

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-TASK SEQUENCE MODELS GENERALISE IN OFFLINE MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent sequence model architectures have demonstrated great promise in offline multi-agent reinforcement learning (MARL). However, even for this expressive model class, generalising to tasks unseen in the training data remains a core challenge. A sensible response to this challenge is to simply scale the amount of offline data available for training. Yet, in this work, we find that task diversity has a stronger influence on generalisation than sheer dataset size. To obtain our findings, we study offline MARL sequence models trained on single-task datasets, clearly demonstrating their limited ability to zero-shot transfer to held-out test tasks. Leveraging this insight, we train and test multi-task versions of offline sequence modeling architectures. We identify three key design choices for successful offline multi-task training: (i) task-balanced mini-batches, (ii) treating value estimation as classification and (iii) agent masking to handle variable team sizes. Using large multi-task datasets from three challenging cooperative environments (Connector, RWARE, and LBF), we investigate generalisation to unseen tasks and the scaling behaviour of our multi-task offline algorithms. **We show that our multi-task sequence models generalise better across all environments compared to single-task models, and achieve a mean improvement of approximately 3.2x on held-out test tasks.** Moreover, our offline MARL sequence models consistently outperform behaviour cloning (a surprisingly strong baseline). Our results clearly show that scaling task diversity by increasing the number of tasks used during training leads to improved generalisation gains over simply scaling the dataset size at a fixed level of task diversity.

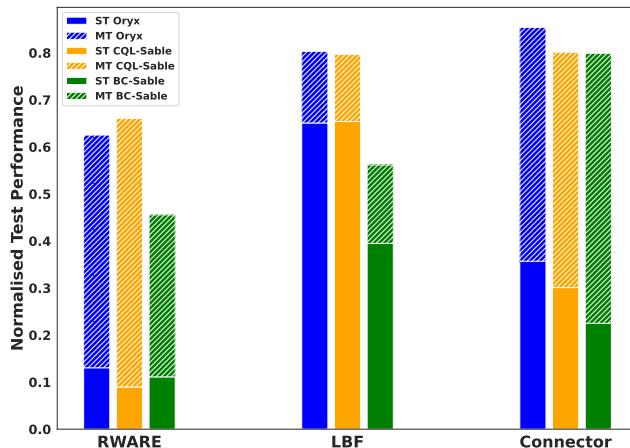


Figure 1: *Test task performance difference between single-task and multi-task sequence models.* Three multi-agent sequence models—CQL-Sable, BC-Sable and Oryx (Formanek et al., 2025)—were trained using either a single task (ST) or a set of multiple training tasks (MT). Average zero-shot performance was measured across a held-out set of test tasks. The upper bar represents the performance gap between ST and MT sequence models on unseen test tasks. **Averaged across all three algorithms, we observe a test performance increase of approximately 5.4x on RWARE, 1.3x on LBF, and 2.9x on Connector.**

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
064 Building agents that generalise to tasks beyond those present in their training data is a central challenge in reinforcement learning (RL), and a prerequisite for deploying agents in the real world (Kirk et al., 2023). In many domains, collecting fresh data online by interacting with a live system is costly or risky, so practitioners turn to offline RL from logged trajectories (Levine et al., 2020). While single-agent work has studied the train–test generalisation gap (Mediratta et al., 2024), the multi-agent case remains under-explored. Despite recent progress in offline **multi-agent reinforcement learning** (MARL) (Yang et al., 2021b; Shao et al., 2023; Meng et al., 2023; Li et al., 2025; Formanek et al., 2025), prior work have largely been restricted to training and evaluating on the same task, without examining generalisation to unseen tasks.065
066
067
068
069
070
071
072
073
074
075
076 In this work, we study the generalisation of single-task models, and then introduce a challenging multi-task benchmark for offline MARL, which builds on widely adopted MARL environments **Level Based Foraging** (LBF), **Multi-Robot Warehouse** (RWARE) (Papoudakis et al., 2021), and **Connector** (Bonnet et al., 2024). Using this benchmark, we evaluate three state-of-the-art offline multi-agent sequence models, namely Oryx (Formanek et al., 2025), as well as two offline versions of Sable (Mahjoub et al., 2025) (CQL-Sable and BC-Sable). Across all three environments, we show that these models exhibit poor generalisation when trained only on a dataset from a single task. However, when trained *simultaneously* on a dataset consisting of a diverse set of multiple tasks, their ability to zero-shot transfer to unseen tasks significantly improves. Furthermore, we verify that similar results cannot be obtained by simply increasing the size of the dataset for a fixed number of tasks, but rather that the key driver is increasing dataset diversity by adding more tasks, which consistently leads to improved test performance. Finally, we find that for a fixed data budget, increasing the model’s capacity has a positive impact on generalisation for challenging tasks.077
078
079
080
081
082 We identify three key design choices for multi-agent sequence models to be successfully trained across multiple tasks simultaneously: (i) task balanced batching, which makes the model unbiased over a mixture of tasks, (ii) value learning via classification (Farebrother et al., 2024) which improves the models ability to handle tasks with varying reward scales (Kumar et al., 2022a), and (iii) masking and shuffling active agents in the sequence, which allows the models to dynamically handle varying numbers of agents across tasks.083
084
085
086
087
088 Our findings show that offline MARL sequence models trained on diverse multi-task datasets show promising signs of generalisation to unseen tasks, as compared to single-task alternatives. In contrast to the findings of Mediratta et al. (2024), we observe that our offline MARL methods do outperform behaviour cloning, a consistent and surprisingly strong baseline to beat. Finally, our work discovers the first promising signs of performance scaling (Hilton et al., 2023) with increases in model capacity for offline MARL on difficult unseen tasks.089
090 In summary, our main contributions are as follows:091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

- We develop a challenging multi-task offline MARL **benchmark****evaluation suite**, which includes 30 large training sets and 22 test sets across LBF, Connector, and RWARE.
- We present two **novel** MARL sequence models (BC-Sable and CQL-Sable) **that build on Sable** (Mahjoub et al., 2025) **by incorporating two widely used offline losses BC and CQL**. We also validate three design choices that enable these models — and Oryx (Formanek et al., 2025) — to be trained on multi-task datasets.
- We show that the zero-shot generalisation capacity of all three multi-agent sequence models scales significantly (**3.2x** on average) as the number of tasks in the training data increases.
- We study the effect of dataset and model size on generalisation, clearly establishing that sheer dataset size is not the main driver of test performance, and that for difficult tasks, model scaling positively affects generalisation.
- **All of our (anonymized) code is available for download¹. We will make all of our code and datasets publicly available upon publication.**

¹<https://sites.google.com/view/multi-task-marl>

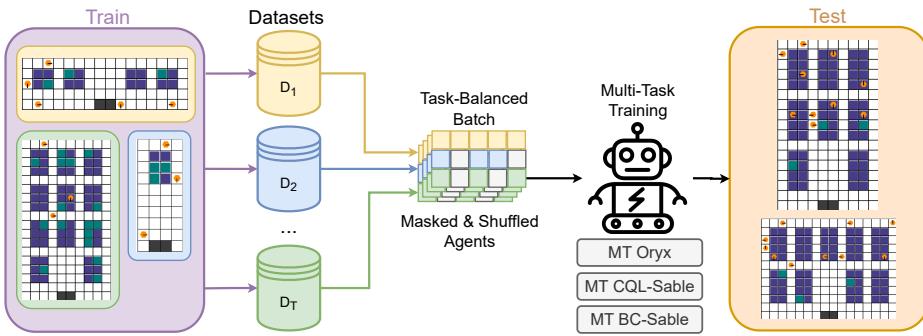


Figure 2: *Our offline multi-task multi-agent training and testing setup.* In this setup, there is a set of training tasks, each with a static dataset of pre-collected trajectories that together form a diverse multi-task dataset. This dataset is then used for training, without any additional online interactions with either the training tasks or the testing tasks. At evaluation time, the trained model is evaluated on each of the held-out test tasks, and the average test performance is calculated. **In this illustration we used RWARE tasks in the train and test sets.**

2 MULTI-TASK SEQUENCE MODELLING FOR OFFLINE MARL

2.1 PRELIMINARIES

Problem formulation. We formalise a cooperative MARL *task* as a **Decentralised Partially Observable Markov Decision Process** (Dec-POMDP) (Kaelbling et al., 1998), defined by the tuple $\mathcal{M}_\dagger = \langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, R, \{\Omega^i\}_{i \in \mathcal{N}}, \{E_i\}_{i \in \mathcal{N}}, \gamma \rangle$, where \dagger denotes the particular task selected from an environment. For example, in a simulated robotic warehouse environment, a task corresponds to a specific warehouse layout and the number of robotic workers collecting and depositing requested shelf items. At each timestep t within a task, the environment is in state $s_t \in \mathcal{S}$. Each agent $i \in \mathcal{N}$ selects an action $a_t^i \in \mathcal{A}^i$ based on its local action-observation history $\tau_t^i = (o_0^i, a_0^i, \dots, o_t^i)$. The agents' actions form a joint action $\mathbf{a}_t \in \mathcal{A} = \prod_{i \in \mathcal{N}} \mathcal{A}^i$, which, when executed, yields a shared reward $r_t = R(s_t, \mathbf{a}_t)$, transitions the environment to $s_{t+1} \sim P(\cdot | s_t, \mathbf{a}_t)$, and provides each agent i with a new observation $o_{t+1}^i \sim E_i(\cdot | s_{t+1}, \mathbf{a}_t)$. The agent then updates its history as $\tau_{t+1}^i = (\tau_t^i, a_t^i, o_{t+1}^i)$. The task-specific objective is to learn a joint policy $\pi(\mathbf{a} | \boldsymbol{\tau})$ that maximises the expected discounted return over a horizon of timesteps H : $J_\dagger(\boldsymbol{\pi}) = \mathbb{E}_\pi \left[\sum_{t=0}^H \gamma^t r_t \right]$.

To create our train-test evaluation setup, we consider offline datasets $\mathcal{D}_{\text{train}} = \{\mathcal{D}_\dagger : \dagger \in \mathcal{T}_{\text{train}}\}$ collected from a set of training tasks $\mathcal{T}_{\text{train}}$. Our objective is to learn a single joint policy π_{train} , using only the fixed multi-task training data (i.e. without any additional online interaction), to maximise the expected zero-shot performance on a set of *unseen* test tasks $\mathcal{T}_{\text{test}}$, given as

$$J(\boldsymbol{\pi}) = \mathbb{E}_{\dagger \sim \mathcal{T}_{\text{test}}} [J_\dagger(\boldsymbol{\pi}) | \boldsymbol{\pi} = \boldsymbol{\pi}_{\text{train}}].$$

By optimising the above objective, we are minimising the generalisation gap between training and test tasks. A simplified visual representation of the problem setting is depicted in Figure 2.

Multi-Agent Sequence Models. Centralised control, where a single policy outputs the joint action, is theoretically optimal but scales poorly due to an exponential growth of the action space (de Kock et al., 2025). However, autoregressive factorisation is an efficient way to parametrise the joint policy, by expressing the joint distribution over n agents as a product of conditional distributions:

$$\pi(\mathbf{a} | \boldsymbol{\tau}) = \prod_{k=1}^n \pi^{i_k} (a^{i_k} | \boldsymbol{\tau}, a^{i_1}, \dots, a^{i_{k-1}}).$$

Here i_k denotes an agent index from an ordered set $\{i_1, \dots, i_n\} \in S_n$, where S_n is the set of permutations of $\{1, \dots, n\}$. This factorisation decomposes joint decision-making into a sequence of conditional actions, enabling scalable coordination, efficient parallel training and, in certain cases, providing desirable convergence properties (Zhong et al., 2024b). Sequence models provide a natural parameterisation of such policies, closely mirroring the autoregressive next token prediction

162 process in text and image generation, and have been demonstrated to work well on a large range of
 163 MARL settings (Wen et al., 2022; Mahjoub et al., 2025; Daniel et al., 2024; Formanek et al., 2025).
 164

165 2.2 MULTI-TASK SEQUENCE MODELS FOR OFFLINE MARL 166

167 Building on existing multi-agent sequence models for offline MARL (Formanek et al., 2025), we
 168 propose a few simple yet essential modifications that enable training on multiple tasks with varying
 169 numbers of agents simultaneously, while allowing seamless zero-shot transfer. By design, our multi-
 170 task sequence models do not receive explicit task IDs or have task specific output heads, since
 171 this would limit their zero-shot transferability to new tasks. Instead, our models have to infer task
 172 information from observations, agent counts, and environment dynamics.

173 **Dynamic agent padding, shuffling and masking.** In order to dynamically handle variable numbers
 174 of agents across tasks, we zero-pad the inputs for absent agents and mask their contributions in the
 175 loss. Moreover, we randomise the ordering of both active and inactive agents at each training update,
 176 which encourages the model to share representations and transfer knowledge across agents.

177 **Multi-task training loss.** Given a set of training tasks $\mathcal{T}_{\text{train}} = \{\dagger_1, \dots, \dagger_M\}$, with offline buffers
 178 $\{\mathcal{D}_{\dagger}\}_{\dagger \in \mathcal{T}_{\text{train}}}$, we train a multi-task sequence model by minimizing the average per-task loss

$$179 \min_{\theta} \frac{1}{M} \sum_{\dagger \in \mathcal{T}_{\text{train}}} [\mathcal{L}(\theta; \mathcal{D}_{\dagger})]. \quad (1)$$

182 The loss \mathcal{L} changes depending on the algorithm used, which in our case includes autoregressive
 183 versions of behaviour cloning (BC) (Pomerleau, 1988; Bain & Sammut, 1995), Conservative Q-
 184 learning (CQL) (Kumar et al., 2020) and Implicit Constraint Q-learning (ICQ) (Yang et al., 2021b;
 185 Formanek et al., 2025).

186 **Task-balanced batching.** For each training update, we build a single unified mini-batch by evenly
 187 sampling across different tasks. Given a batch size B , we compute $q = \lfloor B / |\mathcal{T}_{\text{train}}| \rfloor$ and
 188 $r = B - q|\mathcal{T}_{\text{train}}|$. Each task $\dagger \in \mathcal{T}_{\text{train}}$ contributes q samples; the remaining r samples are assigned
 189 by round-robin across tasks up to the value r . This yields stochastic gradients that are unbiased over
 190 a uniform mixture of tasks (each task equally weighted), rather than a size-weighted mixture. The re-
 191 sulting task-balanced batching also mitigates “head-task” dominance seen with dataset-proportional
 192 sampling, a known issue in domain generalisation from long-tailed datasets (Cui et al., 2019).

193 **Value function learning via classification.** To mitigate gradient interference from varying reward
 194 scales across tasks, we replace scalar TD regression with a classification objective. Specifically, we
 195 use HL-Gauss (Imani & White, 2018; Farebrother et al., 2024), which projects each scalar TD target
 196 onto a discrete support by smoothing with a Gaussian distribution, and trains the value function with
 197 categorical cross-entropy over the resulting histogram. This choice, consistent with prior multi-task
 198 training architectures (Kumar et al., 2022a), improves stability and reduces loss-scale sensitivity
 199 compared to mean squared error.

200 2.3 THEORETICAL UNDERPINNINGS FOR IMPROVED GENERALISATION 201

202 We posit that the superior zero-shot generalisation of our multi-task sequence models stems from
 203 their ability to perform *amortised Bayesian inference* (Gershman & Goodman, 2014) over a latent
 204 task space. We assume each task is governed by an unobserved latent variable $z \in \mathcal{Z}$ (the “task em-
 205 bedding”), which compactly parametrizes the transition dynamics and reward function (e.g., speci-
 206 fying map density or agent capabilities). Unlike single-task policies that overfit to a fixed z_{train} , a
 207 sequence model trained on a distribution of tasks implicitly learns an inference mapping $q_{\phi}(z | \tau_{1:t})$
 208 from interaction history to task belief states (Xie et al., 2022). Crucially, in the multi-agent setting,
 209 accurate inference of z requires aggregating partial information distributed across the team. Our
 210 sequence architecture facilitates this by jointly processing the observations and actions of all agents
 211 within the encoder and autoregressive decoder. This shared global context allows the model to pool
 212 evidence from the entire team’s history to correctly infer task parameters (such as the total number
 213 of agents) that remain unobservable to fully independent policies. The policy then effectively acts
 214 by marginalizing over this inferred embedding:

$$215 \pi_{\theta}(\mathbf{a}_t | \tau_{1:t}) \approx \int_{\mathcal{Z}} \pi_{\psi}(\mathbf{a}_t | s_t, z) q_{\phi}(z | \tau_{1:t}) dz \quad (2)$$

216 By optimizing the negative log-likelihood across diverse tasks, the model is forced to identify these
 217 task-specific parameters directly from the context window. We hypothesise that increasing *model*
 218 *capacity* is critical here, as it reduces the *inference error* by allowing the network to approximate
 219 this complex posterior distribution more accurately.

220 Furthermore, we argue that the combinatorial nature of multi-agent systems (Mahajan et al., 2022)
 221 requires a specific form of robustness we term *marginal consistency*. Standard training often leads
 222 to brittle “Hero” dynamics where agents over-rely on specific team members. Our use of agent
 223 masking and shuffling fundamentally alters this by training the model on the power set of agent sub-
 224 coalitions. This enforces a constraint where the autoregressive decoder must yield a valid optimal
 225 policy for any subset of agents \mathcal{C} :

$$\mathcal{L}(\theta) \approx \mathbb{E}_{z \sim p(z)} \sum_{\mathcal{C}} \mathbb{E}_{\tau, \mathbf{a}_{\mathcal{C}} \sim \mathcal{D}_z} [-\log \pi_{\theta}(\mathbf{a}_{\mathcal{C}} \mid \tau, \mathbf{a}_{\setminus \mathcal{C}}) A(\tau, \mathbf{a}_{\mathcal{C}})] \quad (3)$$

226 This enables the model to act as a *flexible coalition coordinator*, capable of deriving robust cooperative
 227 strategies for team subsets of varying sizes. We expect this mechanism to significantly reduce the
 228 *coverage error* by densifying the effective training support, ensuring that the learned coordination
 229 primitives remain valid even when team compositions or sizes change in the test set.

230 Formally, we view the generalisation gap (regret) on a held-out task z_{test} as the sum of these two
 231 distinct error terms. Following our derivation in Appendix A, the regret is bounded by:

$$\mathcal{R}(z_{\text{test}}) \leq \underbrace{C_1 \cdot \mathbb{E}_{z \sim q_{\phi}} [\|z_{\text{test}} - z\|]}_{\text{Inference}} + \underbrace{C_2 \cdot \min_{z_i \in \mathcal{D}} \|z_i - z_{\text{test}}\|}_{\text{Coverage}} \quad (4)$$

232 The *inference error* is bounded by the expected geometric distance (Wasserstein-1) between the
 233 inferred task belief and the ground truth, capturing the precision of the model’s internal estimation.
 234 The *coverage error* measures the geometric distance between the test task and the nearest training
 235 task, representing the density of the training manifold. We provide the full derivation and detailed
 236 theoretical analysis of these bounds in Appendix A. Based on this decomposition, we expect that
 237 *task diversity* (densifying \mathcal{D}) will be the primary driver for reducing coverage error, while *model*
 238 *scale* (improving the approximation of q_{ϕ}) will be the primary driver for reducing inference error.

239 3 EXPERIMENTS

240 3.1 EXPERIMENTAL DESIGN

241 **Tasks.** We considered three challenging MARL environments, LBF, RWARE (Papoudakis et al.,
 242 2021) and Connector (Bonnet et al., 2024). These are all widely used MARL benchmarks, with
 243 RWARE also proposed as a suitable multi-task benchmark in previous work (Schäfer, 2022) and
 244 Connector being of particular interest due to its agent scaling properties Formanek et al. (2025).
 245 For each environment, we selected several different level configurations to serve as distinct tasks.
 246 These tasks were then partitioned into train and test sets (see Appendix J), taking care to ensure that
 247 the test tasks were different in meaningful ways to the training tasks, as shown in Figure 3.

248 **Datasets.** For each task, we construct an offline dataset \mathcal{D}_{\dagger} by recording a set of rollouts at fixed
 249 intervals from an online training run of SABLE (Mahjoub et al., 2025), a state-of-the-art MARL
 250 sequence model. This yields a mixed dataset with the same number of rollouts per task but not
 251 necessarily the same number of transitions, since episode lengths differ across tasks, hence the ne-
 252 cessity for task-balanced batching. Observations and actions are standardised per environment. For
 253 sequence modeling, we sample fixed-length trajectory chunks (context length reported with other
 254 hyperparameters in Appendix K). Rewards are left unclipped during training and for comparability
 255 across tasks, we report normalised returns, where each task’s episode return is normalised by the
 256 final episode return achieved by the online system on that task.

257 **Algorithms.** The main algorithm we consider is an adapted version of Oryx (Formanek et al.,
 258 2025), which we modify for multi-task training. As described in section 2, this includes (i) dynamic
 259 padding, masking and agent shuffling, (ii) task-balanced batching, and (iii) value learning using
 260 HL-Gauss (Farebrother et al., 2024). We refer to this version of Oryx as **Multi-Task** (MT) Oryx. In

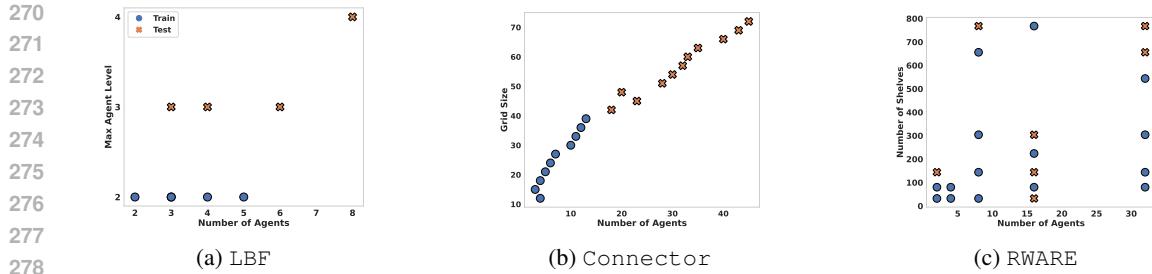


Figure 3: *Distributional shift between train and test tasks.* Each point represents a task with the number of agents in each task plotted against a specific task property: in LBF, the maximum agent level, in Connector the grid size, and in RWARE the number of shelves. While these dimensions are important to distinguish tasks, it should be noted there are additional parameters which change across tasks, not shown here (e.g. the layout of shelves in RWARE tasks).

addition, we develop two new strong baselines. The first is MT BC-Sable, which is an offline variant of Sable that uses simple behaviour cloning to train an autoregressive policy, along with dynamic padding and masking of agents, and task-balanced batching. The second is MT CQL-Sable, another offline variant of Sable that uses an autoregressive version of the CQL loss (Kumar et al., 2020), along with all three MT enhancements as in MT Oryx. The Sable network backbone is consistent across all three algorithms. Therefore, the only significant difference between MT Oryx and the other two baselines is the loss function \mathcal{L} used. We chose CQL because of its proven generalisation and scaling capabilities in the single-agent setting (Kumar et al., 2022a; Chebotar et al., 2023), and BC for its competitive generalisation performance as demonstrated in prior work (Mediratta et al., 2024). Hyperparameter details for all three algorithms are listed in Appendix K.

Evaluation protocol. In our experiments, we are interested in the expected zero-shot performance of the trained model on the held-out test tasks. To measure this, we compute the absolute episode return (Gorsane et al., 2022), by running the best checkpoint achieved during training for 320 independent evaluation episodes and averaging the episode returns for each task in the test set. To compare across tasks and environments with potentially different reward scales, we normalise the absolute episode return by dividing it by the maximum expected episode return achieved on the respective task by the online Sable algorithm. Each run configuration was repeated across three random seeds, with the mean and standard deviation being reported in each case.

3.2 MULTI-TASK TRAINING IMPROVES GENERALISATION

Experiment. We vary the number of tasks in the training set, while keeping the test set fixed. We then train our multi-task sequence models on different subsets of the training datasets and measure the performance on the test tasks. For LBF, we consider a total of 5 training tasks, for Connector 10 and for RWARE 15, incrementing training by a single task from 1 to the maximum for each environment. We plot the performance across training task counts when evaluated on the same training tasks as well as the held-out test tasks in Figure 4.

Discussion. We observe that performance on the training tasks remains *relatively* high across all environments, even as the number of tasks increases. This indicates that the model can successfully learn across multiple tasks simultaneously. However, in RWARE we note a progressive decline in training performance as the number of training tasks grows. We attribute this to the higher complexity of RWARE tasks and the need to scale model capacity with task diversity to maintain performance. Interestingly, even as train task performance degrades, test task performance improves nearly monotonically as the number of training tasks increases, highlighting the importance of diverse multi-task data for generalisation. On LBF, we observe that MT CQL-Sable’s performance decreases. We hypothesise that this is due to the high proportion of expert trajectories in the LBF dataset, as the data collection policy quickly converges to the optimal behaviour. Prior work has shown that CQL is particularly sensitive to overly narrow or high-quality datasets, and benefits from mixed quality datasets (Schweighofer et al., 2022). To further examine this, we include an ablation on trajectories’ quality in Appendix D.

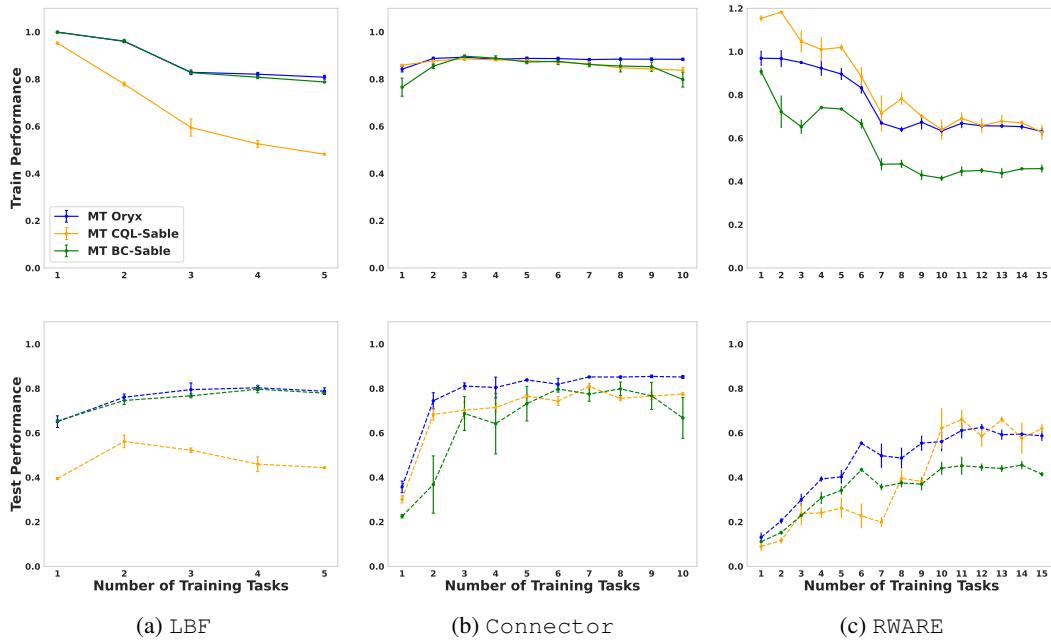


Figure 4: *The effect of increasing task diversity on performance.* **Top:** training tasks. **Bottom:** held-out test tasks. When we train our sequence models using only a single task, we observe strong performance on that single training task (see first point on each plot in the top row). However, the performance on the held-out test tasks is much lower, i.e. the generalisation gap is large. **As we increase the number of tasks in the training set, we observe a steady increase in the test task performance across all three environments.**

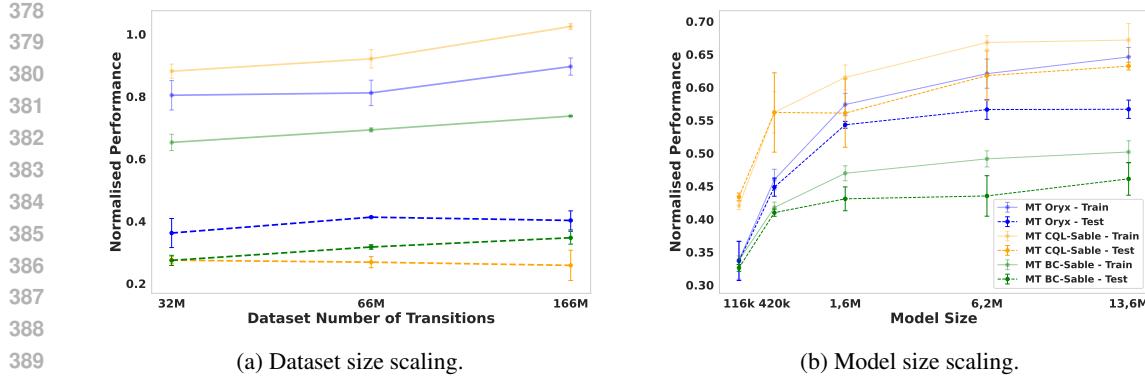
Across all algorithms and environments, performance tends to plateau after a certain number of training tasks. We attribute this saturation to the limits of the current model capacity, pointing to the necessity of scaling up the model size to obtain maximum performance on highly diverse multi-task datasets (see subsection 3.3). To summarise the overall effect of multi-task training with a fixed model size, we measure and report the maximum performance gain on test tasks in Figure 1. Averaged across all three algorithms, test performance improves by **5.4x on RWARE, 1.3x on LBF, and 2.9x on Connector**. These results validate the effectiveness of multi-task training as a means of unlocking substantial performance gains on unseen test tasks.

3.3 CAN WE FURTHER IMPROVE GENERALISATION BY INCREASING THE SIZE OF THE DATASETS AND MODELS?

A natural question that arises is what is the optimal dataset size and model size for generalisation. Can we improve the generalisation capabilities by simply increasing the size of the dataset for a given set of training tasks? Similarly, can we improve generalisation by increasing the size of the model? To test this we design two experiments.

Experiment (a). To determine whether increasing the size of the datasets (in terms of number of transitions rather than number of tasks helps performance) we conducted a sweep over dataset sizes for several multi-task datasets on RWARE. The results of the sweep are presented in Figure 5a. Similar to the results by Mediratta et al. (2024), we find that there is little evidence that scaling up the number of transitions helps generalisation nearly as much as adding more tasks.

Experiment (b). To study the effect of model size, we train various models with different numbers of parameters, ranging from 116k to 13M, using the RWARE dataset. For simplicity, we mainly vary the embedding dimension of the model’s encoder-decoder network from 64 (116k parameters) to 768 (13M parameters). We report the average episode return, normalised by the online performance, on both the training and test tasks in Figure 5b. **We show in Appendix E similar results for LBF and Connector.**



(a) Dataset size scaling.

(b) Model size scaling.

Figure 5: *The impact of scaling up dataset (left) and model size (right)*. When we fix the number of RWARE tasks in the dataset to 5 but grow the number of transitions in the dataset, we observe an increase in train performance, while the test performance plateaus. On the other hand, when we train each of our MT sequence models on the full 15 task RWARE dataset, we observe a clear scaling trend with respect to the model size in terms of both train and test performance.

Discussion. The results in Figure 5a indicate that simply increasing the number of transitions in the training dataset improves train task performance but does not lead to better generalisation on held-out test tasks, highlighting the importance of task diversity in multi-task datasets, since from Figure 4c we can conclude that adding additional tasks has a greater benefit. In contrast, scaling model capacity (Figure 5b)—from an embedding dimension of 64 (116k parameters) to 512 (6.2M parameters)—consistently improved both training and test performance. This finding is particularly encouraging: it suggests that large, diverse multi-task datasets may be the missing ingredient needed to make ever-larger and more general offline MARL models viable. Notably, this result contrasts with the single-task setting reported by (Formanek et al., 2025), where the optimal embedding dimension was just 64, underscoring the unique potential of multi-task data for enabling scale.

3.4 ABLATION STUDIES

HL-Gauss. To test the effect of using HL-Gauss (Farebrother et al., 2024) for multi-task learning, we conduct an ablation on the full set of RWARE training tasks where we run MT Oryx and MT CQL-Sable with and without HL-Gauss for value function learning (e.g. standard TD mean-squared-error). We compare the algorithms on multi-task RWARE since the task-to-task variance in episode returns is significant and therefore more challenging to accurately learn a multi-task value function. As shown in Figure 6a, using HL-Gauss leads to slightly better performance ($\approx 8\%$ improvement) on test tasks for MT Oryx, while the effect on MT CQL-Sable is marginal.

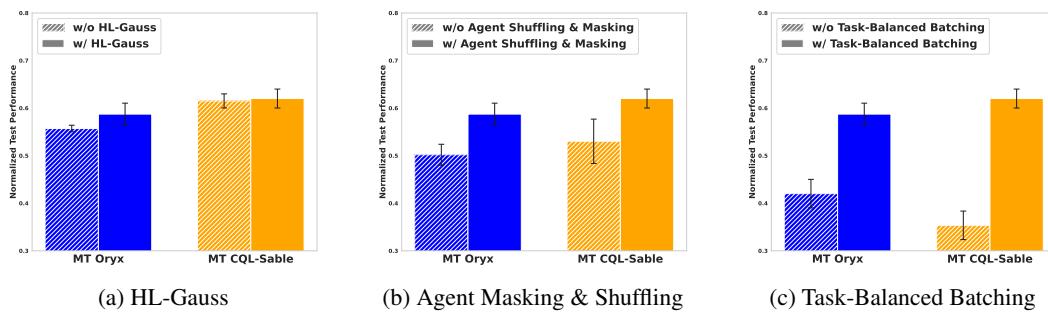


Figure 6: *Ablation studies.* **Left:** Using HL-Gauss improves test performance for MT Oryx by $\approx 8\%$, while the effect on MT CQL-Sable is marginal. **Middle:** Disabling agent masking and shuffling reduces test performance by $\approx 16\%$ on average for both algorithms. **Right:** Removing task-balanced batching has the highest impact with $\approx 37\%$ drop in test performance on average for both MT Oryx and MT CQL-Sable.

432 **Agent shuffling and masking.** To test the impact of not masking and shuffling agents we conduct a
 433 similar ablation to above on RWARE. We observe decrease in performance of $\approx 16\%$ on average for
 434 both algorithms on the test tasks, when we do not mask and shuffle agents (see Figure 6b).

435 **Task-balanced batching.** Finally, we conducted an ablation on how we sample data from the multi-
 436 task dataset. In the first case we use our proposed task-balanced batching method, which includes a
 437 fair mix of samples from each task in every batch. In the alternative approach we choose a random
 438 task at each update step and sample a full batch from the chose single task. The results in Figure 6c
 439 shows a 37% decrease in test performance on average for both MT Oryx and MT CQL-Sable without
 440 task-balanced batching.

442 3.5 HOW DOES MT ORYX COMPARE TO PRIOR WORK?

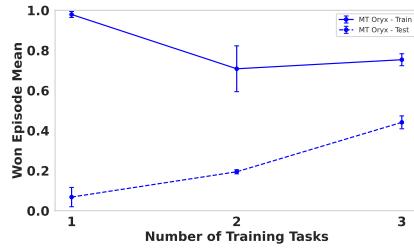
444 In order to establish how our MT Sequence models
 445 compare to prior multi-task MARL methods we evaluated
 446 our best model (see Appendix C), MT Oryx, on the
 447 SMAC datasets and tasks from Zhang et al. (2023a) and
 448 compared it to their method called ODIS. The results of
 449 which are shared in Table 1 and show that our method
 450 compares well in terms of zero-shot transfer to unseen
 451 SMAC maps. Further to this, we tested if our task scal-
 452 ing result held across their SMAC datasets. We scaled
 453 from a single task to their full set of three training tasks
 454 in the marine-hard task set using the expert datasets. As
 455 we can see from Figure 7, similar scaling trends hold.
 456 In order to handle the varying action and observation
 457 spaces across tasks we used the same decomposition
 458 strategy used by Zhang et al. (2023a).

459 Table 1: MT Oryx vs. ODIS on the SMAC test suite, Marine-Hard (Zhang et al.,
 460 2023a). Bold indicates the highest mean and * indicates no statistical difference
 461 ($p \geq 0.05$) using a two-sided t-test (Papoudakis et al., 2021).

Split	Tasks	Expert Data		Medium Data		Medium-Replay	
		ODIS	MT Oryx	ODIS	MT Oryx	ODIS	MT Oryx
Train	3m	98.4 ± 2.7	94.8 ± 3.6*	85.9 ± 10.5	52.1 ± 9.5	83.6 ± 14.0	47.9 ± 16.0
	5m6m	53.9 ± 5.1*	55.2 ± 6.5	22.7 ± 7.1*	22.9 ± 15.7	16.6 ± 4.7*	18.8 ± 3.1
	9m10m	80.4 ± 8.7*	89.6 ± 7.2	78.1 ± 3.8	29.2 ± 10.0	34.4 ± 8.0	14.6 ± 9.5
	4m	95.3 ± 3.5	64.6 ± 27.3*	61.7 ± 17.7	43.8 ± 11.3*	55.6 ± 14.5*	57.3 ± 4.8
	5m	89.1 ± 10.0	86.5 ± 11.8*	85.9 ± 11.8*	99.0 ± 1.8	96.1 ± 4.1	95.8 ± 1.8*
	10m	93.8 ± 2.2	100.0 ± 0.0	61.3 ± 11.3	83.3 ± 6.5	84.4 ± 15.1*	90.6 ± 8.3
	12m	58.6 ± 11.8*	77.1 ± 19.1	35.9 ± 8.1	72.9 ± 3.6	84.4 ± 6.6	66.7 ± 3.6
	Test	7m8m	25.0 ± 15.1	3.1 ± 3.1	28.1 ± 22.0	4.2 ± 3.6*	9.4 ± 2.2
		8m9m	19.6 ± 6.0*	20.8 ± 13.0	4.7 ± 2.7*	8.3 ± 6.5	11.7 ± 8.7
		10m11m	42.4 ± 7.2*	64.6 ± 21.3	29.7 ± 15.4	15.6 ± 8.3*	35.9 ± 5.2
		10m12m	1.6 ± 1.6	6.2 ± 0.0	1.6 ± 1.6	0.0 ± 0.0*	2.3 ± 1.4
		13m15m	2.3 ± 2.6	2.1 ± 1.8*	1.6 ± 1.6	0.0 ± 0.0*	2.4 ± 1.4

475 4 RELATED WORK

477 **Offline MARL.** Most prior work in offline MARL uses single-task training and evaluation, while
 478 focusing on finding solutions to key challenges particular to offline multi-agent learning. Seminal
 479 early papers include Jiang & Lu (2021) and Yang et al. (2021a), who introduced multi-agent methods
 480 for constrained Q-value estimation. Since then, numerous additional works have aimed to tackle
 481 challenges such as extrapolation error (Shao et al., 2023; Eldeeb et al., 2024), coordination (Barde
 482 et al., 2024; Tilbury et al., 2024; Zhou et al., 2025), offline training stability (Pan et al., 2022;
 483 Wang et al., 2023; Matsunaga et al., 2023; Wu et al., 2023a; Bui et al., 2025; Liu et al., 2024b; Li
 484 et al., 2025), opponent modeling (Jing et al., 2024), offline-to-online transfer (Zhong et al., 2024a;
 485 Formanek et al., 2023) and theoretical understanding (Cui & Du, 2022b;a; Zhong et al., 2022; Zhang
 486 et al., 2023b; Xiong et al., 2023; Wu et al., 2023a).



487 Figure 7: Increasing the number of training tasks on SMAC tends to increase test
 488 performance.

486 **Sequence Models for RL.** Formulating RL as a sequence modelling problem has gained significant
 487 attention. Chen et al. (2021) introduced the Decision Transformer (DT), later extended in various
 488 ways (Zheng et al., 2022; Yamagata et al., 2023; Wu et al., 2023b). Lee et al. (2022) trained a
 489 multi-task DT that learned across tasks and could be quickly fine-tuned. Meng et al. (2023) in-
 490 troduced MADT, an extension of the DT to the multi-agent setting. The Multi-Agent Transformer
 491 (MAT) (Wen et al., 2022) addressed the online setting with auto-regressive action selection, and
 492 Mahjoub et al. (2025) improved on MAT with Sable, which replaces the Transformer with a Re-
 493 tentive Network (Sun et al., 2023) and adds temporal memory, achieving state-of-the-art results.
 494 Building on this line, Formanek et al. (2025) proposed Oryx, an offline MARL sequence model de-
 495 rived from an autoregressive version of Implicit Constraint Q-Learning (ICQ) (Yang et al., 2021b)
 496 and offline-specific modifications to Sable, also achieving state-of-the-art performance.
 497

498 **Multi-Task RL.** Multi-task training has most prominently been investigated in single-agent
 499 continuous-control and robotics problems with a focus on representation and transfer learning (Xu
 500 et al., 2020; Kalashnikov et al., 2021; Kumar et al., 2022b; Cheng et al., 2022). Although shown to
 501 be useful in most cases, Yu et al. (2021) find that naively adding more multi-task data to an offline RL
 502 training dataset can sometimes lead to a decrease in performance on downstream tasks, particularly
 503 when the distributional shift between tasks is large. In terms of generalisation, Kumar et al. (2022a)
 504 and He et al. (2023) highlight the potential for high-capacity models trained on large and diverse
 505 multi-task datasets to produce agents that can generalise more broadly when fine-tuned on previ-
 506 ously unseen tasks. Most closely related to our work is that of Mediratta et al. (2024), who evaluate
 507 the zero-shot generalisation capabilities of several offline single-agent RL methods by training them
 508 on a set of training tasks and testing them on a set of holdout tasks. They find that current offline RL
 509 methods do not generalise well and are typically outperformed by simple behaviour cloning.
 510

511 **Multi-Task MARL.** Multi-task MARL faces both architectural and evaluation challenges when
 512 agents must generalise beyond single-task training, motivating formal definitions and benchmarks
 513 for task generalisation (Schäfer, 2022). Rosen et al. (2024) give a formal, goal-oriented theory that
 514 proves how a learned world value function can enable provably optimal zero-shot task generalisation
 515 in goal-based multi-agent settings. MaskMA (Liu et al., 2024a) introduces a mask-based frame-
 516 work that adapts to varying agent- and action-spaces and shows strong zero-shot transfer on unseen
 517 SMAC (Samvelyan et al., 2019) maps. Unlike our approach, their work builds on MADT (Meng
 518 et al., 2023), while we focus on sequence model architectures related to Oryx (Formanek et al.,
 519 2025), which have been shown to outperform MADT. The offline coordination-skill discovery
 520 method ODIS (Zhang et al., 2023a) extracts task-invariant coordination primitives from multi-task
 521 trajectories and shows that this can be used to deploy coordination policies to unseen SMAC tasks
 522 without additional online interaction. Related work, HiSSD (Liu et al., 2025) proposes a hierarchi-
 523 cal separation between common cooperative (temporal) skills and task-specific controllers. None of
 524 the above studies investigates the effect of task diversity on test performance, instead keeping the
 525 number of training tasks fixed.
 526

5 CONCLUSION

527 In this work, we studied generalisation in offline MARL and showed that task diversity is a key driver
 528 of improved test performance. We introduced a simple yet effective recipe for building multi-task se-
 529 quence models, which consistently narrows the train–test gap and achieves significant performance
 530 gains on unseen test tasks. Our findings suggest that future progress in offline MARL should pri-
 531 oritise (i) constructing large and diverse, multi-task datasets, and (ii) carefully tuning their models’
 532 capacity for the given data budget to maximise zero-shot generalisation. We release code, datasets,
 533 task splits, and training scripts to encourage reproducibility and to establish stronger benchmarks
 534 for evaluating generalisation in offline MARL.
 535

536 **Limitations and future work.** Our work is limited to centralised sequence model architectures,
 537 and although these represent a powerful and performant model class, promising future work could
 538 include extending our analysis to decentralised and CTDE algorithms. Additional areas of inter-
 539 est include studying the limits of transfer across environments (not only tasks), and investigating
 540 accelerating fine-tuning in safety-critical and data-scarce real-world domains.
 541

540 REFERENCES
541

542 Michael Bain and Claude Sammut. A framework for behavioural cloning. In *Machine intelligence*
543 *15*, pp. 103–129, 1995.

544 Paul Barde, Jakob Foerster, Derek Nowrouzezahrai, and Amy Zhang. A model-based solution to the
545 offline multi-agent reinforcement learning coordination problem. In *International Conference on*
546 *Autonomous Agents and Multiagent Systems*, 2024.

547 Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duck-
548 worth, Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, et al.
549 *Jumanji: a diverse suite of scalable reinforcement learning environments in jax*. In *The Twelfth*
550 *International Conference on Learning Representations*, 2024.

551 The Viet Bui, Thanh Hong Nguyen, and Tien Mai. Comadice: Offline cooperative multi-agent re-
552 inforcement learning with stationary distribution shift regularization. In *International Conference*
553 *on Learning Representations*, 2025.

554 Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
555 Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
556 via autoregressive q-functions. In *Conference on Robot Learning*, pp. 3909–3928. PMLR, 2023.

557 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
558 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
559 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

560 Yuan Cheng, Songtao Feng, Jing Yang, Hong Zhang, and Yingbin Liang. Provable benefit of
561 multitask representation learning in reinforcement learning. *Advances in Neural Information*
562 *Processing Systems*, 35:31741–31754, 2022.

563 Qiwen Cui and Simon S Du. When are offline two-player zero-sum markov games solvable? In
564 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
565 *Information Processing Systems*, volume 35. Curran Associates, Inc., 2022a.

566 Qiwen Cui and Simon S Du. Provably efficient offline multi-agent reinforcement learning via
567 strategy-wise bonus. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
568 (eds.), *Advances in Neural Information Processing Systems*, volume 35. Curran Associates, Inc.,
569 2022b.

570 Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
571 effective number of samples. In *Proceedings of the IEEE/CVF conference on computer vision*
572 *and pattern recognition*, pp. 9268–9277, 2019.

573 Jemma Daniel, Ruan de Kock, Louay Ben Nessir, Sasha Abramowitz, Omayma Mahjoub, Wiem
574 Khelifi, Claude Formanek, and Arnu Pretorius. Multi-agent reinforcement learning with selective
575 state-space models. *arXiv preprint arXiv:2410.19382*, 2024.

576 Ruan de Kock, Arnu Pretorius, and Jonathan Shock. Is an exponentially growing action space
577 really that bad? validating a core assumption for using multi-agent rl. In *Proceedings of the 24th*
578 *International Conference on Autonomous Agents and Multiagent Systems*, pp. 2490–2492, 2025.

579 Eslam Eldeeb, Houssem Sifaou, Osvaldo Simeone, Mohammad Shehab, and Hirley Alves. Conser-
580 vative and risk-aware offline multi-agent reinforcement learning. *IEEE Transactions on Cognitive*
581 *Communications and Networking*, pp. 1–1, 2024. ISSN 2372-2045. doi: 10.1109/tccn.2024.
582 3499357. URL <http://dx.doi.org/10.1109/TCCN.2024.3499357>.

583 Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
584 Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: training
585 value functions via classification for scalable deep rl. In *Proceedings of the 41st International*
586 *Conference on Machine Learning*, pp. 13049–13071, 2024.

587 Claude Formanek, Omayma Mahjoub, Louay Ben Nessir, Sasha Abramowitz, Ruan de Kock, Wiem
588 Khelifi, Simon Du Toit, Felix Chalumeau, Daniel Rajaonarivonivelomanantsoa, Arnol Fokam,
589 et al. Oryx: a performant and scalable algorithm for many-agent coordination in offline marl.
590 *Advances in neural information processing systems*, 2025.

594 Juan Claude Formanek, Callum Rhys Tilbury, Jonathan Phillip Shock, Kale ab Tessera, and Arnu
 595 Pretorius. Reduce, reuse, recycle: Selective reincarnation in multi-agent reinforcement learning.
 596 In Workshop on Reincarnating Reinforcement Learning at ICLR 2023, 2023. URL https://openreview.net/forum?id=_Nz91t2qQfV.
 597

598 Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In
 599 Proceedings of the annual meeting of the cognitive science society, volume 36, 2014.
 600

601 Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P. Adams, and Sergey Levine.
 602 Why generalization in RL is difficult: Epistemic pomdps and implicit partial observability. In
 603 Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
 604 man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
 605 on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
 606 pp. 25502–25515, 2021.

607 Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and
 608 Arnu Pretorius. Towards a standardised performance evaluation protocol for cooperative marl.
 609 Advances in Neural Information Processing Systems, 35:5510–5521, 2022.
 610

611 Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
 612 long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
 613 learning. Advances in neural information processing systems, 36:64896–64917, 2023.

614 Jacob Hilton, Jie Tang, and John Schulman. Scaling laws for single-agent reinforcement learning,
 615 2023. URL <https://arxiv.org/abs/2301.13442>.
 616

617 Ehsan Imani and Martha White. Improving regression performance with distributional losses. In
 618 International conference on machine learning, pp. 2157–2166. PMLR, 2018.

619 Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning, 2021.
 620 URL <https://arxiv.org/abs/2108.01832>.
 621

622 Yuheng Jing, Kai Li, Bingyun Liu, Yifan Zang, Haobo Fu, QIANG FU, Junliang Xing, and Jian
 623 Cheng. Towards offline opponent modeling with in-context learning. In The Twelfth International
 624 Conference on Learning Representations, 2024.

625 Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
 626 partially observable stochastic domains. Artificial intelligence, 1998.

627 Dmitry Kalashnikov, Jake Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
 628 Chelsea Finn, Sergey Levine, and Karol Hausman. Scaling up multi-task robotic reinforcement
 629 learning. In 5th Annual Conference on Robot Learning, 2021.

630 Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot gener-
 631 alisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201–264,
 632 2023.

633 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for of-
 634 fline reinforcement learning. Advances in neural information processing systems, 33:1179–1191,
 635 2020.

636 Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
 637 learning on diverse multi-task data both scales and generalizes. In Deep Reinforcement Learning
 638 Workshop NeurIPS 2022, 2022a.

639 Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiro Nakamoto, Yanlai Yang, Chelsea Finn, and
 640 Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
 641 trials. arXiv preprint arXiv:2210.05178, 2022b.

642 Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadara-
 643 ma, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
 644 formers. Advances in neural information processing systems, 35:27921–27936, 2022.

648 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. [arXiv preprint arXiv:2005.01643](https://arxiv.org/abs/2005.01643), 2020.

649

650

651 Chao Li, Ziwei Deng, Chenxing Lin, Wenqi Chen, Yongquan Fu, Weiquan Liu, Chenglu Wen, Cheng Wang, and Siqi Shen. Dof: A diffusion factorization framework for offline multi-agent 652 reinforcement learning. In [The Thirteenth International Conference on Learning Representations](#), 653 2025.

654

655 Jie Liu, Yinmin Zhang, Chuming Li, Zhiyuan You, Zhanhui Zhou, Chao Yang, Yaodong Yang, 656 Yu Liu, and Wanli Ouyang. Maskma: Towards zero-shot multi-agent decision making with mask- 657 based collaborative learning. [Transactions on Machine Learning Research](#), 2024a.

658

659 Sicong Liu, Yang Shu, Chenjuan Guo, and Bin Yang. Learning generalizable skills from of- 660 line multi-task data for multi-agent cooperation. In [The Thirteenth International Conference](#) 661 [on Learning Representations](#), 2025.

662

663 Zongkai Liu, Qian Lin, Chao Yu, Xiawei Wu, Yile Liang, Donghui Li, and Xuetao Ding. Offline 664 multi-agent reinforcement learning via in-sample sequential policy optimization, 2024b. URL 665 <https://arxiv.org/abs/2412.07639>.

666

667 Anuj Mahajan, Mikayel Samvelyan, Tarun Gupta, Benjamin Ellis, Mingfei Sun, Tim Rock- 668 taschel, and Shimon Whiteson. Generalization in cooperative multi-agent systems. [ArXiv](#), 669 [abs/2202.00104](https://arxiv.org/abs/2202.00104), 2022. URL <https://api.semanticscholar.org/CorpusID:246442168>.

670

671 Omayma Mahjoub, Sasha Abramowitz, Ruan John de Kock, Wiem Khelifi, Simon Verster Du Toit, 672 Jemma Daniel, Louay Ben Nessir, Louise Beyers, Juan Claude Formanek, Liam Clark, et al. 673 Sable: a performant, efficient and scalable sequence model for marl. In [Forty-second International](#) 674 [Conference on Machine Learning](#), 2025.

675

676 Daiki E. Matsunaga, Jongmin Lee, Jaeseok Yoon, Stefanos Leonardos, Pieter Abbeel, and Kee- 677 Eung Kim. Alberdice: Addressing out-of-distribution joint actions in offline multi-agent rl via 678 alternating stationary distribution correction estimation, 2023. URL <https://arxiv.org/abs/2311.02194>.

679

680 Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The generalization gap in offline 681 reinforcement learning. In [The Twelfth International Conference on Learning Representations](#), 682 2024.

683

684 Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying Wen, 685 Haifeng Zhang, Jun Wang, Yaodong Yang, et al. Offline pre-trained multi-agent decision trans- 686 former. [Machine Intelligence Research](#), 20(2):233–248, 2023.

687

688 Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline 689 multi-agent reinforcement learning with actor rectification, 2022. URL <https://arxiv.org/abs/2111.11188>.

690

691 Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmark- 692 ing multi-agent deep reinforcement learning algorithms in cooperative tasks. In [Thirty-fifth](#) 693 [Conference on Neural Information Processing Systems Datasets and Benchmarks Track](#), 2021.

694

695 Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. [Advances in neural](#) 696 [information processing systems](#), 1, 1988.

697

698 Simon Rosen, Abdel Mfougouon Njupoun, Geraud Nangue Tasse, Steven James, and Benjamin 699 Rosman. Optimal task generalisation in multi-agent reinforcement learning. In [Coordination and](#) 700 [Cooperation for Multi-Agent Reinforcement Learning Methods Workshop](#), 2024.

701

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon Whiteson. The StarCraft Multi-Agent Challenge. [CoRR](#), abs/1902.04043, 2019.

702 Lukas Schäfer. Task generalisation in multi-agent reinforcement learning. In *Proceedings of the*
 703 *21st International Conference on Autonomous Agents and Multiagent Systems*, AAMAS '22, pp.
 704 1863–1865. International Foundation for Autonomous Agents and Multiagent Systems, 2022.

705 Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vi-
 706 hang Prakash Patil, Angela Bitto-Nemling, Hamid Eghbal-Zadeh, and Sepp Hochreiter. A dataset
 707 perspective on offline reinforcement learning. In *Conference on Lifelong Learning Agents*, pp.
 708 470–517. PMLR, 2022.

709 Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual conser-
 710 vative q learning for offline multi-agent reinforcement learning. *Advances in Neural Information*
 711 *Processing Systems*, 36:77290–77312, 2023.

712 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 713 Furu Wei. Retentive network: A successor to transformer for large language models. *arXiv*
 714 *preprint arXiv:2307.08621*, 2023.

715 Callum Rhys Tilbury, Juan Claude Formanek, Louise Beyers, Jonathan Phillip Shock, and Arnu
 716 Pretorius. Coordination failure in cooperative offline MARL. In *ICML 2024 Workshop: Aligning*
 717 *Reinforcement Learning Experimentalists and Theorists*, 2024.

718 Xiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent rein-
 719 forcement learning with implicit global-to-local value regularization. In A. Oh, T. Nau-
 720 man, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
 721 *Information Processing Systems*, volume 36, pp. 52413–52429. Curran Associates, Inc.,
 722 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a46c84276e3a4249ab7dbf3e069baf7f-Paper-Conference.pdf.

723 Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
 724 Multi-agent reinforcement learning is a sequence modeling problem. *Advances in Neural*
 725 *Information Processing Systems*, 35:16509–16521, 2022.

726 Chengjie Wu, Pingzhong Tang, Jun Yang, Yujing Hu, Tangjie Lv, Changjie Fan, and Chongjie
 727 Zhang. Conservative offline policy adaptation in multi-agent games. In *Thirty-seventh Conference*
 728 *on Neural Information Processing Systems*, 2023a. URL <https://openreview.net/forum?id=C8pvL8Qbfa>.

729 Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. *Advances in*
 730 *neural information processing systems*, 36:18532–18550, 2023b.

731 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 732 learning as implicit bayesian inference. In *The Tenth International Conference on Learning*
 733 *Representations*, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

734 Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, Liwei Wang, and Tong Zhang. Nearly mini-
 735 max optimal offline reinforcement learning with linear function approximation: Single-agent mdp
 736 and markov game, 2023. URL <https://arxiv.org/abs/2205.15512>.

737 Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in multi-task
 738 deep reinforcement learning for continuous control. *Advances in Neural Information Processing*
 739 *Systems*, 33:15146–15155, 2020.

740 Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
 741 Leveraging dynamic programming for conditional sequence modelling in offline rl. In
 742 *International Conference on Machine Learning*, pp. 38989–39007. PMLR, 2023.

743 Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
 744 Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
 745 reinforcement learning, 2021a. URL <https://arxiv.org/abs/2106.03400>.

746 Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
 747 Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
 748 reinforcement learning. *Advances in Neural Information Processing Systems*, 34:10299–10312,
 749 2021b.

756 Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
 757 Conservative data sharing for multi-task offline reinforcement learning. *Advances in Neural*
 758 *Information Processing Systems*, 34:11501–11516, 2021.

759

760 Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang. Discovering
 761 generalizable multi-agent coordination skills from multi-task offline data. In *The Eleventh*
 762 *International Conference on Learning Representations*, 2023a. URL <https://openreview.net/forum?id=53FyUAdP7d>.

763

764 Yuheng Zhang, Yu Bai, and Nan Jiang. Offline learning in markov games with general function
 765 approximation, 2023b. URL <https://arxiv.org/abs/2302.02571>.

766

767 Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In *international*
 768 *conference on machine learning*, pp. 27042–27059. PMLR, 2022.

769

770 Hai Zhong, Xun Wang, Zhuoran Li, and Longbo Huang. Offline-to-online multi-agent reinforcement
 771 learning with offline value function memory and sequential exploration, 2024a. URL <https://arxiv.org/abs/2410.19450>.

772

773 Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, and Zhuoran Yang.
 774 Pessimistic minimax value iteration: Provably efficient equilibrium learning from offline datasets,
 775 2022. URL <https://arxiv.org/abs/2202.07511>.

776

777 Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
 778 Heterogeneous-agent reinforcement learning. *Journal of Machine Learning Research*, 25(32):
 1–67, 2024b.

779

780 Yihe Zhou, Yuxuan Zheng, Yue Hu, Kaixuan Chen, Tongya Zheng, Jie Song, Mingli Song, and
 781 Shunyu Liu. Cooperative policy agreement: Learning diverse policy for offline marl. *Proceedings*
 782 *of the AAAI Conference on Artificial Intelligence*, 39(21):23018–23026, Apr. 2025. doi: 10.
 783 1609/aaai.v39i21.34465. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34465>.

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 LIST OF APPENDICES
811

812	A Expanded Theoretical Analysis of Multi-Task Generalisation	17
813	A.1 Latent Task Inference via Sequence Modelling	17
814	A.2 Combinatorial Generalisation via Marginal Consistency	17
815	A.3 Formal Error Decomposition	18
816		
817		
818		
819	B Environment Details	20
820	B.1 LBF	20
821	B.2 Connector	20
822	B.3 RWARE	21
823		
824		
825	C Multi-Task Offline MARL can Generalise better than Behaviour Cloning	22
826		
827		
828	D Dataset Quality Ablation	23
829		
830	E Scaling Analysis on LBF and Connector	24
831		
832	F The Effect of the Task Split on Scaling Trends	25
833		
834	G Full Training Curves	26
835		
836	H Visualisation of Multi-Task Policy	30
837		
838		
839	I Computational Requirements	32
840		
841	J Primary Task Splits	33
842		
843	K Hyperparameters	34
844		
845	L Datasets	35
846		
847	L.1 Dataset Release Plan	35
848		
849	L.2 Dataset Statistics	35
850	L.2.1 RWARE	35
851	L.2.2 Connector	35
852	L.2.3 LBF	35
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A EXPANDED THEORETICAL ANALYSIS OF MULTI-TASK GENERALISATION**
865866 We formally justify the generalisation capabilities of our multi-task sequence models by viewing the
867 training process as amortised Bayesian inference (Gershman & Goodman, 2014) over a latent task
868 space, regularised by marginal consistency constraints imposed by the autoregressive structure and
869 agent masking. We corroborate this analysis with specific empirical evidence from our experiments.
870871 **A.1 LATENT TASK INFERENCE VIA SEQUENCE MODELLING**
872873 Consider a family of multi-agent tasks defined by a latent variable $z \in \mathcal{Z}$, where each z specifies
874 the transition dynamics $P(\cdot|s, a, z)$ and reward function $R(s, a, z)$ for a team of agents. In the
875 offline setting, the dataset \mathcal{D} consists of trajectories generated under various $z \sim p(z)$. While our
876 model is trained via a standard supervised objective to minimize the negative log-likelihood (NLL)
877 of actions, we posit that this is equivalent to maximizing the Evidence Lower Bound (ELBO). Since
878 the optimal action depends on the unobserved task variable z , the model must implicitly infer z to
879 minimize NLL. This optimization forces the model to learn an internal inference network $q_\phi(z|\tau_{1:t})$
880 mapping history to task beliefs, alongside a policy $\pi_\psi(a|s, z)$.
881882 Crucially, unlike fully independent policies that must infer task context solely from local observations,
883 our sequence model explicitly models the relational structure between all agents’ observations
884 in the encoder and their actions in the decoder. This joint processing allows the inference network
885 q_ϕ to aggregate evidence across the entire team, significantly enhancing task inference capacity,
886 particularly in scenarios with varying agent counts where global context is emergent rather than
887 local. We characterise this process as amortised inference because the heavy computational cost
888 of calculating the complex posterior distribution is “amortised” (paid upfront) during the extensive
889 training phase. Consequently, at test time, the model does not need to run expensive optimization
890 algorithms; it simply performs fast, implicit inference via a single forward pass of the network. Following
891 the framework of Xie et al. (2022), the sequence model approximates the posterior predictive
892 distribution:

893
$$\pi_\theta(a_t|\tau_{1:t}) \approx \int_{\mathcal{Z}} \pi_\psi(a_t|s_t, z) q_\phi(z|\tau_{1:t}) dz. \quad (5)$$

894

895 In single-task (ST) training, the prior $p(z)$ collapses to a Dirac delta $\delta_{z_{train}}$ causing q_ϕ to degenerate
896 and ignore the history $\tau_{1:t}$. Conversely, multi-task (MT) training forces q_ϕ to extract task-identifying
897 features from the context window.898 *Note:* In Equation 5, the learned policy π_θ conditions on the history τ (resolving partial observability),
899 while the implicit oracle π_ψ is defined on the underlying state s and true task z . The inference
900 network q_ϕ bridges this gap by mapping history to a belief over z .
901902 This theoretical view is strongly supported by our scaling results. We observe that increasing task
903 diversity (the support of $p(z)$) leads to continuous improvements in zero-shot performance (Figure
904 4), whereas simply scaling dataset size for a fixed number of tasks yields diminishing returns
905 (Figure 5a). This confirms that reducing the coverage error of the latent manifold is the primary
906 driver of generalisation. Furthermore, the finding that performance scales with network capacity
907 (Figure 5b) suggests that larger models are necessary to accurately approximate the complex inference
908 posterior q_ϕ . Qualitatively, the distinct strategies observed in RWARE where the model infers
909 collision-avoidance behaviours in congested maps versus exploration in sparse maps (Figure 19,
910 Figure 20) demonstrate successful context-driven inference of z .
911912 **A.2 COMBINATORIAL GENERALISATION VIA MARGINAL CONSISTENCY**
913914 A unique challenge in MARL is the combinatorial complexity of the joint action space, often requiring
915 what Mahajan et al. (2022) term Combinatorial Generalisation. Our architecture decomposes
916 the joint policy autoregressively as $\pi_\theta(a|s) = \prod_{i=1}^n \pi_\theta(a^{\sigma(i)}|s, a^{\sigma(<i)})$, where σ is a random
917 permutation. In standard ST training, the model overfits to specific correlations between fixed agents,
918 often collapsing into a “Hero” dynamic where a small subset of agents dominates the policy.
919920 However, our use of agent masking during MT training fundamentally alters this dynamic. By
921 randomly masking subsets of agents, we enforce marginal consistency. In this context, “marginal”
922 refers to the policy distribution of a subset of agents (integrating out the others), and “consistency”

918 ensures that the model’s prediction for this subset remains valid and optimal even when isolated
 919 from the full team. Mathematically, the objective approximates minimizing the advantage-weighted
 920 KL divergence between the model’s marginals and the data distribution for all sub-coalitions $\mathcal{C} \subseteq$
 921 $\{1, \dots, n\}$:
 922

$$923 \quad \mathcal{L}(\theta) \approx \mathbb{E}_{z \sim p(z)} \sum_{\mathcal{C}} \mathbb{E}_{\tau \sim \mathcal{M}_z} [-\log \pi_{\theta}(a_{\mathcal{C}} | s, a_{\setminus \mathcal{C}})]. \quad (6)$$

925 This forces the autoregressive decoder to function as a coordination inference engine, learning
 926 permutation-invariant coordination primitives that are robust to variations in team composition.
 927

928 Our ablation studies validate this mechanism, showing that removing agent masking and shuffling
 929 results in a $\approx 16\%$ drop in test performance (Figure 6b).
 930

931 A.3 FORMAL ERROR DECOMPOSITION

932 To analyse the generalisation gap, we define the regret on a test task z_{test} as $\mathcal{R}(z_{\text{test}}) = V^{\pi^*}(z_{\text{test}}) -$
 933 $V^{\pi_{\theta}}(z_{\text{test}})$, where V^{π^*} is the optimal value and $V^{\pi_{\theta}}$ is the value of our learned policy evaluated in
 934 the true task environment. We introduce an auxiliary “oracle” policy $\pi_{\psi}(\cdot | s, z_{\text{test}})$ which shares the
 935 learned control weights but receives the true task ID z_{test} as input. Unlike the oracle, our learned
 936 policy π_{θ} operates on an inferred task embedding \hat{z} . Using the triangle inequality, we can decompose
 937 the regret into two terms:
 938

$$939 \quad \mathcal{R}(z_{\text{test}}) \leq \underbrace{|V^{\pi^*}(z_{\text{test}}) - V^{\pi_{\psi}}(z_{\text{test}})|}_{\epsilon_{\text{coverage}}} + \underbrace{|V^{\pi_{\psi}}(z_{\text{test}}) - V^{\pi_{\theta}}(z_{\text{test}})|}_{\epsilon_{\text{inference}}}. \quad (7)$$

942 *Remark:* In the second term, although both value functions are evaluated on the true task z_{test} , the
 943 divergence arises because π_{ψ} conditions on z_{test} while π_{θ} conditions on the inferred \hat{z} .
 944

945
 946
 947 *Proof.* By adding and subtracting the oracle value term $V^{\pi_{\psi}}(z_{\text{test}})$ inside the regret definition and
 948 applying the triangle inequality:

$$949 \quad \begin{aligned} \mathcal{R}(z_{\text{test}}) &= V^{\pi^*}(z_{\text{test}}) - V^{\pi_{\theta}}(z_{\text{test}}) \\ 950 &= V^{\pi^*}(z_{\text{test}}) - V^{\pi_{\psi}}(z_{\text{test}}) + V^{\pi_{\psi}}(z_{\text{test}}) - V^{\pi_{\theta}}(z_{\text{test}}) \\ 951 &\leq |V^{\pi^*}(z_{\text{test}}) - V^{\pi_{\psi}}(z_{\text{test}})| + |V^{\pi_{\psi}}(z_{\text{test}}) - V^{\pi_{\theta}}(z_{\text{test}})|. \end{aligned}$$

952 Here, $V^{\pi_{\theta}}(z_{\text{test}})$ denotes the value of the policy π_{θ} (which acts based on the inferred belief $\hat{z} \sim$
 953 $q_{\phi}(\cdot | \tau)$) when interacting with the true environment z_{test} . Consequently, the second term precisely
 954 measures the performance gap caused by acting upon the inferred representation \hat{z} rather than the
 955 ground truth z_{test} . \square
 956

957
 958
 959
 960 **Coverage Error.** The coverage error $\epsilon_{\text{coverage}} = |V^{\pi^*}(z_{\text{test}}) - V^{\pi_{\psi}}(z_{\text{test}})|$ represents the approx-
 961 imation error of the shared policy manifold due to the finite support of the training distribution \mathcal{D} .
 962 Even if the task identity were known perfectly, this error persists if the training tasks do not suffi-
 963 ciently cover the task space. This formalises why task diversity (densifying the support of \mathcal{D}) is the
 964 primary driver for reducing this error, as confirmed by our results in Figure 4.
 965

966 **Theorem 1 (Coverage Bound).** *Assuming the optimal value function is L -Lipschitz continuous with
 967 respect to the task metric $d(\cdot, \cdot)$ and the model fits the training tasks well ($\epsilon_{\text{train}} \approx 0$), the coverage
 968 error is bounded by the distance to the nearest training task:*

$$970 \quad \epsilon_{\text{coverage}} \leq 2L \cdot \min_{z_i \in \mathcal{D}} d(z_i, z_{\text{test}}). \quad (8)$$

972 *Proof.* Let $z_{NN} = \arg \min_{z_i \in \mathcal{D}} d(z_i, z_{\text{test}})$. We decompose the error using the triangle inequality:
 973

$$974 \quad \epsilon_{\text{coverage}} \leq |V^{\pi^*}(z_{\text{test}}) - V^{\pi^*}(z_{NN})| + |V^{\pi^*}(z_{NN}) - V^{\pi_\psi}(z_{NN})| + |V^{\pi_\psi}(z_{NN}) - V^{\pi_\psi}(z_{\text{test}})|.$$

975 The first term is bounded by $L \cdot d(z_{\text{test}}, z_{NN})$ due to Lipschitz continuity. The second term vanishes
 976 under the assumption of successful training on the support set. The third term is similarly bounded
 977 by $L \cdot d(z_{\text{test}}, z_{NN})$ assuming the learned policy inherits the Lipschitz property. Summing these
 978 yields $2L \cdot d(z_{\text{test}}, z_{NN})$. \square
 979

980
 981
 982 **Inference Error.** The inference error $\epsilon_{\text{inference}} = |V^{\pi_\psi}(z_{\text{test}}) - V^{\pi_\theta}(z_{\text{test}})|$ measures the identifica-
 983 tion gap caused by using the inferred posterior q_ϕ instead of the true ID. It captures the penalty for
 984 acting on an incorrect task belief $\hat{z} \sim q_\phi(\cdot | \tau)$. As noted by Ghosh et al. (2021), generalisation in RL
 985 often fails due to this “epistemic POMDP” problem where the posterior belief is misaligned. Min-
 986 imizing this term requires sufficient model capacity to approximate the complex inverse mapping
 987 from trajectories to task parameters, explaining the scaling behaviour observed in Figure 5b.
 988

989 **Theorem 2** (Inference Bound). *Let the oracle policy $\pi_\psi(\cdot | s, z)$ be L_π -Lipschitz continuous in z
 990 with respect to the Total Variation (TV) distance. The inference error is bounded by:*
 991

$$992 \quad \epsilon_{\text{inference}} \leq C \cdot \mathbb{E}_{z \sim q_\phi} [\|z_{\text{test}} - z\|]. \quad (9)$$

993
 994
 995
 996 *Proof.* We first apply the Value Difference Lemma to bound the gap between the oracle policy
 997 $\pi_\psi(\cdot | z_{\text{test}})$ and the inferred policy $\pi_\theta(\cdot) = \mathbb{E}_{z \sim q_\phi} [\pi_\psi(\cdot | z)]$ by the expected divergence in their action
 998 distributions:
 999

$$1000 \quad |V^{\pi_\psi}(z_{\text{test}}) - V^{\pi_\theta}(z_{\text{test}})| \leq \frac{V_{\max}}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi_\psi}} [D_{\text{TV}}(\pi_\psi(\cdot | s, z_{\text{test}}) || \pi_\theta(\cdot | s))]$$

1001 We apply Jensen’s inequality to the convex Total Variation distance function:
 1002

$$1003 \quad D_{\text{TV}} \left(\pi_\psi(\cdot | s, z_{\text{test}}) \middle\| \mathbb{E}_{z \sim q_\phi} [\pi_\psi(\cdot | s, z)] \right) \leq \mathbb{E}_{z \sim q_\phi} [D_{\text{TV}}(\pi_\psi(\cdot | s, z_{\text{test}}) || \pi_\psi(\cdot | s, z))].$$

1005 By the Lipschitz assumption on the policy with respect to the task parameter z :
 1006

$$1007 \quad \mathbb{E}_{z \sim q_\phi} [D_{\text{TV}}(\pi_\psi(\cdot | s, z_{\text{test}}) || \pi_\psi(\cdot | s, z))] \leq L_\pi \mathbb{E}_{z \sim q_\phi} [\|z_{\text{test}} - z\|].$$

1008 The term $\mathbb{E}_{z \sim q_\phi} [\|z_{\text{test}} - z\|]$ is the 1-Wasserstein distance between the Dirac $\delta_{z_{\text{test}}}$ and the belief
 1009 q_ϕ . This confirms that minimizing the geometric distance in the latent space minimizes inference
 1010 error. \square
 1011

1012 *Remark:* While our practical implementation operates on interaction histories τ to handle partial
 1013 observability, standard theoretical bounds are defined on the underlying Markovian state space s .
 1014 This interchange is valid under the assumption that the sequence model acts as a belief state encoder.
 1015 In the limit of sufficient capacity, the history τ serves as a *sufficient statistic* for the state s and the
 1016 task belief $q(z)$. Therefore, bounding the error over the state distribution $s \sim d^\pi$ implicitly bounds
 1017 the performance of the history-based policy.
 1018

1019 This decomposition aligns with recent theoretical frameworks in generalization and representation
 1020 learning (Ghosh et al., 2021; Cheng et al., 2022), which identify epistemic uncertainty (Ghosh et al.,
 1021 2021) and shared representation error (Cheng et al., 2022) as the two dominant sources of regret.
 1022

1023
 1024
 1025

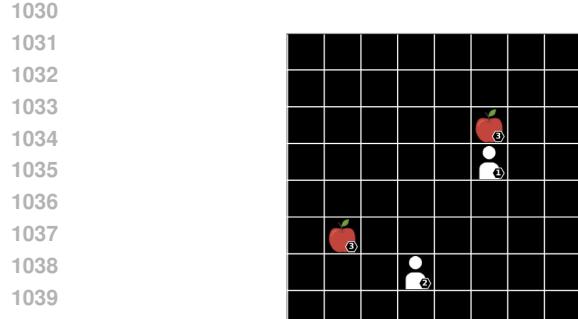
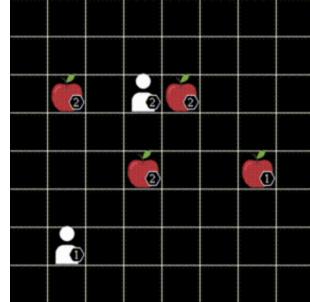
1026 **B ENVIRONMENT DETAILS**
10271028 **B.1 LBF**
10291031 (a) 8x8-2p-2f
1032
1033
1034
1035
1036
1037
1038
1039
10401041 (b) 8x8-2p-4f
1042
1043
1044

Figure 8: LBF

1045 In the Level-Based Foraging (LBF) environment, which is a JAX-based implementation from the
1046 Jumanji suite (Bonnet et al., 2024) of the original framework by Papoudakis et al. (2021), agents
1047 with assigned levels navigate a grid world to collect food items that can only be consumed if the sum
1048 of adjacent agent levels exceeds the food’s level. These tasks are defined by the naming convention
1049 $\langle x \text{ size} \rangle \times \langle y \text{ size} \rangle - \langle n \text{ agents} \rangle p - \langle \text{food} \rangle f$, specifying the grid dimensions, agent and
1050 food counts. Agents observe a limited 5×5 square grid centered on their location which reveals
1051 the positions and levels of nearby items. Operating via a discrete action space of six options that
1052 includes no-operation, loading food, and movement in the four cardinal directions, agents receive
1053 rewards calculated as the sum of collected food levels divided by the level of the contributing agents.
1054

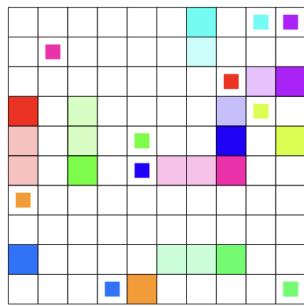
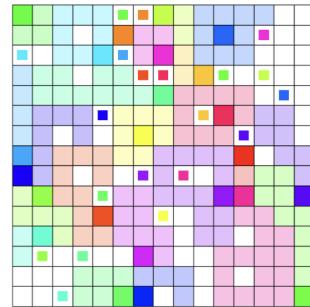
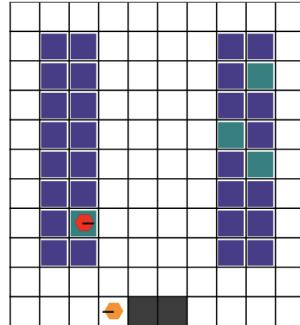
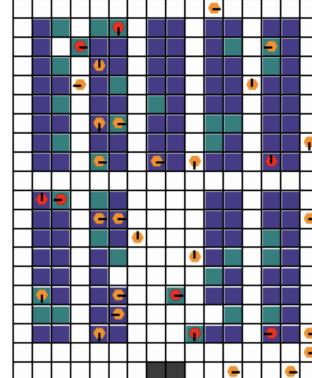
1055 **B.2 CONNECTOR**
10561057 (a) con-10x10-10ag
1058
1059
1060
1061
1062
1063
1064
1065
10661067 (b) con-15x15-23ag
1068
1069
1070

Figure 9: Connector

1071 In the Connector (Bonnet et al., 2024) environment, multiple agents are randomly initialized
1072 within a grid world to connect assigned start and end points in the minimum number of steps,
1073 a task complicated by the fact that movement creates permanent, impassable trails which ne-
1074 cessitate cooperation to avoid blocking teammates. These tasks follow the naming convention
1075 $\text{con-} \langle x\text{-size} \rangle \times \langle y\text{-size} \rangle - \langle \text{num_agents} \rangle a$ to specify grid dimensions and agent count.
1076 Agents operate within this system by observing an $n \times n$ local view centered on their location
1077 that reveals trails and all target locations, while also accessing the global (x, y) coordinates of their
1078 current position and specific destination. Acting through a discrete space of five options including
1079 up, down, left, right, and stop, agents are guided by a reward function that yields +1 at the moment
of connection and a penalty of -0.03 for every other step until completion.

1080
1081 B.3 RWARE
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

(a) tiny-2ag



(b) medium-32ag

Figure 10: RWARE

1099 The Robot Warehouse (RWARE) environment simulates a logistics scenario where a team of au-
1100 tonomous robots must fetch requested goods from shelves and deliver them to workstations to max-
1101 imize throughput. We utilize the JAX-based implementation from the Jumanji suite (Bonnet et al.,
1102 2024) based on the original work by Papoudakis et al. (2021), which notably terminates episodes
1103 immediately upon agent collision rather than attempting to resolve the conflict. Tasks follow the
1104 convention $\langle \text{size} \rangle - \langle \text{num agents} \rangle \text{ag}$, where the size determines the shelf layout. Agents op-
1105 erate under partial observability within a 3×3 view centered on their position that reveals self and
1106 peer states alongside shelf status, using a discrete action space of five commands for navigation and
1107 loading to achieve a sparse reward of $+1$ granted solely for successful deliveries.

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **C MULTI-TASK OFFLINE MARL CAN GENERALISE BETTER THAN**
 1135 **BEHAVIOUR CLONING**
 1136

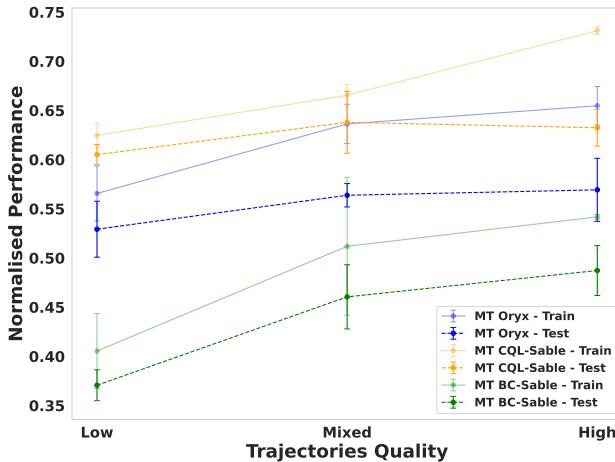
1137 The findings from Mediratta et al. (2024) paint a bleak outlook for the generalisation capabilities of
 1138 Offline RL algorithms compared to simple behaviour cloning. To establish if we observe a similar
 1139 trend, we aggregate the normalised episode returns across all test tasks from LBF, RWARE and
 1140 Connector, when trained using the full training set, to compare our three algorithms. In Table 2,
 1141 we show the mean and standard error for each algorithm.

1142 We want to know which offline training objective performed the best in terms of generalisation to
 1143 the test tasks. We considered three objectives: behaviour cloning, conservative Q-learning, and the
 1144 autoregressive ICQ loss from Formanek et al. (2025). We find that **on LBF and Connector Oryx (ICQ**
 1145 **loss)** performs the best, followed by BC and then only CQL. **On RWARE, on the other hand, CQL**
 1146 **does the best, followed by ICQ and then BC.** We hypothesise that our findings differ from those of
 1147 (Mediratta et al., 2024) because they used *Expert* data, whereas we use mixed replay data. Expert
 1148 data is more suitable for BC while many offline RL methods (especially CQL (Schweighofer et al.,
 1149 2022)) benefit from having mixed data. Indeed, our LBF and Connector datasets are significantly
 1150 more skewed towards *Expert* trajectories in the replay datasets because the tasks are easier than
 1151 RWARE tasks. Hence why CQL likely did the best on RWARE, since those datasets are the most
 1152 mixed. So in conclusion we find that **in settings with mixed data quality offline MARL methods**
 1153 **exhibit better generalisation than BC.**

1154 Table 2: *Comparison of test task performance of all three models.* The mean and standard error of
 1155 the performance across all test tasks on RWARE, LBF and Connector for each of the multi-task
 1156 algorithms (largest mean highlighted with bold). In the final column the combined mean across
 1157 all tasks from the three environments is computed. **In contrast to the findings by Mediratta**
 1158 **et al. (2024), we find that on each environment the best performing algorithm is an Offline RL**
 1159 **method (MT CQL-Sable or MT Oryx), rather than the BC model. When aggregated across**
 1160 **all the test tasks combined, MT Oryx performs the best.**

Algorithm	RWARE	LBF	Connector	Combined
MT Oryx	0.587 ± 0.054	0.803 ± 0.026	0.852 ± 0.002	0.759 ± 0.023
MT CQL-Sable	0.620 ± 0.066	0.562 ± 0.029	0.668 ± 0.018	0.633 ± 0.024
MT BC-Sable	0.415 ± 0.050	0.797 ± 0.030	0.775 ± 0.004	0.664 ± 0.027

1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

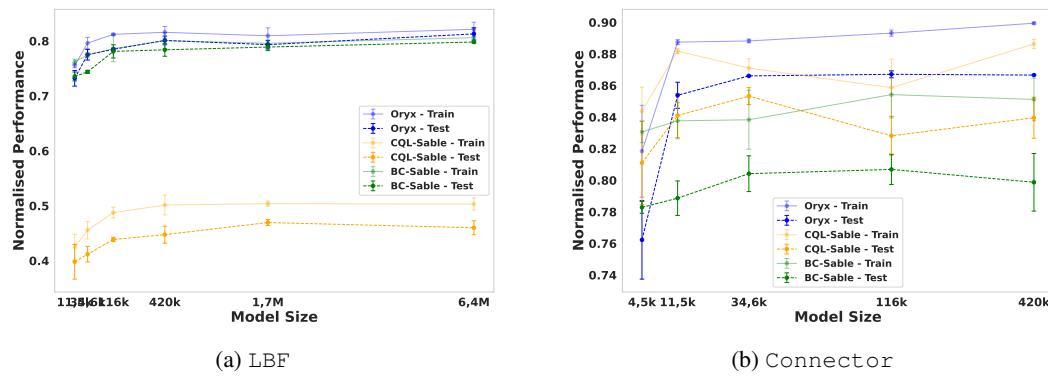
1188 D DATASET QUALITY ABLATION
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1204
1205
1206
1207
1208
1209
1210
Figure 11: *Performance of MT-Oryx, MT-CQL-Sable, and MT-BC-Sable on RWARE with different trajectory subsets. High-quality trajectories improve training performance, particularly for MT-CQL-Sable, but these gains do not transfer to the test tasks. Low-quality trajectories consistently yield the worst results.*

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
Do higher quality trajectories improve generalisation? As observed in subsection 3.3, increasing dataset size does not lead to significant improvements in generalization to unseen tasks. A natural follow-up question is: how does the quality of trajectories in the dataset affect training and test performance? To investigate this, we conduct an experiment where training is performed with trajectories sampled from specific subsets of our dataset. Low-quality trajectories are those collected during the first two-thirds of the online training phase, while High-quality trajectories are those from the final third. Results on RWARE are shown in Figure 11. For all algorithms, training performance improves with High-quality trajectories, though the gains on test tasks remain marginal. Across all three algorithms, training with Low-quality trajectories consistently yields the worst results on both training and test tasks. These results suggest that the most effective strategy is to prioritize High-quality trajectories while retaining a small fraction of Low-quality ones as negative examples.

1242 E SCALING ANALYSIS ON LBF AND CONNECTOR
1243

1244 In this section, we complement the experiments presented in subsection 3.3. We verify whether
 1245 the model-size scaling trends observed in RWARE also extend to LBF and Connector. As shown
 1246 in Figure 12, we observe similar behavior: performance improves with model size up to a critical
 1247 point. However, both LBF and Connector are considerably easier than RWARE, and therefore
 1248 their performance saturates at much smaller model sizes. Furthermore, although there is a large
 1249 performance gap between BC-Sable and the other algorithms on LBF, the overall scaling trend
 1250 remains visible, albeit more marginal.

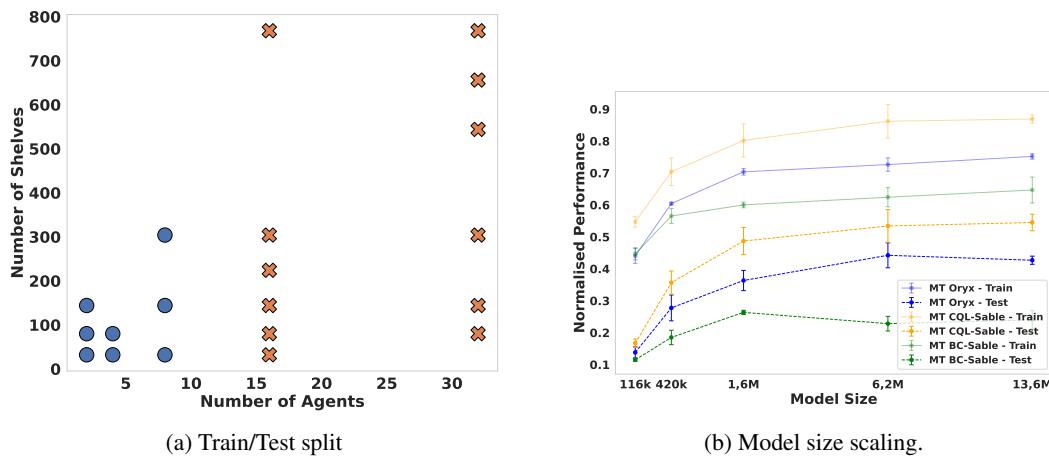


1264 Figure 12: *Performance of MT-Oryx, MT-CQL-Sable, and MT-BC-Sable on LBF and Connector*
 1265 *with different model sizes. Both train and test performance of all algorithms improve with*
 1266 *increasing model size up to a critical threshold, beyond which performance plateaus.*

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

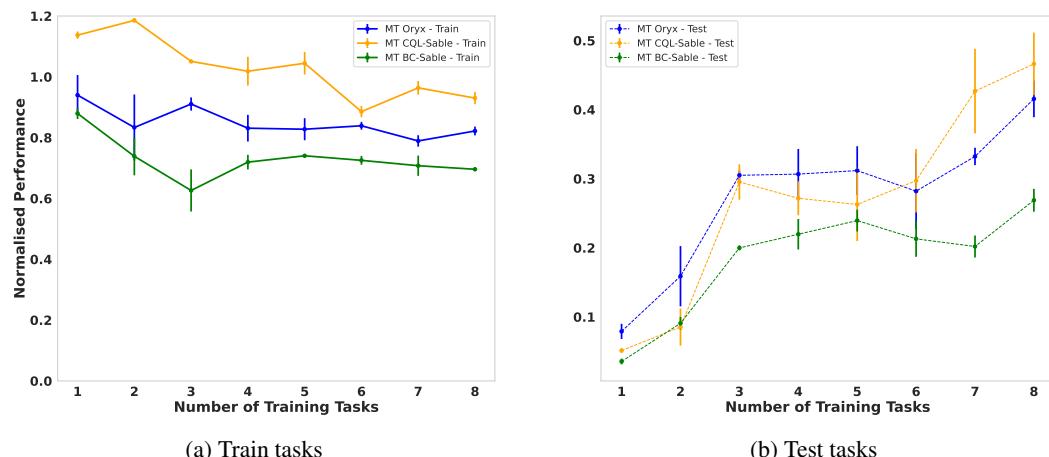
1296 F THE EFFECT OF THE TASK SPLIT ON SCALING TRENDS
1297

1298 **How does the train/test task split affect generalisation and performance scaling?** To answer
1299 this question, we repeat the model-size scaling experiment on RWARE using a different task split.
1300 Specifically, we adopt the split shown in Figure 13a. Unlike the previous split (see Figure 3), this
1301 configuration allows a clear decision boundary separating the train tasks from the test tasks. As a
1302 result, it reduces the potential for the learned strategies to interpolate across tasks. The results in
1303 Figure 13b confirm that the model-size scaling trends hold regardless of the task-split strategy. Nev-
1304 ertheless, this split yields a larger generalisation gap, as the model can no longer rely on interpolation
1305 to transfer strategies to unseen tasks.

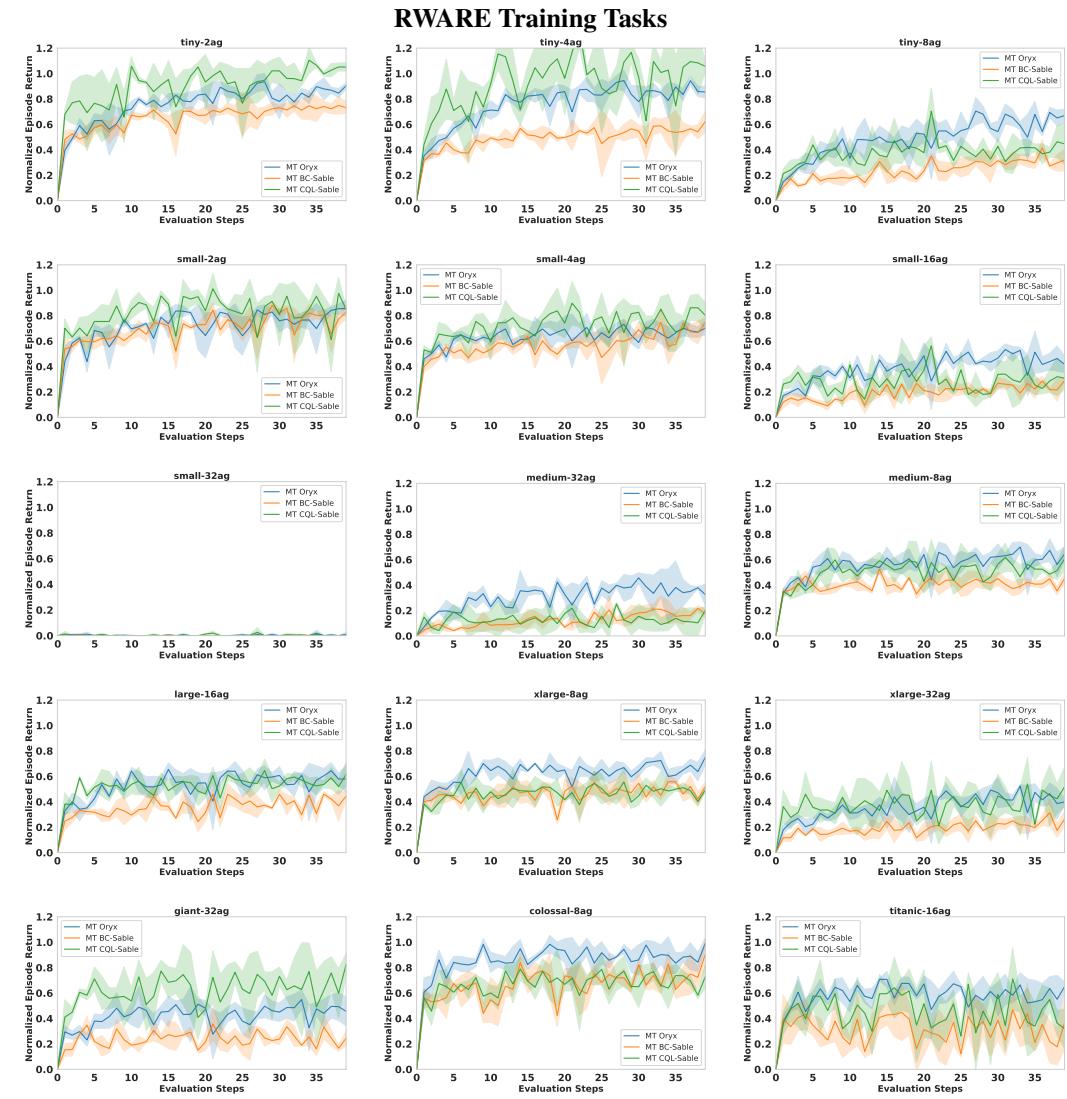


1321 Figure 13: Performance of MT-Oryx, MT-CQL-Sable, and MT-BC-Sable (*right*) on RWARE
1322 environment with different model sizes using the train/test split on the (*left*). Similarly to Figure 5b we
1323 observe performance scaling with network size.
1324

1325 Finally, we conclude this analysis by repeating the task-scaling experiments using the new RWARE
1326 task split. The results in Figure 14 validate that the overall trends remain similar regardless of the
1327 split strategy. Test performance improves as the number of training tasks increases, while train
1328 performance decreases because it becomes more challenging for the model to learn a single strategy—or
1329 multiple strategies—that solve all tasks simultaneously.



1346 Figure 14: *Performance vs number of tasks with new RWARE task split.* We observe similar trends as
1347 in Figure 4. This results confirms that performance trend is independent of the task splitting strategy.
1348
1349

1350
1351
G FULL TRAINING CURVES1352
1353 For additional insight into multi-task training dynamics we provide the complete set of training
1354 curves on RWARE and Connector. The plots are grouped by in-distribution (Training) tasks and
1355 out-of-distribution (Test) tasks.1391
1392 **Figure 15: In-Distribution (ID) Performance.** Evaluation curves for the 15 RWARE tasks where
the agents were trained on distribution data.

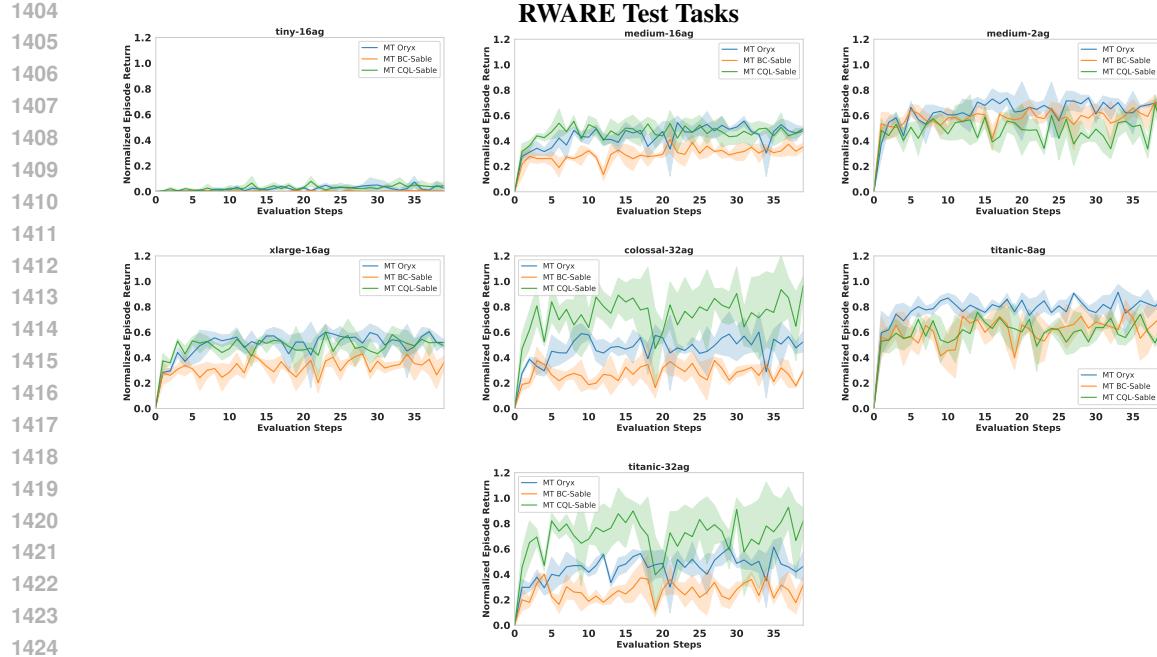


Figure 16: **Out-of-Distribution (OOD) Performance.** Evaluation curves for the 7 unseen RWARE scenarios to test generalization capabilities.

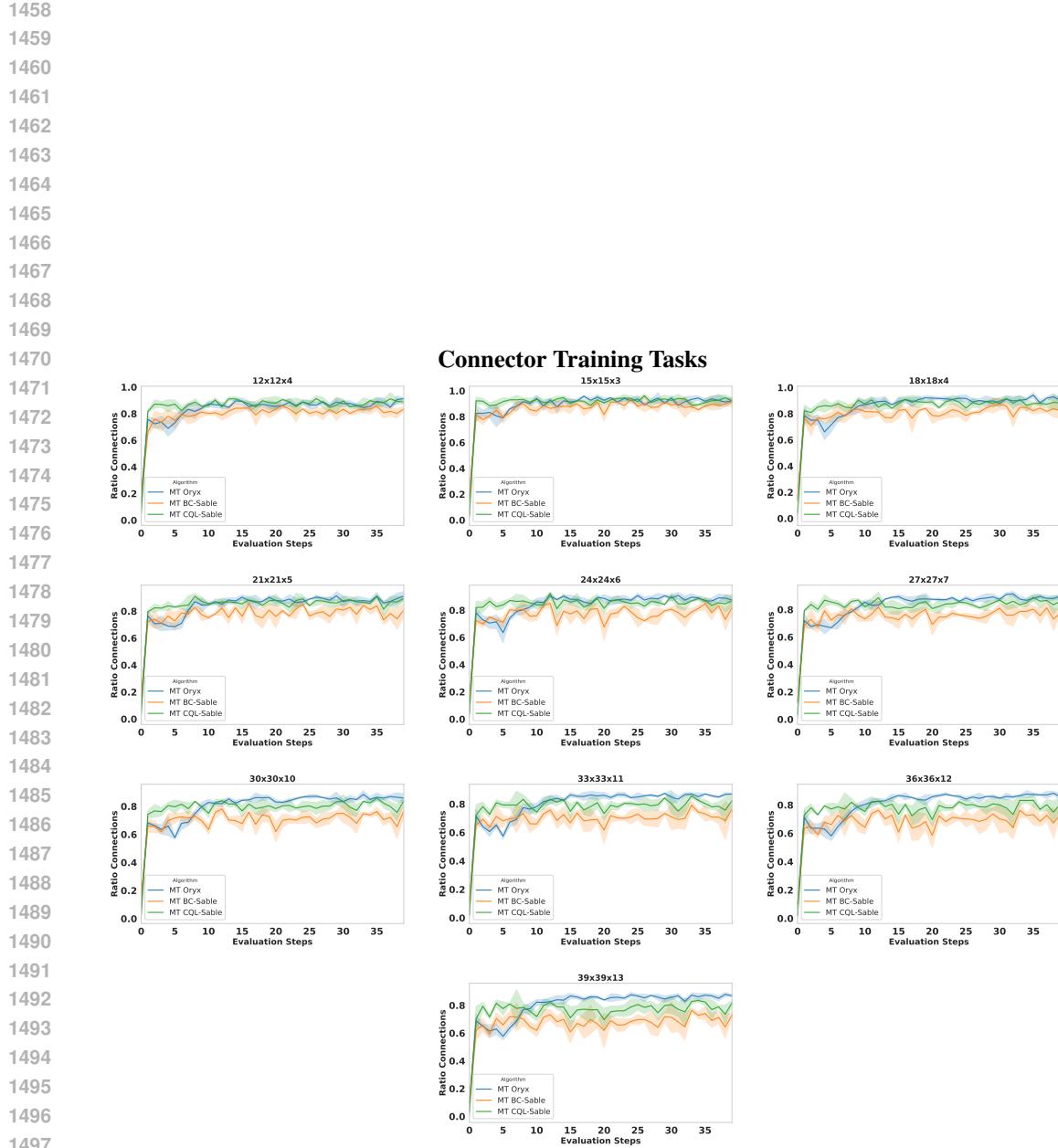


Figure 17: **In-Distribution (ID) Performance.** Evaluation curves for the 10 Connector tasks where the agents were trained on distribution data.

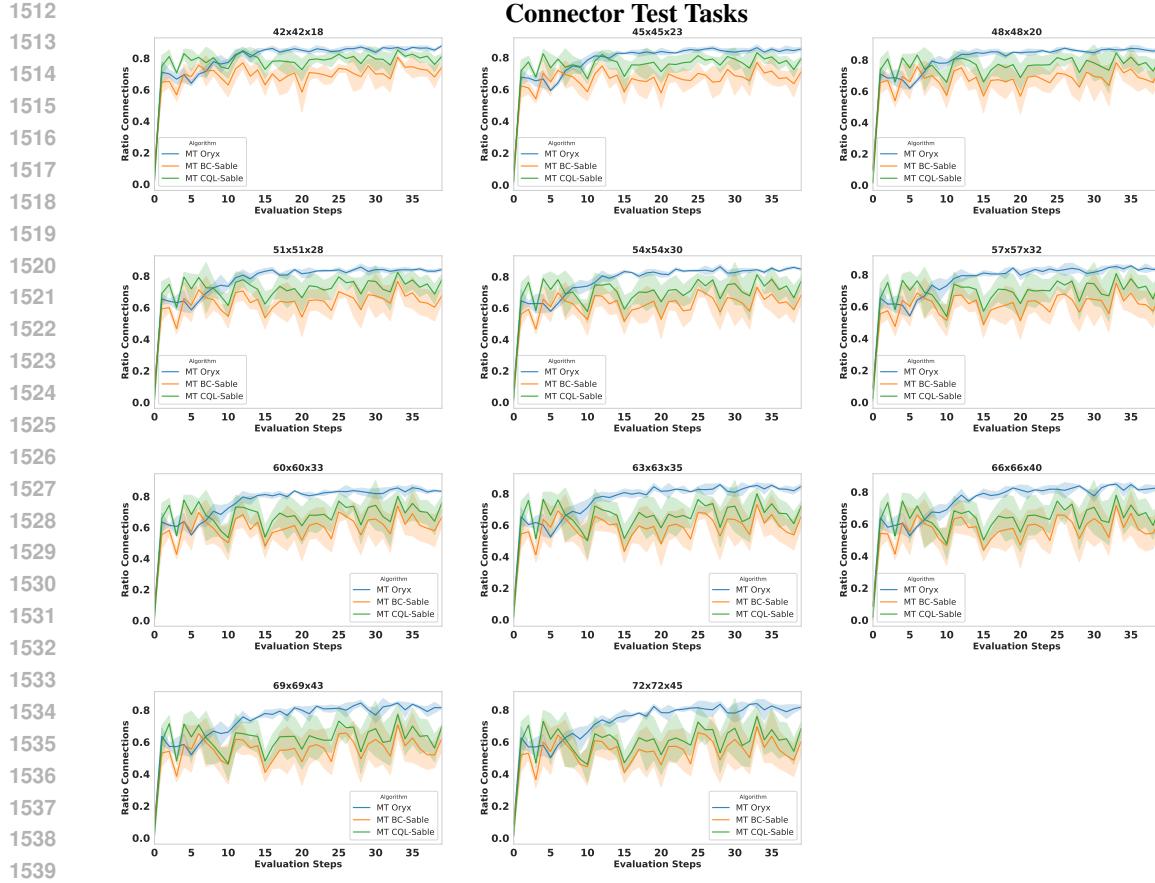


Figure 18: **Out-of-Distribution (OOD) Performance.** Evaluation curves for the 11 unseen Connector scenarios to test generalization capabilities.

1566
1567

H VISUALISATION OF MULTI-TASK POLICY

1568
1569
1570
1571
1572
1573
1574
1575
1576

In order to qualitatively validate that the MT models have learned multiple team strategies which are quite distinct across tasks we visually inspected roll-outs across tasks. Here we visualise the learned strategy on two very distinct tasks `medium-2ag` and `medium-32ag`². The main challenge in the first task is the sparsity of the warehouse. Accordingly the model learned a strategy whereby the two agents rapidly traverse the warehouse to explore efficiently and find the shelf to be collected. In contrast, the central challenge on the second task is that the warehouse is very congested. If the agents collide the episode ends. Accordingly the model learned a smart strategy of moving completed agents out of the way by sending them to the bottom right-hand corner. Importantly, a single MT model learned both of these different multi-agent strategies simultaneously.

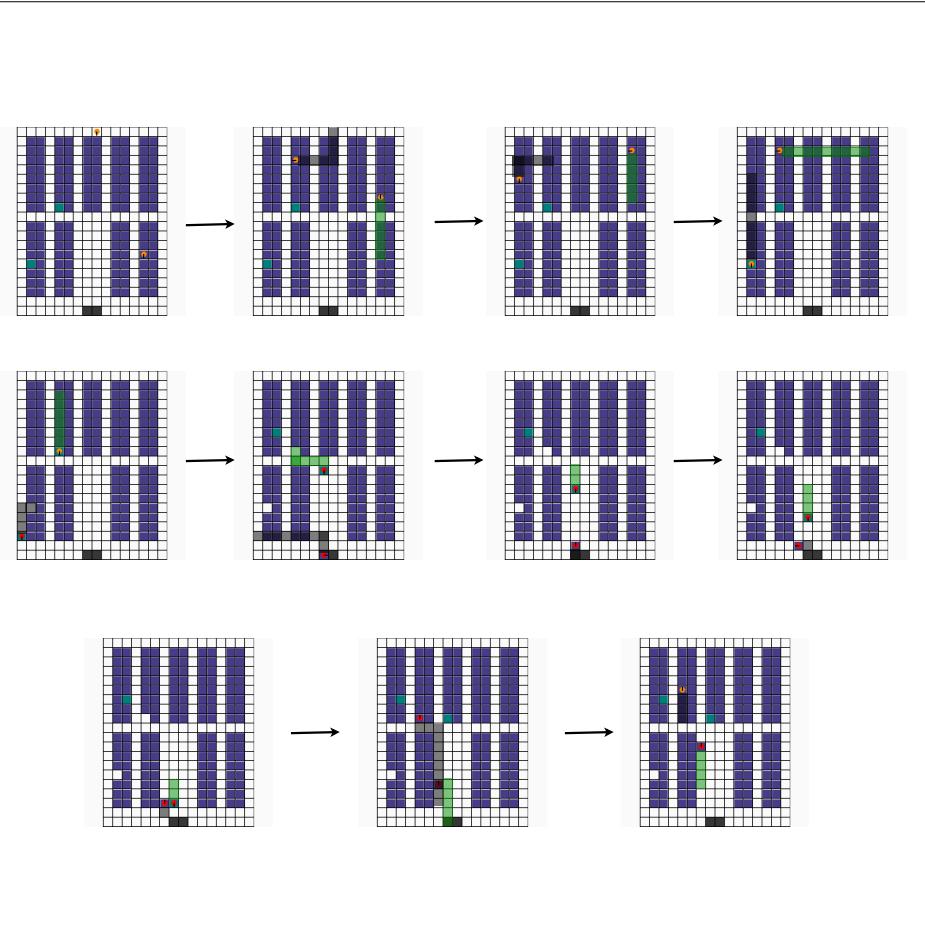
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
15871588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607

Figure 19: Visualisation of team strategy on `medium-2ag`. Frames should be read left to right, top to bottom.

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

²GIFs available on website: <https://sites.google.com/view/multi-task-marl>

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

Figure 20: Visualisation of team strategy on medium-32ag. Frames should be read left to right, top to bottom.

1664

1665

1666

1667

1668

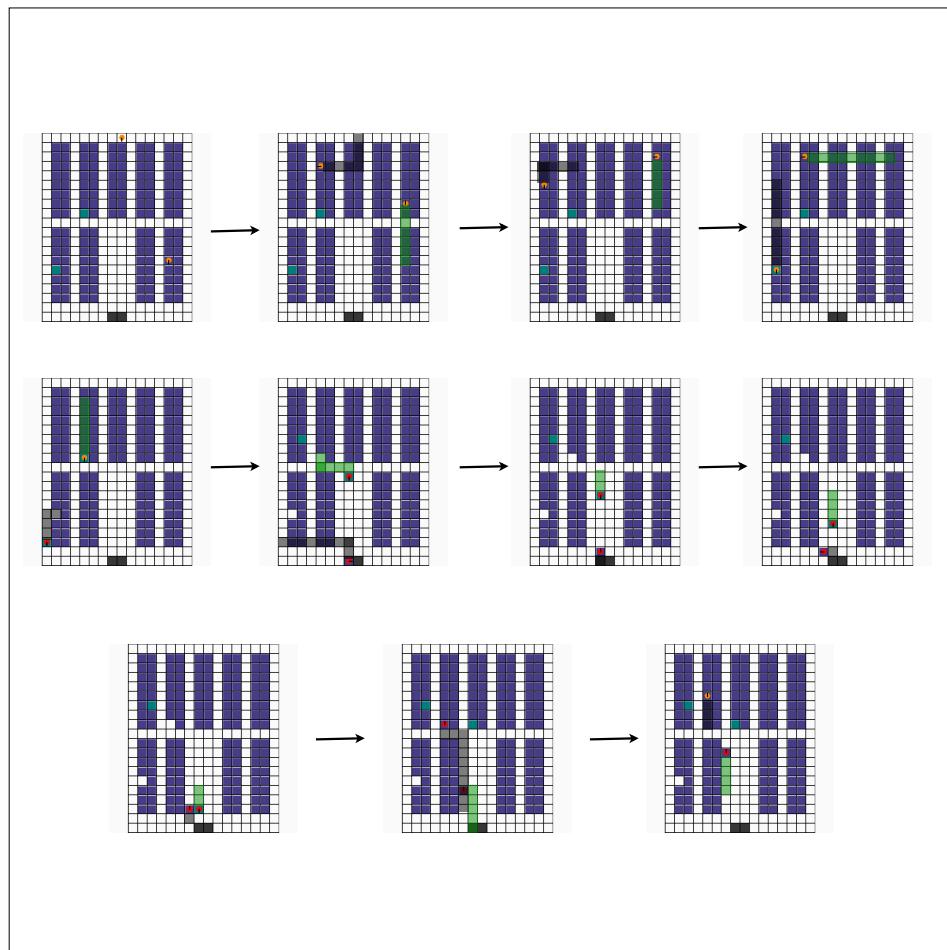
1669

1670

1671

1672

1673



1674 I COMPUTATIONAL REQUIREMENTS 1675

1676 All experiments were conducted on a high-performance computing cluster utilizing the Jobset op-
1677 erator for orchestration. Each experimental run was allocated a single worker node equipped with
1678 one **NVIDIA A100-SXM4 GPU** (80 GB VRAM) and 24 logical cores of an **AMD EPYC 7742**
1679 processor.

1680 The maximum wall-clock time for individual experiments was approximately 18 hours. We observed
1681 that computational resource usage remained consistent across all baselines, primarily because our
1682 setup avoids the use of task-specific heads. Furthermore, the retentive architecture inherent to the
1683 SABLE backbone—and by extension, Oryx—enables efficient scaling with respect to the number
1684 of agents. Consequently, our multi-task variants retain this computational efficiency even as envi-
1685 ronment complexity increases.

1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728 **J PRIMARY TASK SPLITS**
1729

1730 To evaluate the generalization capabilities of our approach, we curated distinct sets of training and
1731 testing scenarios for each environment. The specific scenarios comprising each train/test split are
1732 detailed in Table 3.

1733
1734 **Table 3: Train/Test Task Splits for All Environments.** We list the specific scenarios used for
1735 training and out-of-distribution generalization testing.

1736
1737

Environment	Split	# of Tasks	Scenarios
LBF	Train	5	{8x8-2p-2f, 10x10-3p-3f, 15x15-3p-5f, 15x15-4p-5f, 16x16-5p-6f}
	Test	4	{12x12-4p-5f, 14x14-3p-3f, 17x17-6p-8f, 17x17-8p-10f}
RWARE	Train	15	{tiny-2ag, tiny-4ag, tiny-8ag, small-2ag, small-4ag, small-16ag, small-32ag, medium-8ag, medium-32ag, large-16ag, xlarge-8ag, xlarge-32ag, giant-32ag, colossal-8ag, titanic-16ag}
	Test	7	{tiny-16ag, medium-2ag, medium-16ag, xlarge-16ag, colossal-32ag, titanic-8ag, titanic-32ag}
Connector	Train	10	{12x12x4a, 15x15x3a, 18x18x4a, 21x21x5a, 24x24x6a, 27x27x7a, 30x30x10a, 33x33x11a, 36x36x12a, 39x39x13a}
	Test	11	{42x42x18a, 45x45x23a, 48x48x20a, 51x51x28a, 54x54x30a, 57x57x32a, 60x60x33a, 63x63x35a, 66x66x40a, 69x69x43a, 72x72x45a}

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782 **K HYPERPARAMETERS**
17831784 This section details the hyperparameters used for our experiments.
17851786 Table 4: Default network settings for each environment.
1787

Parameter	LBF	Connector	RWARE
Model embedding dimension	512	512	512
Number of transformer heads	4	4	4
Number of transformer blocks	1	1	1
HL-Gauss value support	[-1, 1]	[-1, 1]	[-20, 20]
HL-Gauss number of bins	51	51	51
Sable's decay scaling factor	0.8	0.8	0.8

1795 Table 5: Default training settings.
1796

Hyperparameter	Value
Number of training updates	60 000
Number of evaluations	600
Number of evaluation episodes	32
Number of absolute evaluation episodes	320
Learning rate	1×10^{-3}
Discount (γ)	0.99
Polyak averaging coefficient (τ)	0.005
Maximum gradient norm	10
Sample sequence length	20
Sample batch size	480
Value temperature	1000
Policy temperature	0.1
Critic loss coefficient	1

1811 Table 6: MT-Oryx specific settings.
1812

Hyperparameter	Value
Value temperature	1000
Policy temperature	0.1
Critic loss coefficient	1
HL-Gauss smoothing ratio	0.75

1820 Table 7: MT-CQL-Sable specific settings.
1821

Hyperparameter	Value
CQL loss coefficient	10
HL-Gauss smoothing ratio	0.75

1836 **L DATASETS**

1837

1838 **L.1 DATASET RELEASE PLAN**

1839

1840 To guarantee the long-term reproducibility of this project, we will upload all of our datasets to a
1841 public HuggingFace repository³. This will be done upon publication of this work.

1842

1843 **L.2 DATASET STATISTICS**

1844

1845 The following sections detail the statistics of the offline datasets for the RWARE, Connector, and
1846 LBF environments used in our experiments. Datasets were generated by recording rollouts from
1847 an online Sable (Mahjoub et al., 2025) agent at different intervals during its training. All data is
1848 collected from fixed intervals over training using an evaluation policy to vary the amount of data
1849 collected while maintaining a standard set of policies to sample from. For RWARE, we also create
1850 multiple datasets of different sizes by varying the number of evaluations sampled in order to perform
1851 our data-scaling experiments.

1851

1852 **L.2.1 RWARE**

1853

1854 For our data-scaling experiments in the RWARE environment, we generated three offline datasets
1855 of varying sizes. The datasets were constructed by collecting 122, 244, and 610 evaluation rollouts
1856 from a pre-trained online Sable agent (Mahjoub et al., 2025). Table 8 provides detailed statistics
1857 for each dataset size across all RWARE scenarios, illustrating how the number of episodes and
1858 transitions scales with the number of collected rollouts.

1859

1860 **L.2.2 CONNECTOR**

1861

1862 For the Connector environment, we generated 10 distinct offline datasets, one for each training
1863 scenario. Each dataset contains approximately 10 million transitions. The data collection process
1864 involved recording evaluation rollouts at 50 different checkpoints during the training of an online
1865 Sable agent. At each checkpoint, we generated 160 rollouts of 1280 timesteps each, resulting in a
1866 total of $50 \times 160 \times 1280 \approx 10.24$ million transitions per scenario. The ten scenarios used to create
1867 these datasets are listed in Table 10.

1868

L.2.3 LBF

1869

1870 For LBF we collected all the the training data from an online Sable run for each LBF scenario.

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

³<https://sites.google.com/view/multi-task-marl>

1890

1891

1892 Table 8: **RWARE dataset statistics across different data collection checkpoints.** We report the
1893 total number of episodes and timesteps (transitions) for each scenario, corresponding to datasets
1894 created from 122, 244, and 610 evaluation rollouts.

1895

1896

1897

Scenario Name	122 Rollouts		244 Rollouts		610 Rollouts	
	Episodes	Timesteps	Episodes	Timesteps	Episodes	Timesteps
tiny-2ag	15,616	7,493,913	31,232	14,934,862	78,080	37,382,071
small-2ag	15,616	7,511,771	31,232	15,091,627	78,080	37,504,501
tiny-4ag	15,616	6,492,381	31,232	13,208,433	78,080	33,110,502
small-4ag	15,616	6,611,283	31,232	13,496,720	78,080	33,733,571
tiny-8ag	15,616	4,704,862	31,232	9,748,756	78,080	24,647,669
medium-8ag	15,616	2,502,476	31,232	5,148,947	78,080	12,747,091
xlarge-8ag	15,616	5,816,385	31,232	11,008,538	78,080	29,167,762
colossal-8ag	15,616	4,804,325	31,232	12,078,452	78,080	29,830,317
small-16ag	15,616	3,681,321	31,232	7,405,046	78,080	15,598,958
large-16ag	15,616	3,946,296	31,232	6,158,419	78,080	18,731,422
titanic-16ag	15,616	4,361,204	31,232	10,498,182	78,080	17,223,581
small-32ag	15,616	317,038	31,232	639,868	78,080	207,539
medium-32ag	15,616	4,147,400	31,232	8,386,685	78,080	20,855,336
xlarge-32ag	15,616	3,275,217	31,232	6,593,539	78,080	16,388,466
giant-32ag	15,616	3,682,013	31,232	6,513,235	78,080	12,706,872

1912

1913

1914

1915 Table 9: **Connector dataset statistics.** We generated a separate dataset of approximately 10.24
1916 million transitions for each of the ten training scenarios.

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

We observe that performance on the training tasks remains high across all environments, even as
the number of tasks increases

1934

1935

1936

Table 10: **LBF dataset statistics.** We generated a separate dataset of approximately 4 million
transitions for each of the 5 training scenarios.

1937

1938

1939

1940

1941

1942

1943

Scenario Name	Total Timesteps
12x12x4a	$\approx 10.24 \times 10^6$
15x15x3a	$\approx 10.24 \times 10^6$
18x18x4a	$\approx 10.24 \times 10^6$
21x21x5a	$\approx 10.24 \times 10^6$
24x24x6a	$\approx 10.24 \times 10^6$
27x27x7a	$\approx 10.24 \times 10^6$
30x30x10a	$\approx 10.24 \times 10^6$
33x33x11a	$\approx 10.24 \times 10^6$
36x36x12a	$\approx 10.24 \times 10^6$
39x39x13a	$\approx 10.24 \times 10^6$

Scenario Name	Total Timesteps
8x8-2p-2f	$\approx 3.99 \times 10^6$
10x10-3p-3f	$\approx 3.99 \times 10^6$
15x15-3p-3f	$\approx 3.99 \times 10^6$
15x15-4p-5f	$\approx 3.99 \times 10^6$
16x16-5p-6f	$\approx 3.99 \times 10^6$