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Abstract

Current community-accepted metrics used to001
evaluate Dialogue State Tracking (DST) have002
key weaknesses: they do not assign partial003
scores and over-penalize for mistakes that occur004
in earlier turns. Their assumptions about error005
uniformity leads to inaccurate DST evaluation.006
We propose a new metric to address this chal-007
lenge — Granular Change Accuracy (GCA)008
— that evaluates for predicted changes in di-009
alogue state over the entire dialogue history.010
Our benchmarking shows that GCA mitigates011
irrelevant traits in predictions; i.e. distribution012
uniformity and position of mistakes over turns,013
leading to more accurate evaluation.014

1 Introduction015

Dialogue State Tracking (DST) is the task of ex-016

tracting user preferences from a Task-Oriented Dia-017

logue (TOD) to accomplish a task such as booking018

a hotel room (Henderson et al., 2014). How to019

appropriately evaluate the performances of these020

models is still an area of ongoing research.021

While the community has adopted a set of met-022

rics to report results (Ye et al., 2022; Feng et al.,023

2022; Zhu et al., 2022; Hung et al., 2022), we argue024

that they can result in imbalanced assessment, such025

that strong systems receive poor scores and vice026

versa.027

Table 1 presents a sample TOD with two sets028

of DST predictions, P 1 and P 2. P 1 predicts five029

of seven slots correctly whereas P 2 only predicts030

one correctly. However, the metrics of Joint Goal031

Accuracy (JGA; Henderson et al. 2014), Flexible032

Goal Accuracy (FGA; Dey et al. 2022) and Average033

Goal Accuracy (AGA; Rastogi et al. 2020) evaluate034

the latter P 2 as the better prediction. Just as prob-035

lematic, Slot Accuracy (SA; Wu et al. 2021) gives036

inflated and similar scores to both predictions.037

This is due to several weaknesses that current038

metrics employ. Firstly these metrics account for039

the same predictions multiple times throughout040

Turn Conversation
Details

0

U0 I want to book a hotel with free internet.
G0 {hotel: {internet:yes} }
P 1
0 {hotel: { internet:no } }

P 2
0 {hotel: { internet:yes } }

1

S1 Great, how about free parking?
U1 Yes, that would be great!
G1 {hotel: {internet:yes, parking:yes} }
P 1
1 {hotel: { internet:no , parking:no } }

P 2
1 {hotel: { internet:yes , parking:no } }

2

S2 There is a cheap guesthouse near center.
U2 Okay, please book for 6 people 4 days start-

ing this Sunday.
G2 {hotel: {internet: yes, parking: yes, day:

Sunday, people: 6, stay: 4, price: cheap,
type: guesthouse} }

P 1
2 {hotel: { internet: no, parking: no , day:

Sunday , people: 6 , stay: 4 , price: cheap ,
type: guesthouse }}

P 2
2 {hotel: { internet: yes, parking: no , day:

Monday , people: 3 , stay: 2 , price: expen-
sive , type: hotel }}

Table 1: Sample dialogue with ground truth turn belief
state Gt and two belief state predictions.

turns. Secondly, they weigh each turn equally, av- 041

eraging over the turn accuracies. Finally, most 042

existing metrics do not assign partial scores to 043

turns. These weaknesses make existing metrics 044

under/over-estimate performance in two scenarios: 045

(1) when mistakes occur early in the dialogue, or 046

(2) are uniformly distributed among turns. 047

To address these weaknesses we propose Gran- 048

ular Change Accuracy (GCA). GCA evaluates 049

the performance by scoring the changes in the 050

prediction and ground truth belief states at each 051

turn. This ensures that the same prediction is 052

not multiply-accounted. Moreover, it avoids 053

under/over-estimation by averaging over state 054

changes. 055

We evaluate GCA on MultiWOZ 2.1 dataset 056

(Eric et al., 2020), conducting benchmarking exper- 057

iments with popular baselines and show that GCA 058

positions in the middle of the spectrum, more op- 059

timistically than JGA and FGA’s strict penalizing 060
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scheme but not as inflated as SA and AGA. We061

further conduct a qualitative analysis proving that062

GCA is 0.1 less correlated with the position of mis-063

takes and 0.29 less correlated with the distribution064

uniformity of mistakes compared against the recent065

FGA metric with a significant difference.066

2 Related Work067

The two most commonly reported DST metrics are068

JGA (Henderson et al., 2014) and SA (Wu et al.,069

2019). Both metrics take an arithmetic average of070

accuracy over turns assuming every turn is equally071

important — even when some turns may incorpo-072

rate more slots compared to others (c.f. Turns 0073

and 2 in Figure 1). Because dialogue states are074

accumulated across turns, these metrics account075

for the same prediction several times, leading to076

over/under-estimation of the DST model’s perfor-077

mance. Moreover, JGA tends to under-estimate078

results since it denies partial credit from turns;079

whereas SA tends to over-estimate, as it rewards080

models for slots without an active value.081

Flexible Goal Accuracy (Dey et al., 2022) (FGA)082

and Average Goal Accuracy (Rastogi et al., 2020)083

(AGA) are modified versions of JGA and SA, re-084

spectively. FGA redesigns JGA in order to dimin-085

ish the repeated scoring of the same predictions by086

adding a decay parameter whereas AGA calculates087

recall over slots that have an active value in the turn.088

Although both of these metrics improve DST eval-089

uation, they still do not completely address these090

identified problems (averaging accuracy over turns,091

multiply-accounting a prediction in different turns.092

3 Background093

Task Definition. DST is the task of extract-094

ing/generating the slot values for predefined slot095

labels specific to each domain, such as restaurant-096

food: Indian in the restaurant domain. We refer to097

a slot label/value as simply slot and value in this098

paper. A task-oriented dialogue is represented as099

D = {(S0, U0, BS0), ..., (Sn−1, Un−1, BSn−1)}100

where Si and Ui form the ith turn pair and are sys-101

tem and user utterances, respectively; BSi is the102

belief state of the ith turn pair; and n is the num-103

ber of turn pairs. Each turn pair can incorporate104

zero or more slot–value pairs, and these are sum-105

marized in the dialogue state, i.e. BS = {(S0 :106

V0), ..., (Sm : Vm)} where (Sj : Vj) is the jth ac-107

tive slot–value pair and m is the number of slots108

predicted to have an active value in the current turn.109

Thus m ≤ M where M is the number of defined 110

slots in the dataset (e.g. 30 for MultiWOZ). The 111

rest M −m slots acquire a “none” value indicat- 112

ing they are not active in the turn i.e. they do not 113

have an actual value. Note that the dialogue state is 114

formed cumulatively through the dialogue. Stated 115

differently, any prediction made in an earlier turn 116

will stick to the dialogue state unless a new value 117

is predicted. (including “none” values). 118

Joint Goal Accuracy is the ratio of correctly 119

predicted turn–pair slots over the number of turn 120

pairs in the dialogue. A correct prediction requires 121

every slot–value set within the turn–pair to match in 122

prediction and ground truth belief states. JGA = 123∑n
t=0 (1 | Gt=Pt)

n , where Gt and Pt are the ground 124

truth and predicted belief states, respectively. 125

Slot Accuracy is calculated over all possible slot 126

values regardless of which slots are predicted to 127

have an active value in the turn. Thus it takes 128

into consideration “none” valued slots, unlike JGA. 129

SA =
∑n

t=0 TA
n where TA, turn accuracy, is the 130

ratio of correctly predicted slot values to M , i.e. 131

the number of total slots defined in the dataset. 132

Average Goal Accuracy differs from earlier met- 133

rics because it evaluates only the performance of 134

turns with active slots; i.e., if a turn does not have 135

any ground truth values, it will be discarded during 136

the evaluation. It calculates a recall value for all 137

turns with non-empty ground truth belief states and 138

returns the average. 139

AGA =

∑n
t=0 (

Gt∩Pt
|Gt| | |Gt| ≥ 1)∑n

t=0 (1 | |Gt| ≥ 1)
(1) 140

Flexible Goal Accuracy modifies the JGA met- 141

ric to account for mistakes done in the current and 142

earlier turns differently. Specifically, it copies JGA 143

behavior for mistakes done in the current turn, com- 144

pletely ignoring the rest of the prediction and scor- 145

ing the turn zero, however, unlike JGA when all slot 146

values of the current turn are predicted correctly 147

with a carried-over mistake from an earlier turn it 148

penalizes the score rather than just scoring zero. 149

This penalty decays by the number of turns passed 150

since the mistake was made. They also provide a 151

parameter, λ, to control this decay ratio. 152

4 Preliminary Analysis 153

We now categorize the weaknesses specific to each 154

of the metrics reviewed above. 155
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1. 0/1 Scores: Both JGA and FGA have a strict156

scoring scheme that assigns either full or no credit157

for each turn, disallowing partial credit. FGA only158

partly addresses this by adding the flexibility to159

diminish the penalty for earlier mistakes. Under160

this scheme, predictions that correctly predict the161

majority or minority of the ground truth slot values162

are deemed equivalent.163

2. Turn-centric Scores: All four metrics average164

over turns. This results in under/over-estimation of165

DST performance, as some turns have more slots166

compared to others (c.f. Table 1, Turns 0 and 2).167

3. Multiple-counting score: All four metrics168

account for the same predictions multiple times169

across turns. Thus a prediction made in the ear-170

lier turns of the dialogue results in a large effect.171

This also results in over/under-estimation of per-172

formance. FGA’s decay parameter only partially173

addresses this concern, as it still penalizes earlier174

mistakes more harshly.175

5 Granular Change Accuracy176

We design GCA to address these weaknesses. The177

first weakness is a direct result of using the belief178

state rather than individual slot–value pairs for eval-179

uation. The second is the result of averaging over180

the number of turns. The third is caused by evalu-181

ating the whole belief state at each turn, rather than182

just the changes. We design our metric to consider183

the slots (0/1 scores) whose value was modified184

(multiple-counting score) since the last turn and185

take the average over the total number of modi-186

fications (turn-centric scores). Granular Change187

Accuracy is thus named to suggest that it assesses188

accuracy over changes in the belief state.189

The state changes in GCA are calculated by190

four metrics: 1) missed predictions where the slot191

had a value in ground truth BS but not in the pre-192

dicted BS; 2) wrong predictions where the slot193

had a value in both ground truth and predicted BS194

but do not match; 3) over-predictions where the195

slot had a value in predicted BS but not in ground196

truth BS; and 4) correct predictions where the slot–197

value pairs in the ground truth and predicted BS198

match. Smith (2014) define a similar taxonomy but199

report these four directly instead of aggregating200

them into a final value, unlike GCA.201

Algorithm 1 gives pseudocode to calculate these202

four metrics. These metrics are used to calculate203

four other intermediate products:204

Algorithm 1 Calculating missed (M), wrong (W),
over (O), and correct (C) predictions.

1: G−1 = [],P−1= []
2: M, W, O, C = 0
3: for t = 0, 1, . . . do
4: Get Gt and Pt for turn t.
5: G′

t = Gt \Gt−1, P ′
t = Pt \ Pt−1

6: Cset, Wset = 0
7: for s, v pair in G′

t do
8: if s not in Pt then
9: M += 1

10: else if {s, v} not in Pt then
11: W += 1
12: add s to Wset
13: else
14: C += 1
15: Add s to Cset
16: end if
17: end for
18: for s, v pair in P ′

t do
19: if s not in Gt then
20: O += 1
21: else if {s, v} not in Pt & s not in Wset then
22: W += 1
23: else if s not in Cset then
24: C += 1
25: else
26: continue
27: end if
28: end for
29: end for
30: return M, W, O, C

Value Precision V P = C
P where P = C +W + 205

O is the number of state change predictions. 206

Value Recall V R = C
G where G = C+W +M 207

is the number of ground truth state changes. 208

Label Precision LP = C+W
P 209

Label Recall LR = C+W
G 210

211

The numerator in the last two values is com- 212

posed of predictions where the slot was predicted 213

correctly, but where the value prediction can be 214

either correct or wrong. 215

Finally, we take a weighted harmonic mean of 216

these four to calculate GCA: 217

GCA =
(P +G)

P∗α
V P

+ G∗α
V R

+ P∗(1−α)
LP

+ G∗(1−α)
LR

(2) 218

Weights for precision- and recall-based metrics are 219

scaled by the number of predictions and the ground 220

truth values, respectively. 221

We use α to weigh value accuracies differently 222

from label accuracies. Since value accuracy is an 223

exact match whereas label accuracy is a partial 224

match we believe the former should have a higher 225

value. Specifically, in our experiments, we set α so 226
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Model JGA FGA SA AGA GCA
TRADE 48.86 61.19 96.96 88.79 80.15

SOM-DST 53.09 71.04 97.36 91.71 88.63
Trippy 35.82 54.09 95.4 80.67 78.60

T5 51.4 67.27 97.32 91.72 87.19

Table 2: Single-run benchmarking results over baseline
models with four existing evaluation metrics and GCA.

that the ratio between value and label accuracies227

are 10:1, i.e. α ≈ 0.9.228

6 Experiments and Analysis229

We conduct experiments on MultiWOZ 2.1 dataset230

spanning 7 distinct domains with over 10,000 di-231

alogues and report results with four DST models:232

TRADE (Wu et al., 2021), SOM-DST (Kim et al.,233

2020), Trippy (Heck et al., 2020), and T5 based234

model by Lin et al. (2021). For TRADE and SOM-235

DST we re-use the predictions reported in Dey et al.236

(2022). We trained Trippy and T5 from scratch on237

an NVIDIA-V100 using the best hyperparameter238

settings reported by the authors.239

6.1 Benchmarking Results240

Table 2 shows the benchmarking results. We set241

λ = 0.5 for FGA following Dey et al. (2022). JGA242

and FGA are at the lower side of the spectrum due243

to 0/1 scoring whereas SA and AGA present the244

highest scores with small differences across models.245

These metrics can be very deceptive. One could246

claim that there is a very big gap for industry-ready247

models judging from JGA or claim the models are248

not far from ideal judging from SA. Unlike these249

two community-accepted metrics, GCA gives a250

more accurate standing avoiding both under and251

over-estimation.252

6.2 Fine-Grained Analysis253

To analyze edge cases, we filter out 20 predictions254

of TRADE and SOM-DST models where FGA >255

GCA and GCA > FGA with the largest disagree-256

ment. FGA over-estimates the performance when257

errors are accumulated in a few turns, i.e. the mis-258

takes are not uniformly distributed. Especially if259

these accumulations occur in the later part of the di-260

alogue, i.e. when the mistakes show a tail-oriented261

distribution (c.f. samples in Appendix A.1).262

6.3 Effect of Spurious Traits263

Tail-Oriented Mistake Distribution. To further264

explore how tail-oriented mistakes affect its FGA265

and GCA evaluation, we define a new measure:266

TO =
∑K

i di
n where di is the distance of mistake 267

i’s turn from the middle turn of the dialogue (the 268

distance is negative if the turn is in the first half of 269

the dialogue and vice versa), and K is the number 270

of mistakes. The nominator is the average turn 271

index of mistakes whereas the denominator acts as 272

a normalization factor. 273

Non-Uniform Mistake Distribution. Similarly, 274

we define a non-uniformity measure inspired by 275

the chi-square metric: NU =
∑T

i (mi −
∑T

j mj

T )2 276

where mi is number of mistakes done in turn i and 277

T is the number of turns. 278

Results. The Pearson Correlation Coefficients be- 279

tween TO and FGA/GCA are 0.08/−0.02, whereas 280

between NU and FGA/GCA are 0.12/−0.17 re- 281

spectively. The differences between these correla- 282

tions are significant according to Zou (2008)’s con- 283

fidence interval tests. FGA’s correlation with both 284

features is significantly stronger with a 95% confi- 285

dence level (Further analysis in Appendix A.2). 286

7 Limitations 287

Though GCA is more exhaustive than existing met- 288

rics, there is still room for improvement by partial 289

credit of slot values; i.e. by calculating the similar- 290

ity of ground-truth and predicted values. Our exper- 291

iments could also be generalized to other datasets 292

than just MultiWOZ 2.1, to validate the empirical 293

credibility of the metric. 294

8 Conclusion 295

We highlight the critical weaknesses of existing 296

DST evaluation metrics and how they over/under- 297

estimate performance. To address these, we pro- 298

pose Granular Change Accuracy (GCA) which 299

evaluates accuracy over the belief state changes. 300

We show through analysis that GCA, avoids both 301

over and under-estimation in existing metrics. 302

Moreover it has significantly less correlation with 303

the insignificant traits of the dialogue, such as non- 304

uniformity or tail-skewness of mistakes, compared 305

to recent FGA metric. We claim better DST eval- 306

uation through GCA or alike metrics would open 307

doors to much fairer and accurate performance re- 308

sults and thus enabling more trustworthy research 309

in this field. Future work may check the similarity 310

between the ground truth and predicted values to 311

enable partial evaluation at the slot level rather than 312

on the turn level as in GCA. 313
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Turn Conversation
Details

0 G0 {hotel: {name: el shaddai} }
P0 {hotel: { name: el shaddai } }

1 G1 {hotel: {name: el shaddai} }
P1 {hotel: { name: el shaddai } }

2 G2 {hotel: {name: el shaddai} attraction:
{type: museum } }

P2 {hotel: { name: el shaddai } }

3 G3 {hotel: {name: el shaddai} attraction:
{type: museum } }

P3 {hotel: { name: el shaddai } }

4 G4 {hotel: {name: el shaddai} attraction:
{type: museum } }

P4 {hotel: { name: el shaddai } }

5 G5 {hotel: {name: el shaddai} attraction:
{type: museum , area: dontcare , name:
dontcare } }

P5 {hotel: { name: el shaddai },attraction: {
name: Cambridge artworks } }

6 G6 {hotel: {name: el shaddai} attraction:
{type: museum , area: dontcare , name:
dontcare } }

P6 {hotel: { name: el shaddai },attraction: {
name: Cambridge artworks } }

7 G7 {hotel: {name: el shaddai} attraction:
{type: museum , area: dontcare , name:
dontcare } }

P7 {hotel: { name: el shaddai },attraction: {
name: Cambridge artworks } }

Table 3: Sample dialouge from MultiWOZ 2.1 dataset,
(MUL1110) with ground truth and predicted belief
states. GCA: 31.43, FGA: 54.74

A Appendix418

A.1 Sample GCA and FGA Scores419

This section presents two sample dialogues from420

the MultiWOZ 2.1 dataset along with DST model421

predictions, and FGA/GCA evaluations.422

The dialogue in Table 3 is an example where423

FGA over-estimates the performance of a dialogue424

scoring it 55% even though it only predicts one out425

of four slots correctly. This is because the majority426

of mistakes in the dialogue occur closer to the tail427

of the dialogue.428

Table 4 on the other hand presents an example429

where FGA under-estimates the performance scor-430

ing a prediction 26% even though it predicts three431

out of four slots correctly. This is because contrary432

to the previous example the majority of mistakes in433

this scenario are head-oriented i.e. they are closer434

to the beginning of the dialogue.435

In line with these observations the TO measure436

(c.f. section 6.3) of dialogues in Table 3 and 4437

are 0.55 and 0.36 respectively. This also suggests438

that the tail-orientedness of dialogues spuriously439

increases the FGA performance.440

Turn Conversation
Details

0 G0 {hotel: {pricerange: expensive}, {parking:
yes} }

P0 {hotel: { pricerange: expensive } , {park-
ing: yes } }

1 G1 {hotel: {pricerange: expensive}, {parking:
yes} , {type: hotel}, { area: dontcare } }

P1 {hotel: { pricerange: expensive } , {park-
ing: yes },{type: hotel } }

2 G2 {hotel: {pricerange: expensive}, {parking:
yes} , {type: hotel}, { area: dontcare } }

P2 {hotel: { pricerange: expensive } , {park-
ing: yes },{type: hotel } }

3 G3 {hotel: {pricerange: expensive}, {parking:
yes} , {type: hotel}, { area: dontcare } }

P3 {hotel: { pricerange: expensive } , {park-
ing: yes },{type: hotel } }

Table 4: Sample dialouge from MultiWOZ 2.1 dataset,
(SNG0779) with ground truth and predicted belief states.
GCA: 75, FGA: 26.38

A.2 Analysis of Spurious Traits 441

We further analyze the distribution of FGA 442

and GCA across the two spurious traits: tail- 443

orientedness and distribution uniformity of mis- 444

takes. 445

Figure 1a shows how performance distribution 446

changes according to the TO measure of pre- 447

dictions. Although GCA results are generally 448

higher, FGA shows higher results between 0.8- 449

1.0 TO values. This suggests that as dialogues’ 450

tail-orientedness increases FGA tends to evaluate 451

performance higher even though this should not 452

have any effect on an ideal evaluation metric. 453

Figure 1b shows the effect of the NU measure on 454

performance distribution. On the left-hand side of 455

the plot, FGA tends to have lower values compared 456

to GCA whereas on the rightmost edge it shows 457

higher values. This suggests that FGA is affected 458

by positions of the mistakes in the prediction which 459

again should be an insignificant trait when it comes 460

to evaluating DST models. 461

Finally, Figure 1c shows the effect of both traits 462

together. Again moving higher on both traits’ axes 463

FGA’s evaluation gets affected significantly. The di- 464

alogues that are evaluated highest by FGA are clus- 465

tered on the higher ends of both axes supporting 466

the hypotheses that they have a significant effect. 467
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(a)

(b)

(c)

Figure 1: Figures showing how spurious dialogue traits
effect GCA and FGA scoring. 1a - tail-orientedness
of mistakes vs performance, 1b - non-uniformity of
mistakes vs performance, 1c - tail-orientedness and non
uniformity of mistakes vs performance.
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