmarking optical flow estimation methods is a compute and labor-intensive
endeavor. Thus, best utilizing available resources we use FLOWBENCH to benchmark a limited
number of settings. The benchmarking tool itself offers significantly more combinations that can be
benchmarked. Nonetheless, the benchmark provided is comprehensive and instills interest to further
utilize FLOWBENCH.

10
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REPRODUCIBILITY STATEMENT

Every experiment in this work is reproducible and is part of an effort toward open-source work.
FLOWBENCH will be open source and publicly available, including all evaluation logs and model
checkpoint weights. This work intends to help the research community build more reliable and
generalizable optical flow estimation methods such that they are ready for deployment in the real
world even under safety-critical applications. FLOWBENCH is built upon ptlflow and thus any new
model added with ptlflow would most likely be supported by FLOWBENCH as well.
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Figure 7: Results from work by Here they find a very strong positive correlation
between mean mlIoU over the ACDC evaluation dataset (Sakaridis et al), 2021) and mean
mloU over each 2D Common Corruption (Hendrycks & Dietterich, 2019) over the Cityscapes
dataset (Cordts et al 2016). All models were trained using the training subset of the Cityscapes
dataset. ACDC is the Adverse Conditions Dataset with Correspondences for Semantic Driving
Scene Understanding captured in similar scenes are cityscapes but under four different domains:
Day/Night, Rain, Snow, and Fog in the wild. ACDC is a community-used baseline for evaluating
the performance of semantic segmentation methods on domain shifts observed in the wild.

— Appendix Evaluations for all models under 2D Common Corruptions and 3D
Common Corruptions at severity 3, for KITTI2015, MPI Sintel (clean) and MPI Sintel
(final) datasets.

A DO SYNTHETIC CORRUPTIONS REPRESENT THE REAL WORLD?

In their work they find the correlation between mean mloU over the ACDC evalua-
tion dataset (Sakaridis et al [2021)) and mean mIoU over each 2D Common Corruption (Hendrycks
[& Dietterichl [2019) over the Cityscapes dataset (Cordts et al] [2016). We include Figure [/| from
their work here for ease of understanding. All models were trained using the training subset of the
Cityscapes dataset. ACDC is the Adverse Conditions Dataset with Correspondences for Seman-
tic Driving Scene Understanding captured in similar scenes are cityscapes but under four different
domains: Day/Night, Rain, Snow, and Fog in the wild. ACDC is a community-used baseline for
evaluating the performance of semantic segmentation methods on domain shifts observed in the
wild. They find that there exists a very strong positive correlation between the two. This shows,
that yes, synthetic corruptions can serve as a proxy for the real world. Unfortunately, a similar
“in the wild” captured dataset does not exist for optical flow estimation for evaluating the effect
of domain shifts on the performance of optical flow methods. However, given that for the task of
semantic segmentation we find a very high positive correlation between the performance on real-
world corruptions and synthetic corruptions, it is a safe assumption that the same would hold true
for optical flow estimation as well. Thus, in this work, we evaluate against synthetic 2D Common
Corruptions (Hendrycks & Dietterich| 2019) and synthetic 3D Common Corruptions
2022).

B DATASET DETAILS

FLOWBENCH supports a total of four distinct optical flow datasets. Following, we describe these
datasets in detail.

18

NEW



Under review as a conference paper at ICLR 2025

B.1 FLYINGTHINGS3D

This is a synthetic dataset proposed by Mayer et al.|(2016) largely used for training and evaluation of
optical flow estimation methods. This dataset consists of 25000 stereo frames, of everyday objects
such as chairs, tables, cars, etc. flying around in 3D trajectories. The idea behind this dataset is
to have a large volume of trajectories and random movements rather than focus on a real-world
application. In their work, [Dosovitskiy et al.[(2015) showed models trained on FlyingThings3D can
generalize to a certain extent to other datasets.

B.2 KITTI2015

Proposed by Menze & Geiger] (2015)), this dataset is focused on the real-world driving scenario.
It contains a total of 400 pairs of image frames, split equally for training and testing. The image
frames were captured in the wild while driving around on the streets of various cities. The ground-
truth labels were obtained by an automated process.

B.3 MPI SINTEL

Proposed by Butler et al.| (2012) and [Wulff et al.|(2012), this dataset is derived from an open-source
animated short film and consists of a total of 1064 synthetic frames for training and 564 synthetic
frames for testing, both at a resolution of 1024 x 436. The intention of this dataset is to enforce
realism while having a dataset at scale. This dataset is provided as two datasets, which are passes
with more transformations and effects on the frames that originally have constant albedo over time,
these passes are,

* MPI Sintel (clean): This is the clean pass that adds some realism to the images by adding
some spectral effects, like illumination, shadows, and smooth shading.

* MPI Sintel (final): This is the final pass that adds more realism by adding effects such as
blur due to depth and camera focus, blur due to motion and atmospheric effects such as
snow during snow storms, etc.

B.4 SPRING

Similar to MPI Sintel, [Mehl et al.| (2023)) proposed a new dataset and benchmark for optical flow
estimation which is much larger than any other dataset before. It consists of frames from the open-
source Blender movie “Spring” and consists of 6000 stereo image pairs from 47 sequences with
SotA visual effects at full HD resolution (1920 x 1080 pixels).

C IMPLEMENTATION DETAILS OF THE BENCHMARK

Following we provide details regarding the experiments done for creating the benchmark used in the
analysis.

Compute Resources. Most experiments were done on a single 40 GB NVIDIA Tesla V100 GPU
each, however, MS-RAFT+, FlowFormer, and FlowFormer++ are more compute-intensive, and thus
80GB NVIDIA A100 GPUs or NVIDIA H100 were used for these models, a single GPU for each
experiment.

Datasets Used. = Performing adversarial attacks and OOD robustness evaluations are very ex-
pensive and compute-intensive. Thus, performing evaluation using all model-dataset pairs is not
possible given the limited computing resources at our disposal. Thus, for the benchmark, we only
use KITTI2015, MPI Sintel (clean), and MPI Sintel (final) as these are the most commonly used
datasets for evaluation (Ilg et al., 2017 |Huang et al.| 2022} Schmalfuss et al.,[2022b}; [Schrodi et al.,
20225 | Agnihotri et al., 2024).
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Metrics Calculation. In Sec. ] we introduce three new metrics for better understanding our anal-
ysis, given the large scale of the benchmark created. For calculating TARE and NARE values we
used BIM, PGD, and CosPGD attack with step size «=0.01, perturbation budget ¢ = % under
the ¢..-norm bound, as targeted and non-targeted attacks respectively. We use /,,-norm bound as
we observe in Appendix |G]that there is a high correlation between the performance of optical flow
estimation methods when attacked using ¢.,-norm bounded attacks and ¢>-norm bounded attacks.
We use 20 attack iterations for calculating TARE and NARE as we observe in Appendiz |G} that
at a lower number of iterations, the gap in performance of different optical flow estimation methods
is small, thus an in-depth analysis would be difficult, and we do not go beyond 20 attack iterations
as computing each attack step for an adversarial attack is very expensive, and as shown by |Agni-
hotri et al.[(2024)) and |Schmalfuss et al.| (2022b), 20 iterations are enough to optimize an attack to
truly understand the performance of the attacked method. For calculating GAE, we use all 15 2D
Common Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Impulse Noise’, ‘Defocus Blur’, ‘Frosted
Glass Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’, ‘Contrast’, ‘Elastic
Transform’, ‘Pixelate’, ‘JPEG Compression’, and eight 3D Common Corruptions: ‘Color Quanti-
zation’, ‘Far Focus’, ‘Fog 3D’, ‘ISO Noise’, ‘Low Light’, ‘Near Focus’, ‘XY Motion Blur’, and ‘Z
Motion Blur’. All the common corruptions are at severity 3. |[Kar et al.| (2022)) offers more 3D Com-
mon Corruptions, however computing them is resource intensive. Thus, given our limited resources
and an overlap in the corruptions between 2D Common Corruptions and 3D Common Corruptions,
we focus on generating 3D Common Corruptions that might be unique from their 2D counterpart,
require fewer sources to generate, and are interesting from an optical flow estimation perspective.

Calculating the EPE. EPFE is the Euclidean distance between the two vectors, where one vector
is the predicted flow by the optical flow estimation method and the other vector is the ground truth
in case of i.i.d. performance evaluations, non-targeted attacks evaluations, and OOD robustness
evaluations, while it is the target flow vector, in case of targeted attacks. For each dataset, the FPFE
value is calculated over all the samples of the evaluation set of the respective dataset and then the
mean E PFE value is used as the mean-E'PE of the respective method over the respective dataset.

Other Metrics. Apart from EPE, FLOWBENCH also enables calculating a lot of other interesting
metrics, such as ¢y, {5, {,, distance between the perturbations of each image before and after a
threat. Apart from these, in all scenarios, we also capture the outlier error, 1-px error, 3-px error,
5-px error and cosine distance between two vectors. These vectors are the same as that in the case of
EPE calculations. We limited the analysis in this work to use /P E, since it is the most commonly
used metric for evaluation, moreover, most works on optical flow estimation (Agnihotri et al., [2024;
Schmalfuss et al., 2022b; Schrodi et al.,|2022; [Teed & Dengl |2020; Jahedi et al., [2024b) show a very
high correlation between performance evaluations using different metrics.

Models Used. All available checkpoints, as shown in Tab. E] for MPI Sintel and KITTI2015
dataset were used for creating the benchmark, except the following four models: Separableflow,
SCV, VCN, Unimatch as due to special operations used in these models, they required specific
libraries which were creating conflicts with all the others models, and as most of these models are
very old and do not have performance close to SotA performance, we did not include them.

Adversarial Weather For generating adversarial weather attacks, we followed the implementa-
tion proposed by |Schmalfuss et al.|(2023). However, generating this attack is highly compute-
intensive, and thus doing so for all models was not possible. Thus, based on the performance and
reliability of all the models, we identified a few (eight) interesting models and only attacked them
using the four different attacks curtailed within adversarial weather. This was done to demonstrate
the capability of FLOWBENCH to perform this attack. The following are the specifications for the
weather attacks:

¢ Adversarial Weather: Smow (random snowflakes)

— Number of Particles: 3000
— Number of optimization steps: 750

* Adversarial Weather: Rain (rain streaks of length 0.15 with motion blur )
— Number of Particles: 20
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— Number of optimization steps: 750
* Adversarial Weather: Fog (random large less opacity particles)

— Number of Particles: 60
— Number of optimization steps: 750

» Adversarial Weather: Sparks (random red sparks)

— Number of Particles: 3000
— Number of optimization steps: 750

Please note, that these specifications are identical to the optimal ones proposed by |Schmalfuss et al.
(2023)).

D DESCRIPTION OF FLOWBENCH

Following, we describe the benchmarking tool, FLOWBENCH. It is built using (Morimitsul,
2021)), and supports 36 unique architectures and 4 distinct datasets, namely FlyingThings3D (Mayer
et al.} 2016), KITTI2015 (Menze & Geiger, 2015), MPI Sintel (Butler et al.l 2012) (clean and fi-
nal) and Spring (Mehl et al., 2023) datasets (please refer Appendix [B| for additional details on the
datasets). It enables training and evaluations on all aforementioned datasets including evaluations
using SotA adversarial attacks such as CosPGD (Agnihotri et al.| [2024)) and PCFA (Schmalfuss
et al., 2022b)), Adversarial weather (Schmalfuss et al., 2023), and other commonly used adversar-
ial attacks like BIM (Kurakin et al.l 2018)), PGD (Kurakin et al.l 2017), FGSM (Goodfellow et al.,
2015), under various lipshitz (I,,) norm bounds.

Additionally, it enables evaluations for Out-of-Distribution (OOD) robustness by corrupting the in-
ference samples using 2D Common Corruptions (Hendrycks & Dietterich} [2019) and 3D Common
Corruptions (Kar et al., 2022).

We follow the nomenclature set by RobustBench (Croce et al.l 2021) and use “threat_model” to
define the kind of evaluation to be performed. When “threat_model” is defined to be “None”, the
evaluation is performed on unperturbed and unaltered images, if the “threat_model” is defined to
be an adversarial attack, for example “PGD”, “CosPGD” or “PCFA”, then FLOWBENCH performs
an adversarial attack using the user-defined parameters. We elaborate on this in Appendix [D.1]
Whereas, if “threat_model” is defined to be “2DCommonCorruptions” or “3DCommonCorruptions”,
the FLOWBENCH performs evaluations after perturbing the images with 2D Common Corruptions
and 3D Common Corruptions respectively. We elaborate on this in Appendix

If the queried evaluation already exists in the benchmark provided by this work, then FLOWBENCH
simply retrieves the evaluations, thus saving computation.

D.1 ADVERSARIAL ATTACKS

FLOWBENCH enables the use of all the attacks mentioned in Sec. [2.3]to help users better study the
reliability of their optical flow methods. We choose to specifically include these white-box adver-
sarial attacks as they either serve as the common benchmark for adversarial attacks in classification
literature (FGSM, BIM, PGD, APGD) or they are unique attacks proposed specifically for pixel-wise
prediction tasks (CosPGD) and optical flow estimation (PCFA and Adversarial Weather). These at-
tacks can either be Non-targeted which are designed to simply fool the model into making incorrect
predictions, irrespective of what the model eventually predicts, or can be Targeted, where the model
is fooled to make a certain prediction. Most attacks can be, designed to be either Targeted or Non-
targeted, these include, FGSM, BIM, PGD, APGD, CosPGD and Adversarial Weather. However, by
design, some attacks are limited to being only one of the two, for example, PCFA which is a targeted
attack. Following, we discuss these attacks in detail and highlight their key differences.

FGSM. Assuming a non-targeted attack, given a model fy and an unperturbed input sample
Xclean apd ground truth label Y, FGSM attack adds noise § to X clean 49 follows,

X2 = XN 4 - signV xetean L( fo (X 9),Y), M
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Figure 8: Examples of MPI Sintel images perturbed by the mentioned adversarial attacks and the
optical flow predictions using FlowFormer++. These examples are intended to show the versatility
of FLOWBENCH.

6 — ¢E(Xadv _ Xclcan)’ (2)

Xadv _ d)r(Xclean + 6) (3)

Here, L(-) is the loss function (differentiable at least once) which calculates the loss between the
model prediction and ground truth, Y. « is a small value of ¢ that decides the size of the step to
be taken in the direction of the gradient of the loss w.r.t. the input image, which leads to the input
sample being perturbed such that the loss increases. X 21V is the adversarial sample obtained after
perturbing X ¢*®" To make sure that the perturbed sample is semantically indistinguishable from
the unperturbed clean sample to the human eye, steps from Eq. () and Eq. (3) are performed. Here,
function ¢€ is clipping the § in e-ball for /,,-norm bounded attacks or the e-projection in other
l,-norm bounded attacks, complying with the £-norm or other /,-norm constraints, respectively.
While function ¢” clips the perturbed sample ensuring that it is still within the valid input space.
FGSM, as proposed, is a single step attack. For targeted attacks, Y is the target and o is multiplied
by -1 so that a step is taken to minimize the loss between the model’s prediction and the target
prediction.

BIM. This is the direct extension of FGSM into an iterative attack method. In FGSM, X ¢lean wag
perturbed just once. While in BIM, X ¢'*a" is perturbed iteratively for time steps ¢ € [0, T, such
that t € Z™T, where T are the total number of permissible attack iterations. This changes the steps
of the attack from FGSM to the following,

Xt = X2 4o signVoaan, L(fo(X Y)Y, )
§ = ¢€(Xath+1 o Xclean)’ (5)
Xade_l _ (br(Xclcan + 5) (6)

Here, at t=0, X adve =XClean.
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PGD. Since in BIM, the initial prediction always started from X ¢°2"  the attack required a sig-
nificant amount of steps to optimize the adversarial noise and yet it was not guaranteed that in the
permissible e-bound, X 2Ve+1 was far from X “°a", Thus, PGD proposed introducing stochasticity
to ensure random starting points for attack optimization. They achieved this by perturbing X ¢'¢an
with U(—e, €), a uniform distribution in [—e, €], before making the first prediction, such that, at =0

Xa'dvt — (br(Xclean —I—U(—E,G))- (7

APGD. Auto-PGD is an effective extension to the PGD attack that effectively scales the step size
« over attack iterations considering the compute budget and the success rate of the attack.

CosPGD. All previously discussed attacks were proposed for the image classification task. Here,
the input sample is a 2D image of resolution H x W, where H and W are the height and width of the
spatial resolution of the sample, respectively. Pixel-wise information is inconsequential for image
classification. This led to the pixel-wise loss £(+) being aggregated to L(-), as follows,

LS LX), ), ®)

- HxW
i€EHXW

L(fo(X),Y)

This aggregation of L(-) fails to account for pixel-wise information available in tasks other than
image classification, such as pixel-wise prediction tasks like Optical Flow estimation. Thus, in their
work |Agnihotri et al.[(2024)) propose an effective extension of the PGD attack that takes pixel-wise
information into account by scaling £(+) by the alignment between the distribution of the predictions
and the distributions of Y before aggregating leading to a better-optimized attack, modifying Eq.
as follows,

XM = XAV signVixaa, Y cos ($(fo(XP):), (V7)) - £ (fo(XP),,Y5) .
i€EHXW
9)
Where, functions ¢ and W are used to obtain the distribution over the predictions and Y;, respec-
tively, and the function cos calculates the cosine similarity between the two distributions. CosPGD
is the unified SotA adversarial attack for pixel-wise prediction tasks.

PCFA. Recently proposed by |[Schmalfuss et al.| (2022b), is the SotA targeted adversarial at-
tack specifically designed for optical flow estimation. It optimizes the input perturbation § =
Xadve _ xclean within a given I bound to obtain a given target flow Y28, Mathematically,
PCFA transforms the constrained optimization problem to find the most destructive perturbation un-
der an [, constraint €5 into an unconstrained optimization problem by adding a term that penalizes
deviations from the /5 constraint:

Xadvers — xadve 4 aromin(L(fp(X V), Y28) 4 - ReLU(||6]|2 — (e2v/2 x H x W)?)) (10)
5

Here, L(-) is a generic loss function, like EPE or cosine distance. The penalty scaling parameter p
influences how severely deviations from the per-pixel [, bound e, are penalized. The optimization
problem argmin(-) is solved with an L-BFGS optimizer.

$

Adversarial Weather.  Unlike the previous attacks which introduced per-pixel modifications, ad-
versarial weather [Schmalfuss et al.| (2023} |2022a) attacks optical flow methods through optimizing
the motion trajectories of rendered weather particles P like snow flakes, rain drops or fog clouds.
The particle trajectories are modelled as positions P = {P;, P} in the two frames I, I5. Con-
sequently, X2V (P) is generated by differentiably rendering the particles with their respective 3D
positions to the 2D images. The update step optimizes the particle positions to achieve a certain
target flow Y **'8 while simultaneously limiting the position offset size §p: = Pt — Pt:

d t+1 d t d t t Br H(S;’”%
Xodv(pHly = x@ V(P ta-Vp (EPE(fg(Xa Y(PY),YE) 4 S i 3 1 ))
Iel,2 JEP I

(1)
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Figure 9: Examples of images from KITTI2015 corrupted using 3D Common Corruptions for eval-
uation of OOD robustness.

Here, [ balances the two optimization goals of reaching the target flow and limiting trajectory off-
sets. The allowed trajectory offsets are further scaled with the particle depth d in the scene, to
generate visually pleasing results.

Fig. [8] shows adversarial examples created using the SotA attacks and how they affect the model
predictions.

D.2 OUT-OF-DISTRIBUTION ROBUSTNESS

While adversarial attacks help explore vulnerabilities of inefficient feature representations learned by
a model, another important aspect of reliability is generalization ability. Especially, generalization
to previously unseen samples or samples from significantly shifted distributions compared to the
distribution of the samples seen while learning model parameters. As one cannot cover all possible
scenarios during model training, a certain degree of generalization ability is expected from models.
However, multiple works (Hendrycks & Dietterichl 2019; [Kar et al., 2022} |Hoffmann et al., [2021)
showed that models are surprisingly less robust to distribution shifts, even those that can be caused
by commonly occurring phenomena such as weather changes, lighting changes, etc. This makes the
study of Out-of-Distribution (OOD) robustness an interesting avenue for research. Thus, to facilitate
the study of robustness to such commonly occurring corruptions, FLOWBENCH enables evaluating
against prominent image corruption methods. Following, we describe these methods in detail.

2D Common Corruptions. |Hendrycks & Dietterich|(2019) propose introducing distribution shift
in the input samples by perturbing images with a total of 15 synthetic corruptions that could occur
in the real world. These corruptions include weather phenomena such as fog, and frost, digital
corruptions such as jpeg compression, pixelation, and different kinds of blurs like motion, and zoom
blur, and noise corruptions such as Gaussian and shot noise amongst others corruption types. Each
of these corruptions can perturb the image at 5 different severity levels between 1 and 5. The final
performance of the model is the mean of the model’s performance on all the corruptions, such that
every corruption is used to perturb each image in the evaluation dataset. Since these corruptions are
applied to a 2D image, they are collectively termed 2D Common Corruptions.

3D Common Corruptions.  Since the real world is 3D, [Kar et al.| (2022) extend 2D Common
Corruptions to formulate more realistic-looking corruptions by leveraging depth information (syn-
thetic depth information when real depth is not readily available) and luminescence angles. They
name these image corruptions as 3D Common Corruptions. Fig.[9] shows examples of KITTI2015
images corrupted using 3D Common Corruptions.

E MODEL Z0O

The trained checkpoints for all models available in FLOWBENCH can be obtained using the follow-
ing lines of code:

from flowbench.evals import load_model
model = load_model (model_name='RAFT', dataset='KITTI2015")

24



Under review as a conference paper at ICLR 2025

Each model checkpoint can be retrieved with the pair of ‘model_name’, the name of the model,
and ‘dataset’, the dataset for which the checkpoint was last fine-tuned. In Table [I] we provide a
comprehensive look-up table for all ‘model name’ and ‘dataset’ pairs for which trained checkpoints
are available in FlowBench.

Table 1: Overview of all available model checkpoints (model X, trained for dataset Y) in FLOW-
BENCH.

Dataset |

\
Model FlyineThings3D KITTI2015 MPI Sintel Point Matching Method Time

‘ 1Mayer et alAi 2016| ‘ qunze & Gelger"2015] 4Butler et dl_| 012| ‘
X v v Attention January 2024
v v v Attention March 2022
v v X Correlation February 2022
v v v CNN October 2020
v v v Correlation April 2022
v v v CNN March 2021
v v v Attention + Correlation April 2021
v v v Attention + Cost Volume March 2022
v v v Attention + Cost Volume March 2023
v X X CNN December 2016
v v v Attention April 2021
v v v Attention November 2021
v v v Attention March 2022
v v v CNN December 2018
v v v CNN April 2019
v X X Cost Volume July 2020
v v v CNN May 2018
X v v CNN February 2020
X v v CNN July 2020
v v v Attention + Cost Volume April 2023
v X v Attention + Correlation March 2023
X v v Attention + Correlation March 2023
v v v Cost Volume + Correlation ~ October 2022
v v v Attention March 2023
X X v CNN + Attention March 2024
v X v CNN + Cost Volume September 2017
v v v CNN + Cost Volume May 2024
v v v Correlation March 2020
v v v CNN + Cost Volume March 2024
v v v CNN + Cost Volume February 2020
v v v Correlation April 2021
v v v CNN + Cost Volume October 2021
v v v CNN + Cost Volume November 2022
X v X Splatting January, 2024
v v v CNN + Cost Volume July 2020
v X X Attention November 2022
v X X CNN + Cost Volume December 2019
v v v Correlation March 2023

F FLOWBENCH USAGE DETAILS

Following we provide a detailed description of the evaluation functions and their arguments provided
in FlowBench.

F.1 ADVERSARIAL ATTACKS
To evaluate a model for a given dataset, on an attack, the following lines of code are required.

from flowbench.evals import evaluate

model, results = evaluate (model_name='RAFT', dataset='KITTI2015',
threat_model='CosPGD', iterations=20, alpha=0.01,
epsilon=8/255, lp_norm='Linf', targeted=True,
optim_wrt="'ground_truth', retrieve_existing=True)

The argument description is as follows:

* ‘model_name’ is the name of the optical flow estimation method to be used, given as a
string.

 ‘dataset’ is the name of the dataset to be used also given as a string.
* ‘threat_model’ is the name of the adversarial attack to be used, given as a string.
* ‘iterations’ are the number of attack iterations, given as an integer.

* ‘epsilon’ is the permissible perturbation budget € given a floating point (float).
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* ‘alpha’ is the step size of the attack, «, given as a floating point (float).

* ‘Ip_norm’ is the Lipschitz continuity norm (I,-norm) to be used for bounding the perturba-
tion, possible options are ‘Linf” and ‘L2’ given as a string.

 ‘targeted’ is a boolean flag that decides if the attack must be targeted or not. If tar-

.= .
geted="True’, then by default the target is O, passed as target="‘zero’, this can be changed
to negative of the initial flow by passing target=‘negative’.

* ‘optim_wrt’ decides wrt what attack should be optimized, available choices are
‘ground_truth’ and ‘initial_flow’ as string. Please note, this only works well with attacks
that utilize Eq. (7).

* ‘retrieve_existing’ is a boolean flag, which when set to ‘“True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve_existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

F.2 ADVERSARIAL WEATHER

As an attack, adversarial weather works slightly different compared to other adversarial attacks, thus
we additionally mention the commands for using adversarial weather.

from flowbench.evals import evaluate

model, results = evaluate (model_name='RAFT', dataset='KITTI2015',
threat_model='Adversarial_ Weather', weatheIZDsnow',
num_particles=10000, targeted=True,
retrieve_existing=True)

The argument description is as follows:

* ‘model_name’ is the name of the optical flow estimation method to be used, given as a
string.

 ‘dataset’ is the name of the dataset to be used also given as a string.

* ‘threat_model’ is the name of the adversarial attack to be used, given as a string.

e ‘weather’ is the name of the weather condition in adversarial weather attack to be used,
given as a string, options include ‘snow’, ‘fog’, ‘rain’ and ‘sparks’.

* ‘num_particles’ is the number of particles per frame to be used, given as a integer.

» ‘targeted’ is a boolean flag that decides if the attack must be targeted or not. If tar-

¢ ) =g ‘ N .

geted="True’, then by default the target is 0, passed as target=‘zero’, this can be changed
to negative of the initial flow by passing target="‘negative’.

* ‘optim_wrt’ decides wrt what attack should be optimized, available choices are
‘ground_truth’ and ‘initial flow’ as string. Please note, this only works well with attacks
that utilize Eq. (7).

* ‘retrieve_existing’ is a boolean flag, which when set to ‘“True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve_existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

F.3 2D CoMMON CORRUPTIONS

To evaluate a model for a given dataset, with 2D Common Corruptions, the following lines of code
are required.

from flowbench.evals import evaluate

model, results = evaluate (model_name='RAFT', dataset='KITTIZ2015',
threat_model="'2DCommonCorruption',
severity=3, retrieve_existing=True)
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The argument description is as follows:

* ‘model_name’ is the name of the optical flow estimation method to be used, given as a
string.

 ‘dataset’ is the name of the dataset to be used also given as a string.

* ‘threat_model’ is the name of the common corruption to be used, given as a string.

* ‘severity’ is the severity of the corruption, given as an integer between 1 and 5 (both inclu-
sive).

* ‘retrieve_existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve_existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

FLOWBENCH supports the following 2D Common Corruption: ‘gaussian_noise’, shot_noise’, ‘im-
pulse_noise’, ‘defocus_blur’, ‘frosted_glass_blur’, ‘motion_blur’, ‘zoom_blur’, ‘snow’, ‘frost’, ‘fog’,
‘brightness’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg’. For the evaluation, FLOWBENCH will evaluate
the model on the validation images from the respective dataset corrupted using each of the afore-
mentioned corruptions for the given severity, and then report the mean performance over all of them.

F.4 3D CoMMON CORRUPTIONS

To evaluate a model for a given dataset, with 3D Common Corruptions, the following lines of code
are required.

from flowbench.evals import evaluate

model, results = evaluate (model_name='RAFT', dataset='KITTI2015'",
threat_model="'3DCommonCorruption',
severity=3, retrieve_existing=True)

The argument description is as follows:

* ‘model_name’ is the name of the optical flow estimation method to be used, given as a
string.

 ‘dataset’ is the name of the dataset to be used also given as a string.

* ‘threat_model’ is the name of the common corruption to be used, given as a string.

* ‘severity’ is the severity of the corruption, given as an integer between 1 and 5 (both inclu-
sive).

* ‘retrieve_existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else FLOWBENCH will perform the evaluation. If the ‘retrieve_existing’ boolean
flag is set to ‘False’ then FLOWBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

FLOWBENCH supports the following 3D Common Corruption: ‘color_quant’, ‘far_focus’, ‘fog_3d’,
‘iso_noise’, ‘low_light’, ‘near_focus’, ‘xy_motion_blur’, and ‘z_motion_blur’. For the evaluation,
FLOWBENCH will evaluate the model on the validation images from the respective dataset cor-

rupted using each of the aforementioned corruptions for the given severity, and then report the mean
performance over all of them.

G ADDITIONAL RESULTS
Following we include additional results from the benchmark made using FLOWBENCH.

G.1 ADVERSARIAL ATTACKS

Here we report additional results for all adversarial attacks.
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G.1.1 FGSM ATTACK
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Figure 10: Evaluations for non-targeted FGSM attack under ¢.,-norm bound using the KITTI2015
dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 11: Evaluations for targeted FGSM attack with target 6> under /.,-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 12: Evaluations for targeted FGSM attack with target 0 under /5-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.

: — —
Here we report the evaluations using FGSM attack, both as targeted (both targets: 0 and — f) and
non-targeted attacks optimized under the {o,-norm bound and the ¢5-norm bound. For /.,-norm

bound, perturbation budget ¢ = 255 , while for /5-norm bound, perturbation budget ¢ = %.

Attack evaluations include Fig. Fig. @, Fig.[13] Fig.[T4] Fig.[T5] Fig.[16] Fig.[T7} Fig.[T8]
Fig.[19] Fig.[20] Fig.[21] Fig. Flg and Fig.[24]
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Figure 13: Evaluations for targeted FGSM attack with target — f under ¢,.-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 14: Evaluations for targeted FGSM attack with target — f under ¢-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.

G.1.2 BIM ATTACK

H
Here we report the evaluations using BIM attack, both as targeted (both targets: ﬁ and — f) and non-
targeted attacks optimized under the ¢.,-norm bound and the ¢5-norm bound over multiple attack
iterations. For /,.-norm bound, perturbation budget ¢ = and step size @=0.01, while for /5-

norm bound, perturbation budget € = E
Fig.@ Fig.[27] Fig.[28] Fig.[29] Fig. Fﬁl

Fig. 38 and Fig.[39]
G.1.3 PGD ATTACK

8
255°
and step size a=0.1. Attack evaluations include Fig.

Fig.[31] Fig.[32] Fig.[33} Fig.[34] Fig.[33] Fig.[36} Fig. 37

H
Here we report the evaluations using PGD attack, both as targeted (both targets: 6) and —f) and
non-targeted attacks optimized under the /,,-norm bound and the ¢s-norm bound over multiple
attack iterations. For /,,-norm bound, perturbation budget € = %, and step size a=0.01, while

for ¢5-norm bound, perturbation budget ¢ = @ and step size a=0.1. Attack evaluations include

Fig. [0 Fig. 1] Fig. 42} Flg [3] Fig.[44] Fig.[43] Fig. 46} Fig.[d7] Fig.[48] Fig.[#9] Fig.[50} Fig.[51]
Fig.[52] Fig. and Fig.[54]
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MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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085 Figure 43: Evaluations for targeted PGD attack with target —f under ¢.,-norm bound using the
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2086
2087
2088
2089
2090
KITTI-2015 - PGD - Negative Target - L, KITTI-2015 - PGD - Negative Target - L,
2091
£, 2725
2092 & 2700
E 3
2093 53 £67.5
5 £
650
2094 % 2
2 562.5
2095 El & 60.0
2096 00 25 50 7.5 100 125 150 17.5 20.0 00 25 50 75 100 125 150 175 20.0
Num. of Attack Iterations Num. of Attack Iterations
2097 Model Model
CCMR « FlowFormer e L ~ RAPIDFlow + CCMR ~ FlowFormer e Li - RAPIDFlow
2098 —— CRAFT —— FlowFormer++ —— LiteFlowNet3 ~—~— RPKNet —=— CRAFT —— FlowFormer++ —— LiteFlowNet3 —~— RPKNet
-~ CSFlow GMA LLA-Flow ScopeFlow CSFlow GMA LLA-Flow — ScopeFlow
2099 —~ DICL-Flow -~ GMFlow MaskFlownet -~ SKFlow —+ DICL-Flow - GMFlow MaskFlownet -~ SKFlow
DIP — GMFlowNet MS-RAFT+ —- STaRFlow - DIP —- GMFlowNet MS-RAFT+ —- STaRFlow
2100 —— FastFlownet - HD3 —e— RAFT + VideoFlow —.— FastFlownet - HD3 —— RAFT + VideoFlow
—- FlowlD —— IRR — FlowlD —— IRR
2101
2102

_>
2103  Figure 44: Evaluations for targeted PGD attack with target —f under f2-norm bound using the
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Figure 46: Evaluations for targeted PGD attack with target ﬁ under /,-norm bound using the MPI

2139 Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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5157  Figure 47: Evaluations for targeted PGD attack with target 0 under £2-norm bound using the MPI
2158 Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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2174 Figure 48: Evaluations for targeted PGD attack with target — f under /..-norm bound using the MPI
2175 Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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5195 Figure 49: Evaluations for targeted PGD attack with target — f under £5-norm bound using the MPI
2194 Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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5911  Figure 50: Evaluations for non-targeted PGD attack under {,,-norm bound using the MPI Sintel
551,  (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 51: Evaluations for targeted PGD attack with target 0 under ¢,,-norm bound using the MPI
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Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 52: Evaluations for targeted PGD attack with target 6> under /5-norm bound using the MPI

Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 53: Evaluations for targeted PGD attack with target — f under /,-norm bound using the MPI
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Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 54: Evaluations for targeted PGD attack with target — f under ¢5-norm bound using the MPI
Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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G.1.4 CosPGD ATTACK

KITTI-2015 - CosPGD - Untargeted - L. KITTI-2015 - CosPGD - Untargeted - L,

£ £

5 400 5

& =6

E 300 <

2 2

2 24

9200 o

= “

5 5

E E

5100 Z2

A a

5] o

0l 2
00 25 50 75 10.0 125 15.0 17.5 20.0 00 25 50 7.5 10.0 125 15.0 175 20.0
Num. of Attack Iterations Num. of Attack Iterations
Model Model
CCMR FlowFormer - LiteFlowNet RAPIDFlow CCMR FlowFormer --- LiteFlowNet RAPIDFlow
—=— CRAFT —=— FlowFormer++ LiteFlowNet3 ~ —+ RPKNet —=— CRAFT —+— FlowFormer++ Lit t3 —~ RPKNet
.~ CSFlow GMA LLA-Flow ScopeFlow - CSFlow GMA LLA-Flow ScopeFlow
- DICL-Flow ~~ GMFlow MaskFlownet SKFlow - DICL-Flow - GMFlow MaskFlownet SKFlow
DIP ~ -« GMFlowNet MS-RAFT+ STaRFlow DIP ~-- GMFlowNet MS-RAFT+ STaRFlow

—+— FastFlownet HD3 —— RAFT VideoFlow —+— FastFlownet HD3 —— RAFT VideoFlow
— FlowlD —— IRR — Flow1D —— IRR

Figure 55: Evaluations for non-targeted CosPGD attack under ¢,-norm bound using the KITTI2015
dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 56: Evaluations for targeted CosPGD attack with target 0 under /,.-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 57: Evaluations for targeted CosPGD attack with target ﬁ under f3-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.

_)
Here we report the evaluations using CosPGD attack, both as targeted (both targets: ﬁ and —f)
and non-targeted attacks optimized under the /.,-norm bound and the ¢5-norm bound over multiple
attack iterations. For /.,-norm bound, perturbation budget € = %, and step size a=0.01, while

for £5-norm bound, perturbation budget ¢ = 2+ and step size o=0.1. Attack evaluations 1nclude

Fig. 53] Fig. % Fig.[57 F1g [58] Fig.[59] Fig. @ Fig.[6]] Fig.[62] Fig.[63] Fig.[64} Fig.[63] Fig.[66]

Fig. |67} Fig. and Fig. [69]
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Figure 58: Evaluations for targeted CosPGD attack with target — f under ,-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 59: Evaluations for targeted CosPGD attack with target — f under ¢3-norm bound using the
KITTI2015 dataset. The attack was optimized w.r.t. the ground truth predictions.

G.1.5 PCFA ATTACK

Here we report the evaluations using PCFA attack, as targeted (both targets: 0 and — f) optimized
under the />-norm bound over multiple attack iterations. Here the perturbation budget ¢ = 0.05 and
step size v = le — 7. Attack evaluations include Fig. [70|and Fig. [71}

G.1.6 ADVERSARIAL WEATHER ATTACK

Here we report the evaluations using different Adversarial Weather, both as

eted (both targets: ﬁ

H
and — f) and non-targeted attacks. Attack evaluations include Fig. Fig. , Fig.|74|and Fig.

G.2 COMMON CORRUPTIONS OVERVIEW

Following we provide an overview of the performance over all corruptions. This is reported in

Fig.[76

G.3 2D CoMMON CORRUPTIONS

Here we report evaluations using different 2D common corruptions over all considered datasets.
OOD Robustness evaluations with 2D Common Corruptions include Fig.[77} Fig.[78|and Fig.[79]

G.4 3D CoMMON CORRUPTIONS

Here we report evaluations using different considered 3D common corruptions over all considered
datasets. OOD Robustness evaluations with 3D Common Corruptions include Fig.

Fig.[82
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Figure 61: Evaluations for targeted CosPGD attack with target ﬁ under {.,-norm bound using the

2463 MPI Sintel (clean) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 63: Evaluations for targeted CosPGD attack with target — f under /,-norm bound using the
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Figure 64: Evaluations for targeted CosPGD attack with target — f under ¢>-norm bound using the
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Figure 65: Evaluations for non-targeted CosPGD attack under ¢.,-norm bound using the MPI Sintel
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Figure 66: Evaluations for targeted CosPGD attack with target 0 under /,,-norm bound using the
MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 67: Evaluations for targeted CosPGD attack with target 0 under ¢2-norm bound using the
MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 68: Evaluations for targeted CosPGD attack with target — f under ¢.-norm bound using the
MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 69: Evaluations for targeted CosPGD attack with target — f under ¢5-norm bound using the
MPI Sintel (final) dataset. The attack was optimized w.r.t. the ground truth predictions.
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Figure 70: Evaluating all optical flow estimation methods against PCFA attack with target 0 over
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Figure 78: Evaluating optical flow estimation methods against all 2D Common Corruptions on the
MPI Sintel (clean) dataset.
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Figure 79: Evaluating optical flow estimation methods against all 2D Common Corruptions on the
MPI Sintel (final) dataset.
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Figure 80: Evaluating optical flow estimation methods against the considered 3D Common Corrup-

tions on the KITTI2015 dataset.

53



Under review as a conference paper at ICLR 2025

2862
2863
2864
2865
2866
2867
2868

e i e e
5 Su

2869 e ———— .

2870 ; - >

2871 . = =)

Model Model
o COMR = Fowformeret v LtsFlwNerd  + RAPIDFow o COMR e Flowfomares v LtsFlowNets <
ARy RPRNet avn o

2873

2874

2875
2876
2877

2878 e
2879 T ot

2880
ogg¢  Figure 81: Evaluating optical flow estimation methods against the considered 3D Common Corrup-

tions on the MPI Sintel (clean) dataset.

RAPIDFIw

S DicLRow - G - skt
o LowNet e PWONat  + STaRFow
LisFlowNet2 o RAFT. < VidaoFlow

Lo
T LeRoez - RAFT

§ipteLClean - 5D Commn Corruptions - Xy Motion Blur

v LiafloNet - RAPIDFIo

2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895

. [ S
2896 g i
2897 3 I
P £20
2898 5 E,
. e = = e

2899
2900
2901
2902
2903
2904
2905
2906
2907

<~ RAPIDFIn . o
Rkt

<~ RAPIDFIow
Rk

- LisFlowNet o PWCNat

T LeRowez —— RAFT < Videoklow

T LnerowNer  —— RAFT

2908 Figure 82: Evaluating optical flow estimation methods against the considered 3D Common Corrup-
2909 tions on the MPI Sintel (final) dataset.
2910

2911
2912
2913
2914
2915

54



	Introduction
	Related Work
	Robustness Benchmarking For Image Classification Methods
	Benchmarking Optical Flow Estimation Methods
	Adversarial Attacks

	FlowBench Usage
	Model Zoo
	Adversarial Attacks
	OOD Robustness

	Metrics For Analysis At Scale
	Generalization Ability Error
	Reliability Error

	Analysis And Interesting Findings
	Targeted v/s Non-targeted Adversarial Attacks
	Reliability v/s Generalization
	Analysing Point Matching Methods
	Impact Of The Number Of Learnable Parameters
	Optimizing Targeted Attacks using Initial Flow Predictions

	Conclusion
	Do Synthetic Corruptions Represent The Real World?
	Dataset Details
	FlyingThings3D
	KITTI2015
	MPI Sintel
	Spring

	Implementation Details Of The Benchmark
	Description of FlowBench
	Adversarial Attacks
	Out-of-Distribution Robustness

	Model Zoo
	FlowBench Usage Details
	Adversarial Attacks
	Adversarial Weather
	2D Common Corruptions
	3D Common Corruptions

	Additional Results
	Adversarial Attacks
	FGSM Attack
	BIM Attack
	PGD Attack
	CosPGD Attack
	PCFA Attack
	Adversarial Weather Attack

	Common Corruptions Overview
	2D Common Corruptions
	3D Common Corruptions


