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Abstract

Current community-accepted metrics used to
evaluate Dialogue State Tracking (DST) have
key weaknesses: they do not assign partial
scores and over-penalize for mistakes that occur
in earlier turns. Their assumptions about error
uniformity leads to inaccurate DST evaluation.
We propose a new metric to address this chal-
lenge — Granular Change Accuracy (GCA)
— that evaluates for predicted changes in di-
alogue state over the entire dialogue history.
Our benchmarking shows that GCA mitigates
irrelevant traits in predictions; i.e. distribution
uniformity and position of mistakes over turns,
leading to more accurate evaluation.

1 Introduction

Dialogue State Tracking (DST) is the task of ex-
tracting user preferences from a Task-Oriented Dia-
logue (TOD) to accomplish a task such as booking
a hotel room (Henderson et al., 2014). How to
appropriately evaluate the performances of these
models is still an area of ongoing research.

While the community has adopted a set of met-
rics to report results (Ye et al., 2022; Feng et al.,
2022; Zhu et al., 2022; Hung et al., 2022), we argue
that they can result in imbalanced assessment, such
that strong systems receive poor scores and vice
versa.

Table 1 presents a sample TOD with two sets
of DST predictions, P! and P2. P! predicts five
of seven slots correctly whereas P? only predicts
one correctly. However, the metrics of Joint Goal
Accuracy (JGA; Henderson et al. 2014), Flexible
Goal Accuracy (FGA; Dey et al. 2022) and Average
Goal Accuracy (AGA; Rastogi et al. 2020) evaluate
the latter P? as the better prediction. Just as prob-
lematic, Slot Accuracy (SA; Wu et al. 2021) gives
inflated and similar scores to both predictions.

This is due to several weaknesses that current
metrics employ. Firstly these metrics account for
the same predictions multiple times throughout

Turn Conversation
Details
Up | I want to book a hotel with free internet.
0 Go | {hotel: {internet:yes} }
P | {hotel: { internet:no } }
P2 | {hotel: { internet:yes } }
S1 | Great, how about free parking?
Ui | Yes, that would be great!
1 G4 | {hotel: {internet:yes, parking:yes} }

P! | {hotel: { internet:no , parking:no } }

P2 | {hotel: { internet:yes , parking:no } }

S | There is a cheap guesthouse near center.
U, | Okay, please book for 6 people 4 days start-
2 ing this Sunday.

G2 | {hotel: {internet: yes, parking: yes, day:
Sunday, people: 6, stay: 4, price: cheap,
type: guesthouse} }

P} | {hotel: { internet: no, parking: no , day:
Sunday , people: 6, stay: 4, price: cheap,
type: guesthouse }}

P2 | {hotel: { internet: yes, parking: no , day:
Monday , people: 3, stay: 2, price: expen-
sive , type: hotel }}

Table 1: Sample dialogue with ground truth turn belief
state G; and two belief state predictions.

turns. Secondly, they weigh each turn equally, av-
eraging over the turn accuracies. Finally, most
existing metrics do not assign partial scores to
turns. These weaknesses make existing metrics
under/over-estimate performance in two scenarios:
(1) when mistakes occur early in the dialogue, or
(2) are uniformly distributed among turns.

To address these weaknesses we propose Gran-
ular Change Accuracy (GCA). GCA evaluates
the performance by scoring the changes in the
prediction and ground truth belief states at each
turn. This ensures that the same prediction is
not multiply-accounted. =~ Moreover, it avoids
under/over-estimation by averaging over state
changes.

We evaluate GCA on MultiwOZ 2.1 dataset
(Eric et al., 2020), conducting benchmarking exper-
iments with popular baselines and show that GCA
positions in the middle of the spectrum, more op-
timistically than JGA and FGA’s strict penalizing



scheme but not as inflated as SA and AGA. We
further conduct a qualitative analysis proving that
GCA is 0.1 less correlated with the position of mis-
takes and 0.29 less correlated with the distribution
uniformity of mistakes compared against the recent
FGA metric with a significant difference.

2 Related Work

The two most commonly reported DST metrics are
JGA (Henderson et al., 2014) and SA (Wu et al.,
2019). Both metrics take an arithmetic average of
accuracy over turns assuming every turn is equally
important — even when some turns may incorpo-
rate more slots compared to others (c.f. Turns 0
and 2 in Figure 1). Because dialogue states are
accumulated across turns, these metrics account
for the same prediction several times, leading to
over/under-estimation of the DST model’s perfor-
mance. Moreover, JGA tends to under-estimate
results since it denies partial credit from turns;
whereas SA tends to over-estimate, as it rewards
models for slots without an active value.

Flexible Goal Accuracy (Dey et al., 2022) (FGA)
and Average Goal Accuracy (Rastogi et al., 2020)
(AGA) are modified versions of JGA and SA, re-
spectively. FGA redesigns JGA in order to dimin-
ish the repeated scoring of the same predictions by
adding a decay parameter whereas AGA calculates
recall over slots that have an active value in the turn.
Although both of these metrics improve DST eval-
uation, they still do not completely address these
identified problems (averaging accuracy over turns,
multiply-accounting a prediction in different turns.

3 Background

Task Definition. DST is the task of extract-
ing/generating the slot values for predefined slot
labels specific to each domain, such as restaurant-
food: Indian in the restaurant domain. We refer to
a slot label/value as simply slot and value in this
paper. A task-oriented dialogue is represented as
D = {(So,Uy,BSp), ..., (Sn—1,Un—1, BSn_1)}
where S; and U; form the 4, turn pair and are sys-
tem and user utterances, respectively; BS; is the
belief state of the 7, turn pair; and n is the num-
ber of turn pairs. Each turn pair can incorporate
zero or more slot—value pairs, and these are sum-
marized in the dialogue state, i.e. BS = {(Sp :
V0)s s (St Vin) } where (S : V;) is the jy, ac-
tive slot—value pair and m is the number of slots
predicted to have an active value in the current turn.

Thus m < M where M is the number of defined
slots in the dataset (e.g. 30 for MultiWwOZ). The
rest M — m slots acquire a “none” value indicat-
ing they are not active in the turn i.e. they do not
have an actual value. Note that the dialogue state is
formed cumulatively through the dialogue. Stated
differently, any prediction made in an earlier turn
will stick to the dialogue state unless a new value
is predicted. (including “none” values).

Joint Goal Accuracy is the ratio of correctly
predicted turn—pair slots over the number of turn
pairs in the dialogue. A correct prediction requires
every slot—value set within the turn—pair to match in
prediction and ground truth belief states. JGA =
w, where G; and P; are the ground
truth and predicted belief states, respectively.

Slot Accuracy is calculated over all possible slot
values regardless of which slots are predicted to
have an active value in the turn. Thus it takes
into consideration “none” valued slots, unlike JGA.
SA = # where TA, turn accuracy, is the
ratio of correctly predicted slot values to M, i.e.
the number of total slots defined in the dataset.

Average Goal Accuracy differs from earlier met-
rics because it evaluates only the performance of
turns with active slots; i.e., if a turn does not have
any ground truth values, it will be discarded during
the evaluation. It calculates a recall value for all
turns with non-empty ground truth belief states and
returns the average.

S (G| |Gy = 1)
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Flexible Goal Accuracy modifies the JGA met-
ric to account for mistakes done in the current and
earlier turns differently. Specifically, it copies JGA
behavior for mistakes done in the current turn, com-
pletely ignoring the rest of the prediction and scor-
ing the turn zero, however, unlike JGA when all slot
values of the current turn are predicted correctly
with a carried-over mistake from an earlier turn it
penalizes the score rather than just scoring zero.
This penalty decays by the number of turns passed
since the mistake was made. They also provide a
parameter, A, to control this decay ratio.

AGA = ey

4 Preliminary Analysis

We now categorize the weaknesses specific to each
of the metrics reviewed above.



1. 0/1 Scores: Both JGA and FGA have a strict
scoring scheme that assigns either full or no credit
for each turn, disallowing partial credit. FGA only
partly addresses this by adding the flexibility to
diminish the penalty for earlier mistakes. Under
this scheme, predictions that correctly predict the
majority or minority of the ground truth slot values
are deemed equivalent.

2. Turn-centric Scores:  All four metrics average
over turns. This results in under/over-estimation of
DST performance, as some turns have more slots
compared to others (c.f. Table 1, Turns 0 and 2).

3. Multiple-counting score: All four metrics
account for the same predictions multiple times
across turns. Thus a prediction made in the ear-
lier turns of the dialogue results in a large effect.
This also results in over/under-estimation of per-
formance. FGA’s decay parameter only partially
addresses this concern, as it still penalizes earlier
mistakes more harshly.

5 Granular Change Accuracy

We design GCA to address these weaknesses. The
first weakness is a direct result of using the belief
state rather than individual slot—value pairs for eval-
uation. The second is the result of averaging over
the number of turns. The third is caused by evalu-
ating the whole belief state at each turn, rather than
just the changes. We design our metric to consider
the slots (0/1 scores) whose value was modified
(multiple-counting score) since the last turn and
take the average over the total number of modi-
fications (turn-centric scores). Granular Change
Accuracy is thus named to suggest that it assesses
accuracy over changes in the belief state.

The state changes in GCA are calculated by
four metrics: 1) missed predictions where the slot
had a value in ground truth BS but not in the pre-
dicted BS; 2) wrong predictions where the slot
had a value in both ground truth and predicted BS
but do not match; 3) over-predictions where the
slot had a value in predicted BS but not in ground
truth BS; and 4) correct predictions where the slot—
value pairs in the ground truth and predicted BS
match. Smith (2014) define a similar taxonomy but
report these four directly instead of aggregating
them into a final value, unlike GCA.

Algorithm 1 gives pseudocode to calculate these
four metrics. These metrics are used to calculate
four other intermediate products:

Algorithm 1 Calculating missed (M), wrong (W),
over (0O), and correct (C) predictions.

I: Go1=[,P-1=1]
2: M,W,0,C=0
3: fort=0,1,...do
4: Get G and P, for turn t.
S Gi =G\ Gi—1, Pl =P\ P4
6: Cset, Wset =0
7: for s, v pair in G} do
8: if s not in P; then
9: M+=1
10: elseif {s, v} not in P; then
11: W+=1
12: add s to Wset
13: else
14: C+=1
15: Add s to Cset
16: end if
17: end for
18: for s, v pair in P/ do
19: if s not in GG; then
20: O+=1
21: else if {s, v} not in P; & s not in Wset then
22: W+=1
23: else if s not in Cset then
24 C+=1
25: else
26: continue
27: end if
28: end for
29: end for

30: return M, W, O, C

Value Precision VP = % where P=C+ W +
O is the number of state change predictions.

Value Recall VR =< where G =C+W+M
is the number of ground truth state changes.

Label Precision LP = CJFTW

Label Recall LR = <5%

The numerator in the last two values is com-
posed of predictions where the slot was predicted
correctly, but where the value prediction can be
either correct or wrong.

Finally, we take a weighted harmonic mean of
these four to calculate GCA:

GCA =

(P+G) @
Pxa Gx*xa Px(1—o) Gx(1—a)
VP + VR + LPa + LRO

Weights for precision- and recall-based metrics are
scaled by the number of predictions and the ground
truth values, respectively.

We use a to weigh value accuracies differently
from label accuracies. Since value accuracy is an
exact match whereas label accuracy is a partial
match we believe the former should have a higher
value. Specifically, in our experiments, we set & so



Model JGA  FGA SA AGA GCA
TRADE 48.86  61.19 9696 88.79 80.15
SOM-DST 53.09 71.04 9736 91.71 88.63
Trippy 3582 54.09 954 80.67 78.60
T5 514 6727 9732 91.72 87.19

Table 2: Single-run benchmarking results over baseline
models with four existing evaluation metrics and GCA.

that the ratio between value and label accuracies
are 10:1, i.e. o« = 0.9.

6 Experiments and Analysis

We conduct experiments on MultiWOZ 2.1 dataset
spanning 7 distinct domains with over 10,000 di-
alogues and report results with four DST models:
TRADE (Wu et al., 2021), SOM-DST (Kim et al.,
2020), Trippy (Heck et al., 2020), and T5 based
model by Lin et al. (2021). For TRADE and SOM-
DST we re-use the predictions reported in Dey et al.
(2022). We trained Trippy and TS5 from scratch on
an NVIDIA-V100 using the best hyperparameter
settings reported by the authors.

6.1 Benchmarking Results

Table 2 shows the benchmarking results. We set
A = 0.5 for FGA following Dey et al. (2022). JGA
and FGA are at the lower side of the spectrum due
to 0/1 scoring whereas SA and AGA present the
highest scores with small differences across models.
These metrics can be very deceptive. One could
claim that there is a very big gap for industry-ready
models judging from JGA or claim the models are
not far from ideal judging from SA. Unlike these
two community-accepted metrics, GCA gives a
more accurate standing avoiding both under and
over-estimation.

6.2 Fine-Grained Analysis

To analyze edge cases, we filter out 20 predictions
of TRADE and SOM-DST models where FGA >
GCA and GCA > FGA with the largest disagree-
ment. FGA over-estimates the performance when
errors are accumulated in a few turns, i.e. the mis-
takes are not uniformly distributed. Especially if
these accumulations occur in the later part of the di-
alogue, i.e. when the mistakes show a tail-oriented
distribution (c.f. samples in Appendix A.1).

6.3 Effect of Spurious Traits

Tail-Oriented Mistake Distribution. To further
explore how tail-oriented mistakes affect its FGA
and GCA evaluation, we define a new measure:

TO = % where d; is the distance of mistake
7’s turn from the middle turn of the dialogue (the
distance is negative if the turn is in the first half of
the dialogue and vice versa), and K is the number
of mistakes. The nominator is the average turn
index of mistakes whereas the denominator acts as
a normalization factor.

Non-Uniform Mistake Distribution. Similarly,
we define a non-uniformity measure inspired by
the chi-square metric: NU = ), (m; — =%—)
where m; is number of mistakes done in turn ¢ and
T is the number of turns.

Results. The Pearson Correlation Coefficients be-
tween TO and FGA/GCA are 0.08/—0.02, whereas
between NU and FGA/GCA are 0.12/—0.17 re-
spectively. The differences between these correla-
tions are significant according to Zou (2008)’s con-
fidence interval tests. FGA’s correlation with both
features is significantly stronger with a 95% confi-
dence level (Further analysis in Appendix A.2).

7 Limitations

Though GCA is more exhaustive than existing met-
rics, there is still room for improvement by partial
credit of slot values; i.e. by calculating the similar-
ity of ground-truth and predicted values. Our exper-
iments could also be generalized to other datasets
than just MultiWOZ 2.1, to validate the empirical
credibility of the metric.

8 Conclusion

We highlight the critical weaknesses of existing
DST evaluation metrics and how they over/under-
estimate performance. To address these, we pro-
pose Granular Change Accuracy (GCA) which
evaluates accuracy over the belief state changes.
We show through analysis that GCA, avoids both
over and under-estimation in existing metrics.
Moreover it has significantly less correlation with
the insignificant traits of the dialogue, such as non-
uniformity or tail-skewness of mistakes, compared
to recent FGA metric. We claim better DST eval-
uation through GCA or alike metrics would open
doors to much fairer and accurate performance re-
sults and thus enabling more trustworthy research
in this field. Future work may check the similarity
between the ground truth and predicted values to
enable partial evaluation at the slot level rather than
on the turn level as in GCA.
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Table 3: Sample dialouge from MultiWOZ 2.1 dataset,
(MULT1110) with ground truth and predicted belief
states. GCA: 31.43, FGA: 54.74

A Appendix

A.1 Sample GCA and FGA Scores

This section presents two sample dialogues from
the MultiwOZ 2.1 dataset along with DST model
predictions, and FGA/GCA evaluations.

The dialogue in Table 3 is an example where
FGA over-estimates the performance of a dialogue
scoring it 55% even though it only predicts one out
of four slots correctly. This is because the majority
of mistakes in the dialogue occur closer to the tail
of the dialogue.

Table 4 on the other hand presents an example
where FGA under-estimates the performance scor-
ing a prediction 26% even though it predicts three
out of four slots correctly. This is because contrary
to the previous example the majority of mistakes in
this scenario are head-oriented i.e. they are closer
to the beginning of the dialogue.

In line with these observations the TO measure
(c.f section 6.3) of dialogues in Table 3 and 4
are 0.55 and 0.36 respectively. This also suggests
that the tail-orientedness of dialogues spuriously
increases the FGA performance.

Turn Conversation Turn Conversation
Details Details
0 Go | {hotel: {name: el shaddai} } 0 Go | {hotel: {pricerange: expensive}, {parking:
Py | {hotel: { name: el shaddai } } yes} }
1 G1 | {hotel: {name: el shaddai} } Py | {hotel: { pricerange: expensive } , {park-
P; | {hotel: { name: el shaddai } } ing: yes } }
2 G2 | {hotel: {name: el shaddai} attraction: 1 G1 | {hotel: {pricerange: expensive}, {parking:
{ 1} yes}, {type: hotel}, { 1}
P, | {hotel: { name: el shaddai } } P | {hotel: { pricerange: expensive } , {park-
3 G | {hotel: {name: el shaddai} attraction: ing: yes },{type: hotel } }
{ 1} 2 G2 | {hotel: {pricerange: expensive}, {parking:
Ps | {hotel: { name: el shaddai } } yes}, {type: hotel}, { 1}
4 G4 | {hotel: {name: el shaddai} attraction: P, | {hotel: { pricerange: expensive } , {park-
{ 1) ing: yes },{type: hotel } }
P, | {hotel: { name: el shaddai } } 3 G's | {hotel: {pricerange: expensive}, {parking:
5 G5 | {hotel: {name: el shaddai} attraction: yes} , {type: hotel}, { 1}
{ R , name: Ps | {hotel: { pricerange: expensive } , {park-
dontcare } } ing: yes },{type: hotel } }
Ps | {hotel: { name: el shaddai },attraction: {
name: Cambridge artworks } } Table 4: Sample dialouge from MultiWOZ 2.1 dataset,
¢ | Go | {hotel: {name: el shaddai} attraction: (SNGO0779) with ground truth and predicted belief states.
{ ’ > name: | GCA: 75, FGA: 26.38
dontcare } }
Ps | {hotel: { name: el shaddai },attraction: {
name: Cambridge artworks } } . . .
7 G7 | {hotel: {name: el shaddai} attraction: A.2  Analysis of Spurious Traits
{domcare 1 ’ > name: We further analyze the distribution of FGA
P | {hotel: { name: el shaddai },attraction: { and GCA across the two spurious traits: tail-
name: Cambridge artworks } } orientedness and distribution uniformity of mis-

takes.

Figure 1a shows how performance distribution
changes according to the TO measure of pre-
dictions. Although GCA results are generally
higher, FGA shows higher results between 0.8-
1.0 TO values. This suggests that as dialogues’
tail-orientedness increases FGA tends to evaluate
performance higher even though this should not
have any effect on an ideal evaluation metric.

Figure 1b shows the effect of the NU measure on
performance distribution. On the left-hand side of
the plot, FGA tends to have lower values compared
to GCA whereas on the rightmost edge it shows
higher values. This suggests that FGA is affected
by positions of the mistakes in the prediction which
again should be an insignificant trait when it comes
to evaluating DST models.

Finally, Figure 1c shows the effect of both traits
together. Again moving higher on both traits’ axes
FGA’s evaluation gets affected significantly. The di-
alogues that are evaluated highest by FGA are clus-
tered on the higher ends of both axes supporting
the hypotheses that they have a significant effect.
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Figure 1: Figures showing how spurious dialogue traits
effect GCA and FGA scoring. 1a - tail-orientedness
of mistakes vs performance, 1b - non-uniformity of
mistakes vs performance, 1c - tail-orientedness and non
uniformity of mistakes vs performance.
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