
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FG-ATTN: LEVERAGING FINE-GRAINED SPARSITY IN
DIFFUSION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating realistic videos/images with diffusion transformers requires evaluat-
ing attention over extremely long sequences, with attention layers accounting for
the majority of generation latency. Exploiting sparsity in attention maps offers
a promising opportunity to reduce this cost. However, existing methods rely on
block-sparse attention, which skips attention computation only when all scores
within a coarse M×M tile (typically 64×64) are expected to be negligible. This
coarse-grained skipping leaves a large fraction of redundant computation unad-
dressed. In this work, we show that attention maps in diffusion transformers ex-
hibit significant fine-grained sparsity.
Leveraging this efficiently on modern GPUs is challenging, as fine-grained skip-
ping introduces irregular memory access, can reduce tensor core utilization, and
it is difficult to determine which computation to skip without loss in accuracy.
We propose FG-Attn, a novel fine-grain sparse attention mechanism that skips
score computations at the granularity of M×1 slices, where each slice is the re-
sult of query-key dot products between M query vectors and a single key. We
introduce a highly efficient asynchronous gather-load primitive that loads only
the sparse set of key/value vectors into tensor-core-compatible tiles in the on-chip
GPU shared memory, hiding the overhead of irregular memory access. We de-
velop two training-free, lightweight prediction strategies that identify redundant
scores to skip with negligible overhead. FG-Attn can fully supercede existing
block sparsity methods in DiTs, and we demonstrate that it achieves up to 1.65×
speedup (1.48× on avg) for state-of-art video models on an H100 GPU.

1 INTRODUCTION

Media generation models in deep learning have proven highly effective at capturing complex data
distributions across multiple modalities, including videos (Wan et al., 2025; Kong et al., 2024),
audio (Kong et al., 2020), 3D models (Zhao et al., 2025) and images (Esser et al., 2024b;a; Chen
et al., 2023). When trained on large-scale datasets, these models can synthesize realistic, high-
quality content, enabling transformative applications such as advanced video editing, intuitive 3D
modeling, and immersive environments. These models are powered by diffusion models, a type of
generative deep learning models that generate synthetic data by iteratively refining (or denoising) a
latent space representation of the data using a denoising function. In video generation, each video
is represented as a long sequence of embedding vectors that are progressively refined by a diffusion
transformer (DiT) (Peebles & Xie, 2023) before being decoded into video frames.

Even short, low-resolution videos yield extremely long embedding sequences. For example, a state-
of-art video DiT model, the Wan 2.1 1.3B (Wan et al., 2025), encodes a 5-second video at 720p
resolution into 74000 embedding vectors, requiring 5 minutes for video generation on an H100
GPU (the Wan 2.1 14B model requires over 25 minutes). The majority of this generation latency is
incurred by the attention layers of the transformer - 91% of the runtime for this example with Wan
2.1. Since attention scales quadratically with sequence length, higher resolution or longer videos
rapidly exacerbate latencies: generating a 10-second video at 720p requires twice as many embed-
dings, resulting in ∼ 4x the generation latency. Thus,the latency becomes increasingly dominated
by attention computation. For Wan 2.1 1.3B, attention layers take 76% of the overall latency to
produce 49 frames and 91% for 81 frames.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

It is well-known that the input to DiTs contains significant redundancy. Prior work show that many
query–key pairs yield negligible attention scores, and computing only a fraction of the full matrix
still produces perceptually valid videos (Xu et al., 2025; Li et al., 2025; Xi et al., 2025). As shown
in Fig.1, computing only 20% of the attention scores per head still produces a valid video with no
noticeable loss in quality. Note that the generated video frames are slightly different because the
denoising process is sensitive to small perturbations in early denoising iterations, but the diffusion
model still captures the same video distribution.

Several works exploit this redundancy to accelerate video generation: RadialAttention (Li et al.,
2025), X-Attention (Xu et al., 2025), and SparseVideoGen (Xi et al., 2025) observe that important
attention scores are concentrated in certain regions of the map, particularly near the diagonal, and
use static masks to skip redundant computation. However, since these methods skip a fixed subset
of scores at each head, they may also omit essential ones. To address this, Video Sparse Attention
(VSA) (Zhang et al., 2025e) instead infers the mask dynamically at runtime using additional pa-
rameters. These approaches typically rely on block sparse attention (section 3.2) as the underlying
sparse attention mechanism. Block sparse attention mechanisms (Guo et al., 2024; Ye et al., 2025;
Hong et al., 2023; Dao et al., 2022; Wang et al., 2024; Dong et al., 2024) divide the attention score
matrix into coarse tiles of size M×M (typically M=64) aligned to GPU tensor-core dimensions, for
M query tokens and M key tokens. A full tile of query–key dot products is skipped only if all scores
within it are predicted to be near zero.

We however observe that attention maps in diffusion transformers exhibit fine-grained sparsity:
many query–key products are near-zero even when others in the same block are not. Exploiting
this finer structure has the potential to substantially reduce FLOPs. For example, skipping 16 × 16
blocks of attention can reduce the required FLOPs by up to 70%, compared to only ∼ 15% with
64× 64 block sparsity, without noticeable degradation in video quality (see section 3.2). Similarly,
skipping 128 × 1 slices of can reduce FLOPs by as much as 55%. These observations demonstrate
that leveraging fine-grained sparsity in attention maps can unlock significantly larger reductions in
computation than coarse-grained block-sparse methods allow.

Figure 1: Left: A video frame from Wan 2.1 (Wan
et al., 2025) for the prompt “horse bending and
drinking water from a lake”. Right: The same
model generates a similar video using only 20%
of attention scores per head, achieving compara-
ble results with a fraction of the FLOPs.

Our goal in this work is twofold: (1) to design
a highly efficient sparse attention mechanism
that can skip attention score computations at
a finer granularity than block-sparse attention,
and (2) to introduce a lightweight method for
predicting which fine-grain subsets of attention
scores can be safely skipped, i.e, constructing
the sparse attention mask. To this end, we intro-
duce FG-Attn, an efficient fine-grained sparse
attention mechanism for diffusion transformers
that skips computing scores corresponding to
slices of size M×1 of the attention map, i.e., attention scores produced by one key and a group of M
contiguous queries. Implementing fine-grained sparse attention in modern GPUs is non-trivial: (i)
Fine-grained masks destroy the regular tiling structure expected by GPU tensor-core kernels, leading
to irregular memory access patterns that prevent coalesced loads. Relevant key/value vectors must
be gathered from non-contiguous locations, which can dominate runtime if handled naively. (ii)
Because tensor cores operate on fixed-size dense tiles, unstructured sparsity can leave much of the
hardware underutilized. (iii) Determining the sparse mask at a fine granularity requires reliably and
efficiently predicting the importance of individual M×1 slices without explicitly computing them.

For (i) and (ii), the kernel must fetch only the sparse subset of relevant key/value vectors for a group
of queries from high-bandwidth memory (HBM) and assemble them into the on-chip GPU shared
memory. in the exact tile format expected by tensor cores. We address this by introducing a new
asynchronous gather-load primitive, which gathers non-contiguous key/value vectors and repacks
them into swizzled tiles in shared memory. Because current GPUs lack hardware support such as a
Tensor Memory Accelerator (TMA) for indirect, sparse address generation, we emulate this func-
tionality using existing asynchronous load instructions. This address generation and data packing is
overlapped with attention computation to effectively hide the latency of irregular memory access.

For (ii), we propose two training-free strategies to identify the set of keys to load for a group of
queries. The first draws inspiration from caching techniques in diffusion inference: within each at-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tention head, query-key pairs with significant scores remain stable across denoising iterations. Thus,
in the first iteration we compute the full attention map, identify significant slices via thresholding,
and reuse this mask in later steps. The main limitation is memory overhead from storing cached
masks. To mitigate this, we introduce a second lightweight strategy: for queries q1, q2, . . . , qM , we
compute dot products only for keys likely to yield a significant score with the mean query qmean. In-
stead of evaluating all keys, we load only the top-k by score with qmean (section 4.3). This heuristic
is motivated by the observation that nearby embeddings often produce similar query distributions,
allowing accurate approximation with far fewer key computations.

We demonstrate that FG-Attn enables faster video and image generation without sacrificing the out-
put quality. On state-of-art generation models, we show that FG-Attn speeds up the video generation
time by up to 1.65× (1.48× on average). Our contributions are:

•We demonstrate that video diffusion models contain a significant amount of fine-grain sparsity in
their attention maps that are not leveraged by existing block sparse attention methods.

•We introduce the first slice-based sparse attention mechanism that can practically exploit fine-
grained sparsity on modern GPUs. To support this, we design a novel asynchronous gather-load
primitive, which efficiently assembles sparse key/value vectors into tensor-core-compatible tiles,
overcoming the overheads of irregular memory access.

•We demonstrate that sparsity patterns remain stable across denoising iterations, enabling a cache-
based thresholding strategy that avoids recomputation while preserving accuracy.

•We propose two lightweight strategies for sparse mask generation that operate entirely without
retraining. This ensures FG-Attn is directly applicable to existing state-of-art video DiTs.

•We show that our sliced attention mechanism can fully supersede existing block-sparse attention
methods in DiTs, achieving performance equivalent to or better than all prior coarse-grained ap-
proaches with negligible accuracy loss.

2 BACKGROUND

2.1 VIDEO DIFFUSION TRANSFORMER MODELS

Diffusion models are a class of deep learning models that fit the gradient of the log probability (score
function) of the data distribution xd, i.e., s(xd) = ∇xlog(pdata) using a parameterized model.
Latent space diffusion models fit the score function of the latent space representation of the data,
denoted by x. The latent space representation consists of embedding vectors that can be decoded
to or encoded from a data sample using an autoencoder. Fig. 2a shows how video can be encoded
into a sequence of embedding vectors using a variational autoencoder model, which are flattened to
form a single sequence of embeddings. Producing a video corresponds to drawing a sample from the
probability flow ODE dx = s(x)dt, where s(x) = ∇log(pdata(x)) is the fitted score function. This
ODE is solved numerically using integrators such as DPM-Solver (Lu et al., 2022), which iteratively
evaluate the score function to update the latent representation x. This iterative refinement, known
as denoising, generates videos by starting from a noisy vector that a transformer-based denoising
function progressively refines into into embeddings for clear video frames (Fig. 2b).

Flatten
VAE

Video Frames
Encoder Latent Space

Representation
Embedding
Sequence

(a) A set of noisy video frames are encoded into a se-
quence of latent space embeddings using a VQVAE.

Transformer Transformer

Clean Video FramesDenoised Video Frames

Embeddings
initialized with
random noise Decoder

(b) The diffusion transformer denoises the embed-
dings to generate clean video frame embeddings.

Figure 2: Latent space representation of video frames, represented as a set sequence of embeddings
and encoded using a VQVAE, can be denoised using a DiT to produce embeddings of clean frames.

2.2 GPU ARCHITECTURE BACKGROUND

A GPU consists of high-bandwidth memory (HBM) for global storage and an array of streaming
multiprocessors (SMs) for computation. Each SM provides shared memory (a fast on-chip scratch-
pad) and tensor cores for matrix operations. Efficient execution requires first staging tensor data

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

from HBM into shared memory, since directly operating from HBM is too slow. Once in shared
memory, tensor cores can process data while subsequent transfers are overlapped with computation.
Parallel programs are mapped to GPUs by dividing work into thread blocks. Each thread block con-
tains many threads, grouped into warps of 32. On Hopper-class GPUs (e.g., H100), four warps form
a warp group that can issue a matrix multiply–accumulate (MMA) instruction to efficiently utilize a
tensor core. (Figure and more details in Appendix B.)

Writing efficient GPU kernels. Efficient kernels keep the tensor cores continuously saturated by
overlapping data movement with computation. Best practices of achieving this is to divide threads
in a block into producers and consumers (at the warp group granularity in Hopper). Producer warp
groups load tensor data from HBM into shared memory, while consumer warp groups issue matrix
instructions to tensor cores. Producer warp groups must efficiently load data to ensure that the
consumer has sufficient data to keep the tensor cores fully utilized.
2.3 FLASHATTENTION FOR ACCELERATORS

Appendix section A discusses the basic attention computation. Efficient attention implementations
(FlashAttention (Dao et al., 2022)) fuse the attention score computation and multiplication of atten-
tion scores with values for fast execution. Fig. 3a depicts how flash attention is implemented in a
GPU. The kernel takes queries, keys, and values (Q,K,V) matrices as input, and produces output
matrix O. The queries, keys, values, and output tokens form a sequence of N tokens (gray bars), as
shown in the figure. The figure shows a set of output tokens highlighted in green, computed by the
threads of one block. This set of tokens is labeled Otile highlighted in red. To compute Otile, the
block first loads a corresponding set of queries Qtile into shared memory 1 . Then, the first set of
key and value tokens, Ktile 2 and Vtile 4 , is loaded into shared memory. This tile is used to com-
pute QtileK

T
tile using the tensor core 3 , followed by exponentiation to compute eQtileK

T
tile . This

result stored in registers is then multiplied by the corresponding Vtile using the tensor core 5 . The
result of the computation is added to Oreg, a slice of output in registers 6 . In the next iteration, the
next tile Ktile,Vtile in the sequence is loaded into shared memory, and computation is repeated 7 .
The sum over the exponents eQtileK

T
tile is also computed in registers to hold the denominator of the

softmax function (not shown in figure).
iteration

Key
Tokens

Value
Tokens

exp(QK^T)

Output

QK^T

: Vector to be skipped
: Vector

Output
Tokens

Query
Tokens

iteratio
n

2

4
5

7

7

3

1

6

(a) FlashAttention: tiles of keys, values are loaded into
shared memory. Tensor cores are used to compute a par-
tial sum of the output vector.

Iteration

Key
Tokens

Value
Tokens

exp(QK^T)

Output

QK^T

: Vector to be skipped
: Vector

Iteratio
n

Query
Tokens

0 3 55 66 8 9 1114

Sparse-Index
Mask

8
8

(b) FG-Attn: only relevant keys and val-
ues corresponding to indices in sparse in-
dex mask are loaded into shared memory.

Figure 3: Implementation overview of FlashAttention (Dao et al., 2022) and FG-Attn.

3 ANALYSIS

3.1 VIDEO GENERATION TIMES

Figure 4: Seconds spent by different opera-
tions in Wan 2.1 1.3B (eager mode).

Video-DiT models encode video frames into latent
embeddings using a vector-quantized VAE (VQ-
VAE), which compresses each spatiotemporal patch
of H×W pixels across F frames into a single vector
(e.g., H = W = 8, F = 4 maps every 8 × 8 block
over 4 frames to one embedding). A five-second
video at 480 × 832 resolution is thus represented
by ∼ 32,000 embeddings. Processing attention over

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

such long sequences requires massive computation, making attention the dominant cost even for
short videos. Fig. 4 breaks down this runtime by operator (“others” includes VQVAE encoding of
text tokens and initial noisy frames). The majority of time is spent in attention, which for a sequence
of length N scales as O(N2), unlike the feed-forward network (O(N)). As video resolution or
length increases, attention dominates even more: in Wan 2.1 1.3B, attention accounts for 91% of
runtime for 81 frames at 720p, compared to the already high 76% for 49 frames at 480p.

3.2 ATTENTION SPARSITY

Attention
Scores

0.0005

0.0004

0.00030.0003

0.0003

0.0001

0.0000

Q
u

er
y

To
ke

n
s

Key Tokens

Figure 5: Sparsity in attention computation: at-
tention scores are highly sparse and irregular.

Fig. 5 shows heatmap of the attention scores
in one attention head of the Wan 2.1 1.3B
vDIT model. We observe that the vast major-
ity of attention scores are close to zero, over
85% in this example. Thus, attention compu-
tation can be significantly accelerated by by-
passing these score computations. For sequence
length N and model dimension D, dense at-
tention costs O(N2D) floating-point operations
(see section A). If only a fraction ρ ∈ [0, 1] of
the N2 query–key pairs are retained (i.e., ρ is the
nonzero density, ρ = 1 − sparsity), the cost be-
comes O(ρN2D). Sparse attention mechanisms
such as FlexAttention Dong et al. (2024), block-

sparse attention Guo et al. (2024), and FlashAttention Dao et al. (2022) accelerate execution by
skipping redundant attention score computations. They avoid loading and computing pairwise q–k
dot products over contiguous blocks of queries and keys (typically 64 each). The block size M is
fixed by GPU tensor-core dimensions (e.g., 64×64 on H100), so skipping one block avoids M×M
dot products. To preserve accuracy, however, an entire block can be skipped only if all query–key
pairs in it yield negligible scores.

Table 1: Sparsity vs. block size: % of M × M
attention map blocks with all scores ≤ threshold.

Block size Sparsity TFLOPs
128× 128 5.5% 0.519
64× 64 22.8% 0.424
32× 32 47.7% 0.287
16× 16 70.7% 0.161

Sparsity in attention scores is fine-grained.
Table 1 reports attention map sparsity at dif-

ferent block sizes, measured as the fraction of
M ×M blocks with all scores below a thresh-
old of 0.5/N , where N is the sequence length.
Finer blocks (16 × 16) yield about 70% spar-
sity, while coarser blocks (64×64) achieve only
22%. This shows that finer granularity offers
much greater opportunity for speedup, yet existing block-sparse implementations cannot exploit
blocks smaller than 64× 64. Our work targets this gap by exploiting finer-grained sparsity to design
a more efficient attention mechanism that reduces FLOPs without loss of accuracy.

4 METHOD

Skipping
128x128 blocks

Skipping
128x1 slices

0.0005

0.0004

0.00030.0003

0.0003

0.0001

0.0000

Figure 6: Block sparse attention mech-
anisms skip tiles of 128×128 attention
map scores. We propose a method to
skip fine-grain 128× 1 sections.

In order to leverage fine-grained sparsity in DiTs, we must
(1) implement a fine-grained sparse attention kernel on
modern GPUs that skips computing slices attention scores
as shown in Fig. 6, and (2) identify the slices of the at-
tention map (mask) that can be skipped without sacrificing
accuracy. To this end, we introduce FG-Attn, an efficient
fine-grained sparse attention mechanism for DiTs. We now
discuss its implementation.

4.1 REPRESENTING
THE FINE-GRAIN SPARSE ATTENTION MASK

To implement FG-Attn, the attention mask must specify
which slices of scores to compute, i.e., the key/value vec-
tors required for each group of M queries. For each group

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of queries, we maintain an array of integer indices identi-
fying the keys/values to load from HBM for every attention
head. For B batches, H heads, N/M query groups, and
up to N keys, this mask is stored as a 4D integer array of shape [B,H,N/M,N]. The group size M
is chosen to match the tensor-core matrix multiplication unit, typically 64 or 128 on modern GPUs
(128 in our Hopper implementation).

4.2 FG-ATTN IMPLEMENTATION: GATHER-LOAD PRIMITIVE

In FlashAttention (Dao et al., 2022), a block of M queries Qtile and M contiguous keys Ktile are
loaded into shared memory and multiplied using tensor cores. On GPUs, these loads are accelerated
by the Tensor Memory Accelerator (TMA). In FG-Attn, we instead must gather M non-contiguous
keys (given by the sparse attention mask), pack them into a tile Krel, to compute QtileK

T
rel (8

in Fig. 3b). To do this efficiently, we introduce a new gather-load primitive, which loads sparse
key/value vectors from HBM into shared memory based on the attention mask. The corresponding
value vectors are loaded with the same indices, and tensor cores compute partial sums across tiles
until all relevant slices are processed. Loading sparse key/value vectors requires first computing the
addresses of elements specified by the sparse index mask before issuing the load. Efficient gather-
load requires (i) fast address generation for sparse indices and (ii) hiding this latency. We achieve
(i) by parallelizing index-to-address translation across threads in a warp group and (ii) by pipelining
(i.e., overlapping) the gather-load with attention computation.

Load indices to
shared memory

Shared
Memory

HBMIndices of vectors
to be loaded

Key/value
vectors

:Distribute
indices to
all threads

0 3 5 66 8 9 11 14

0 3 5 6 8 9 11 14

1

Distribute
indices to warps
2

:Thread
Warp
Group

Warp1 Warp2 Warp3 Warp4
0 3 5 6 8 9 11 14

3

3

3 33

Issue
async. load
4

Figure 7: Detailed diagram showing the implemen-
tation of gather + load operation.

Parallelizing address generation with the
sparse gather-load primitive. The gather-
load primitive takes an array of indices,
fetches the corresponding key/value vectors
from HBM, and assembles them as a contigu-
ous tile in shared memory. For each group
of M queries, only the relevant keys indi-
cated by the sparse mask are loaded (Fig. 7).
Indices are first cooperatively loaded into
shared memory 1 from HBM, then dis-
tributed across the four warps in a warp
group 2 . Each warp broadcasts its indices
to threads via warp-shuffle 3 , after which
threads compute addresses and issue asyn-
chronous loads to fetch the sparse vectors into shared memory 4 .

Consumer warp groups

Producer warp groups

Time

qk^t + softmax +
value comp.

load indices
to SHMEM

load indices
to registers

async load
keys/values

load indices
to SHMEM

load indices
to registers

qk^t + softmax +
value comp.

1 2

4 4

3

Figure 8: The address generation latency is
hidden by attention computation by having the
gath-load operation in the producer threads.

Overlap address generation latency with at-
tention computation. The latency of gen-
erating addresses from the sparse index mask
can be hidden behind attention computation. On
H100 GPUs, the producer warp groups load data
and consumer warp groups performs computa-
tion. Producers load query, key, and value tiles
into shared memory, while consumers compute
and accumulate partial sums (Fig. 8). At each it-
eration, the producer loads indices for M queries
from the sparse mask into shared memory 1 , moves them into registers 2 , and issues asynchronous
loads for the corresponding rows from global memory 3 . Meanwhile, the consumer computes at-
tention scores and outputs 4 , fully hiding address-generation and load latency.

4.3 DETERMINING THE SPARSE-INDEX MASK

Thresholding by caching attention mask across denoising iterations. To exploit fine-grained
sparsity, we need a mask that identifies which query–key slices produce significant attention scores.
A straightforward approach would be to recompute this mask at every denoising iteration, but doing
so requires evaluating all attention scores, eliminating much of the benefit. Prior work (Hu et al.,
2025; Ma et al., 2025) has shown that intermediate embeddings change little across iterations, sug-
gesting that the sparsity pattern is stable. Inspired by this, we cache the sparse index mask obtained

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

in one iteration and reuse it in subsequent ones (Fig. 10). At timestep t, the mask for each head is
taken from scores exceeding a threshold in the previous step (t−1). In practice, we compute the
mask once by evaluating full scores and marking slices with at least one score above τcached, then
store it in HBM per head for reuse.

Fig. 9 confirms mask stability for Wan 2.1 (Wan et al., 2025) 1.3B and 14B. We compare masks
across 5 denoising steps and measure the flip rate, i.e., the fraction of positions whose scores cross
τ between steps. For example, the 5–15 label shows the percentage of entries ≤ τ at step 5 but
> τ at step 15. Over 96% of scores remain below τ once they are below in the previous iteration,
demonstrating that the cached sparse mask is highly stable and can be reused efficiently.

90

92

94

96

98

100

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

M
as

k
Si

m
ila

rit
y

%

Pair of DiT Denoising Iterations

Slice size = 128
Slice size = 64
Slice size = 32
Slice size = 16
Slice size = 8

(a) Wan 2.1 (Wan et al., 2025) 1.3B.

90

92

94

96

98

100

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

M
as

k
 S

im
ila

rit
y

%

Pair of DiT Denoising Iterations

Slice size = 128
Slice size = 64
Slice size = 32
Slice size = 16

(b) Wan 2.1 (Wan et al., 2025) 14B.

Figure 9: % of attention scores that newly cross the threshold (i.e., differences in the sparse index
mask) between 5 denoising iterations. Shown for slice sizes 128×1, 64×1, 32×1, 16×1, and 8×1.

Transformer

Transformer

Transformer

FFN
Attention

FFN
Attention

FFN
Attention

FFN
Attention

FFN
Attention

same sparse
attention

mask

d
en

o
is

in
g

it

er
at

io
n

s

Figure 10: Determining attention mask
based on attention scores observed in
the previous denoising iteration.

Thresholding based on average-query. In the context of
video diffusion models, q1, q2, . . . , qM are query tokens
corresponding to adjacent pixels in space and time. Such
adjacent tokens typically exhibit similar responses com-
pared to their surrounding queries. Motivated by this ob-
servation, we propose a simple, lightweight strategy for
determining the attention mask. We compute the average
of a group of queries, qavg = (q1 + q2 + .. + qM)/M .
A key k is included if its dot product with qavg is sig-
nificant. We then apply a threshold over these aver-
aged scores. Specifically, the threshold τ is computed as
exp(k.qavg/

√
D)/D < τ1.

5 RESULTS

5.1 METHODOLOGY

We evaluate FG-Attn using the following open source,
widely available video models: (1) Wan 2.1 (Wan et al.,
2025) 1.3B, 14B models at 480p and 720p, at 81 frames,
and (2) HunyuanVideo 720p (Kong et al., 2024) at 720p.
81 frames. All experiments are conducted using bfloat16 precision. We implement CUDA kernels
for FG-Attn with the aid of device primitives from ThunderKittens (Spector et al., 2024) for a H100
GPU. To evaluate the quality of the videos generated, we use the VBench (Huang et al., 2024) VLM
benchmarking scores, alongside visual comparisons of frames from the generated videos. We test
two configurations of FG-Attn: one using the caching strategy to determine the mask (FG-Attn-
cached), and the other using the pooling strategy (FG-Attn-pooling). For the FG-Attn-cached strat-
egy, the threshold is set to 0.5/N , where N is the number of embedding vectors in the latent space
representation of the video. The attention mask is cached once every 15 DiT iterations. We compare
FG-Attn with two prior works that use block sparse attention to leverage sparsity in attention scores
in DiTs: Radial Attention (Li et al., 2025) and SparseVideoGen (Xi et al., 2025).

5.2 END-TO-END SPEEDUP

Fig. 11a shows the end-to-end speedup on video generation times, normalized to baseline. We
observe that FG-Attn is able to achieve an average speedup of 1.48× and up to 1.65×. FG-
Attn achieves a speedup as a result of accelerating the attention computation time during training.
Fig. 11b shows the average runtime needed to compute the attention of every layer, normalized to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the PyTorch implementation baseline. For the attention computation, FG-Attn achieves a speedup
of 1.93× on average, up to 2.38×. FG-Attn achieves a higher speedup when generating videos at
720p. Our approach achieves a higher speedup of 1.2× compared to SparseVideoGen (Xi et al.,
2025) and 1.22× compared to RadialAttention (Li et al., 2025). The observed speedup comes from
skipping a larger fraction of attention scores. However, this advantage diminishes at higher video
resolutions (720p compared to 480p). This is because, in self-attention, interactions between blocks
of embeddings that correspond to distant regions of the video are typically zero. As the resolution
increases, each embedding vector covers a smaller region of the input, leading to a greater number
of embeddings. This increases the proportion of zero-valued attention scores, which block-sparse
attention can skip. Consequently, while more scores are skipped, the relative speedup achieved by
FG-Attn decreases.

0

0.5

1

1.5

2

Wan 1.3B 480p Wan 1.3B 720p Wan 14B 480p Wan 14B 720p Hunyuan 720p GeoMean

Torch Baseline Baseline + Paddedattn

SVG Radial Attention

FGSpAttn-pooled FGSpAttn-cached

(a) Normalized video generation speedup.

0

0.5

1

1.5

2

2.5

Wan 1.3B 480p Wan 1.3B 720p Wan 14B 480p Wan 14B 720p Hunyuan 720p GeoMean

Torch Baseline Baseline + Paddedattn

SVG Radial Attention

FGAttn-pooled FGAttn-cached

(b) Normalized attention computation speedup.

Figure 11: End-to-End and attention computation speedup results for video generation models.

5.3 QUALITATIVE ANALYSIS

Table 2 shows the VBench (Huang et al., 2024) video benchmarking results when compared to the
baseline. On VBench, FG-Attn achieves negligible degradation in quality. The Appendix section C
show the visual representation of the produced video compared to the original (the top row of each
set of videos represents the baseline video) for the HunyuanVideo model, Wan 1.3B model, and the
Wan 14B model, respectively. We find that across all the prompts tested here, FG-Attn can recover
the original video with no quality degradation. FG-Attn also retains the generated video style and
does not significantly shift the distribution captured by the underlying model.

Table 2: Visual quality of the generated video evaluated using VBench Huang et al. (2024)

.

Aesthetic
Quality

Subject
Consistency

Background
Consistency

Overall
Consistency

Wan-1.3B 480p baseline 0.601 0.936 0.958 0.23
Wan-1.3B 480p FGAttn 0.605 0.939 0.96 0.23
Wan-1.3B 720p Baseline 0.61 0.944 0.962 0.233
Wan-1.3B 720p FGAttn 0.61 0.944 0.964 0.232
Wan-14B 480p baseline 0.623 0.953 0.97 0.25
Wan-14B 480p FGAttn 0.616 0.952 0.975 0.247
Wan-14B 720p baseline 0.621 0.945 0.969 0.248
Wan-14B 720p FGAttn 0.619 0.942 0.961 0.245
Hunyuan-13B 720p baseline 0.62 0.944 0.962 0.239
Hunyuan-13B 720p FGAttn 0.62 0.94 0.962 0.239

5.4 ABLATION STUDY

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 R
un

tim
e

FLOPs % (∝ 1-sparsity)

FG-Attn
TK Flash Attn
Flash Attn (Dao et. al,)

Figure 12: Normalized runtime of FG-
Attn’s sparse attention kernel vs sparsity.

Latency overheads of FG-Attn’s sparse attention
kernel. Fig. 12 shows the runtime of FG-Attn’s sparse
attention kernel under varying sparsity levels, normal-
ized to baseline dense attention. First, at 0% sparsity,
runtime of FG-Attn is within 5% of the dense attention
implemented in ThunderKittens (Spector et al., 2024).
Since FG-Attn is built on top of ThunderKittens’ dense
kernel, its gather-load address generation is effectively
hidden behind the attention computation. Second, the
runtime decreases linearly with sparsity. Thus FG-
Attn’s time complexity scales with FLOPs as O(N2D(1 − sparsity)), where N is the sequence
length and D is the model dimension (see section 3.2). Third, both ThunderKittens dense attention

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and FG-Attn ’s sparse kernel are 14% slower than FlashAttention as FlashAttention uses sophis-
ticated optimizations (e.g., ping-pong scheduling of softmax and tensor-core ops) to increase uti-
lization. Since we leave tensor-core scheduling unchanged, these optimizations can be adopted in
FG-Attn and narrow the performance gap.

Figure 13: Normalized attention com-
putation time at different thresholds.

Attention computation times on varying threshold.
Fig. 13 depicts the average attention computation time
for video generation as the threshold parameter is var-
ied. We sweep the threshold parameter from 0.1/N to
1/N , where N is the number of embedding vectors in
the latent space representation of the video. We observe
that across all video models, the attention computation A
higher threshold enables skipping a larger amount of com-
putation, thereby leading to a speedup.

5.5 BROADER APPLICABILITY

Table 3: Flux DiT: Attention and Gen-
eration Speedup.

Attn Gen.
Baseline 1X 1X
Padded Attn 1.4X 1.1X
FG-Attn-cache 1.77X 1.23X

Although we evaluate FG-Attn primarily on video diffu-
sion, the same techniques apply to any long-context dif-
fusion model. To illustrate, we apply FG-Attn to DiTs for
2048×2048 image generation. Table 3 reports end-to-end
runtimes and attention speedups, showing that FG-Attn
accelerates the Flux model by 1.23× over torch baseline.

6 RELATED WORK

Block-sparse attention. Several implementations of block-sparse attention (Guo et al., 2024; Dao
et al., 2022; Dong et al., 2024; Ye et al., 2025; Wang et al., 2024) propose coarse-grained mech-
anisms that skip entire tiles of attention scores, typically at 64 × 64 or 128 × 128 granularity in
half-precision. These methods have been widely adopted in LLM inference (Jiang et al., 2024; Xu
et al., 2025; Hong et al., 2023; Yuan et al., 2025; Gao et al., 2024). However, current block-sparse
methods cannot operate at smaller tile sizes: reducing block size either fails to compile or leads to
severe hardware underutilization due to tensor-core width constraints (section 3.2). For video dif-
fusion, Radial Attention (Li et al., 2025), X-Attention (Xu et al., 2025), STA (Zhang et al., 2025d),
SparseVideoGen (Xi et al., 2025), and SparseVideoGen2 (Yang et al., 2025) employ fixed sparsity
patterns based on empirical observations. SpargeAttention (Zhang et al., 2025b) predicts a mask
based on pooling blocks of queries and keys. Video Sparse Attention (VSA) (Zhang et al., 2025e)
and VMoBA (Wu et al., 2025) learn to predict the mask. All these methods, however, are limited to
coarse-grained block skipping. We directly compare against SparseVideoGen and Radial Attention
in section 5. Furthermore, trainable approaches such as VSA (Zhang et al., 2025e) can be reformu-
lated to generate masks compatible with FG-Attn, and are thus orthogonal and complementary.

Other techniques to accelerate video diffusion. SageAttention (Zhang et al., 2024b;a; 2025c;a),
use quantization uses quantization to speedup attention layers in transformers. Since quantiza-
tion and sparsity are orthogonal, FG-Attn can be applied on top of quantization-based approaches.
Caching-based approaches such as DeepCache Ma et al. (2024), TeaCache Liu et al. (2024) and
TaoCache (Fan et al., 2025) exploit temporal redundancy across denoising steps. These approaches
are orthogonal to our work and can be combined with FG-Attn for additional acceleration.

7 CONCLUSION

We introduced FG-Attn, a fine-grained sparse attention mechanism that skips redundant query–key
computations at slice-level granularity. By combining a hardware-efficient gather-load primitive
with lightweight, training-free mask generation strategies, FG-Attn enables practical exploitation of
fine-grained sparsity on modern GPUs. Applied to state-of-the-art video and image diffusion trans-
formers, FG-Attn achieves significant end-to-end acceleration with negligible quality loss. These
results demonstrate that fine-grained sparsity can be realized efficiently, providing a scalable alter-
native that subsumes block-sparse attention in DiTs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024a.

Patrick Esser, Michael S. M. Townsend, Sumith Kulal, Tim Dockhorn, Jonas Müller, Anastasiia
Alterovych, David Dehaerne, Peter T. H. Lu, Caner Hazirbas, Dominic Rampas, Robin Rom-
bach, Joachim D’Asaro, Daniel Watson, Daniel Voinea, Liezl Puzon, Y-Lan Boureau, and Fabian
Mentzer. Flux: A unified approach to pixel-based and latent-space diffusion models, 2024b.

Zhentao Fan, Zongzuo Wang, and Weiwei Zhang. Taocache: Structure-maintained video generation
acceleration. arXiv preprint arXiv:2508.08978, 2025.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in
your llms. arXiv preprint arXiv:2410.13276, 2024.

Junxian Guo, Haotian Tang, Shang Yang, Zhekai Zhang, Zhijian Liu, and Song Han. Block Sparse
Attention. https://github.com/mit-han-lab/Block-Sparse-Attention,
2024.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. arXiv preprint arXiv:2505.21467, 2025.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807–21818, 2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin
Yang, Jinbo Hu, Kelly Peng, et al. Radial attention: o(nlogn) sparse attention with energy decay
for long video generation. arXiv preprint arXiv:2506.19852, 2025.

10

https://github.com/mit-han-lab/Block-Sparse-Attention

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. arXiv preprint arXiv:2411.19108, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
free. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15762–15772, 2024.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Benjamin F Spector, Simran Arora, Aaryan Singhal, Daniel Y Fu, and Christopher Ré. Thunderkit-
tens: Simple, fast, and adorable ai kernels. arXiv preprint arXiv:2410.20399, 2024.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025.

Guoxia Wang, Jinle Zeng, Xiyuan Xiao, Siming Wu, Jiabin Yang, Lujing Zheng, Zeyu Chen, Jiang
Bian, Dianhai Yu, and Haifeng Wang. Flashmask: Efficient and rich mask extension of flashat-
tention. arXiv preprint arXiv:2410.01359, 2024.

Jianzong Wu, Liang Hou, Haotian Yang, Xin Tao, Ye Tian, Pengfei Wan, Di Zhang, and Yun-
hai Tong. Vmoba: Mixture-of-block attention for video diffusion models. arXiv preprint
arXiv:2506.23858, 2025.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. arXiv preprint arXiv:2502.01776, 2025.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu Li,
Chenfeng Xu, Kelly Peng, et al. Sparse videogen2: Accelerate video generation with sparse
attention via semantic-aware permutation. arXiv preprint arXiv:2505.18875, 2025.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customizable
attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageatten-
tion2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization. arXiv
preprint arXiv:2411.10958, 2024a.

Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageat-
tention: Accurate 8-bit attention for plug-and-play inference acceleration. arXiv preprint
arXiv:2410.02367, 2024b.

Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang,
Jun Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an
exploration of 8-bit training. arXiv preprint arXiv:2505.11594, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jintao Zhang, Chendong Xiang, Haofeng Huang, Haocheng Xi, Jun Zhu, Jianfei Chen, et al.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference.
In Forty-second International Conference on Machine Learning, 2025b.

Jintao Zhang, Xiaoming Xu, Jia Wei, Haofeng Huang, Pengle Zhang, Chendong Xiang, Jun Zhu,
and Jianfei Chen. Sageattention2++: A more efficient implementation of sageattention2. arXiv
preprint arXiv:2505.21136, 2025c.

Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, and Hao
Zhang. Fast video generation with sliding tile attention. arXiv preprint arXiv:2502.04507, 2025d.

Peiyuan Zhang, Haofeng Huang, Yongqi Chen, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing,
and Hao Zhang. Vsa: Faster video diffusion with trainable sparse attention. arXiv preprint
arXiv:2505.13389, 2025e.

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ATTENTION COMPUTATION

For a set of N queries q1,q2, ...qN, N keys k1,k2, ...kN and N values v1,v2, ...vN of dimension
D, the self-attention layer computes, at each attention head,

O = softmax
(
QKT

√
D

)
V (1)

Where Q,K,V are N ×D matrices consisting of query, key, and value vectors, respectively. O is
the output matrix of size N ×D. The time-complexity of computing attention grows quadratically
with the sequence size N , as O(N2D), resulting from computing a 2D matrix QKT matrix of
size N ×N . This 2D matrix, computed from the query, key matrices (Q,K) followed by a softmax
operation is referred to as the attention map. Each element of the attention map is called the attention
score. The expression for the attention map and attention scores (indexed by i, j) is given by:

softmax
(
QKT

√
D

)
aij =

eqikj∑N
n=1 e

qikn

The memory footprint when computing attention naively is O(N2), where N is the sequence length.
This is the result of computing and storing QKT (Eq. 1), which requires materializing an N × N
matrix for each attention head in memory. This becomes problematic when computing attention
for long sequences, with the size of this intermediary QKT matrix often exceeds the accelerator’s
HBM capacity. Efficient implementations of attention in GPUs (flash attention Dao et al. (2022))
avoids this high memory footprint by fusing the attention score computation and the multiplication
of attention map with the value matrix.

B GPU ARCHITECTURE OVERVIEW

Fig. 14 provides a high-level overview of modern GPU architecture. Tensor data is first transferred
from high-bandwidth memory (HBM) into the shared memory of streaming multiprocessors (SMs),
from which threads schedule computations on the tensor cores

Shared Memory

SM

Tensor Core

Registers
HBM

SM SMSM SMSM SM SM

SMSMSM SM SM

L2

GPU Chip Off-Chip
Memory

Figure 14: High-level view of modern GPU architecture.

Threads within a GPU thread block are divided into producers and consumers, as shown in Fig. 15.
Producer threads issue load operations to move data from HBM into shared memory, while consumer
threads schedule computations on the tensor cores using the fetched data. By overlapping these
operations, GPU resources remain efficiently utilized. This pipelined execution is illustrated in
Fig. 15.

:Thread

Time

Consumer
Threads

Consumer
Threads

Producer
Threads

Producer
Threads

Producer
Threads

Consumer
Threads

Compute

Load data
from HBM

Figure 15: Pipelined execution of producer and consumer threads: Data is prefetched by the pro-
ducer while the consumer threads are doing computation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C VIDEO DIFFUSION MODELS

Figs. 16, 17 and 18 show the visual representation of the produced video compared to the original
(the top row of each set of videos represents the baseline video) for the HunyuanVideo model, Wan
1.3B model, and the Wan 14B model, respectively.

Bigfoot walking in a snowstorm

A drone flying over a snowy forest

A horse running to join a herd of its kind

Figure 16: Samples of videos generated using baseline HunyuanVideo model, and FG-Attn-
HunyuanVideo (The baseline generates first row, second row generated using FG-Attn)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A bicycle accelerating to gain speed

Clown fish swimming though a coral reef

Ice cream melting on the table

Figure 17: Samples of videos generated using baseline Wan-1.3B model, and FG-Attn-Wan1.3B.
(First row is generated by the baseline, second row is generated using FG-Attn)

A motorcycle accelerating to gain speed

A person walking in a snowstorm

A person washing the dishes

Figure 18: Samples of videos generated using baseline Wan-14B model, and FG-Attn-Wan14B
(First row is generated by the baseline, second row is generated by FG-Attn)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D USE OF LLMS

In this work, LLMs were used to polish sections of the writing and to check grammar in the draft.
They also provided partial assistance in code development through extensions similar to GitHub
Copilot.

16

	Introduction
	Background
	Video Diffusion Transformer Models
	GPU Architecture Background
	FlashAttention for Accelerators

	Analysis
	Video Generation Times
	Attention Sparsity

	Method
	Representing the Fine-grain Sparse Attention Mask
	blackFG-Attn Implementation: Gather-load Primitive
	Determining the Sparse-Index Mask

	Results
	Methodology
	End-to-end Speedup
	Qualitative Analysis
	Ablation Study
	Broader Applicability

	Related Work
	Conclusion
	Attention Computation
	GPU Architecture Overview
	Video Diffusion Models
	Use of LLMs

