
Customizing Language Models with
Instance-wise LoRA for Sequential Recommendation

Xiaoyu Kong1 Jiancan Wu1∗An Zhang2
Leheng Sheng2 Hui Lin3 Xiang Wang1 Xiangnan He1∗

1MoE Key Lab of BIPC, University of Science and Technology of China
2National University of Singapore

3Electronic Science Research Institute of China Electronics Technology Group Corporation
kongxy@mail.ustc.edu.cn, wujcan@gmail.com

xiangnanhe@gmail.com

Abstract

Sequential recommendation systems predict the next interaction item based on
users’ past interactions, aligning recommendations with individual preferences.
Leveraging the strengths of Large Language Models (LLMs) in knowledge com-
prehension and reasoning, recent approaches are eager to apply LLMs to sequential
recommendation. A common paradigm is converting user behavior sequences
into instruction data, and fine-tuning the LLM with parameter-efficient fine-tuning
(PEFT) methods like Low-Rank Adaption (LoRA). However, the uniform appli-
cation of LoRA across diverse user behaviors is insufficient to capture individual
variability, resulting in negative transfer between disparate sequences. To address
these challenges, we propose Instance-wise LoRA (iLoRA). We innovatively treat
the sequential recommendation task as a form of multi-task learning, integrating
LoRA with the Mixture of Experts (MoE) framework. This approach encourages
different experts to capture various aspects of user behavior. Additionally, we
introduce a sequence representation guided gate function that generates customized
expert participation weights for each user sequence, which allows dynamic parame-
ter adjustment for instance-wise recommendations. In sequential recommendation,
iLoRA achieves an average relative improvement of 11.4% over basic LoRA in
the hit ratio metric, with less than a 1% relative increase in trainable parameters.
Extensive experiments on three benchmark datasets demonstrate the effectiveness
of iLoRA, highlighting its superior performance compared to existing methods in
mitigating negative transfer and improving recommendation accuracy. Our data
and code are available at https://github.com/AkaliKong/iLoRA.

1 Introduction

Sequential recommendation [1] suggests a user’s next item of interest by analyzing his/her past
interactions, tailoring recommendations to individual preferences. As Large Language Models
(LLMs) [2] exhibit impressive proficiency in global knowledge comprehension and reasoning, their
potential for application in sequential recommendation is garnering increasing interest [3–14]. Recent
efforts [9, 10] approach the sequential recommendation task under a language generation paradigm,
wherein user behavior sequences are converted into input prompts by either purely textual prompting
(ID numbers or descriptions) [3, 5, 15, 6] or hybrid prompting with additional behavioral tokens
[9, 10, 16], achieving remarkable success. Upon scrutinizing prior studies on LLM-based sequential
recommenders, we can summarize a common fine-tuning pipeline comprising three components:

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/AkaliKong/iLoRA

Figure 1: Gradient similarity of LoRA modules across training steps. The sequence dataset is
partitioned into 8 clusters using Euclidean distance, with hierarchical clustering applied to reorder
clusters, so that clusters closer in the collaborative space are also closer together in the heatmap.
Gradient similarity is used to assess the geometric characteristics of the loss, with darker cells
indicating higher similarity. In the case study on the right, dashed lines connect similar items, while
solid lines link identical items. Users with a gradient similarity of 0.86 share a strong interest in
thriller movies, while those with -0.75 cosine similarity show no clear preference alignment.

(1) convert a sequence of historical behaviors into a prompt; (2) pair these prompts with the subse-
quent items of interest, to create instruction-tuning datasets; (3) incorporate a trainable Low-Rank
Adaptation (LoRA) module [5, 16, 10, 9] into LLMs and fine-tune it on such prompts. Existing
studies [17, 3, 18, 6, 9, 10, 16] primarily focus on refining high-quality prompts to more effectively
incorporate recommendation information, while leaving the choice of LoRA unexplored. Instead,
they employ a standard LoRA module for fine-tuning, which freezes the LLM weights and updates
the model through two additional low-rank matrices.

Previous work [19, 20] have demonstrated that related tasks tend to develop similar loss geometries,
while unrelated tasks exhibit dissimilar ones. Using the same set of parameters in a multi-task
learning context can lead to conflicts, especially when tasks have low gradient similarity. This can
result in negative transfer, which limits further improvement of the model. From this perspective,
since user behaviors often exhibit substantial individual variability (e.g., distinct interests, behavior
patterns, feedback mechanisms), we argue that employing a standard LoRA module across such
diverse behaviors may not effectively capture these variabilities. Specifically, the inherent variability
in user behaviors naturally inspires us to view item sequences with different behavior variables as
different tasks. Simply applying a singular LoRA module leaves this multitask nature of sequential
recommendation untouched, thus potentially overestimating the relationships between sequences. It
easily causes the negative transfer between significantly discrepant sequences. Take LLaRA [9] as an
example, which fine-tunes a LoRA module on top of Llama-2 [21] across all sequences. Following
prior studies [19, 20], we use a symmetric heatmap to analyze the pair-wise gradients similarities of
LLaRA associated with disparate sequences and reveal significant misalignment, as shown in Figure
1. Specifically, we observe strong clustering by membership closeness in the collaborative space,
along the diagonal of the gradient similarity matrix. Meanwhile, clusters that are more distant in
the collaborative space tend to exhibit dissimilar gradient trajectories. Clearly, such gradients are
misaligned, which can result in suboptimal performance. To mitigate this issue, one straightforward
solution is to deploy multiple LoRA modules, each fine-tuned for a specific sequence, enabling each
module to act as a lightweight expert tailored to its respective sequence. However, it is impractical in
terms of resources and time complexity, as the number of sequences often scales to millions.

To address these challenges, we propose a new fine-tuning framework, Instance-wise LoRA (iLoRA),
which adapts the mixture of experts (MoE) concept [22, 23] to tailor the LLM for individual variability
in sequential recommendation. The key idea is to integrate a diverse array of experts within the basic
LoRA module, each encouraged to capture a specific aspect of user behaviors. Specifically, for each
instance of item sequence a user adopted before, we feed it into a conventional recommender model
(e.g., SASRec [24]) to get a holistic sequence representation. Consequently, this representation,

2

reflecting personal behavior variability, is used by a gating network to customize instance-wise
attention scores for the experts, where each score dictates the participation of each expert. With the
attention scores, the experts are further assembled as instance-wise LoRA for this item sequence.
Hereafter, we follow LLaRA [9] and fine-tune the LLM (i.e., Llama-2 [21]) on a hybrid prompt,
but instead with the personally-activated LoRA to mitigate the negative transfer between discrepant
sequences. Importantly, iLoRA maintains the same total number of parameters as the standard
LoRA, thereby avoiding overfitting while dynamically adapting to diverse user behaviors. We
assess the effectiveness of iLoRA through extensive experiments on three benchmark sequential-
recommendation datasets (i.e., LastFM [25], MovieLens [26], Steam [27]), showcasing its superiority
over leading methods (e.g., GRU4Rec [28], Caser [29], SASRec [24], MoRec [30], TALLRec [5],
LLaRA [9]).

2 Preliminary

LLM-based Sequential Recommendation. The primary task of sequential recommendation is
to predict the next item that aligns with user preference [31, 32]. Formally, consider a user with
a historical interaction sequence represented as i<n = [i1, i2, ..., in−1], where each ij is an item
interacted with at the j-th step. A sequential recommender, parameterized by θ, inputs this sequence
and outputs a probability distribution over potential next items in the candidate set. This model is
trained to maximize the likelihood of the true next item in:

max
θ

∑
D

logPθ(in|i<n). (1)

In the context of LLM-based sequential recommendation, we employ instruction tuning [33, 34],
which fine-tunes LLMs using training data structured into explicit instructional pairs (x,y). Here, x
comprises a detailed textual instruction describing the interaction sequences i<n and recommendation
task [17, 5, 15, 9, 16, 10], and y is the textual description of the predictive item in in the user’s
sequence [35]. The training objective is formulated as an autoregressive model optimization problem:

max
ϕ

∑
(x,y)

|y|∑
t=1

logPϕ(yt|x,y<t), (2)

where ϕ denotes the LLM’s model parameters, yt represents the t-th token in the output sequence,
and y<t includes all preceding tokens in the sequence. This objective ensures that each prediction
is informed by both the prior items in the sequence and the detailed instructions describing the
sequential recommendation task [32, 31, 9, 16, 10].

Fine-tuning with Low-rank Adaption (LoRA). Fully fine-tuning LLMs (cf. Equation (2)) entails
substantial computational resources [36, 35, 37, 21, 38–40]. LoRA emerges as an efficient alternative
[41–49], which injects trainable low-rank matrices into transformer layers to approximate the updates
of pre-trained weights [46]. At the core, LoRA employs a low-rank decomposition where the update
∆W to the pre-trained matrix W ∈ Rdout×din is represented as ∆W = BA, where B ∈ Rdout×r

and A ∈ Rr×din and are tunrable up- and down-projection matrices, respectively. The rank r is
significantly smaller than both din and dout, enhancing adaptation efficiency.

Typically, LoRA applies such updates to the query and value projection matrices in the multi-head
attention sub-layers within transformer layers [41]. Specifically, for an input h to the linear projection
in the multi-head attention, LoRA results in the output h′ as:

h′ = (W +
α

r
∆W)h = Wh+

α

r
BAh, (3)

where W remains frozen, and α is introduced as a scaling factor that adjusts the influence of the
updates w.r.t. the original W.

This methodology introduces a flexible and efficient means to customize these models to new tasks,
circumventing the need for extensive retraining of all model parameters.

Fine-tuning with Hybrid Prompting. In the field of LLM-based sequential recommendation, a
critical challenge is the divergence between the natural language space and the “user behavior”
space. To bridge this gap, previous research [9, 10, 16] introduces a hybrid prompt approach, which

3

Figure 2: The iLoRA framework, which integrates the idea of MoE with LoRA, to implement
sequence-customized activation patterns for various sequences.

incorporates behavioral insights captured by recommendation models into the prompts. This approach
combines the textual token representation derived from the LLM’s word embedding layer, with a
behavior token representation learned from the recommender model with a cross-modal projector.
Formally, for an item i with associated metadata txt, the LLM tokenizer and word embedding layer
LLM-TKZ(·) convert it into token representations s:

s = LLM-TKZϕ(txt). (4)
Concurrently, item i’s ID embedding z, pretrained using the encoder SR-EMB(·) of sequential
recommender (e.g., SASRec [24], GRU4Rec [28]), is represented as:

z = SR-EMBθ(i). (5)
Then the ID embedding is transferred into a behavior token representation through a trainable projector
Proj(·) parameterized by τ1 to facilitate the alignment between the two modalities. This alignment
strategy enables LLMs to interpret and leverage the behavioral knowledge distilled by conventional
recommenders [9, 16, 10]. Subsequently, the textual and behavioral token representations are then
concatenated to form a comprehensive description of item i:

e = Concat(s,Projτ1
(z)). (6)

By converting each item into a hybrid token representation (cf. Equation (6)), we can rewrite the
input prompt x describing the sequence i<n and target response y decipting the item of interest in.
Upon such prompts and responses, the objective of applying a uniform LoRA module is as follows:

max
∆ϕ

∑
(x,y)

|y|∑
t=1

logPϕ+∆ϕ(yt|x,y<t). (7)

3 Methodology

To address the issue of negative transfer associated with conventional LoRA fine-tuning, we introduce
the Instance-wise LoRA (iLoRA) fine-tuning framework. This innovative approach adapts the
Mixture of Experts (MoE) concept [22, 23] to tailor Large Language Models (LLMs) to individual
characteristics in sequential recommendation, as illustrated in Figure 2. At the core is the integration
of multiple experts, each encouraged to capture a specific aspect of user behaviors. Different instances
of user behavior (i.e., item sequences) use a gating network to create instance-wise attention scores
over experts. Such attentive experts instantiate the trainable matrices B and A, thus personalizing a
LoRA. Upon this instance with its individually activated LoRA, We fine-tune the LLM to minimize
the negative transfer among disparate sequences.

4

3.1 Instance-wise Generation for Sequential Recommendation

Applying a uniform LoRA across the population of sequence instances risks overlooking individual
variability and easily causes negative transfer, where distinct sequences might adversely affect each
other. This inspires us to view the modeling of each individual instance as a separate task instead,
and customize instance-wise LoRA module. By doing so, the LLM-based recommender is expected
to align more closely with the behavioral and preference variability of individual users. Formally, for
any sequence instance i<n, the autoregressive objective with instance-wise LoRA modules is as:

max
∆ϕ

∑
(x,y)

|y|∑
t=1

logPϕ+∆ϕ(i<n)(yt|x,y<t), (8)

where ∆ϕ(i<n) yields i<n-exclusive parameters of instance-wise LoRA, as compared to the shared
parameters of uniform LoRA (i.e., ϕ in Equation (7))

To this end, one straightforward solution is to set up different LoRA modules for individual sequences,
enabling each module to act as the expert tailored to its respective sequence. However, it is impractical
in terms of resource and time requirements, particularly as the number of sequences often reaches
the millions. This highlights the need for a more scalable solution to address the challenge of
sequence-specific customization without excessive computational overhead.

3.2 Instance-wise LoRA with the Mixture of Experts Concept

Instead of establishing various LoRA modules, we implement the mixture-of-experts (MoE) concept
[22, 23] to devise our instance-wise LoRA (iLoRA) framework. This framework includes three
components: (1) Diverging from the standard LoRA module with up- and down-projection matrices,
we divide each matrix into an array of experts, each encouraged to capture a distinct, hidden aspect
of user behavior; (2) For a given sequence instance, we use a gating network to obtain attention
scores across the arrays of up- and down-projection experts, such that distinct sequences are likely
to activate different experts; (3) Such an attentive combination of up- and down-projection experts
instantiates the weights of LoRA, which are individually customized for the instance of interest. We
will elaborate on these components one by one.

3.2.1 Splitting Low-Rank Matrices into Experts

Typically, the architectural foundation of LoRA is built upon two low-rank matrices: down-projection
B ∈ Rdout×r and up-projection A ∈ Rr×din . Here we meticulously divide each projection matrix
into an array of experts, as illustrated in Figure 2. Each expert is intended to focus on capturing one
specific, hidden aspect of user preference. Formally, splitting the low-rank matrices is as follows:

B = [B1,B2, · · · ,BK], A = [A1,A2, · · · ,AK], (9)

where Bk ∈ Rdout×r∗ and Ak ∈ Rr∗×din are the up- and down-projection pairs for the k-th expert,
respectively; r∗ = r

K is the partial rank determined by the total rank r of LoRA and a predefined
number of experts K.

By dividing individual LoRA modules into specialized experts, we ensure a more granular and precise
adaptation to user preferences. This segmentation approach allows each expert to focus on specific
aspects of user interaction patterns, thereby mitigating the risk of negative transfer that arises from
generalized adaptations. We should emphasize that such a segmentation scheme preserves the overall
number of parameters equivalent to that of the standard LoRA, therefore preventing the potential
overfitting issue.

3.2.2 Generating Instance-wise Attentions over Experts

Having obtained the experts (i.e., up-projection submatrices {Bk}Kk=1, down-projection submatrices
{Ak}Kk=1), we construct an instance-guided gating function to yield the contribution of each expert tai-
lored to a specific sequence. Specifically, for a sequence of historical items i<n = [i1, i2, · · · , in−1],
we utilize a sequential recommender (e.g., SASRec [24]) to extract its representation as follows:

z = SR-EMBθ(i<n). (10)

5

Here z ∈ Rd provides a holistic view of the user’s behavioral patterns and preferences. Subsequently,
to ascertain the influence of each expert on distilling behavior patterns from this sequence, we get the
contribution scores via a linear transformation with a softmax function:

ω = Softmax(Projτ2
(z)), (11)

where Projτ2
(z) = Wgz with the trainable transformation matrix Wg ∈ RK×d, and the softmax

function ensures these contributions normalized as the attention scores, thereby preventing any single
expert from disproportionately influencing the recommendation; ω represents the attention scores
over all the experts, with the k-th element indicating the contribution of expert K.

By using the sequence representation as the guidance signal, we can get the instance-wise attention
scores over experts and encourage each expert’s contribution closely aligned with the individual
variability inherent in the sequence. Moreover, distinct sequences tend to yield different attention
scores and activate different experts, while similar sequences incline toward analogous attention
scores. By dynamically adapting to a wide range of user behaviors and preferences, these experts
could specialize in diverse aspects of user behaviors and be more adept at handling diverse user needs.

3.2.3 Aggregating Mixture of Experts as Instance-wise LoRA

For the instance i<n associated with the instance-wise attentions ω, we use the mixture-of-experts
concept to aggregate the up- and down-projection submatrices from different experts, so as to establish
the instance-wise LoRA parameters:

∆W(i<n) =

K∑
k=1

ωkBkAk, (12)

where ∆W(i<n) encapsulates the adjustments enabled by our iLoRA. The attention score ωk,
assigned by the gating network (cf. Equation (11)), reflects the relevance of expert k’s contribution to
the particular sequence.

We apply such instance-wise LoRA updates on the transformer layers of the base LLM, which
collectively construct the tunable parameters ∆ϕ(i<n). Clearly, iLoRA maintains the same total
number of parameters as the standard LoRA, but dynamically customizes varying LoRA modules for
different instances. This dynamic adaptation of parameters ensures that our model remains flexible
and responsive to the varied preferences and behaviors exhibited by users, effectively managing
the complexity inherent in sequential recommendation systems. This approach not only enhances
personalization but also improves the predictive accuracy of the recommendation system.

4 Experiments

In this section, we first justify the need to reshape the fine-tuning task with a uniform LoRA module
as a multi-task learning framework for sequential recommendation. We request the dataset from
LLaRA [9] and maintain exactly the same experimental settings as described in the original paper.
Our study builds upon the main table from the LLaRA paper, using the results reported in the
LLaRA paper directly. Here we conduct extensive experiments on various real-world datasets,
including LastFM [25], MovieLens [26], and Steam [27], to evaluate the effectiveness of our iLoRA
framework. Our analysis includes detailed comparisons of iLoRA against established baseline
models, which encompass both traditional sequential recommender models (e.g., GRU4Rec [28],
Caser [29], SASRec [24]) and LLM-based recommender models (e.g., Llama2-7B [21], GPT-4 [50],
MoRec [30], TALLRec [5], LLaRA [9]). ValidRatio [9] and HitRatio@1 are used as evaluation
metrics, to separately quantify the ratios of valid responses over all sequences and relevant items
over all candidate items, reflecting the model capability of instruction following and recommendation
accuracy. See Appendix A for more details of these baselines, datasets, and metrics. Moreover, we
perform a thorough ablation study to identify the key components that enhance iLoRA’s performance,
focusing particularly on the role of the gating network and expert settings. In a nutshell, we would
like to answer the following research questions:

• RQ1: What is the rationale behind instance-wise LoRA compared to the uniform LoRA module?
• RQ2: How does iLoRA perform in comparison to traditional sequential recommender systems and

LLM-based recommender models?

6

Table 1: The Results of iLoRA compared with traditional sequential recommender models and
LLMs-based methods.

LastFM MovieLens Steam

ValidRatio HitRatio@1 Imp.% ValidRatio HitRatio@1 Imp.% ValidRatio HitRatio@1 Imp.%

Traditional
GRU4Rec 1.0000 0.2616 91.13% 1.0000 0.3750 40.67% 1.0000 0.4168 26.30%
Caser 1.0000 0.2233 123.91% 1.0000 0.3861 36.62% 1.0000 0.4368 20.51%
SASRec 1.0000 0.2233 123.91% 1.0000 0.3444 53.16% 1.0000 0.4010 31.27%

LLM-based
Llama2 0.3443 0.0246 1932.52% 0.4421 0.0421 1152.97% 0.1653 0.0135 3799.26%
ChatRec 1.0000 0.3770 32.63% 0.9895 0.2000 163.75% 0.9798 0.3626 45.17%
MoRec 1.0000 0.1652 202.66% 1.0000 0.2822 86.92% 1.0000 0.3911 34.59%
TALLRec 0.9836 0.4180 19.62% 0.9263 0.3895 35.43% 0.9840 0.4637 13.52%
LLaRA 1.0000 0.4508 8.51% 0.9684 0.4421 19.32% 0.9975 0.4949 6.36%

Ours
iLoRA 1.0000 0.5000 - 0.9891 0.5275 - 0.9981 0.5264 -

• RQ3: What is the impact of the designed components (e.g., the gating network, expert settings) on
the recommendation performance of iLoRA?

(a) Basic LoRA (b) iLoRA (c) Attention Scores

Figure 3: 3a and 3b separately show gradient similarities of LLaRA and iLoRA, with sequences
partitioned into 8 clusters; 3c exhibits the attention scores over four experts, for ten sequences.

4.1 Investing Rationale of Instance-wise LoRA (RQ1)

We begin by experimenting with LLaRA [9], an LLM-based recommender using a uniform LoRA
module, to identify a key limitation: negative transfer between significantly different sequences.
Next, we examine the experts within iLoRA, which employs an instance-wise LoRA module, to
demonstrate the varying attributions of experts when handling different sequences. For more details,
see Appendix B.

4.1.1 Negative Transfer in Uniform LoRA & Instance-wise LoRA

Gradient similarity reflects the proximity of recommendation sequences [19]. Here we explore
whether using LLaRA to perform recommendations conditioned on different sequences exhibits
similar loss geometries and vice versa. To achieve this, we use Euclidean distance to control task
similarity and gradient similarity to measure loss geometry. In Figure 1, a symmetric heatmap visually
displays the average gradient similarity across all LLaRA checkpoints at different training steps. We
demonstrate this test in Figure 3. Specifically, we observe strong clustering along the diagonal of
the gradient similarity matrix for sets of recommendation sequences that are closely related in the
Euclidean space. Conversely, recommendation sequences that are distant in Euclidean space exhibit
correspondingly lower gradient similarity, leading to negative transfer.

In contrast, we visualize iLoRA’s gradient similarity among the identical clusters. The similarities
between some clusters tend to achieve zero scores, indicating iLoRA’s capability to mitigate the
negative transfer between significantly different sequences.

7

(a) Ablation study on the number of experts. (b) Comparison of performance over various epochs

Figure 4: 4a illustrates the performance of iLoRA w.r.t. HitRatio@1 across different datasets with
varying numbers of experts. 4b further demonstrates the HitRatio@1 performance of the model
across different epochs during training on the Steam dataset with varying numbers of experts.

4.1.2 Expert Showcase in Instance-wise LoRA

In this section, we visualize the attention scores of iLoRA’s four experts for ten distinct sequences in
Figure 3c. Each horizontal bar represents a sequence, and the length of the segments within each bar
indicates the percentage of attention scores assigned to each expert. We have several findings:

• Sequence Variability: There is significant variability in expert activation across different sequences.
For example, Sequence 4 heavily relies on Expert 1 with a 42.5% activation weight, while Expert 4
only contributes 18.8%, demonstrating distinct preferences for different experts among sequences.

• Expert Contribution: Certain experts have notably high contributions for specific sequences. For
instance, in Sequence 2, Expert 4 has a dominant activation weight of 46.7%, indicating that this
expert captures the personalized preferences of the user group represented by Sequence 2.

• Collaborative Contribution: Some sequences exhibit a more balanced distribution of activation
weights among multiple experts, suggesting collaborative contributions. For example, in Sequence
9, Experts 2 and 3 have similar activation weights of 31.1% and 31.5%, respectively, indicating
their joint influence on the recommendations.

These observations demonstrate that iLoRA effectively adjusts expert activation based on the charac-
teristics of each sequence.

4.2 Performance Comparison (RQ2)

Figure 5: Effects of iLoRA’s components

This section comprehensively compares iLoRA
against some traditional and LLM-based recom-
menders. We conduct a holistic evaluation, consid-
ering metrics of both HitRatio@1 and ValidRatio
across LastFM, MovieLens, and Steam datasets to
demonstrate the effectiveness of iLoRA. The results
of this comparison are summarized in Table 1.

Our findings indicate that iLoRA consistently outper-
forms these baseline models across the three datasets.
Specifically, iLoRA achieves the highest HitRatio@1
metrics of 0.5000, 0.5275, and 0.5264 on the LastFM,
MovieLens, and Steam datasets, respectively. These
results demonstrate the efficacy of leveraging sequence representations as guidance signals to fine-tune
LoRA parameters, enabling personalized recommendations at the parameter level.

4.3 Ablation Study (RQ3)

In this section, we analyze the effectiveness of the main components of iLoRA in Section 4.3.1.
Subsequently, in Section 4.3.2, we conduct an in-depth investigation and analysis of how varying the
number of experts affects the performance of iLoRA.

8

4.3.1 Effects of Gating Network

Here we explore the influence of sequence representation on the gating network and MoE. Going
beyond the sequence-tailored representation, we test two variants: using random-initialized and
token-collapsed embeddings as the guidance. As Figure 5 shows, using sequence representation
as the guidance consistently outperforms the other variants across three datasets, illustrating the
rationale of our gating network and the benefits for the MoE combination.

4.3.2 Effect of Expert Numbers

In this section, we investigate how iLoRA would react to the number of experts. As depicted in
Figure 4a, our model achieves optimal performance when the number of experts is set to 4. Increasing
the number of task experts does not necessarily correlate with enhanced performance. Specifically,
employing only 2 experts does not significantly improve the HitRatio@1 metrics on Steam and
MovieLens datasets, while showing a slight decrease on LastFM. However, with the increase to 4
experts, the model exhibits its best performance across all three datasets, notably surpassing the
2-expert variant. To elaborate, on LastFM, MovieLens, and Steam datasets, the performance of the
4-expert variant exceeds that of the 2-expert variant by 5.2%, 6.4% and 2.2%, respectively. When the
number of experts is further increased to 8, the performance resembles that of the 4-expert scenario or
even shows a slight decrease. This suggests that the benefits of increased capacity gradually converge
as we utilize more experts. Consequently, we adapt 4 experts as the default setting.

Furthermore, we analyzed the performance across different numbers of experts at various epochs,
on the Steam dataset. It is evident that as the number of experts is set to 1, 2, and 4, the overall
recommendation performance of the model steadily improves with training progress. Under this
configuration, the HitRatio@1 values exhibit a positive correlation with the number of experts.
However, when the number of experts reaches 8, the data indicate that the model rapidly achieves a
decent performance, but subsequent HitRatio@1 values do not show significant improvements with
increasing epochs. We speculate that as the number of experts increases to 8, the model may overly
focus on personalized user behaviors, leading to a decrease in generalization ability and premature
overfitting.

5 Conclusion

In this paper, we introduced instance-wise LoRA (iLoRA), a novel fine-tuning framework designed
to address the challenges posed by the substantial individual variability in user behaviors within
sequential recommendation systems. By integrating the mixture of experts (MoE) concept into the
basic LoRA module, iLoRA dynamically adjusts to diverse user behaviors, thereby mitigating the
negative transfer issues observed with standard single-module LoRA approaches. iLoRA represents a
significant advancement in the application of large language models to sequential recommendation
tasks. By incorporating a mixture of expert frameworks within the LoRA module, iLoRA provides
a more nuanced and effective means of tailoring recommendations to individual user preferences,
paving the way for more personalized and accurate recommendation systems.

6 Limitation

While iLoRA demonstrates promising results, there are several limitations to consider. First, our
experiments are constrained by computational resources, limiting the exploration of a larger number
of expert combinations and their potential impact on recommendation performance. Second, we do
not extensively investigate the effects of using hard routing for recommendations with a large number
of experts. Finally, our study focused on sequential recommendation tasks, and the applicability
of iLoRA to other types of recommendation systems or domains remains to be explored. These
limitations suggest that further research is needed to fully understand the scalability and effectiveness
of iLoRA with more complex expert configurations.

9

7 Broader Impact

Our proposed method, Instance-wise LoRA (iLoRA), advances sequential recommendation systems
by sequence-tailored recommendations. By leveraging the Mixture of Experts (MoE) framework,
iLoRA streamlines the user experience, reduces decision fatigue, and promotes inclusivity in online
spaces. Its instance-wise adaptation mechanism ensures diverse content exposure, fostering a more
enriched online discourse. Beyond recommendations, iLoRA’s principles extend to education,
healthcare, and e-commerce, offering customized solutions in various domains. Overall, iLoRA
represents a step forward in enhancing user experience and promoting inclusivity in the digital
landscape.

However, despite the advancements offered by iLoRA, it is essential to acknowledge potential
drawbacks. Algorithmic biases present in the training data may persist, potentially amplifying existing
biases in recommendations. Moreover, over-reliance on customization could lead to filter bubbles,
limiting exposure to diverse viewpoints and serendipitous discovery. Additionally, concerns regarding
privacy arise due to the collection and analysis of user data for personalized recommendations,
necessitating careful consideration of ethical implications in its deployment.

Acknowledgments and Disclosure of Funding

This research is supported by the National Natural Science Foundation of China (92270114,
62302321) and the National Science and Technology Major Project (2023ZD0121102). This research
is also supported by the advanced computing resources provided by the Supercomputing Center of
the USTC.

10

References
[1] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequential

recommendation: Algorithms, influential factors, and evaluations. ACM Trans. Inf. Syst., 2020.

[2] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin,
Chen Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language
models for recommendation. World Wide Web (WWW), 2024.

[3] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
as language processing (RLP): A unified pretrain, personalized prompt & predict paradigm (P5).
In RecSys, 2022.

[4] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian J. McAuley.
Text is all you need: Learning language representations for sequential recommendation. In
KDD, 2023.

[5] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation.
In RecSys, 2023.

[6] Jianchao Ji, Zelong Li, Shuyuan Xu, Wenyue Hua, Yingqiang Ge, Juntao Tan, and Yongfeng
Zhang. Genrec: Large language model for generative recommendation. In ECIR (3), volume
14610 of Lecture Notes in Computer Science, 2024.

[7] Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao
Zhang, and Jun Xu. Uncovering chatgpt’s capabilities in recommender systems. In RecSys,
2023.

[8] Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian J. McAuley, and
Wayne Xin Zhao. Large language models are zero-shot rankers for recommender systems. In
ECIR (2), volume 14609 of Lecture Notes in Computer Science, 2024.

[9] Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, and Xiang Wang. Llara:
Aligning large language models with sequential recommenders. CoRR, abs/2312.02445, 2023.

[10] Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang, and Chunxiao Xing. E4srec: An elegant
effective efficient extensible solution of large language models for sequential recommendation.
CoRR, abs/2312.02443, 2023.

[11] Bohao Wang, Feng Liu, Jiawei Chen, Yudi Wu, Xingyu Lou, Jun Wang, Yan Feng, Chun
Chen, and Can Wang. LLM4DSR: leveraing large language model for denoising sequential
recommendation. CoRR, 2024.

[12] Yu Cui, Feng Liu, Pengbo Wang, Bohao Wang, Heng Tang, Yi Wan, Jun Wang, and Jiawei
Chen. Distillation matters: Empowering sequential recommenders to match the performance of
large language models. In Proceedings of the 18th ACM Conference on Recommender Systems,
RecSys 2024, Bari, Italy, October 14-18, 2024, 2024.

[13] Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang,
and Tat-Seng Chua. On softmax direct preference optimization for recommendation. In NeurIPS,
2024.

[14] Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang Wang, and Tat-Seng Chua. Language
models encode collaborative signals in recommendation. arXiv preprint arXiv:2407.05441,
2024.

[15] Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira Moreira, Dong Wang, and Even Oldridge.
Llamarec: Two-stage recommendation using large language models for ranking. CoRR,
abs/2311.02089, 2023.

[16] Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He. Collm:
Integrating collaborative embeddings into large language models for recommendation. CoRR,
abs/2310.19488, 2023.

11

[17] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
as language processing (RLP): A unified pretrain, personalized prompt & predict paradigm (P5).
In RecSys, 2022.

[18] Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong Wen.
Recommendation as instruction following: A large language model empowered recommendation
approach. CoRR, abs/2305.07001, 2023.

[19] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. In ICLR, 2021.

[20] Haowen Wang, Tao Sun, Congyun Jin, Yingbo Wang, Yibo Fan, Yunqi Xu, Yuliang Du, and
Cong Fan. Customizable combination of parameter-efficient modules for multi-task learning.
In The Twelfth International Conference on Learning Representations, 2023.

[21] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

[22] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In ICLR (Poster), 2017.

[23] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. J. Mach. Learn. Res., 23, 2022.

[24] Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In ICDM,
2018.

[25] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik, editors. Proceedings of the 2nd International
Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’11,
Chicago, Illinois, USA, October 27, 2011, 2011. ACM.

[26] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5, 2016.

[27] Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In ICDM,
pages 197–206. IEEE Computer Society, 2018.

[28] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In ICLR, 2016.

[29] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In WSDM, 2018.

[30] Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu Pan, and Yongxin
Ni. Where to go next for recommender systems? ID- vs. modality-based recommender models
revisited. In SIGIR, 2023.

[31] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequential
recommendation: Algorithms, influential factors, and evaluations. ACM Trans. Inf. Syst., 39,
2020.

12

[32] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet A. Orgun.
Sequential recommender systems: Challenges, progress and prospects. In IJCAI, 2019.

[33] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In
ICLR, 2022.

[34] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V.
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,
Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. In ICLR, 2022.

[35] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, 2020.

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In ACL, 2019.

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[38] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825,
2023.

[39] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model.
2023.

[40] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2, 2023.

[41] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. In ICLR. OpenReview.net, 2022.

[42] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang.
GPT understands, too. CoRR, abs/2103.10385, 2021.

[43] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In ACL/IJCNLP (1), 2021.

[44] Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. In ICLR, 2022.

[45] Shin-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B. W. Yang, Giyeong Oh, and Yanmin
Gong. Navigating text-to-image customization: From lycoris fine-tuning to model evaluation.
CoRR, abs/2309.14859, 2023.

13

[46] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR,
2022.

[47] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In NeurIPS, 2022.

[48] Chongjie Si, Xiaokang Yang, and Wei Shen. See further for parameter efficient fine-tuning by
standing on the shoulders of decomposition. CoRR, 2024.

[49] Chongjie Si, Zhiyi Shi, Shifan Zhang, Xiaokang Yang, Hanspeter Pfister, and Wei Shen.
Unleashing the power of task-specific directions in parameter efficient fine-tuning. CoRR, 2024.

[50] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[51] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim
Krikun, Mia Xu Chen, Yuan Cao, George F. Foster, Colin Cherry, Wolfgang Macherey, Zhifeng
Chen, and Yonghui Wu. Massively multilingual neural machine translation in the wild: Findings
and challenges. CoRR, abs/1907.05019, 2019.

[52] Chenwang Wu, Xiting Wang, Defu Lian, Xing Xie, and Enhong Chen. A causality inspired
framework for model interpretation. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023.
ACM, 2023.

[53] Lei Chen, Le Wu, Kun Zhang, Richang Hong, Defu Lian, Zhiqiang Zhang, Jun Zhou, and Meng
Wang. Improving recommendation fairness via data augmentation. In Proceedings of the ACM
Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023. ACM, 2023.

[54] Chongming Gao, Shiqi Wang, Shijun Li, Jiawei Chen, Xiangnan He, Wenqiang Lei, Biao
Li, Yuan Zhang, and Peng Jiang. CIRS: bursting filter bubbles by counterfactual interactive
recommender system. ACM Trans. Inf. Syst., 2024.

[55] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In NeurIPS, 2023.

[56] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David S. Rosenberg, and Gideon Mann. Bloomberggpt: A large language
model for finance. CoRR, abs/2303.17564, 2023.

[57] Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung,
Nathan Scales, Ajay Kumar Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin
Seneviratne, Paul Gamble, Chris Kelly, Nathaneal Schärli, Aakanksha Chowdhery, Philip An-
drew Mansfield, Blaise Agüera y Arcas, Dale R. Webster, Gregory S. Corrado, Yossi Matias,
Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle K. Barral,
Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. Large language models
encode clinical knowledge. CoRR, abs/2212.13138, 2022.

[58] Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. Chatlaw: Open-source legal large
language model with integrated external knowledge bases. CoRR, abs/2306.16092, 2023.

[59] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Comput., 3(1):79–87, 1991.

[60] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, An-
dré Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of
experts. In NeurIPS, 2021.

[61] Zhili Liu, Kai Chen, Jianhua Han, Lanqing Hong, Hang Xu, Zhenguo Li, and James T. Kwok.
Task-customized masked autoencoder via mixture of cluster-conditional experts. In ICLR, 2023.

14

[62] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. J. Mach. Learn. Res., 23, 2022.

[63] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. In ICLR, 2021.

[64] Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Mul-
timodal contrastive learning with limoe: the language-image mixture of experts. In NeurIPS,
2022.

[65] Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Darrell, Kurt Keutzer, and Yuxiong He. Scaling
vision-language models with sparse mixture of experts. In EMNLP (Findings), 2023.

15

A Description of Figure 1

This figure illustrates the gradient similarity of LoRA modules across all training steps. We utilize
signals from the collaborative space to partition the sequence dataset into 8 clusters. Euclidean
distance is employed to evaluate the proximity between clusters, whereas gradient similarity is
measured to assess geometric loss. Clusters that are closer in the collaborative space are depicted
as closer together in the left side of the figure, with darker-colored cells indicating higher gradient
similarity. On the right side of the figure, we conducted a case study on three sets of data with
pairwise cosine similarities of 0.86 and -0.75. For sequences containing more than three movies of
the same genre, we performed a cross-matching analysis. It was observed that the two user sequences
from the cluster with a cosine similarity of 0.86 both exhibited a strong interest in thriller movies,
sharing two identical items in their interaction histories at the same time. In contrast, the two user
sequences from the cluster with a cosine similarity of -0.75 did not demonstrate any noticeable
preference similarities.

B Experimental Design and Evaluation

Datasets. To validate the generalization ability of iLoRA, we conducted extensive experiments on
three datasets derived from real-world recommendation scenarios: LastFM, MovieLens, and Steam:

• LastFM A popular music dataset for recommendation research, featuring histories of user-artist
interactions, user demographic details, artists’ names and associated social tags.

• MovieLens A widely used benchmark in recommendation systems, containing user ratings and
metadata for movies.

• Steam A collection of user interaction data from the Steam gaming platform, featuring information
on game ownership, playtime, and user reviews.

Baselines.

We compared iLoRA with several models, including traditional sequential recommendation models
and those based on Large Language Models (LLMs), such as GRU4Rec[28], Caser, SASRec[24],
Llama2[21], GPT-4, MoRec, TallRec[5], and LlaRA[9]. GRU4Rec, Caser and SASRec utilize
recurrent neural networks, convolutional neural networks, and Transformer encoders, respectively, to
capture sequential patterns in user behavior. Llama2, Meta’s open-source language model, building
on the original Llama to deliver improved performance. We fine-tune the 7B version of the model for
our experiments. GPT-4, OpenAI’s advanced language model, has held the state-of-the-art position
across various tasks for an extended period. We directly utilize its API for our experiments. MoRec
uses pre-trained modality encoders to capture item-specific features, improving recommendation
accuracy. TALLRec guides LLMs through fine-tuning recommendation corpora. LlaRA further
improves the recommendation effectiveness of LLMs by aligning collaborative signals to the text
space through a hybrid prompt method.

Training Protocol.

In our study, we fine-tune the Llama2-7B [21] model to validate our approach. Experiments for
traditional sequential recommendation baseline models are conducted on a single Nvidia A40, while
our iLoRA framework is implemented on a single Nvidia A100. All experiments are carried out
using Python 3.8 and PytorchLightning 1.8.6.

Evaluation Protocol.

To assess the performance of iLoRA and baseline models, we construct candidate sets for each
sequence by randomly selecting 20 non-interacted items while ensuring the inclusion of the correct
next item. Performance is evaluated using the HitRatio@1 metric, wherein models attempt to identify
the correct item from the candidate set. LLM-based recommenders, when provided with appropriate
prompts, generate a single candidate item. Conversely, traditional models are adapted to select the
item with the highest probability. Additionally, we introduce the ValidRatio metric to quantify the
proportion of valid responses (i.e., items within the candidate set) across all sequences. This metric
serves to evaluate the models’ adherence to instructions accurately.

16

C Experimental Setup of RQ1

We extend the previous research setup to train models on multi-task scenarios[51]. Specifically, we
jointly train recommendation sequences in a basic LoRA training framework. We use an effective
batch sizes of 128 sequences. The recommendation sequences are divided into multiple tasks using
representations derived from the sequential recommendation model SASRec, with a dimension of 64.

To investigate large-scale multi-tasking in sequential recommendation tasks, we sample 40k sequences
from the Steam dataset. We clustered these sequences into 8 sub-datasets using Euclidean distance. At
checkpoints across 1k training steps, we measured the pairwise cosine similarity of model gradients
for all sequences. We averaged the LoRA gradients that were bound to the same modules, such as
gateproj.

D Related Work

Large Language Models Sequential recommendation [24, 32, 31, 52–54] aims to predict the
user’s next likely item of interest by analyzing their past interaction patterns and aligning with
their preferences. Recent years have witnessed a surge of activity in language modeling research,
establishing it as a cornerstone for both understanding and generating language. This momentum
has given rise to a new breed of language models (LMs), including notable works such as BERT
[36], GPT-3 [35], LLama [37], LLama2 [21], Mistral-7B [38], Alpaca [39], and Vicuna [40]. These
LMs, predominantly based on the Transformer architecture, have demonstrated remarkable versatility,
exemplified by models like BERT [36] and T5 [34], owing to their extensive training corpus. A
significant stride in this domain has been the exploration of scaling effects, with researchers pushing
the boundaries by augmenting both the parameter and training corpus scales to unprecedented
magnitudes, encompassing billions of parameters and trillions of training tokens [37, 21, 40, 35, 55].
These Large Language Models (LLMs) exhibit substantial performance enhancements and showcase
unique capabilities, including but not limited to common sense reasoning and instruction following.
Moreover, the development of domain-specific LLMs further enriches this landscape. Models
tailored to specific domains, such as finance [56], medicine [57], and law [58], amalgamate domain
expertise with the inherent commonsense knowledge of general LLMs. These advancements not
only broaden the scope of LLM applications but also inspire exploration into their potential utility in
recommendation systems.

Mixture of Experts Mixture of Experts. MoE models [59, 22, 23] are considered as an effective way
to increasing the model capacity in terms of parameter size. In MoE, certain parts of the model are
activated while the computation is kept the same or close to its dense counterpart. Recently, it has
been thoroughly investigated in the field of computer vision [60, 61], natural language processing
[62, 63] and multi-modal learning [64, 65].

E Statistics

In our experimental settings, we closely follow the setup of prior works [9] to ensure a fair and
meaningful comparison. Specifically, for all conventional sequential recommendation baselines,
we employ the Adam optimization algorithm, establishing a learning rate of 0.001, an embedding
dimension of 64, and a batch size of 256, respectively. Furthermore, we incorporate L2 regularization,
and the regularization coefficient is fine-tuned through a grid search over a specified set of possible
values.We report the average results from five different random seeds, specifically selected from the
set, To reduce the effect of randomness.

For experiments involving methods based on large language models (LLMs), we incorporate a
warm-up strategy for the learning rate, which begins the training process with an initial rate set at
a fraction of the maximum learning rate. Specifically, the maximum learning rates are set to 2e−4

for the LastFM dataset and 1e−4 for the MovieLens and Steam datasets. Notably, the projector
parameters are updated using the same learning rate curve integrated with iLoRA during training.

We adopt a cosine annealing scheduler to adjust the learning rate across training steps, which facilitates
a smooth decrease in the learning rate, thereby improving stability during training. Additionally,
half-precision computation (mixed-precision training) is used to enhance memory efficiency and
accelerate the training process.

17

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the con-
tributions and scope of our paper. The abstract succinctly summarizes our approach, the
Instance-wise Low-Rank Adaptation (iLoRA), and its application in sequential recommenda-
tion systems. It also highlights the integration with the Mixture of Experts (MoE) framework,
providing a clear overview of the method’s novelty and effectiveness. The introduction
elaborates on the motivation, background, and significance of our contributions, ensuring
that the claims align with the detailed discussions and results presented in the subsequent
sections of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

18

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work performed in limitation 6. By explicitly
acknowledging these limitations, we provide a balanced view of our work and suggest
directions for future research to address these challenges.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: we provide the full set of assumptions and a complete (and correct) proof in
our methodology part 3. The assumptions are clearly stated, and the proofs are detailed to
ensure correctness and reproducibility.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

19

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed in Appendix A and Appendix
B. This includes details about the datasets, experimental setups, hyperparameters, and
evaluation metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the data and code. And we explain our set in
Appendix A and Appendix B
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Appendix B and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do it in the Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For each experiment we proviede sufficient information in our experiments
part, Appendix E, Appendix B, Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully conforms to the NeurIPS Code of Ethics. We have carefully
reviewed the guidelines and ensured that all aspects of our research, from data collection
and usage to experimental conduct and reporting, adhere to ethical standards. We maintain
transparency in our methodology, respect for privacy, and fairness in our experimental
design, ensuring that our work aligns with the ethical principles outlined by NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper discusses the potential positive and negative societal impacts of
our work in the "Broader Impacts" section. By acknowledging these impacts, we provide a
balanced view of our work and suggest mitigation strategies to address potential negative
outcomes.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

22

https://neurips.cc/public/EthicsGuidelines

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We conduct experiments on recommendation tasks using publicly available
datasets and build upon existing open-source methods. Therefore, the risk of misuse is
minimal, and specific safeguards for data or model release are not necessary. Our focus
remains on transparency and reproducibility, ensuring that our work can be used responsibly
by the research community.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We fully adhere to these requirements by properly crediting the creators or
original owners of all assets used in our paper. Each asset, including datasets, code, and
models, is accompanied by a citation to the original source, and the specific versions used
are stated. We explicitly mention the licenses and terms of use for each asset, ensuring
compliance with their respective usage guidelines.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We offer our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:We are not involved in these risks as we are only engaged in recommendation
tasks. Our research does not include crowdsourcing experiments or research with human
subjects, thus this question is not applicable to our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We are not involved in these risks as we are only engaged in recommendation
tasks. Our research does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Preliminary
	Methodology
	Instance-wise Generation for Sequential Recommendation
	Instance-wise LoRA with the Mixture of Experts Concept
	Splitting Low-Rank Matrices into Experts
	Generating Instance-wise Attentions over Experts
	Aggregating Mixture of Experts as Instance-wise LoRA

	Experiments
	Investing Rationale of Instance-wise LoRA (RQ1)
	Negative Transfer in Uniform LoRA & Instance-wise LoRA
	Expert Showcase in Instance-wise LoRA

	Performance Comparison (RQ2)
	Ablation Study (RQ3)
	Effects of Gating Network
	Effect of Expert Numbers

	Conclusion
	Limitation
	Broader Impact
	Description of Figure 1
	Experimental Design and Evaluation
	Experimental Setup of RQ1
	Related Work
	Statistics

