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ABSTRACT

Modern quantum annealers can find high-quality solutions to combinatorial opti-
misation objectives given as quadratic unconstrained binary optimisation (QUBO)
problems. Unfortunately, obtaining suitable QUBO forms in computer vision re-
mains challenging and currently requires problem-specific analytical derivations.
Moreover, such explicit formulations impose tangible constraints on solution en-
codings. In stark contrast to prior work, this paper proposes to learn QUBO forms
from data through gradient backpropagation instead of deriving them. As a re-
sult, the solution encodings can be chosen flexibly and compactly. Furthermore,
our methodology is general and virtually independent of the specifics of the tar-
get problem type. We demonstrate the advantages of learnt QUBOs on the di-
verse problem types of graph matching, 2D point cloud alignment and 3D ro-
tation estimation. Our results are competitive with the previous quantum state
of the art while requiring much fewer logical and physical qubits, enabling our
method to scale to larger problems. The code and the new dataset are available at
https://4dgv.mpi—-inf.mpg.de/QuAnt/.

1 INTRODUCTION

Hybrid computer vision methods that can be executed partially on a quantum computer (QC) are
an emerging research area (Boyda et al., 2017; Cavallaro et al., [2020; |Seelbach Benkner et al.,
2021} |Yurtsever et al.,[2022). Compared to classical methods, they promise to solve computationally
demanding (e.g., combinatorial) sub-problems faster, with improved scaling, and without relaxations
that often lead to approximate solutions. Although quantum primacy has not yet been demonstrated
in remotely practical usages of quantum computing, all existing quantum computer vision (QCV)
methods fundamentally assume that it will be achieved in the future. Thus, solving these suitable
algorithmic parts on a QC has the potential to reshape the field. However, reformulating them for
execution on a QC is often non-trivial.

QCYV continues building up momentum, fuelled by accessible experimental quantum annealers (QA)
allowing to solve practical (N P-hard) optimisation problems. Existing QCV methods using QAs
rely on analytically deriving QUBOs (both QUBO matrices and solution encodings) for a specific
problem type, which is challenging, especially since solutions need to be encoded as binary vectors
(L1 & Ghosh, 2020; [Seelbach Benkner et al., [2020; 20215 [Birdal et al., [2021). This often leads to
larger encodings than necessary, severely impacting scalability. Alternatively, QUBO derivations
with neural networks are conceivable but have not yet been scrutinised in the QA literature.

In stark contrast to the state of the art, this paper proposes, for the first time, to learn QUBO forms
from data for any problem type using backpropagation (see Fig. [I). Our framework captures, in
the weights of a neural network, the entire subset of QUBOs belonging to a problem type; a single
forward pass yields the QUBO form for a given problem instance. It is thus a meta-learning approach
in the context of hybrid (quantum-classical) neural network training, in which the superordinate
network instantiates the parameters of the QUBO form. We find that sampling instantiated QUBOs
can be a reasonable alternative to non-quantum neural baselines that regress the solution directly.
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Figure 1: We propose QuAnt for QUBO learning, i.e., a quantum-classical meta-learning algorithm that
avoids analytical QUBO derivations by learning to regress QUBOs to solve problems of a given type. We
first represent a problem instance as a vector p and then feed it into an MLP that regresses the entries of
the QUBO matrix A. We then initialise a quantum annealer with A and use quantum annealing to find a
QUBO minimiser and extract it as the solution x* to the problem instance. We define losses involving x™* that
avoid backpropagation through the annealing and backpropagate gradients through the MLP to train it. We
demonstrate the generalisability of QuAnt on graph matching, point set registration, and rotation estimation.

In particular, we show how a (combinatorial) quantum annealing solver can be integrated into a
vanilla neural network as a custom layer and be used in the forward and backward passes, which
may be useful in other contexts. To that end, we introduce a contrastive loss that circumvents the
inherently discontinuous and non-differentiable nature of QUBO solvers. Our method is compatible
with any QUBO solver at training and test time—we consider parallelised exhaustive search, sim-
ulated annealing, and quantum annealing. QUBO learning, i.e., determining a function returning
QUBO forms given a problem instance of some problem type as input, is a non-trivial and challeng-
ing task. In summary, this paper makes several technical contributions to enable QUBO learning:

1. QuAnt, i.e., a new meta-learning approach to obtain QUBO forms executable on modern
QAs for computer vision problems. While prior methods rely on analytical derivations, we
learn QUBOs from data (Sec. [3.1).

2. A new training strategy for neural methods with backpropagation involving finding low-
energy solutions to instantaneous (optimised) QUBO forms, independent of the solver

(Secs.[3.2]and 3.3).

3. Application of the new framework to several problems with solutions encoded by permu-
tations and discretised rigid transformations (Secs. [3.4]and [3.5).

We show that our methodology is a standardised way of obtaining QUBOs independent of the target
problem type. This paper focuses on three problem types already tackled by QCV methods relying
on analytical QUBO derivations: graph matching and point set alignment (with and without known
prior point matches in the 3D and 2D cases, respectively). We emphasise that we do not claim to
outperform existing specialised methods for these problem types or that QA is particularly well-
suited for them. Rather, we show that this wide variety of problems can be tackled successfully and
competitively by our general quantum approach already now, before quantum primacy. Thus, in the
future, computer vision methods may readily benefit from the (widely expected) speed-up of QC
through an easy and flexible re-formulation of algorithmic parts as QUBOs, thanks to our proposed
method. We run our experiments on D-Wave AdvantageS.1 (Dattani et al., [2019), an experimental
realisation of AQC with remote access. This paper assumes familiarity with the basics of quantum
computing. For convenience, we summarise several relevant definitions in the Appendix.

2 RELATED WORK

The two main paradigms for quantum computing are gate-based QC and adiabatic quantum comput-
ing (AQC). Our method uses quantum annealing, which is derived from AQC, and is not gate-based.
The predominantly theoretical field of quantum machine learning (QML) investigates how quantum
computations can be integrated into machine learning (Biamonte et al.l 2016} [Dunjko & Briegel,
2018; |IS1im et al., 2019 Havlicek et al., 2019} |Du et al.l [2020; Mariella & Simonetto, [2021}; |Kiibler
et al., 2021). Many QML methods assume gate-based quantum computers and define a quantum
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variational layer, i.e., a sequence of parametrised unitary transformations meant for execution on
quantum hardware (Mitarai et al., 2018). QML methods are often optimised using variants of the
backpropagation algorithm (McClean et al., [2018}; |Verdon et al., 2019; Beer et al., [2020). Quantum
variational models were recently applied to combinatorial optimisation (Khairy et al. 2020) and
reinforcement learning (Dunjko et al., 2016; Lockwood & Si, 2020). Instead of learning to regress
unitary transformation parameters for gate-based QC, we learn to regress QUBO forms for QA.

In contrast to gate-based machines, QAs can already solve real problems formulated as QUBOs
(Neukart et al., 2017; Teplukhin et al.,[2019j |Stollenwerk et al.,[2019; |Orus et al., |2019; Mato et al.,
2021} |Speziali et al., 2021). Recently, QCV has rapidly transitioned from theoretical considerations
(Venegas-Andraca & Bosel [2003; |Chin et al., 2020; Neven et al., 2008bjal) to practical algorithms
leveraging quantum-mechanical effects of quantum computers, ranging from image retrieval and
processing (Venegas-Andraca & Bosel 2003} [Yan et al.l 2016)), classification (Boyda et al., |2017;
Nguyen & Kenyon, [2019; Cavallaro et al., [2020; [Willsch et al., [2020; |Dema et al., [2020) and track-
ing (L1 & Ghoshl 2020} |Zaech et al.l 2022)), to problems on graphs (Zick et al.l [2015; [Seelbach
Benkner et al.| [2020; [Mariella & Simonettol |2021), consensus maximisation (Doan et al., [2022),
shape alignment Noormandipour & Wang| (2021); |[Seelbach Benkner et al.| (2021), segmentation
(Arrigoni et al.,|2022) and ensuring cycle-consistency (Birdal et al.l 2021; |Yurtsever et al.| 2022).

Many of these methods are evaluated on real quantum hardware, as both gate-based and QA ma-
chines can be accessed remotely (D-Wave Systems, [2022} |Rigetti Computing, [2022)).

We demonstrate the efficacy of our QuAnt approach on the applications of graph matching and point
set alignment where we compare against recent quantum state-of-the-art methods [Seelbach Benkner
et al.| (2020); \Golyanik & Theobalt (2020), respectively.

Another line of work in different domains concerns learning the best adiabatic quantum algorithm.
While some works (Pastorello et al.| 2021} [Pastorello & Blanzieri, |2019) develop an algorithm in-
spired by tabu search, our method uses a neural network to output a coupling matrix. Orthogonal
to our work, others train neural networks to solve problem-specific QUBOs (Gabor et al.| [2020).
Niiflein et al.| (2022) optimize a blackbox function by finding a QUBO as surrogate model. QML
on gate-based QC has been studied at length, but machine learning with QA remains largely under-
explored, with only a few exceptions (e.g., linear regression (Date & Potokl [2021) and binary neural
networks (Sasdelli & Chin, [2021))). In stark contrast to existing QCV methods with analytically
derived QUBOs (Li & Ghoshl [2020; [Seelbach Benkner et al., [2020; [2021}; Birdal et al., 2021)), our
approach enables more flexible and compact solution encodings.

QuAnt is also related to recent non-quantum approaches that aim to improve combinatorial optimi-
sation by seamlessly integrating deep learning and combinatorial building blocks as custom layers
and backpropagating through them (Ferber et al.||2020; Rolinek et al.| |2020; [Vlastelica et al.l [2020).
In this respect, ours is the first work that uses a quantum QUBO solver in neural architectures.

3 QUBO LEARNING APPROACH

We present a new meta-learning approach for regressing quadratic unconstrained binary optimisation
problems (QUBOs) suitable for modern quantum annealers (QA); see Fig.[I] While existing works
analytically derive QUBOs for different problems (Birdal et al.,[2021;|Seelbach Benkner et al.,|2020;
2021} Zaech et al.l 2022), we propose to instead learn a function that turns a problem instance into
a QUBO to be solved by a QA. Specifically, we train a multi-layer perceptron (MLP) that takes
a vectorised problem instance and regresses the QUBO weights such that the QUBO minimiser is
the solution to the problem. Note that we only specify the bit encoding of the solution but let the
network learn to derive QUBOs. Crucially, we show how training the MLP is possible despite
quantum annealing (like any QUBO solver) being discontinuous and non-differentiable.

3.1 QUBOS AND QUANTUM ANNEALING

Quantum annealing is a metaheuristic to solve A/P-hard problems of the form
argminge ¢ q 13n s'Js + b's, where s is a binary vector, J € R"*" is a matrix of cou-
plings, and b € R” contains biases (McGeoch, [2014). We can rewrite this as a QUBO:
argmin,c (o 13- X' AX, by substitutingx = (s +1,) and A = ;J+ 5 (J1,,+1,]J) + 1 diag(b).
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In quantum annealing, the binary n-dimensional vector x describes the measurement outcomes of n
qubits. Annealing starts out with an equal superposition quantum state of the qubits that assigns an
equal probability to all possible binary states {0, 1}"™. During the anneal, the couplings and biases
of A are gradually imposed on the qubits. The adiabatic theorem (Born & Fockl [1928)) implies that
doing so sufficiently slow forces the qubits into a quantum state that assigns nonvanishing probability
only to binary states that minimise the QUBO (Farhi et al., 2001). We then only need to measure
the qubits to determine their binary state, which is our solution x. For a more detailed description of
quantum annealing, we refer to prior computer-vision works (Seelbach Benkner et al., 2020; 2021}
Golyanik & Theobalt, 2020; [Li & Ghosh| [2020) and Appendix [Al

3.2 NETWORK ARCHITECTURE AND LOSSES

In this section, we describe the network architecture that takes as input a problem instance and re-
gresses a QUBO whose solution (e.g., obtained via quantum annealing) solves the problem instance.
For a given problem type, we require a problem description that is amenable to QUBO learning:
A parametrisation of problem instances as real-valued vectors p € R™, and a parametrisation of
solutions as binary vectors x € {0,1}". Since we use supervised training, we additionally need a
training set D = {(pg,X4)}., containing D problem instances p4 with ground-truth solutions X.

We use a multilayer perceptron (MLP) with L layers and H hidden dimensions, ReL.U activations
(except for the last layer, which uses sin (Sitzmann et al.,2020)), and concatenating skip connections
from the input into odd-numbered layers (except for the first and last layers). The input to the
network is a problem instance p, and the output is a QUBO matrix A: A = MLP(p).

We could now use a dataset of problem instances and corresponding A to supervise the MLP di-
rectly. However, this requires specifying how A is to be derived for a certain instance, which comes
with two downsides: (1) A problem-type-specific algorithm for analytically deriving instance-
specific A needs to be designed to generate enough training data {(pa, Ag)}5_,, which is non-
trivial, and (2) The binary parametrisation (x) of the solution space depends on the algorithm, which
can lead to more variables than intrinsically needed by the problem (e.g., if x needs to represent
one of k numbers, a one-hot parametrisation would have length n=k, while a binary-encoding
parametrisation would have length n=1og k). This is particularly problematic as contemporary
quantum hardware only provides a limited number of qubits. We thus choose to supervise A not
directly and, instead, supervise the solutions of the QUBO. This strategy tackles both issues as it lets
the network learn an algorithm compatible with the (potentially shorter) solution parametrisation.
Therefore, our method is easily applicable to new problem types, as we show in Secs. and

The regressed A defines a QUBO, which can be solved by any QUBO solver. But how can we, dur-
ing training, backpropagate gradients from the solution binary vector x through the QUBO solver
despite these solvers having zero gradients almost everywhere (Vlastelica et al.l 2020)? We cir-
cumvent this issue by exploiting a contrastive loss (c¢f. LeCun et al.| (2006, Eq. (10))) as follows:
We know the energy of the ground-truth solution % of the problem instance, namely X " Ax. If the
energy of the minimiser x* = x*(A) of the current QUBO is lower, then A does not yet describe
a QUBO that outputs the right solution. We, therefore, seek to push the energy of X lower while
pulling the energy of the minimiser x* up:

Lep = %' A% — x* T AX", (1)
which has a zero gradient if x* = X, as desired. Lg,, avoids backpropagation through x* and is even
compatible with automatic differentiation. It yields the following update for an entry of A, which
can then be further backpropagated into the MLP via the chain rule:

OLgp(A) 0x*(A)

0A,; ; 0A,; ;
where the last term comes from the dependency of x* on A via the QUBO solver. While intuitively
useful, we note that this term is zero “almost everywhere” (in the mathematical sense), and we

hence ignore it as it provides almost no information. Note that this is a common approximation
(e.g., auto-differentiation frameworks backpropagate through max(-) pooling in the same manner).

=2%;X; — 2x;Xj — 2 Ax*, 2)

Unfortunately, Lg,, alone would not prevent degenerate A, which have multiple solutions, including
undesirable ones. We, therefore, discourage such A that have more than one solution x*:

Lunique = _‘)A(TAf( - X+TAX+|a 3)
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where x* is the x that minimises x " Ax over {0, 1}" \ {x*}, and || is the absolute value operator.

In addition to these data terms, we found it helpful to regularise the network by encouraging sparsity

on all intermediate features of the MLP (Liu et al., |2015)):

1
Loy =Y ey el )
fer
where F is the set of all network layer outputs (except for the last layer). The total loss then reads:
L= Lgap + )\uniqueLunique + /\mlmelpa (5)

where we set Ayp = 107* and Aypigue = 1073 regardless of problem type.

3.3 QUBOS ON D-WAVE QUANTUM ANNEALERS

We can use D-Wave to solve any generated QUBO A, where A; ; € R describes the direction and
coupling strength between logical qubits ¢ and j. However, each physical qubit in the annealer is
only connected to a small subset of other physical qubits, which makes the regressed A not directly
compatible with the annealer. We tackle this issue by manually pre-determining a sparse connectiv-
ity pattern of the physical qubits and then masking out the other entries of A before solving, such
that the MLP focuses on only these sparse entries. For example, when x € R™ with n=8, we can
use D-Wave’s Chimera architecture, which is made up of interconnected Ky 4 unit cells
2019). (K44 is a complete bipartite graph with two sets of four qubits each.) Since n=8, we
can fit one problem instance into one unit cell, which allows us to anneal many problem instances in
parallel by putting them in different unit cells. This speeds up training and saves expensive time on
the quantum annealer. For larger problems with n=32, we can use D-Wave’s Pegasus architecture
(Boothby et al.|[2020), which has more interconnections (qubit couplings) between its K4 4 unit cells
than Chimera. We use four such unit cells per problem instance, following D-Wave’s pattern (Til).
See Fig. [ib] for an exemplary colour-coded qubit connectivity pattern of A.

Given our full method, we next show how it can be applied to three problem types, i.e., graph
matching, point set registration, and rotation estimation; see Appendix for further details.

3.4 GRAPH MATCHING

The goal of graph matching is to determine correspondences from k key points in two im-
ages or graphs; see Fig. 2] for an example. This can be formalised as a quadratic assignment
problem with a permutation matrix representing the matching (Seelbach Benkner et al.| 2020):

arg miny cp, X' Wx, where Py, is the set of permutation matrices, x = vec(X) € {0, 1}’€2 is

the vectorised permutation matrix, and W &€ RF**k* contains pairwise weights. Unfortunately, the
permutation constraint cannot be directly realised on the quantum annealer.

Instead, note that a permutation P : [k] — [k] is fully de-
fined by the sequence P(1), P(2),..., P(k). Our method
can use an efficient binary encoding for each entry of
this sequence, using only £ log k binary variables in total.
Note that not all vectors x € {0, 1}¥1°2¥ are valid permu-
tations. As an optional post-processing step, we can per-
form a projection to the nearest permutation with respect
to the Hamming distance in our binary encoding. Unless
stated otherwise, we do not apply this post-processing. (a) Source (b) Target

In addition to the solution parametrisation, we also need Figure 2: Example matching on four key
to design the problem description p. For real data, we points from the Willow dataset
use p = vec(W), where the diagonal contains cosine [2013). Corresponding points (same colours)
similarities between the feature vectors extracted with are found based on feature similarity.
AlexNet (Krizhevsky et al| [2012) pre-trained on Ima-

geNet (Deng et al.l |2009) of all key point pairs, and the off-diagonal follows the geometric term
from (Torresani et al., 2008}, Eq. (6)). For evaluation, we also introduce the synthetic RandGraph
dataset; it uses matrices of random distances D € R*** with entries D; ; € #(0,1) to define
Wi p(i)kj+P() = |Di,j — Dp(i),p(j)|- The MLP thus learns to compress the input matrix into
a much smaller QUBO.
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3.5 POINT SET REGISTRATION AND ROTATION ESTIMATION

In 2D point set registration, we are given two point sets with potentially different numbers of points
and no correspondences, and we seek to find a rotation angle that best aligns them. We follow
Golyanik et al. (Golyanik & Theobalt, 2020) and use the vectorised form of their input matrix to
represent a problem instance. We parametrise the solution space of x € {0,1}? by splitting the
output space [0, %ﬂ into 2° equally sized bins and consecutively indexing them with a 9-bit integer.

In 3D rotation estimation, we are given two 3D point clouds with known matches and seek to esti-
mate the 3D rotation aligning them. We represent a problem instance by the vectorised covariance
matrix of the two point clouds; 3D rotation is parametrised by Euler angles «, /3,y. We discretise
each angle into 2° bins, such that x € {0, 1}1°.

4 EXPERIMENTAL EVALUATION

We next experimentally evaluate QuAnt. Our goal is to show that it outperforms the previous quan-
tum state of the art. For reference, we also report comparisons against specialised classical methods.

Data. We evaluate graph matching on the Willow object dataset (Cho et al.l 2013)), which contains
labelled key points. We use k=4 randomly chosen key point pairs per image. We use 5640 images
for training, and test on 846 images. Both of the sets are obtained via pygmtools (ThinkLab,
2021). We also evaluate on our synthetic dataset RandGraph (see Sec. [3.4), with both k=4 and
k=>5. We evaluate 2D point set registration on the 2D Shape Structure dataset (Carlier et al., 2016)
providing 2D silhouette images of real-world objects. We treat the silhouette outlines as 2D points.
We use 500 shapes from various classes for training, and test on 50 shapes. For each shape, we apply
1000 (for train) or 100 (for test) different rotations of up to 60° and pick random pairs to generate
problem instances. For 3D rotation estimation, we evaluate on ModelNet10 (Wu et al.,|2015), which
contains CAD models of ten object categories. We proceed with point cloud representations of each
shape. We use 300 shapes from various classes for training, and test on 30 shapes from various
classes. For each shape, we apply 1000 different 3D rotations with angle ranges o,y € [—%777 %77]

and § € [— 1—187r, %77] and pick random pairs to generate problem instances.

Comparisons. We compare QuAnt to two baselines and specialised methods, depending on the
problem type. For all problem types, we demonstrate the power of using QUBOs compared to
the Diag baseline that regresses a diagonal QUBO matrix A (which is trivially solvable). While
this baseline ablates the QUBO itself, we also consider a more natural neural network baseline, i.e.,
Pure, that regresses the binary solution directly (there is no activation after the last layer) and uses an
£1-loss between the output and X instead of Lgyp and Lypique. At test time, we threshold the network
output of Pure at 0 to obtain binary vectors. For QuAnt, Diag and Pure variants, we experiment with
all combinations of the numbers of layers L € {3,5} and hidden dimensions H € {32, 78}.

We compare our graph matching results with the Direct baseline on Willow (Cho et al., [2013); we
directly solve the quadratic assignment problem given by W with exhaustive search, which provides
an upper bound for our method. We also compare against Quantum Graph Matching (QGM) (Seel-
bach Benkner et al.l 2020), to which we pass our input matrices W. For 2D point set registration,
we compare against the analytic quantum method (AQM) (Golyanik & Theobalt, |2020), which is an
upper bound for our technique since we take its vectorised QUBO as input, and against the classical,
specialised ICP algorithm (Lu & Milios| [1997). For 3D rotation estimation, we use Procrustes as a
classical specialised method, which is thus an upper bound for our (general) method.

Metrics. We measure accuracy of the graph matching solutions as the percentage of correctly recov-
ered permutation matrices. For 2D point set registration and 3D rotation estimation, we quantify the
difference between the known ground-truth rotations and the estimated rotations by their geodesic
distances (angles) in the rotation groups SO(2) and SO(3), respectively.

QUBO Solvers. For graph matching, we follow Sec. [3.3]to make our regressed QUBOs compatible
with the QA. Due to a restricted QA compute budget, we train and test with simulated annealing
unless stated otherwise. For the point cloud experiments, we regress dense A and use our exhaustive
search implementation at train and test time unless stated otherwise. When evaluating on the QA,
we rely on minor embeddings to make the regressed A compatible with the QA. Please refer to the
Appendix for the details.
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4.1 RESULTS

General Baselines. The quantitative results for graph matching, point set registration, and rotation
estimation are reported in Tables[I] [2] and[3] respectively. Across network sizes and all three problem
types, the results show that having a full, N"P-hard QUBO (ours) instead of only a diagonal QUBO
(Diag) is advantageous. We also find that the proposed method yields better results than Pure on both
point set registration and rotation estimation, although Pure yields better results for graph matching.

Table 1: Comparison to general baselines on graph matching. We report the accuracy (in %).

(a) RandGraph for k=4.
(b) Willow object dataset (Cho et al.,|2013) for k=4.

Ours Diag Pure Trained for 300 epochs with L=5, H—T8.

L=3, H=32 9 8 91

L=3, H=T78 30 18 96 Ours Diag Pure Direct
L=>5, H=32 11 11 89 69 53 90 97
L=5,H="78 49 43 96

Table 2: Comparison to general baselines on point set ~ Table 3: Comparison to general baselines on rotation
registration. We report averages of the mean errors estimation. We report averages of the mean errors

and their standard deviations over three runs. and their standard deviations over three runs.
Ours Diag Pure Ours Diag Pure
L=3,H=32 84+0.8 11.1+13 82412 L=3,H=32 59+30 54+10 79+05
L=3,H=78 72+11 83+0.7 934+1.9 L=3,H=78 41+£05 50+03 7.1 +0.1
L=5,H=32 86+0.5 109+12 93419 L=5,H=32 374+08 50£04 162+7.1
L=5H=78 68+03 7.7+0.5 11.3+45 L=5H=78 34+04 47+02 10.1+1.8

Specialised Methods. For reference, we compare QuAnt to methods specialised to a certain prob-
lem type. Since our approach is general, they mostly provide an upper bound for our performance.

We evaluate QGM (Seelbach Benkner et al., |2020) on several RandGraph instances. We confirm
their finding that strongly enforcing permutation constraints eventually retrieves the right permu-
tation as the sample with the lowest energy. However, using the analytical bound for the penalty
term leads to a success probability (i.e., the probability of getting the best solution across anneals)
smaller than random guessing due to experimental errors in the couplings. Next, we find that the
QUBOs of QuAnt are much smaller and better suited to be solved with a quantum annealer than
QGM’s. For RandGraph with k=5, our method needs 15 physical qubits while their baseline and
row-wise methods need 89 qubits on average and a chain length of four, and their Inserted method
needs, on average, 39 qubits and a chain length of three on D-Wave Advantage. Thus, our success
probability of 26% when evaluating on test data is orders of magnitude higher than Inserted’s 0.22%
(best in QGM). This shows how QuAnt improves over the quantum state of the art even though we
merely focus on the solution with the lowest energy across anneals, while they focus on the success
probabilities. We refer to Appendix [D]for a detailed evaluation. Table [Ib]confirms that Direct is an
upper bound to our approach.

Table [§] shows quantitative results for 2D point set popncode  Reore O QU o

matching without noise. AQM slightly outperforms 7N 7Y YN

QuAnt, which is expected as we take AQM’s QUBO pb: A X

as input; hence, its performance is an upper bound =7 ;" -y

for our method. Fig. [3|shows a qualitative example. ',w.;"'.
R |

As expected, quantitative results in Table [/|(with no
incorrect correspondences) show that classical, spe-
cialised Procrustes performs better than our general ~Figure 3: Test-time example inputs and outputs of
method on 3D rotation estimation. Note that our QuAnt trained for 2D point set registration.
technique yields better results than Procrustes under

test-time noise, as we discuss later in detail.

*> Classical
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4.2  ABLATION
We ablate Lypique and Lyyp in Table 4] For graph matching, we use RandGraph with £=4. We find
that removing either Lypique OF Liip leads to mixed results on graph matching and worse results in

almost all cases for points set registration and rotation estimation.

Table 4: Loss ablations. We report accuracy for graph matching (in %) and mean/median error otherwise.

Graph Matching Point Set Registration Rotation Estimation
W/0 Lunique | W/0 Lmip | Ours | w/0 Lunique w/o Lyip Ours W/0 Lunique | W/0 Lnip Ours
L=3,H=32 9 17.8/12.0 | 18.6/13.4 | 15.0/8.7 5.1/5.0 34730 | 34/3.0
L=3,H=1T8 30 29 30 155/8.0 | 21.8/17.0 | 145/17.7 2.9/3.0 4.6/50 | 42/4.0
L=5,H=32 14 6 11 18.1/11.7 | 19.0/7.7 9.0/4.6 34/3.0 25/20 | 23/2.0
L=5,H=T78 46 54 49 18.3/11.7 | 17.8/11.7 | 18.5/7.7 3.7/4.0 4.1/4.0 | 3.3/3.0

4.3 EVALUATION ON D-WAVE

By design, our QuAnt is agnostic to the type of QUBO solver used. After training with exhaustive
search, we compare how the performance on the test set differs under exhaustive search, SA, or QA.
The results in Fig.[da]show that the exact solutions of exhaustive search only slightly outperform the
less computationally expensive QA and SA. Moreover SA yields results very similar to QA.

g Epoch 0 Epoch 245 Epoch 450
InEs |22 1027 1 2 ]
. foa||3!) 1o i ]
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(a) Errors on rotation estimation. (b) Evolution of result (top) and coupling matrix (bottom).

Figure 4: (a) Histogram of errors for rotation estimation using exhaustive search (ES), quantum annealing (QA),
and simulated annealing (SA) at test time. The maximum error on the x-axis amounts to 59 and no methods
have higher errors than shown. (b) Evolution over different epochs of the Hamming distance between predicted
solutions and the ground truth (top), and coupling matrix when training our approach for graph matching
(bottom). (Top): The x-axis shows the Hamming distance. Blue indicates unprojected results, and red means
after projection to a permutation. We only project after training.

Next, we compare the test-time results of QA and SA (after training

the method with the same technique, QA and SA, respectively). 1able 5: QuAnt £L =5, H=T8)

See Table [5] for the results, both with and without projecting the ~©7 RandGraph (k=5) trained for
. . . . . . 450 epochs (QA or SA).

final binary solution to a valid permutation encoding during post- SA QA

pr.ocessing. Traiping Wi.th QA delivers better results than trfining Before projection 1018

with SA. We a.ttnbute FhlS to a b§tter second-best solution X used  ~Afier projection 24 36

by Lunique- While SA yields solutions x* that are comparable to QA,

its second-best solutions are worse than QA’s. We refer to the appendix for details. Unfortunately,

real-world compute resources for training with QA remain limited, as of this writing. We, therefore,

fall back on SA for larger-scale experiments in this work. However, Table 5] suggests that our results

could improve noticeably on QA.

4.4 FURTHER ANALYSIS

Training. Fig.[Ab]visualises how the instantaneous solution and A matrix evolve for graph matching.

Varying Problem Difficulty. We provide a more detailed analysis of the performance of our method
on point set registration for varying difficulty levels. Table[6|shows that a larger input misalignment
between the two point clouds worsens the results, as expected.
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Table 6: Interval analysis for point set registration with L=>5, H=78. We evaluate on point cloud pairs with
ground-truth angles uniformly sampled within the given intervals. We report the mean/median error in degrees.

angle interval 0-1% | 195 -29% | 24% -

™ ™ s ™ us ™
318 '418 418 '518 518 '618

mean / median | 4.0/1.9

5.1/2.6 6.4/3.0

79173.8 791/3.8 8.4/4.0

Robustness to Noise. We investigate the robustness
of our method and other approaches against input
noise at test time after training without noisy data.
We look at rotation estimation, where we randomly
pick a fixed percentage of points and randomly
permute their correspondences (among themselves).

Table 7: Robustness to varying amounts of in-
correct test-time correspondences in rotation es-
timation. We report mean/median error for L=3,
H=32. The first column specifies the percentage
of incorrect correspondences at test time.

. . , % | Ours | Procrustes | Diag | Pure
Table [/|contains results. The quality of QuAnt’s re- 039740 0.0/00 56760 81780
sults barely degrades with increasing noise levels, 1134/30!| 58/30 |57/60182/80
even for 20% of incorrect correspondences. QuAnt 5|34/3.0 | 25.7/13.0 | 6.0/6.0 | 82/8.0
already outperforms the classical Procrustes foreven 10 | 3.2/3.0 | 438/21.0 | 6.2/6.0 | 8.2/8.0
1% of incorrect correspondences, even though Pro- 19 | 3.5/3.0 1.64.7/58.0 | 62/6.0 | 82/8.0
% p ’ & 20 | 37/3.0 | 7531790 | 5.8/60 | 82/8.0

crustes also starts from the same covariance matrix.
We observe that the advantage of our method grows

with larger noise levels. QuAnt also consistently performs better than the general baselines, which

are similarly robust to increasing noise levels.

We next look at point set registration under input
noise at test time and after training without noise.
Here, we add uniform noise to one point cloud,
where the range of the noise is a percentage of the
maximum extent of the point cloud. Table [§] con-
tains the results. ICP, an iterative approach, is ro-

Table 8: Robustness to varying amounts of uni-
form noise in point set registration. We report
mean/median error for L=5, H=78 and the num-
ber of logical/physical qubits. The first column
states the range of the noise in % of the maximum

bust to the noise, gives highly accurate results and, extent of the point cloud. “}”: uncoupled qubits.

thus, outperforms the competing non-iterative ap-

. . . % Ours Dia Pure AQM
proaches. Since QuAnt takes as input the vectorised 8 58735 | 73/ fj 638759 4.3? 2.6
QUBO that AQM solves, AQM constitutes an upper 5| 64/33 | 7.0/52 | 7.0/6.1 | 4.5/2.9
bound for the performance of our approach. How- 101 65/3.3 | 84/52 | 7.1/65 ) 5.6/38
PR . 15| 72/35 | 95/59 |7.9/6.7 | 56/3.8
ever, QuAnt could, in principle, scale to 3D point 20 | 103/54 | 116/66 | 82/68 | 5.9/33
set matching while AQM’s solution parametrisation ~qupis | 9/14 ©/9) na 21/~55

severely inhibits scaling to larger problems. Finally,
QuAnt performs better than the general baselines.

5 DISCUSSION

Limitations and Future Work. As all learning-based approaches, QuAnt can perform worse on
problem instances that fall significantly outside the training distribution. While our general method
does not outperform classical methods specialised on certain problem types, we achieve perfor-
mance on par with hand-crafted QUBO designs used in state-of-the-art QCV methods. We achieve
this while greatly reducing the effort required for new problem types. For our point cloud experi-
ments, we rely on minor embeddings to transfer the regressed dense QUBOs to the QA. On existing
hardware, large minor embeddings can worsen the resulting quality noticeably. However, we only
need to embed a QUBO with nine logical qubits into 14 physical qubits. Although our focus is on
a general design, our core idea of learning QUBOs can be specialised to any given problem type by
designing a more specific network architecture and losses that capture priors for the problem type.

Conclusion. We showed that learning to regress QUBO forms for different problems instead of de-
riving them analytically can be a reasonable alternative to existing methods. We showed the gener-
ality of QuAnt on diverse problem types. Our experiments demonstrated that learning QUBO forms
and solving them either on a quantum annealer or with simulated annealing, in most cases, leads
to better results than directly regressing solutions. Moreover, QuAnt significantly outperformed the
previous quantum state of the art in graph matching and rotation estimation in the setting with noise.
We believe our work considerably broadens the available toolbox for development and analysis of
quantum computer vision methods and opens up numerous avenues for future research.
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APPENDIX

This appendix provides more details on adiabatic quantum computing in Sec.[A] We provide training
and implementation settings in Sec. [B] Further details on the problem description for graph match-
ing and a failure case are in Sec. [C| Sec. D] contains a deeper comparison with QGM (Seelbach
Benkner et al.| [2020) and Sec. |[E| compares SA and QA. In Sec. [, we provide further quantitative
and qualitative results on rotation estimation. Finally, Sec. [G|contains more details and experiments
on point set registration.

A QUANTUM COMPUTING BACKGROUND

A.1 QUANTUM ANNEALING IN DETAIL

As we have seen, quantum annealing is a metaheuristic to solve the N"P-hard Ising problem:

argmin s' Js+b's, (6)
se{-1,1}"

where s is a binary vector, J € R™*™ is a matrix of couplings, and b € R™ contains biases
(McGeoch| 2014). Here, we give a brief overview of how this fits in the framework of quantum
mechanics. D-Wave quantum annealers rely on magnetic fluxes in superconducting Niobium loops
(Orlando et al.l [1999). The direction of the current flowing through them can be modelled as a
qubit, i.e., as a two-dimensional, complex, normalised vector [1)) € C? in the Dirac notation. In
the so-called computational basis, the basis vectors correspond to the current flowing clockwise or
anti-clockwise. After measuring the state, the system will collapse to either basis state. The absolute
value of the complex-valued coefficients of the linear combination (probability amplitudes) is the
probability of each outcome after measurement (e.g., clockwise or anti-clockwise current). The state

n

space of n € N qubits can be expressed with the tensor product &) C? and is thus a 2" -dimensional
i=1
complex vector space. We need that many parameters because entangled states cannot be described
separately. If the two states |¢)) , |¢) corresponding to different physical systems (e.g., two niobium
loops or two atoms) can be described independent from each other, the whole system is described
by 1) ® |¢). Note that if every state could be decomposed this way, one would only need 2n
parameters.

The evolution of a quantum state [¢)) over time can be described with the time-dependent
Schrodinger equation:

0
HY) = s 10) ™

where the Hamilton operator H is a Hermitian Matrix describing the possible energies of the system,
7 is the imaginary unit, & is a constant, and ¢ denotes time. For adiabatic quantum computing, one
needs a problem Hamiltonian H p, where the eigenvector corresponding to the lowest eigenvalue is
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a solution to the particular Ising problem, and an initial Hamiltonian H; with an easy-to-prepare
ground state. The Adiabatic Theorem (Born & Fock, [1928) states that if we start with the ground
state of H; and take a sufficiently long time 7 to gradually change from H; to Hp, e.g., with:

H(t) = (1 - 2)H; + “Hp, ®)

then we end up in the ground state of Hp. From the latter, we can deduce the solution of the par-
ticular Ising problem. Simulating this whole process classically can be difficult (or even intractable)
because we are dealing with 2" x 2" matrices H; and H p, where n is the number of qubits. How
difficult the classical simulation is, depends on the exact form of the Hamiltonians. (Particularly
promising for speed-ups are, e.g., so-called non-stoquastic Hamiltonians (Albash & Lidar;, |2018)).)

A.2 LOGICAL AND PHYSICAL QUBITS

The QUBO defines the couplings between two logical qubits ¢ and j. Such a QUBO can contain
couplings between any two qubits. However, in contemporary hardware realisations, each physical
qubit is only connected to a few others (see Fig.[5aland Fig.[5b). In the main paper, we show how the
QUBO matrix A can account for this sparse connectivity pattern by setting entries between logical
qubits ¢ and j to O if the physical qubits ¢ and j have no connection. Still, D-Wave supports denser
connectivity patterns than what is implied by the hardware: Multiple physical qubits can be chained
together to represent a single logical qubit of x that has many connections. The physical qubits in
the chain will then have strong couplings along the chain to encourage them to all end up in the
same final state (either all O or all 1), representing the final state of the corresponding logical qubit.
This is formalised as a minor embedding (of the connectivity graph of the logical qubits) into the
connectivity graph of the physical qubits. Using the heuristic method of Cai and colleagues (Cai
et al.,[2014)) is popular to determine the minor embeddings in practice.
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Figure 5: Visualisation of qubit connectivities. (a) The connectivity pattern of the physical qubits in the Chimera
architecture. The unit cells (green boxes) have fewer interconnections than on Pegasus. (b) The connectivity
pattern of the physical qubits in the Pegasus architecture. Green, red, and yellow correspond to one problem
instance each. Images due to D-Wave (D-Wave Systems, Inc.).

B IMPLEMENTATION DETAILS

Our code, which we will release, is implemented in Pytorch (Paszke et al., 2019). We use
Adam (Kingma & Ba, 2014) with a learning rate of 10~ for training. For graph matching on
RandGraph with k=4, we use a batch size of 141 and train for 150 epochs, which takes about seven
hours. For RandGraph k=5, we use 450 epochs, which takes about 23 hours. For Willow, we train
for 300 epochs, which takes about 14 hours. The baselines are trained for the same number of
epochs. While Diag takes a comparable amount of time, the Pure baseline takes about three minutes
to train. For the experiments with k=5, we use 10~° as the learning rate.
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For the point cloud experiments, we use a batch size of 32 and train for 20 epochs, which takes
about four hours. We train Pure and Diag with the same batch sizes and epochs. The training of
the Diag baseline takes four hours as well, and Pure is trained within three hours. When solving
a QUBO on a QA, we anneal 100 times and pick the lowest-energy solution. We access the QA
via Leap 2 (D-Wave Systems}, [2022)) using the Ocean SDK (D-Wave Systems, Inc., 2022c). When
solving with SA, we use 100 iterations from the default neal SA sampler.

C GRAPH MATCHING

C.1 PROBLEM DESCRIPTION

Here, we describe the design of the problem description p for graph matching. We use p = vec(W),
where the diagonal of W contains cosine similarities between the feature vectors extracted with
AlexNet (Krizhevsky et al. [2012) pre-trained on ImageNet (Deng et al 2009) of all pairs of key
points. The off-diagonal follows the geometric term described in (Eq. (7)) from Torresani et al. @
resani et al.,[2008). In particular, we use the term W geor, from Eq. (7) from Torresani et al. (Torresani
et al.,[2008)) with minus signs in the beginning and in the exponential, and set n=0.98. The convex
combination with W 41x, Where the cosine similarities of the feature vectors are on the diagonal, is
then:

W = 7Wyex + (1 - 7')vaeom~ )

We choose 7=0.81 and 7n=0.98 such that the QAP often coincides with the ground-truth correspon-
dences (see Table[Tb] “Direct” from the main paper).

C.2 FAILURE CASE

We show a failure case of our method when applied to graph matching in Fig. |6l It occurs due to
large differences in the observed appearance.

(a) Source (b) Matching

Figure 6: Failure case for graph matching. We visualise the ground truth of an image pair. Here, our method
does not find the correct matching: Only the beak and neck are matched correctly, while the geometric infor-
mation for the other key points differs too strongly.

D DETAILED COMPARISON WITH QGM (SEELBACH BENKNER ET AL.,

2020)

Here, we compare our method with QGM (Seelbach Benkner et al.l [2020) in detail. Note that the
focus of both works differs. Their work focuses more on the probability distribution of the retrieved
solutions. Our work is more concerned with incorporating the quantum annealer into the training
pipeline. When training the neural network, Lg,, equation El uses the retrieved solution with the
smallest energy across anneals, while they are also interested in the success probabilities, i.e., the
probability to get the best solution across anneals.

The individual QUBOs occurring in our QuAnt framework are much easier to solve by the QA than
QUBOs that would arise in QGM (Seelbach Benkner et al, [2020). To show this, we compute the
average success probabilities of the various methods from QGM (Seelbach Benkner et al.| [2020)
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Table 9: Average success probabilities of different QGM variants (Seelbach Benkner et al.| [2020) over 141
problem instances on RandGraph compared to QuAnt with & = 5, in %.

Inserted Baseline Row-wise Ours
0.22 0.07 0.07 26

over 141 instances of RandGraph with k=5; see Table [0] We also apply QuAnt to these problem
instances. We solve the resulting QUBO with QA and find the average probability to be 26% with
a standard deviation of 18%), better than any method from the QGM paper (Seelbach Benkner et al.,
2020).

This difference is not surprising since we construct our method such that we only use trivial em-
beddings and do not need to apply the minorminer heuristic (Cai et al.l 2014). Because of that,
for RandGraph with £ = 5, our method needs only 15 physical qubits while their baseline and
row-wise methods need 89 qubits, on average, and a chain length of 4; their Inserted method needs,
on average, 39 qubits and a chain length of 3 on D-Wave Advantage. Note that a heuristic search
for better penalty parameters, as in Q-Sync (Birdal et al., 2021)), could give rise to better results for
the methods from QGM (Seelbach Benkner et al., [ 2020) in Table E} However, the corresponding
embeddings would still be problematic. Directly using the binary encoding for permutations (Gaitan
& Clark, |2014) requires additional qubits because the problem would a priori not be quadratic.

E SOLUTION QUALITY OF SA AND QA

In the main paper, we show that training with QA yields better performance than training with SA.
Here, we analyse the quality of the solutions found by both techniques further. Fig. [7] contains
histograms that depict the output of the quantum annealer and the two different simulated anneal-
ing solvers from neal (D-Wave Systems, Inc., 2022b) and from dimod (D-Wave Systems, Inc.,
2022a)). In contrast to the solver from dimod, neal is highly optimised for performance, so we
used it for our experiments.

We focus our analysis on the number of sweeps in SA, i.e., the number of steps in the ’cooling’
schedule. We observe that it strongly influences the quality of the second-best solution.
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Figure 7: Energy histograms of (ideally optimal) 10® samples for SA (different number of sweeps and dimod)
and QA on one instance of RandGraph with k=5 after 450 epochs training.

Table [10] illustrates this by averaging the fraction of the second-best energies over 141 instances
and analysing 1000 samples from different solvers. We see that the quantum annealer produces the
second-best samples with the lowest energies.

Note, however, that we do not claim that this is an intrinsic general advantage of QA over SA, but
merely that in our setting, QA outperforms SA. Still, prior work (Willsch et al., [2020)) also reaches
the conclusion that quantum annealing has much potential for finding reasonable near-optimal solu-
tions.

The dimod sampler also produces second-best solutions with low energies but is computationally
expensive (D-Wave Systems, Inc., [2022a). This is, perhaps, because many non-optimal solutions
are produced compared to the implementation from neal.
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Table 10: Second-best energies of SA relative (in %) to the second-best energies of QA. We report the mean
and std. deviation over 141 instances. The higher the better.

SA (neal), 10° sweeps SA (neal), 10 sweeps SA (dimod)
94.2+ 10.3 86.0 + 19 99.8 £0.9

F 3D ROTATION ESTIMATION

F.1 THREE STAGES (EULER ANGLES)

We obtain improved results when regressing three Euler angles one after another compared to direct
regression of three angles. Thus, we use one stage per angle, i.e., with one network per stage. The
training setup is as follows. We feed the first network with problem instances where «, 3, # 0.
The network then regresses ce. We feed the second stage network with problem instances, where
a = 0 and 3,7 # 0. Subsequently, the network regresses 3. Lastly, we feed the third network
with problem instances, where o, 3 = 0 and v # 0. Here it regresses . During test time, the first
network determines «, which is then applied to the input. The updated input is re-encoded before
the second stage, which outputs 3. Finally, with o and S applied already, the third stage regresses
~. Fig.[8]shows how the three different networks regress the angles and how the solution progresses
towards the final one.

W‘{;” w"im : N '-ﬁm;
LR

(a) Initial problem (b) Application of the (c) Application of the (d) Application of the
instance « rotation «, (3 rotations a, B, ~y rotations

Figure 8: Visualisation of the different steps of our rotation-estimation network. We show (blue) the original 3D
point cloud and (red) the rotated point cloud. The green points are points of the red point cloud with unknown
correspondences. Here, 10% of the correspondences are unknown.

F.2 VARIANCE ACROSS RUNS

To better judge the stability under different ran-  apje 11: Comparison to general baselines on rotation
dom seeds, we repeat the main experiment from  estimation. We report the mean of the per-experiment
the paper three times for our QuAnt method and  median and std. deviation across experiments for three
each baseline. In Table[IT} we report the mean different random seeds.

and std. deviation of the median. Here, similar

to the results from the main paper, we outper- Ours Diag Pure

form the Diag and Pure baselines in all but one _L=3, =32 60+36 53+11 70+£10

setting, [=3,H=73 4010 50£00 70£00
L=5H=32 37+12 504+£00 163172
L=5,H=78 37+06 50+£00 9.0+1.0

F.3 TRAINING ON NOISY DATA
Table [T2] shows how our method performs on
noise-free and noisy test data after training on noisy data. We observe that the noisy training data

appears to negatively affect the training and its performance drops, while Diag improves and Pure
remains unchanged.

F.4 QUALITATIVE COMPARISON ON NOISY TEST DATA

Fig. 0] visualises differences between our solution after training on noise-free data and Procrustes
alignment on a problem with noisy data (unknown correspondences).

18



Published as a conference paper at ICLR 2023

Table 12: Robustness to varying amounts of incorrect test-time correspondences in rotation estimation. We
report the mean/median error for L=3, H=32. The first column specifies the percentage of incorrect corre-
spondences at test time.

(a) Training without noise (b) Training with 10% incorrect correspondences

% | Ours | Procrustes | Diag Pure % | Ours | Procrustes | Diag | Pure
01{39/40| 0.0/0.0 5.6/6.0 | 8.1/8.0 01]44/40 0.0/0.0 4.6/5.0 | 8.1/8.0
11|34/3.0 5.8/3.0 5.7/6.0 | 82/8.0 1|43/4.0 5.8/3.0 5.1/5.0 | 83/8.0
5134/3.0|257/130 | 6.0/6.0 | 8.2/8.0 5150/50|257/130|5.1/50 | 82/8.0

10 | 3.2/3.0 | 43.8/21.0 | 6.2/6.0 | 8.2/8.0 10 | 5.2/5.0 | 43.8/21.0 | 52/5.0 | 8.2/8.0

15 1 3.5/3.0 | 64.7/58.0 | 6.2/6.0 | 8.2/8.0 151 52/5.0 | 64.7/58.0 | 5.0/5.0 | 8.2/8.0

20 | 3.7/3.0 | 753/79.0 | 5.8/6.0 | 8.2/8.0 20 | 5.6/6.0 | 75.3/79.0 | 49/5.0 | 8.2/8.0

e o i
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(a) Initial problem setting (b) Our solution (c) Solution by Procrustes

Figure 9: Comparison of initial input rotation, our method and Procrustes. The initial 3D point cloud is blue
and the rotated one is red, where the unknown correspondences are displayed in green. Here, 10% of the
correspondences are unknown.

F.5 COMPARISON TO AQM (GOLYANIK & THEOBALT) 2020]

QuAnt can estimate 3D rotations with known point matches. However, AQM (Golyanik & Theobalt,
2020) would require 81 densely connected logical qubits, which is not supported by the current
quantum-hardware generations. Hence, we cannot compare against AQM for this problem setting
and instead only compare to classical methods such as Procrustes.

G 2D POINT SET REGISTRATION

G.1 SETTING DETAILS

We encode the point set registration instances similar to Golyanik efr al. (Golyanik & Theobalt,
2020). As the correspondences between the template and the reference in point set registration are
not known, we use k-nearest neighbours to find possible correspondences. Our network is trained
with three nearest neighbours per each template point.

G.2 VARIANCE

In Table@ we report the mean median. Here, Table 13: Comparison of QuAnt to general baselines
we outperform the baselines in all cases. In ©0 point set registration. We report the mean of the
nearly all setups, we outperform the baselines per-experiment median and std. deviation across exper-
and only for Oné case, we are on par with thé iments for three different random seeds.

Pure baseline. Still, even in that case, QuAnt

] . . Ours Diag Pure
performs more consistently, as evidenced by its  —7—3"F—35 48+ 0.6 68+02 58+09
lower std. deviation. These experiments show ~7,—3 7—78 3.7 +03 51+04 48L03
that we consistently outperform the baselines L:5: H=32 46+01 71+t10 7J1+16
and the performance is not dependent on the ~L=5 H=78 34=+£01 49=+00 79+L27

random seed.
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Table 14: Robustness to varying amounts of uniform noise. We report the mean/median error for L=3, H=32.
The first column specifies the range of the added uniform noise, in %, of the maximum extent of the point
cloud.

% | Ours | Diag | Pure | AQM |
0| 74/42 | 11.3/70 | 78/6.6 | 43/2.6
51 67/3.8 | 11.7/7.3 8.0/6.8 45/29

10| 7.2/4.5 | 12.2/6.8 86/70 | 5.6/38

15| 82/4.9 | 12.6/6.8 9.7/8.0 5.6/3.8

20 | 11.0/6.0 | 139/82 | 143/104 | 5.9/3.3

G.3 NOISE

In addition to the experiments in the main paper that uses the largest architecture, we also test the
noise resistance on the smallest network setup with L = 3, H = 32; see Table Here, while
QuAnt is better than the baselines, we do not outperform AQM. However, by construction, AQM is
an upper bound for our method as the matrix introduced by Golyanik et al. (Golyanik & Theobalt,
2020)) is the same as our input into the network, but it gets directly solved by the QA.

G.4 QUALITATIVE ABLATION RESULTS

In addition to the quantitative loss ablation in the paper, we visualise the effect of the losses here.
In Figure@], the full loss results in a nearly ground-truth rotation. However, if we leave out Lg,, or
Ly p during training, a significant reduction in rotational accuracy is visible.

L)
Y
o
X
LA
Coety
‘e

®ees
8" e
o®
oo
o,
-
-

.
.
.
s0aee

*
SILITEM

.

(a) Initial problem (b) Ours with the full (c) Ours without Ly p (d) Ours without
instance loss Lunique

Figure 10: Qualitative loss ablations. We show the original point cloud (blue) and rotated point cloud (red).
Removing either Lypique Or Limip leads to significantly worse results.

G.5 FAILURE CASE

We continue our analysis with failure cases. Results in the main paper show that an increasing
input angle leads to a reduction in the accuracy of our regressed angle. This can be traced back
to our problem-instance encoding as Golyanik et al. (Golyanik & Theobalt, [2020) mention that an
increasing angle makes finding the correspondences more error-prone. Therefore, an imperfect input
encoding makes it is also more likely for us to regress wrong angles.

Similar to most prior work on point set registration, nearly symmetric shapes can be difficult, as
most points can be nearly perfectly aligned even with wrong rotations. Fig. [T1] contains such a
failure case. The initial angle of this problem instance, 50.8°, is relatively large for our setup, and
the shape (which looks like the silhouette of a fish) is nearly rotationally symmetric. In cases like
this, our method has difficulties regressing the correct rotation after a single QUBO sampling.
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(b) Failing to regress correct
rotation

Figure 11: Example of a failure case in point set registration. We show the initial image (blue) as well as the
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