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ABSTRACT

Recent sequence model architectures have demonstrated great promise in offline
multi-agent reinforcement learning (MARL). However, even for this expressive
model class, generalising to tasks unseen in the training data remains a core chal-
lenge. A sensible response to this challenge is to simply scale the amount of
offline data available for training. Yet, in this work, we find that task diver-
sity has a stronger influence on generalisation than sheer dataset size. To ob-
tain our findings, we study offline MARL sequence models trained on single-task
datasets, clearly demonstrating their limited ability to zero-shot transfer to held-
out test tasks. Leveraging this insight, we train and test multi-task versions of
offline sequence modeling architectures. We identify three key design choices for
successful offline multi-task training: (i) task-balanced mini-batches, (ii) treating
value estimation as classification and (iii) agent masking to handle variable team
sizes. Using multi-task datasets from three challenging cooperative environments
(Connector, RWARE, and LBF), we investigate generalisation to unseen tasks
and the scaling behaviour of our multi-task offline algorithms. We show that our
multi-task sequence models generalise better across all environments com-
pared to single-task models, and achieve a mean improvement of 219% on
held-out test tasks. Moreover, our offline MARL sequence models consistently
outperform behaviour cloning (a surprisingly strong baseline). Our results clearly
show that scaling task diversity by increasing the number of tasks used during
training leads to improved generalisation gains over simply scaling the dataset
size at a fixed level of task diversity.
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Figure 1: Test task performance difference between single-task and multi-task sequence models.
Three multi-agent sequence models—CQL-Sable, BC-Sable and Oryx (Formanek et al.| |2025)—
were trained using either a single task (ST) or a set of multiple training tasks (MT). Average zero-
shot performance was measured across a held-out set of test tasks. The upper bar represents the
performance gap between ST and MT sequence models on unseen test tasks. Averaged across all
three algorithms, we observe a test performance increase of over 442% on RWARE, 29% on
LBF, and 187% on Connector.
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1 INTRODUCTION

Building agents that generalise to tasks beyond those present in their training data is a central chal-
lenge in reinforcement learning (RL), and a prerequisite for deploying agents in the real world (Kirk
et al.| 2023). In many domains, collecting fresh data online by interacting with a live system is
costly or risky, so practitioners turn to offline RL from logged trajectories (Levine et al.| [2020).
While single-agent work has studied the train—test generalisation gap (Mediratta et al., [2024), the
multi-agent case remains under-explored. Despite recent progress in offline MARL (Yang et al.|
2021b;|Shao et al., 2023 Meng et al.,[2023; |Li et al.,|2025; [Formanek et al.,|[2025), prior work have
largely been restricted to training and evaluating on the same task, without examining generalisation
to unseen tasks.

In this work, we study the generalisation of single-task models, and then introduce a challenging
multi-task benchmark for offline MARL, which builds on widely adopted MARL environments
LBF, RWARE (Papoudakis et al.,2021), and Connector (Bonnet et al., 2024)). Using this bench-
mark, we evaluate three state-of-the-art offline multi-agent sequence models, namely Oryx (For-
manek et al., 2025), as well as two offline versions of Sable (Mahjoub et al., [2025) (CQL-Sable
and BC-Sable). Across all three environments, we show that these models exhibit poor generalisa-
tion when trained only on a dataset from a single task. However, when trained simultaneously on a
dataset consisting of a diverse set of multiple tasks, their ability to zero-shot transfer to unseen tasks
significantly improves. Furthermore, we verify that similar results cannot be obtained by simply
increasing the size of the dataset for a fixed number of tasks, but rather that the key driver is increas-
ing dataset diversity by adding more tasks, which consistently leads to improved test performance.
Finally, we find that for a fixed data budget, increasing the model’s capacity has a positive impact
on generalisation for challenging tasks.

We identify three key design choices for multi-agent sequence models to be successfully trained
across multiple tasks simultaneously: (i) task balanced batching, which makes the model unbiased
over a mixture of tasks, (ii) value learning via classification (Farebrother et al.,|2024)) which improves
the models ability to handle tasks with varying reward scales (Kumar et al.,|2022a), and (iii) masking
and shuffling active agents in the sequence, which allows the models to dynamically handle varying
numbers of agents across tasks.

Our findings show that offline MARL sequence models trained on diverse multi-task datasets show
promising signs of generalisation to unseen tasks, as compared to single-task alternatives. In contrast
to the findings of Mediratta et al. (2024)), we observe that our offline MARL methods do outperform
behaviour cloning, a consistent and surprisingly strong baseline to beat. Finally, our work discovers
the first promising signs of performance scaling (Hilton et al.,|2023)) with increases in model capacity
for offline MARL on difficult unseen tasks.

In summary, our main contributions are as follows:

* We develop a challenging multi-task offline MARL benchmark, which includes 30 large
training sets and 22 test sets across LBF, Connector, and RWARE.

* We present two novel MARL sequence models (BC-Sable and CQL-Sable) and three de-
sign choices that enable these models — and Oryx (Formanek et al.,2025) — to be trained
on multi-task datasets.

* We show that the zero-shot generalisation capacity of all three multi-agent sequence models
scales significantly (219% on average) as the number of tasks in the training data increases.

* We study the effect of dataset and model size on generalisation, clearly establishing that
sheer dataset size in not the main driver of test performance, and that for difficult tasks,
model scaling positively affects generalisation.

* All of our (anonymized) code is available for downloa(ﬂ We will make all of our code
and datasets publicly available upon publication.

'https://sites.google.com/view/multi-task-marl
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Figure 2: Our offline multi-task multi-agent training and testing setup. In this setup, there is a set
of training tasks, each with a static dataset of pre-collected trajectories that together form a diverse
multi-task dataset. This dataset is then used for training, without any additional online interactions
with either the training tasks or the testing tasks. At evaluation time, the trained model is evaluated
on each of the held-out test tasks, and the average test performance is calculated.

2 MULTI-TASK SEQUENCE MODELLING FOR OFFLINE MARL

2.1 PRELIMINARIES

Problem formulation. We formalise a cooperative MARL task as a Dec-POMDP (Kaelbling et al.,
1998), defined by the tuple My = (N, S, A, P, R, {Q'}ienr, {Ei tienr, ), where 1 denotes the par-
ticular task selected from an environment. For example, in a simulated robotic warehouse environ-
ment, a task corresponds to a specific warehouse layout and the number of robotic workers collecting
and depositing requested shelf items. At each timestep ¢ within a task, the environment is in state
s; € S. Each agent i € A selects an action a} € A’ based on its local action-observation history
i = (0}, af,...,ot). The agents’ actions form a joint action a; € A = [Licn A, which, when
executed, yields a shared reward r; = R(s¢, a;), transitions the environment to ;41 ~ P(:|s¢, a),
and provides each agent i with a new observation o} ; ~ E;(-|s;+1,a;). The agent then updates

its history as 7/, = (7{,a}, 0}, ). The task-specific objective is to learn a joint policy m(a|r) that

maximises the expected discounted return over a horizon of timesteps H: J;(7) = E, {Zi 0 *ytrt} .

To create our train-test evaluation setup, we consider offline datasets Dy, = {DJr 1 € Toan}
collected from a set of training tasks 7.in. Our objective is to learn a single joint policy 7ryin, using
only the fixed multi-task training data (i.e. without any additional online interaction), to maximise
the expected zero-shot performance on a set of unseen test tasks Ti.s, given as

J(m) = Bt [J4 () [0 = Toain] -
By optimising the above objective, we are minimising the generalisation gap between training and
test tasks. A simplified visual representation of the problem setting is depicted in[Figure 2|

Multi-Agent Sequence Models. Centralised control, where a single policy outputs the joint action,
is theoretically optimal but scales poorly due to an exponential growth of the action space (de Kock
et al.,[2025). However, autoregressive factorisation is an efficient way to parametrise the joint policy,
by expressing the joint distribution over n agents as a product of conditional distributions:

n
m(alT) = H T (a' | 7,0, ... a™ ).
k=1
Here ij, denotes an agent index from an ordered set {i1,...,i,} € Sy, where S,, is the set of per-

mutations of {1,...,n}. This factorisation decomposes joint decision-making into a sequence of
conditional actions, enabling scalable coordination, efficient parallel training and, in certain cases,
providing desirable convergence properties (Zhong et al., [2024b)). Sequence models provide a nat-
ural parameterisation of such policies, closely mirroring the autoregressive next token prediction
process in text and image generation, and have been demonstrated to work well on a large range of
MARL settings (Wen et al.,[2022;|Mahjoub et al., 2025} |Daniel et al.| [2024} |[Formanek et al.| [2025)).



Under review as a conference paper at ICLR 2026

2.2 MULTI-TASK SEQUENCE MODELS FOR OFFLINE MARL

Building on existing multi-agent sequence models for offline MARL (Formanek et al., 2025), we
propose a few simple yet essential modifications that enable training on multiple tasks with varying
numbers of agents simultaneously, while allowing seamless zero-shot transfer. By design, our multi-
task sequence models do not receive explicit task IDs or have task specific output heads, since
this would limit their zero-shot transferability to new tasks. Instead, our models have to infer task
information from observations, agent counts, and environment dynamics.

Dynamic agent padding, shuffling and masking. In order to dynamically handle variable numbers
of agents across tasks, we zero-pad the inputs for absent agents and mask their contributions in the
loss. Moreover, we randomise the ordering of both active and inactive agents at each training update,
which encourages the model to share representations and transfer knowledge across agents.

Multi-task training loss. Given a set of training tasks Tgain = {f1,-- ., Tasr}, with offline buffers
{D; }+e7n» We train a multi-task sequence model by minimizing the average per-task loss
.1
min — " [L(@,DT)] (1)
Teﬂrain

The loss £ changes depending on the algorithm used, which in our case includes autoregressive
versions of behaviour cloning (BC) (Pomerleau| |1988; Bain & Sammut, |1995), Conservative Q-
learning (CQL) (Kumar et al.} 2020) and Implicit Constraint Q-learning (ICQ) (Yang et al., [2021b;
Formanek et al., 2025)).

Task-balanced batching. For each training update, we build a single unified mini-batch by evenly
sampling across different tasks. Given a batch size B, we compute ¢ = | B / |Tyan| | and
= B — q|Tain|- Each task { € Ty, contributes ¢ samples; the remaining r samples are assigned
by round-robin across tasks up to the value 7. This yields stochastic gradients that are unbiased over
a uniform mixture of tasks (each task equally weighted), rather than a size-weighted mixture. The re-
sulting task-balanced batching also mitigates “head-task”” dominance seen with dataset-proportional
sampling, a known issue in domain generalisation from long-tailed datasets (Cui et al., 2019).

Value function learning via classification. To mitigate gradient interference from varying reward
scales across tasks, we replace scalar TD regression with a classification objective. Specifically, we
use HL-Gauss (Imani & Whitel [2018};|[Farebrother et al.,[2024), which projects each scalar TD target
onto a discrete support by smoothing with a Gaussian distribution, and trains the value function with
categorical cross-entropy over the resulting histogram. This choice, consistent with prior multi-task
training architectures (Kumar et al., [2022a)), improves stability and reduces loss-scale sensitivity
compared to mean squared error.

3 EXPERIMENTS

3.1 EXPERIMENTAL DESIGN

Tasks. We considered three challenging MARL environments, LBF, RWARE (Papoudakis et al.,
2021) and Connector (Bonnet et al.,2024). These are all widely used MARL benchmarks, with
RWARE also proposed as a suitable multi-task benchmark in previous work (Schifer, [2022) and
Connector being of particular interest due to its agent scaling properties Formanek et al. (2025).
For each environment, we selected several different level configurations to serve as distinct tasks.
These tasks were then partitioned into train and test sets (see[Appendix A)), taking care to ensure that
the test tasks were different in meaningful ways to the training tasks, as shown in Figure

Datasets. For each task, we construct an offline dataset D; by recording a set of rollouts at fixed
intervals from an online training run of SABLE (Mahjoub et al., [2025), a state-of-the-art MARL
sequence model. This yields a mixed dataset with the same number of rollouts per task but not
necessarily the same number of transitions, since episode lengths differ across tasks, hence the ne-
cessity for task-balanced batching. Observations and actions are standardised per environment. For
sequence modelmg, we sample ﬁxed -length trajectory chunks (context length reported with other
hyperparameters in . Rewards are left unclipped during training and for comparability
across tasks, we report normallsed returns, where each task’s episode return is normalised by the
final episode return achieved by the online system on that task.
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Figure 3: Distributional shift between train and test tasks. Each point represents a task with the
number of agents in each task plotted against a specific task property: in LBF, the maximum agent
level, in Connector the grid size, and in RWARE the number of shelves. While these dimensions
are important to distinguish tasks, it should be noted there are additional parameters which change
across tasks, not shown here (e.g. the layout of shelves in RWARE tasks).

Algorithms. The main algorithm we consider is an adapted version of Oryx (Formanek et al.|
2025)), which we modify for multi-task training. As described in[section 2] this includes (i) dynamic
padding, masking and agent shuffling, (ii) task-balanced batching, and (iii) value learning using
HL-Gauss (Farebrother et al., [2024). We refer to this version of Oryx as MT Oryx. In addition, we
develop two new strong baselines. The first is MT BC-Sable, which is an offline variant of Sable
that uses simple behaviour cloning to train an autoregressive policy, along with dynamic padding
and masking of agents, and task-balanced batching. The second is MT CQL-Sable, another offline
variant of Sable that uses an autoregressive version of the CQL loss (Kumar et al.| 2020), along
with all three MT enhancements as in MT Oryx. The Sable network backbone is consistent across
all three algorithms. Therefore, the only significant difference between MT Oryx and the other
two baselines is the loss function £ used. We chose CQL because of its proven generalisation and
scaling capabilities in the single-agent setting (Kumar et al.| [2022a; Chebotar et al., |2023), and BC
for its competitive generalisation performance as demonstrated in prior work (Mediratta et al.,[2024).

Hyperparameter details for all three algorithms are listed in

Evaluation protocol. In our experiments, we are interested in the expected zero-shot performance
of the trained model on the held-out test tasks. To measure this, we compute the absolute episode
return (Gorsane et al., 2022), by running the best checkpoint achieved during training for 320 in-
dependent evaluation episodes and averaging the episode returns for each task in the test set. To
compare across tasks and environments with potentially different reward scales, we normalise the
absolute episode return by dividing it by the maximum expected episode return achieved on the
respective task by the online Sable algorithm. Each run configuration was repeated across three
random seeds, with the mean and standard deviation being reported in each case.

3.2 MULTI-TASK TRAINING IMPROVES GENERALISATION

Experiment. We vary the number of tasks in the training set, while keeping the test set fixed. We
then train our multi-task sequence models on different subsets of the training datasets and measure
the performance on the test tasks. For LBF, we consider a total of 5 training tasks, for Connector
10 and for RWARE 15, incrementing training by a single task from 1 to the maximum for each
environment. We plot the performance across training task counts when evaluated on the same
training tasks as well as the held-out test tasks in

Discussion. We observe that performance on the training tasks remains high across all environ-
ments, even as the number of tasks increases. This indicates that the model can successfully learn
across multiple tasks simultaneously. However, in RWARE we note a progressive decline in train-
ing performance as the number of training tasks grows. We attribute this to the higher complexity
of RWARE tasks and the need to scale model capacity with task diversity to maintain performance.
Interestingly, even as train task performance degrades, test task performance improves nearly mono-
tonically as the number of training tasks increases, highlighting the importance of diverse multi-task
data for generalisation. On LBF, we observe that MT CQL-Sable’s performance decreases. We



Under review as a conference paper at ICLR 2026

°
@

1.0 1.0
1.0
. 0.8

°
>
°
B

Train Performance
°
2 <
°
s
°
&

—+ MT Oryx 0.2 0.2
MT CQL-Sable
—}— MT BC-Sable

1 2 3 a 5 1 2 3 a 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 11 12 13 14 15

e
N

R T R R UL o
vos B | 0.8 /,J--—»i‘ 1 1 $--o 0.8
E | e FEEE f P f
E ¥ o
°0.6 0.6 i /’ 0.6 +_ ,,f * »»»»» 4
E i / ,,f +__+/
N +

tD.A 0.4 0.4 I N S oot
7 2 -
e A A

0.2 0.2 0.2 ,,v:,/

(2=
o0 1 2 3 a o0 2 3 a 5 6 7 8 9 10 o0 12 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Training Tasks Number of Training Tasks Number of Training Tasks
(a) LBF (b) Connector (c) RWARE

Figure 4: The effect of increasing task diversity on performance. Top: training tasks. Bottom:
held-out test tasks. When we train our sequence models using only a single task, we observe strong
performance on that single training task (see first point on each plot in the top row). However, the
performance on the held-out test tasks is much lower, i.e. the generalisation gap is large. As we
increase the number of tasks in the training set, we observe a steady increase in the test task
performance across all three environments.

hypothesise that this is due to the high proportion of expert trajectories in the LBF dataset, as the
data collection policy quickly converges to the optimal behaviour. Prior work has shown that CQL
is particularly sensitive to overly narrow or high-quality datasets, and benefits from mixed quality
datasets (Schweighofer et al.||2022). To further examine this, we include an ablation on trajectories’

quality in

Across all algorithms and environments, performance tends to plateau after a certain number of
training tasks. We attribute this saturation to the limits of the current model capacity, pointing to
the necessity of scaling up the model size to obtain maximum performance on highly diverse multi-
task datasets (see [subsection 3.4). To summarise the overall effect of multi-task training with a
fixed model size, we measure and report the maximum performance gain on test tasks in
Averaged across all three algorithms, test performance improves by over 442% on RWARE, 29% on
LBF, and 187% on Connector. These results validate the effectiveness of multi-task training as a
means of unlocking substantial performance gains on unseen test tasks.

3.3 MULTI-TASK OFFLINE MARL CAN GENERALISE BETTER THAN BEHAVIOUR CLONING

The findings from Mediratta et al. (2024) paint a bleak outlook for the generalisation capabilities of
Offline RL algorithms compared to simple behaviour cloning. To establish if we observe a similar
trend, we aggregate the normalised episode returns across all test tasks from LBF, RWARE and
Connector, when trained using the full training set, to compare our three algorithms. In
we show the mean and standard error for each algorithm.

We want to know which offline training objective performed the best in terms of generalisation to
the test tasks. We considered three objectives: behaviour cloning, conservative Q-learning, and the
autoregressive ICQ loss from [Formanek et al.  (2025). We find that indeed BC outperforms CQL.
However, interestingly, the autoregressive ICQ loss in Oryx significantly outperforms both BC and
CQL, a promising result supporting the ability of offline MARL to generalise to unseen tasks.
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Table 1: Comparison of test task performance of all three models.The mean and standard error of
the performance across all test tasks on RWARE, LBF and Connector for each of the multi-task
algorithms (largest mean highlighted with bold). In the final column the combined mean across
all tasks from the three environments is computed. In contrast to the findings by Mediratta
et al.| (2024), we find that on each environment the best performing algorithm is an Offline RL
method (MT CQL-Sable or MT Oryx), rather than the BC model. When aggregated across
all the test tasks combined, MT Oryx performs the best.

Algorithm [ RWARE LBF Connector |  Combined

® MT Oryx 0.587 £0.054 0.803 +£0.026 0.852+0.002 | 0.759 + 0.023
MT CQL-Sable || 0.620 +0.066 0.562 £ 0.029 0.668 = 0.018 0.633 = 0.024
® MT BC-Sable 0.415 £ 0.050 0.797 £ 0.030 0.775 £ 0.004 0.664 £ 0.027

3.4 CAN WE FURTHER IMPROVE GENERALISATION BY INCREASING THE SIZE OF THE
DATASETS AND MODELS?

A natural question that arises is what is the optimal dataset size and model size for generalisation.
Can we improve the generalisation capabilities by simply increasing the size of the dataset for a
given set of training tasks? Similarly, can we improve generalisation by increasing the size of the
model? To test this we design two experiments.

Experiment (a). To determine whether increasing the size of the datasets (in terms of number
of transitions rather than number of tasks helps performance) we conducted a sweep over dataset
sizes for several multi-task datasets on RWARE. The results of the sweep are presented in
Similar to the results by Mediratta et al. (2024), we find that there is little evidence that scaling up
the number of transitions helps generalisation nearly as much as adding more tasks.

Experiment (b). To study the effect of model size, we train various models with different numbers
of parameters, ranging from 116k to 13M, using the RWARE dataset. For simplicity, we mainly vary
the embedding dimension of the model’s encoder-decoder network from 64 (116k parameters) to 768
(13M parameters). We report the average episode return, normalised by the online performance, on

both the training and test tasks in
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Figure 5: The impact of scaling up dataset (left) and model size (right). When we fix the number
of RWARE tasks in the dataset to 5 but grow the number of transitions in the dataset, we observe an
increase in train performance, while the test performance plateaus. On the other hand, when we train
each of our MT sequence models on the full 15 task RWARE dataset, we observe a clear scaling
trend with respect to the model size in terms of both train and test performance.

Discussion. The results in |[Figure 5ajindicate that simply increasing the number of transitions in
the training dataset improves train task performance but does not lead to better generalisation on
held-out test tasks, highlighting the importance of task diversity in multi-task datasets, since from
we can conclude that adding additional tasks has a greater benefit.. In contrast, scaling
model capacity (Figure 5b)—from an embedding dimension of 64 (116k parameters) to 512 (6.2M
parameters)—consistently improved both training and test performance. This finding is particularly
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Figure 6: Ablation studies. Left: Using HL-Gauss improves test performance for MT Oryx by ~8%,
while the effect on MT CQL-Sable is marginal. Middle: Disabling agent masking and shuffling
reduces test performance by ~=16% on average for both algorithms. Right: Removing task-balanced
batching has the highest impact with ~ 37% drop in test performance on average for both MT Oryx
and MT CQL-Sable.

encouraging: it suggests that large, diverse multi-task datasets may be the missing ingredient needed
to make ever-larger and more general offline MARL models viable. Notably, this result contrasts
with the single-task setting reported by (Formanek et al., 2025), where the optimal embedding di-
mension was just 64, underscoring the unique potential of multi-task data for enabling scale.

3.5 ABLATION STUDIES

HL-Gauss. To test the effect of using HL-Gauss (Farebrother et al., [2024) for multi-task learning,
we conduct an ablation on the full set of RWARE training tasks where we run MT Oryx and MT
CQL-Sable with and without HL-Gauss for value function learning (e.g. standard TD mean-squared-
error). We compare the algorithms on multi-task RWARE since the task-to-task variance in episode
returns is significant and therefore more challenging to accurately learn a multi-task value function.
As shown in[Figure 6a, using HL-Gauss leads to slightly better performance (=~ 8% improvement)
on test tasks for MT Oryx, while the effect on MT CQL-Sable is marginal.

Agent shuffling and masking. To test the impact of not masking and shuffling agents we conduct a
similar ablation to above on RWARE. We observe decrease in performance of ~ 16% on average for
both algorithms on the test tasks, when we do not mask and shuffle agents (see[Figure 6b).

Task-balanced batching. Finally, we conducted an ablation on how we sample data from the multi-
task dataset. In the first case we use our proposed task-balanced batching method, which includes a
fair mix of samples from each task in every batch. In the alternative approach we choose a random
task at each update step and sample a full batch from the chose single task. The results in [Figure 6¢
shows a 37% decrease in test performance on average for both MT Oryx and MT CQL-Sable without
task-balanced batching.

4 RELATED WORK

Offline MARL. Most prior work in offline MARL uses single-task training and evaluation, while
focusing on finding solutions to key challenges particular to offline multi-agent learning. Seminal
early papers includeJiang & Lu|(2021) and|Yang et al.|(2021a), who introduced multi-agent methods
for constrained Q-value estimation. Since then, numerous additional works have aimed to tackle
challenges such as extrapolation error (Shao et al., 2023} [Eldeeb et al., 2024), coordination (Barde
et al., 2024} Tilbury et al., 2024} Zhou et al., 2025), offline training stability (Pan et al.| 2022;
‘Wang et al.| [2023; Matsunaga et al., 2023; Wu et al.| 2023a; |Bui et al., 2025} [Liu et al., 2024bj L1
et al., [2025), opponent modeling (Jing et al., 2024), offline-to-online transfer (Zhong et al.| | 2024a;
Formanek et al.,[2023) and theoretical understanding (Cui & Du,2022bja; Zhong et al.,[2022; Zhang
et al.,[2023b; Xiong et al., [2023; |Wu et al.| [2023a).

Sequence Models for RL. Formulating RL as a sequence modelling problem has gained significant
attention. |Chen et al. (2021) introduced the Decision Transformer (DT), later extended in various



Under review as a conference paper at ICLR 2026

ways (Zheng et al.| 2022} [Yamagata et al., [2023; |Wu et al., 2023b). |[Lee et al. (2022) trained a
multi-task DT that learned across tasks and could be quickly fine-tuned. Meng et al. (2023) in-
troduced MADT, an extension of the DT to the multi-agent setting. The Multi-Agent Transformer
(MAT) (Wen et al., 2022)) addressed the online setting with auto-regressive action selection, and
Mahjoub et al.| (2025) improved on MAT with Sable, which replaces the Transformer with a Re-
tentive Network (Sun et al., [2023) and adds temporal memory, achieving state-of-the-art results.
Building on this line, |[Formanek et al. (2025) proposed Oryx, an offline MARL sequence model de-
rived from an autoregressive version of Implicit Constraint Q-Learning (ICQ) (Yang et al., [2021b)
and offline-specific modifications to Sable, also achieving state-of-the-art performance.

Multi-Task RL. Multi-task training has most prominently been investigated in single-agent
continuous-control and robotics problems with a focus on representation and transfer learning (Xu
et al., |2020; |Kalashnikov et al., 2021} |Kumar et al.,|2022b; |Cheng et al., 2022). Although shown to
be useful in most cases, | Yu et al.|(2021) find that naively adding more multi-task data to an offline RL
training dataset can sometimes lead to a decrease in performance on downstream tasks, particularly
when the distributional shift between tasks is large. In terms of generalisation, Kumar et al.|(2022a)
and He et al.| (2023) highlight the potential for high-capacity models trained on large and diverse
multi-task datasets to produce agents that can generalise more broadly when fine-tuned on previ-
ously unseen tasks. Most closely related to our work is that of Mediratta et al. (2024), who evaluate
the zero-shot generalisation capabilities of several offline single-agent RL methods by training them
on a set of training tasks and testing them on a set of holdout tasks. They find that current offline RL
methods do not generalise well and are typically outperformed by simple behaviour cloning.

Multi-Task MARL. Multi-task MARL faces both architectural and evaluation challenges when
agents must generalise beyond single-task training, motivating formal definitions and benchmarks
for task generalisation(Schifer, 2022). Rosen et al.|(2024) give a formal, goal-oriented theory that
proves how a learned world value function can enable provably optimal zero-shot task generalisation
in goal-based multi-agent settings. MaskMA (Liu et al.| [2024a) introduces a mask-based frame-
work that adapts to varying agent- and action-spaces and shows strong zero-shot transfer on unseen
SMAC (Samvelyan et al., [2019) maps. Unlike our approach, their work builds on MADT (Meng
et al., 2023), while we focus on sequence model architectures related to Oryx (Formanek et al.,
2025)), which have been shown to outperform MADT. The offline coordination-skill discovery
method ODIS (Zhang et al., 2023a) extracts task-invariant coordination primitives from multi-task
trajectories and shows that this can be used to deploy coordination policies to unseen SMAC tasks
without additional online interaction. Related work, HiSSD (Liu et al., |2025) proposes a hierarchi-
cal separation between common cooperative (temporal) skills and task-specific controllers. None of
the above studies investigates the effect of task diversity on test performance, instead keeping the
number of training tasks fixed.

5 CONCLUSION

In this work, we studied generalisation in offline MARL and showed that task diversity is a key driver
of improved test performance. We introduced a simple yet effective recipe for building multi-task se-
quence models, which consistently narrows the train—test gap and achieves significant performance
gains on unseen test tasks. Our findings suggest that future progress in offline MARL should pri-
oritise (i) constructing large and diverse, multi-task datasets, and (ii) carefully tuning their models’
capacity for the given data budget to maximise zero-shot generalisation. We release code, datasets,
task splits, and training scripts to encourage reproducibility and to establish stronger benchmarks
for evaluating generalisation in offline MARL.

Limitations and future work. Our work is limited to centralised sequence model architectures,
and although these represent a powerful and performant model class, promising future work could
include extending our analysis to decentralised and CTDE algorithms. Additional areas of inter-
est include studying the limits of transfer across environments (not only tasks), and investigating
accelerating fine-tuning in safety-critical and data-scarce real-world domains.
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