Towards Realistic Earth-Observation Constellation Scheduling: Benchmark and Methodology

Luting Wang* Yinghao Xiang* Hongliang Huang Dongjun Li Chen Gao[†] Si Liu[†]

Beihang University

Abstract

Agile Earth Observation Satellites (AEOSs) constellations offer unprecedented flexibility for monitoring the Earth's surface, but their scheduling remains challenging under large-scale scenarios, dynamic environments, and stringent constraints. Existing methods often simplify these complexities, limiting their realworld performance. We address this gap with a unified framework integrating a standardized benchmark suite and a novel scheduling model. Our benchmark suite, AEOS-Bench, contains 3,907 finely tuned satellite assets and 16,410 scenarios. Each scenario features 1 to 50 satellites and 50 to 300 imaging tasks. These scenarios are generated via a high-fidelity simulation platform, ensuring realistic satellite behavior such as orbital dynamics and resource constraints. Ground truth scheduling annotations are provided for each scenario. To our knowledge, AEOS-Bench is the first large-scale benchmark suite tailored for realistic constellation scheduling. Building upon this benchmark, we introduce AEOS-Former, a Transformer-based scheduling model that incorporates a constraint-aware attention mechanism. A dedicated internal constraint module explicitly models the physical and operational limits of each satellite. Through simulation-based iterative learning, AEOS-Former adapts to diverse scenarios, offering a robust solution for AEOS constellation scheduling. Experimental results demonstrate that AEOS-Former outperforms baseline models in task completion and energy efficiency, with ablation studies highlighting the contribution of each component. Code and data are provided in https://github.com/buaa-colalab/AEOSBench.

1 Introduction

Agile Earth Observation Satellites (AEOSs) [32, 7, 21] have emerged as a transformative technology in remote sensing, enabling rapid and flexible monitoring of the Earth's surface. By operating cooperatively in constellations [44, 14, 40, 39, 42], multiple AEOSs can dramatically increase revisit frequency and broaden coverage beyond the capability of a single satellite. As shown in Fig. 1, the AEOS constellation scheduling problem seeks to optimally assign imaging tasks across satellites to maximize task completion while minimizing time and resource expenditure [15, 41], all within real-world constraints. Robust scheduling models empower faster and more informed decision-making for applications such as disaster response [5, 26], environmental monitoring [3], and resource management [33].

The challenge of AEOS constellation scheduling stems from three core factors. First, modern constellations may comprise dozens of satellites tasked with hundreds of imaging requests [1]. This

^{*}Equal contribution. Email: wangluting@buaa.edu.cn, xiangyinghao@buaa.edu.cn.

[†]Corresponding authors. Email: gaochen.ai@gmail.com, liusi@buaa.edu.cn.

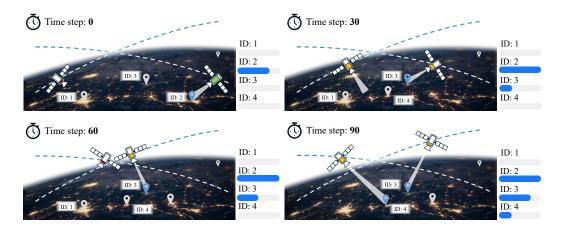


Figure 1: Illustration of AEOS constellation scheduling over four timesteps. At each timestep, satellites adjust their attitude to image ground targets, consuming battery energy while charging via solar panels. Tasks can be published or expired. Multiple satellites can cooperate to complete tasks.

scale renders exhaustive searches infeasible and strains both heuristic algorithms and reinforcement-learning methods [15]. Second, the operating environment is highly dynamic: new tasks can appear or expire at any moment, satellite positions and attitudes are continuously changing, batteries cycle through charge and discharge, and satellites may even join or leave the constellation. Scheduling algorithms must adapt on the fly without foreknowledge of these changes. Third, every assignment of tasks must respect strict constraints, such as the available battery energy, the sensor field of view (FOV), and the allowable time window for each task, or the imaging request cannot be fulfilled.

Any practical scheduling model must simultaneously scale to large constellations, adapt in real time, and respect every operational constraint. However, most existing methods compromise one or more of these goals. For example, REDA [15] is tailored to a fixed set of satellites and tasks under abstracted constraints, while EOSSP-RCS [23] targets small constellations. While effective on simplified benchmarks, their performance degrades sharply in realistic scenarios. Moreover, the absence of a common benchmark prevents fair comparison across scheduling models.

To bridge this gap, we present a unified framework for the AEOS constellation scheduling, comprising a standardized benchmark suite and a novel scheduling model. Our benchmark is built on a simulation platform powered by the Basilisk engine [19], which accurately models each satellite's orbital dynamics, attitude control, and other physical characteristics. We provide 3,907 satellite assets, each with fine-tuned control parameters to ensure stability during task execution. AEOS-Bench, our benchmark suite, is distinguished by four key features: 1) Large-Scale. AEOS-Bench includes 16,410 scenarios, each featuring 1 to 50 satellites, 50 to 300 imaging tasks, and 3,600 timesteps. 2) Realism. All scenarios are generated and evaluated on our simulation platform, ensuring physically accurate satellite behavior. The test split incorporates real satellite data from publicly available sources¹, enabling evaluation on authentic data. 3) Comprehensiveness. AEOS-Bench evaluates six metrics, including task completion rate, turn-around time, and power consumption. 4) Open-Accessible Data. Every scenario is annotated with ground truth assignments through a rigorous pipeline. All benchmark data and annotations are publicly accessible. To our knowledge, AEOS-Bench is the first large-scale benchmark for realistic AEOS constellation scheduling.

We further introduce AEOS-Former, a Transformer-based [28] scheduler engineered for AEOS constellations. At its core lies a dedicated internal constraint module that explicitly models each satellite's physical and operational limits, including sensor field of view, battery state, and attitude control time. By predicting a feasibility probability and minimal control time, this module produces a constraint-driven attention mask to guide scheduling. AEOS-Former begins by embedding static attributes (*e.g.*, orbital parameters, target location) and dynamic states (*e.g.*, current attitude, task progress). A transformer encoder ingests task embeddings to produce contextual task features. Concurrently, the decoder takes satellite embeddings and attends to the task features under the constraint

¹N2YO (www.n2yo.com) and Gunter's Space Page (space.skyrocket.de).

Table 1: Comparison of existing benchmarks.	Our AEOS-Bench incorporates 16k scenarios with
realistic physics simulator and ground truth ann	notations.

Setting	Benchmark	#Scene	#Sat	#Task	Traj. Len.	Phy. Sim.	Ann.
	Eddy <i>et al</i> . [8]	30	1	200~2000	500s	Х	Х
Single	Herrmann et al. [14]	45k	1	135	4.5h	\checkmark	X
Satellite	H-PPO [34]	5	1	$100 \sim 2000$	30m	×	X
	TRM-TE [23]	100k	1	$50 \sim 200$	-	X	×
Multiple Satellites	EHE-DCF [36]	8	10	200~1600	1h	Х	Х
	SFMODBO [30]	4	-	$50 \sim 200$	3h	×	X
	SatNet [11]	5	$29 \sim 33$	$257 \sim 333$	168h	×	X
	REDA [15]	1	324	450	100m	×	X
	AEOS-Bench (Ours)	16k	$1\sim 50$	50~300	1h	\checkmark	\checkmark

mask, yielding an assignment matrix. To extend beyond purely supervised learning, AEOS-Former is integrated in a simulation-based iterative learning loop. After pretraining on AEOS-Bench annotations, it is deployed in our simulator to explore random scenarios. Schedules exceeding a preset performance threshold are merged back into AEOS-Bench for retraining. Through iterative cycles of constraint-driven attention and simulator-guided exploration, AEOS-Former converges on high-value scheduling strategies that generalize across diverse scenarios.

To evaluate the effectiveness of AEOS-Former, we conduct a series of comparison experiments against several baseline models, using six metrics that encompass task completion, timeliness, and energy efficiency. On the val-unseen split, AEOS-Former achieves a completion rate of 35.42%, with a power consumption of only 68.99 Wh, outperforming the baseline (35.35% completion rate and 140.83 Wh power consumption). Moreover, AEOS-Former surpasses all baselines across all splits in terms of the comprehensive score. Ablation studies further confirm the contribution of each component in AEOS-Former. By providing the AEOS-Bench and AEOS-Former, we hope this work will inspire novel methods in AEOS constellation scheduling.

2 Related Work

To solve the constellation scheduling problem, researchers have developed various benchmarks and methods. Methods can be broadly classified as optimization-based or neural-network-based.

Benchmarks. As summarized in Tab. 1, most existing benchmarks for multi-satellite scheduling include fewer than 10 scenarios, limiting their diversity and generalizability. In contrast, AEOS-Bench offers 16,410 diverse scenarios. Unlike prior benchmarks, AEOS-Bench further leverages a high-fidelity simulation platform with expert-generated ground truth annotations. These features ensure both realistic constrains and reliable evaluation metrics for real-world applicability.

Optimization-based Methods. Early studies rely on exact solvers to optimize satellite assignments. Lemaître *et al.* [21] adopt a constraint programming framework for agile satellite scheduling. Sin *et al.* [27] uses sequential convex programming to accelerate target acquisition. Although these methods guarantee optimality, their computational cost escalates sharply with the problem scale. Subsequent heuristic methods aim to improve scalability [31, 6, 12, 37, 38, 25]. HAAL [16] balances performance and runtime via handover-aware task allocation. MSCPO-SHCS [9] employs a stochastic hill-climbing strategy for timely assignment optimization. Other approaches include Ant Colony Optimization [17], evolutionary algorithm [10], and genetic algorithm [2]. While these methods offer faster runtimes, their performance diminishes with large-scale or dynamic scenarios.

Neural-Network-based Methods. The robust fitting capabilities of neural networks have driven breakthroughs across diverse domains [4, 20, 22], including constellation scheduling [35, 43]. Hermann *et al.* [13] formulates the problem as a Markov decision process (MDP) and adopts reinforcement learning for scheduling. Pointer Networks [29] provide a sequence-to-sequence formulation for combinatorial assignments. EOSSP-RCS [23] proposed a Transformer-based encoder–decoder architecture with temporal encoding model and achieved relatively good performance. Infantes *et al.* [18] adopts GNN and Deep Reinforcement Learning to the Earth Observation Satellite Planning problem with very competitive performance. REDA [15] combines multi-agent RL with

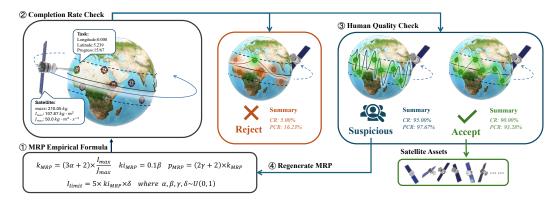
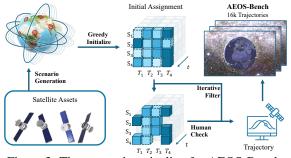



Figure 2: The generation process of satellite assets, which incorporates an empirical formula and multiple checks to ensure stable attitude control for each asset.

polynomial-time greedy solvers to balance assignment quality and speed. Despite promising results, many of these methods simplify key physical constraints. In contrast, our AEOS-Former integrates an intrinsic constraint module that explicitly enforces physical and operational limitations, substantially improving the feasibility and fidelity of generated schedules.

3 The AEOS-Bench Suite

In this section, we first define the problem setup of AEOS constellation scheduling. Next, we describe the process of generating satellite assets and ground truth scheduling annotations for AEOS-Bench. Finally, we provide an analysis of AEOS-Bench.

3.1 Problem Setup

Figure 3: The annotation pipeline for AEOS-Bench.

Scenario Modeling. To capture the essential physics that determines task feasibility, we model each satellite as a composition of four core subsystems: orbital dynamics, attitude control, power system, and sensor payload. Satellites occupy low-Earth orbit (LEO), with parameters like orbital elements, mass properties, and moments of inertia sampled uniformly from representative ranges (details in Appendix C). Attitude control employs the Modified Rodrigues Parameters (MRP) formalism, with control gains and acutator limits specified per satellite in Sec. 3.2. We collect the satellite characteristics into a matrix $\mathbf{S}^s \in \mathbb{R}^{N_S \times d_S^s}$, where N_S denotes the number of satellites and d_S^s the feature dimension. Imaging tasks arrive dynamically, each defined by a release time, due time, required observation duration, and the ground-target coordinates. These task descriptors form a matrix $\mathbf{T}^s \in \mathbb{R}^{N_T \times d_S^s}$, with N_T tasks and d_T^s task attributes.

Action Space. We adopt a two-tier action abstraction to separate high-level scheduling from low-level control. The low-level action space comprises power-on/off commands and attitude-pointing directives, which are dispatched directly to the Basilisk engine to simulate battery cycling, sensor activation, and MRP-based attitude maneuvers. While this affords maximal control flexibility, it imposes excessive complexity on scheduling models. Instead, our high-level action space consists of task-assignment commands. The scheduler outputs an assignment vector $a = [a_1, a_2, \ldots, a_{N_S}]$, where each $a_i \in \{0, 1, \ldots, N_T\}$. A value of $a_i = 0$ directs satellite i to power down its sensor, while any $a_i > 0$ instructs it to activate the sensor and reorient to service task a_i . The platform automatically converts these high-level assignments into low-level commands, allowing scheduling models to concentrate purely on task selection and timing.

Constraints. Real-world AEOS constellation scheduling is governed by multiple constraints. We enforce 5 constraints in our platform: dynamics, energy, FOV, continuity, and time window (de-

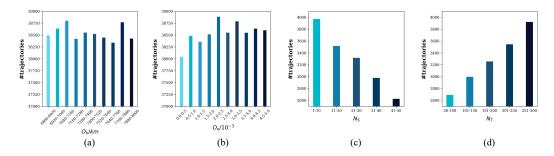


Figure 4: Statistical analysis of AEOS-Bench. (a) and (b) show the distribution of trajectories w.r.t. the semi-major axis and eccentricity of satellite orbits, respectively. (c) and (d) illustrate the distribution of trajectories w.r.t. the number of satellites and tasks, respectively.

tails in Appendix C). Any high-level assignment that violates these constraints is rejected by the simulator, and only successful observations are recorded for downstream benchmarking.

3.2 Data Collection

The attitude control system in our simulation platform uses the MRP method, whose performance relies on several key parameters: control gains and actuator limits. These parameters govern the speed and precision that a satellite can adjust its attitude. Low control gains result in slow attitude adjustments, while overloaded actuators can destabilize the satellite, risking task failures. To ensure dependable performance under these conditions, we repeat the cycle in Fig. 2 until we accumulate 3,907 satellite assets, each proven to deliver reliable on-orbit performance.

While our platform supports closed-loop simulation, training scheduling models from scratch via simulator roll-outs is computationally expensive. To bootstrap learning, we curated AEOS-Bench: a large dataset with constellation scheduling annotations. As shown in Fig. 3, each AEOS-Bench scenario begins with a distance-based initialization. While simple and intuitive, this method often assigns tasks that lie too close to the satellite, leading to attitude control failures. Therefore, we introduce the iterative filter stage and human quality review. Through this process, AEOS-Bench delivers reliable scheduling data for training schedulers.

3.3 Data Analysis

We partition AEOS-Bench into four splits. The train split consists of 16, 218 trajectories with 2, 907 satellite assets. The val-seen split includes 64 scenarios using the same satellites as the train split. The val-unseen split features 64 scenarios with 500 satellites not present in the train split. The test split contains 64 scenarios with 500 satellites, each having realistic properties sourced from the web.

As shown in Fig. 4, the orbital parameters of each satellite asset follow an approximately random distribution within specific ranges. Scenarios with smaller constellations or a larger number of tasks are more frequent in AEOS-Bench. This may be because generating high-quality assignments is easier when there are fewer satellites and more tasks.

4 The AEOS-Former Model

This section begins with the dynamic data processing pipeline in Sec. 4.1. Next, Sec. 4.2 introduces our internal constraint module for the prediction of feasibility and control time. In Sec. 4.3, we detail the transformer-based satellite—task matching architecture. Finally, Sec. 4.4 presents our simulation-driven iterative learning pipeline. The architecture of our AEOS-Former is demonstrated in Fig. 5.

4.1 Dynamic Data Processing

As demonstrated in Sec. 3.1, each scenario in the AEOS-Bench is defined by a static satellite matrix S^s and a static task matrix T^s , which capture time-independent properties. Dynamic properties, such as task progress and satellite attitude, are not contained within these static matrices. Enabling

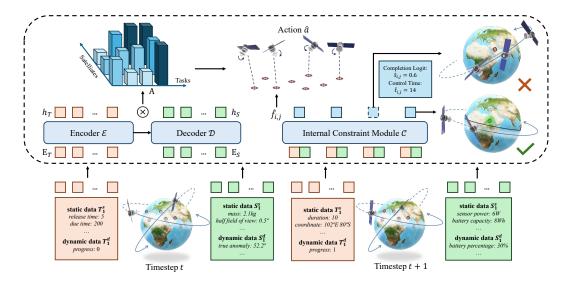


Figure 5: Architecture of AEOS-Former. Static and dynamic data of satellites and tasks are first concatenated and embedded. A transformer encoder processes task features, and a decoder attends to satellite embeddings under a constraint-derived cross-attention mask. The internal constraint module then predicts feasibility logits and required control times, guiding action selection.

the scheduling model to infer dynamic states from static properties and past decisions would substantially increase complexity without clear benefit. Instead, we query our simulator at each timestep to retrieve the current dynamic satellite and task properties.

The full input matrices are formed by concatenating static and dynamic components:

$$\mathbf{S} = \left[\mathbf{S}^s; \mathbf{S}^d\right] \in \mathbb{R}^{N_S \times d_S}, \qquad \mathbf{T} = \left[\mathbf{T}^s; \mathbf{T}^d\right] \in \mathbb{R}^{N_T \times d_T}, \tag{1}$$

where $\mathbf{S}^d \in \mathbb{R}^{N_S \times d_S^d}$ is the dynamic satellite matrix, $\mathbf{T}^d \in \mathbb{R}^{N_T \times d_T^d}$ is the dynamic task matrix, $d_S = d_S^s + d_S^d$, and $d_T = d_T^s + d_T^d$.

To embed temporal context into AEOS-Former, we incorporate a sinusoidal time embedding \mathbf{E}_t at the current timestep t. Task release and due times are converted into relative time offsets w.r.t. t. Finally, we normalize both \mathbf{S} and \mathbf{T} using statistics computed over the entire AEOS-Bench dataset.

4.2 The Internal Constraint Module

To explicitly model the constraints inherent in our platform, we introduce an internal constraint module C. For a satellite-task pair (i, j), C predicts the feasibility of satellite i performing task j:

$$\hat{f}_{i,j} = \mathcal{C}([\mathbf{S}_i; \mathbf{T}_j]), \quad 1 \le i \le N_S, \quad 1 \le j \le N_T,$$
 (2)

where $\hat{f}_{i,j} = \begin{bmatrix} \hat{s}_{i,j} & \hat{t}_{i,j} \end{bmatrix} \in \mathbb{R}^2$ comprises two components: $\hat{s}_{i,j}$ is the predicted logit indicating the feasibility of satellite i completing task j, and $\hat{t}_{i,j}$ is the estimated time for attitude adjustment.

Ideally, ground truth labels $s_{i,j} \in \{0,1\}$ would be available to supervise $\hat{s}_{i,j}$. However, in AEOS-Bench, many tasks are accomplished through the collaboration of multiple satellites, making it challenging to attribute task completion to individual satellites directly. Determining $s_{i,j}$ would necessitate dedicated simulations, which are computationally intensive.

To address this, we define an approximate label $\tilde{s}_{i,j} \in \{0,1\}$, which can be easily obtained from AEOS-Bench. We set $\tilde{s}_{i,j} = 1$ if satellite i contributed to task j for at least n consecutive timesteps and the task is completed in the trajectory. The loss function is defined using binary cross-entropy:

$$\mathcal{L}_{s} = \frac{1}{N_{S} N_{T}} \sum_{i=1}^{N_{S}} \sum_{j=1}^{N_{T}} BCE(\hat{s}_{i,j}, \tilde{s}_{i,j}).$$
 (3)

To further guide C in internalizing constraints, we introduce time supervision. If $\tilde{s}_{i,j} = 1$, we denote $\tilde{t}_{i,j}$ as the minimal time offset Δt from the current timestep t such that satellite i begins continuous

contribution to task j. The corresponding loss function is:

$$\mathcal{L}_{t} = \sum_{i=1}^{N_{S}} \sum_{j=1}^{N_{T}} \tilde{s}_{i,j} \cdot \text{MSE}(\hat{t}_{i,j}, \tilde{t}_{i,j}) / \sum_{i=1}^{N_{S}} \sum_{j=1}^{N_{T}} \tilde{s}_{i,j}.$$
(4)

This dual supervision strategy enables \mathcal{C} to learn both the feasibility and temporal aspects of satellite-task assignments, effectively capturing the constraints present in AEOS-Bench scenarios.

4.3 Satellite-Task Matching

To match satellites with tasks, we employ an encoder-decoder architecture that jointly processes satellite and task embeddings, guided by our internal constraint module.

First, we project S and T into embedding space and append a sinusoidal timestep embedding E_t :

$$\mathbf{E}_S = [\mathcal{E}_S(\mathbf{S}); \mathbf{E}_t], \qquad \mathbf{E}_T = [\mathcal{E}_T(\mathbf{T}); \mathbf{E}_t], \tag{5}$$

where \mathcal{E}_S and \mathcal{E}_T are the embedding modules. Categorical data (e.g., sensor modes) are looked up in embedding matrices, while continuous ones (e.g., mass, progress) use linear projections.

We encode task features with a transformer encoder \mathcal{E} : $h_T = \mathcal{E}(\mathbf{E}_T)$. Then, we decode satellite features via a transformer decoder \mathcal{D} , attending to tasks under a mask \mathbf{M} : $h_S = \mathcal{D}(\mathbf{E}_S, h_T, \mathbf{M})$. The cross-attention mask $\mathbf{M} \in \mathbb{R}^{N_S} \times N_T$ is derived from the constraint logits: $\mathbf{M}_{i,j} = w \times \hat{s}_{i,j} + b$, with w, b initialized to 0 for stable training. We compute an assignment score matrix \mathbf{A} :

$$\mathbf{A} = h_S \cdot [h_{\phi}; h_T]^{\top} \in \mathbb{R}^{N_S \times (1+N_T)}, \tag{6}$$

where h_{ϕ} is a trainable vector representing the null assignment. The loss function is defined as:

$$\mathcal{L}_{a} = \frac{1}{N_{S}N_{T}} \sum_{i=1}^{N_{S}} \sum_{j=1}^{N_{T}} \text{CE}(\mathbf{A}, a+1), \tag{7}$$

where a is the ground truth assignments in Sec. 3.1. At test time, we filter out infeasible pairs via the constraint logits before sampling from A:

$$\hat{a}_i = -1 + \arg\max_{1 \le j \le N_T} \mathbb{1} \{ \sigma(\hat{s}_{i,j}) > \tau_s \} \cdot \mathbf{A}_{i,j}, \tag{8}$$

where $\mathbb{1}\{\cdot\}$ is the indicator function, σ is the sigmoid function, $\hat{s}_{i,j}$ is the predicted logits of task completion, and τ_s is a predefined feasibility threshold. This design tightly integrates learned constraints with feature matching, enabling efficient satellite—task assignments.

4.4 Simulation-based Iterative Learning

To fully leverage our simulator platform, we introduce an iterative learning pipeline as demonstrated in Fig. 6.

In the supervised pretraining stage, we initialize AEOS-Former with random weights and train it on the annotated trajectories in AEOS-Bench. The overall loss is a weighted sum of feasibility, timing, and assignment objectives:

$$\mathcal{L} = w_s \cdot \mathcal{L}_s + w_t \cdot \mathcal{L}_t + w_a \cdot \mathcal{L}_a, \tag{9}$$

where w_s , w_t , and w_a balance the three components. This stage bootstraps the model with basic scheduling strategies learned from expert annotations.

In the subsequent simulation-driven exploration stage, we generate new scenarios and use the pretrained AEOS-Former to propose schedules. Each generated trajectory is evaluated by a comprehensive score as defined in Eq. (10). We then collect only those trajectories whose performance exceeds a predefined threshold τ_e . These high-quality schedules are added back into the AEOS-Bench training set. We repeat this loop until convergence. In this way, AEOS-Former continually refines its policy, discovering novel strategies beyond the original annotations and adapting to increasingly diverse scenarios.

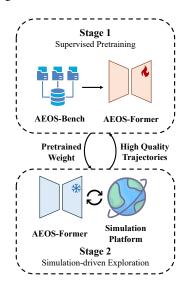


Figure 6: The iterative learning framework with two stages: supervised pretraining and simulation-driven exploration.

Split	Method	CS ↓	CR/%	PCR/%	WCR/%	TAT/h ↓	PC/Wh↓
	Random	116.81	0.83	0.99	0.83	0.20	136.92
Val	HAAL [16]	101.09	0.98	1.09	0.97	0.23	148.02
Seen	REDA [15]	31.60	3.22	3.80	3.15	0.74	147.09
Seen	MSCPO-SHCS [9]	5.85	28.77	32.93	28.23	7.75	135.93
	AEOS-Former (Ours)	5.00	30.47	33.68	30.05	7.50	71.27
Val	Random	90.27	1.08	1.33	1.02	0.17	142.27
	HAAL [16]	77.17	1.28	1.46	1.28	0.25	155.36
	REDA [15]	21.54	4.83	5.75	4.85	0.71	153.95
Unseen	MSCPO-SHCS [9]	5.21	35.35	39.45	34.85	7.27	140.83
	AEOS-Former (Ours)	4.43	35.42	38.93	35.14	6.78	68.99
	Random	113.53	0.85	1.02	0.88	0.17	150.54
Test	HAAL [16]	94.83	1.05	1.17	1.03	0.25	155.56
	REDA [15]	28.21	3.65	4.27	3.58	0.73	154.49
	MSCPO-SHCS [9]	7.33	19.44	24.00	18.71	6.23	149.20
	AEOS-Former (Ours)	6.28	19.25	22.31	18.73	5.67	40.91

5 Experiments

This section begins with the implementation details of AEOS-Former. Next, we introduce the metrics used to evaluate AEOS-Former and baselines. Sec. 5.3 presents the comparison experiments and ablation studies. Sec. 5.4 provides a performance analysis of AEOS-Former through visualization.

5.1 Implementation Details

The internal constraint module \mathcal{C} is implemented as a multi-layer perception (MLP) with two hidden layers of width 1024. The transformer encoder \mathcal{E} and decoder \mathcal{D} are configured with a width of 512, a depth of 12, and 16 attention heads. All loss weights are assigned as $w_s = w_t = w_a = 1$.

Training is conducted with the AdamW optimizer [24] with a base learning rate of 10^{-4} , $\beta_1 = 0.9$, $\beta_2 = 0.98$, and weight decay 10^{-4} . Each training batch contains 48 timesteps uniformly sampled from a trajectory. The supervised stage spans 30,000 iterations, with a linear warm-up of the learning rate from 10^{-8} to 10^{-4} over the first 10,000 iterations. The complete iterative pipeline comprises three supervised stages, culminating in a total of 90,000 iterations.

Both training and evaluation are performed on a Linux server with 256 CPU cores, 984 GB RAM, and 8 RTX 4090 GPUs. The training process demands approximately 48 GPU-hours. Evaluation is executed over 96 parallel simulator environments and completes in about 30 minutes.

5.2 Evaluation Metrics

We evaluate schedulers using six metrics including task completion, timeliness, and energy efficiency. Completion rate (CR) measures the proportion of completed tasks out of all. Partial completion rate (PCR) assesses the ratio of the maximum progress to the total required duration. Weighted completion rate (WCR) is a weighted version of CR, considering task durations. Turn-around time (TAT) calculates the average time taken to complete tasks, reflecting scheduling efficiency. Power consumption (PC) quantifies the total energy consumed by the satellite sensors during imaging. Finally, the comprehensive score (CS) aggregates these metrics into a single performance indicator:

$$CS = (w_{CR} \cdot CR + w_{PCR} \cdot PCR + w_{WCR} \cdot WCR)^{-1} + w_{TAT} \cdot TAT + w_{PC} \cdot PC,$$
(10)

where $w_{\text{CR}} = 0.6$, $w_{\text{PCR}} = 0.2$, $w_{\text{WCR}} = 0.2$, $w_{\text{TAT}} = 1/7$, and $w_{\text{PC}} = 1/100$.

5.3 Main Results

We benchmark our AEOS-Former with several scheduling models. HAAL and MSCPO-SHCS are optimization-based scheduling models, while REDA adopts the multi-agent reinforcement learn-

Split	Constraint Module $\mathcal C$	Iterative Training	CS ↓	CR/%	PCR/%	WCR/%	TAT/h ↓	PC/Wh↓
			5.85	27.47	30.88	27.16	6.56	135.94
Val	\checkmark		5.27	28.06	30.84	27.82	7.54	69.76
Seen		\checkmark	5.28	34.25	38.04	33.80	7.44	135.90
	\checkmark	\checkmark	5.00	30.47	33.68	30.05	7.50	71.27
			5.17	34.05	37.83	33.60	6.21	140.84
Val	\checkmark		4.51	33.71	36.79	33.57	6.43	67.84
Unseen		\checkmark	4.72	40.88	46.72	40.58	6.55	140.87
	\checkmark	\checkmark	4.43	35.42	38.93	35.14	6.78	68.99
			9.31	13.26	15.83	12.92	3.67	149.28
T4	\checkmark		7.02	16.44	18.64	16.30	5.11	36.57
Test		\checkmark	6.29	24.67	28.85	24.21	6.01	149.26
	\checkmark	\checkmark	6.28	19.25	22.31	18.73	5.67	40.91

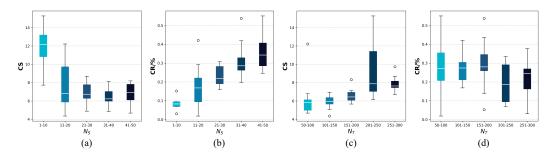


Figure 7: Distribution of CS and CR metrics across varying values of N_S and N_T on the test split.

ing approach. These models were originally designed for simplified environments and do not directly accommodate the comprehensive constraints of our AEOS-Bench setup. Therefore, we have adapted their formulations to ensure compatibility. Additionally, we include a random scheduling model to provide a baseline performance measure. As shown in Tab. 2, AEOS-Former outperforms all baselines across all splits. Notably, on the test split, AEOS-Former achieves 6.28 CS, surpassing MSCPO-SHCS by 16.7%. Thanks to our integrated constraint module and iterative learning paradigm, our model achieves a better balance between CR and PC.

To assess the impact of each component within AEOS-Former, an ablation study is conducted, as shown in Tab. 3. On the val-seen split, incorporating the constraint module enhances both CR and PC, increasing CR from 27.47 to 28.06 and reducing PC from 135.94 to 69.76. Iterative training further boosts CR to 30.47. Due to the conflict between CR and PC, the final CR is lower than the CR achieved by sole iterative training. Nonetheless, the CS still improves by more than 0.27.

5.4 Analysis

The baselines include both optimization-based and learning-based methods. Specifically, HAAL and MSCPO-SHCS are optimization-based approaches, while REDA is a neural network-based method.

As shown in Fig. 7, as N_S increases from 1 to 50, the CS metric initially decreases before stabilizing between 31 and 40, while the CR metric consistently increases. This suggests a

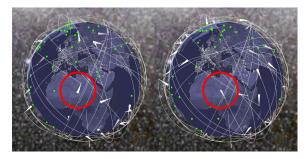


Figure 8: Scheduling visualization of AEOS-Former.

trade-off between task completion and resource consumption. Regarding N_T , an increase in the number of tasks leads to lower completion rates and more resource consumption, with the CS metric slightly increasing and the CR metric slightly decreasing.

We also visualize the scheduling of AEOS-Former with Unity3D. In the highlighted areas of Fig. 8, satellite collaborations are observed.

6 Conclusion

This work introduces a comprehensive framework for Agile Earth Observation Satellites (AEOS) constellation scheduling. We present AEOS-Bench, a standardized benchmark with 3,907 satellite assets and 16,410 scenarios, enforcing realistic constraints and providing ground truth annotations. To our knowledge, AEOS-Bench is the first large-scale benchmark for realistic constellation scheduling. We also propose AEOS-Former, a Transformer-based scheduler featuring a novel constraint module. Through simulation-based iterative learning, AEOS-Former outperforms baselines across diverse scenarios, with ablation studies validating the effectiveness of each component. We hope AEOS-Bench and AEOS-Former will drive innovations in AEOS constellation scheduling.

Acknowledgement

This research is supported in part by National Key R&D Program of China (2022ZD0115502), National Natural Science Foundation of China (No. 62461160308, U23B2010), "Pioneer" and "Leading Goose" R&D Program of Zhejiang (No. 2024C01161), Beijing Natural Science Foundation (QY25227), Ningbo Science and Technology Innovation 2025 Major Project (2025Z034), NSFC-RGC Project (N_CUHK498/24).

References

- [1] Sean Augenstein, Alejandra Estanislao, Emmanuel Guere, and Sean Blaes. Optimal Scheduling of a Constellation of Earth-Imaging Satellites, for Maximal Data Throughput and Efficient Human Management. *Proceedings of the International Conference on Automated Planning and Scheduling*, 26:345–352, March 2016.
- [2] M. Barkaoui and J. Berger. A new hybrid genetic algorithm for the collection scheduling problem for a satellite constellation. *Journal of the Operational Research Society*, 71(9):1390– 1410, September 2020.
- [3] Nicola Bianchessi and Giovanni Righini. Planning and scheduling algorithms for the COSMO-SkyMed constellation. *Aerospace Science and Technology*, 12(7):535–544, October 2008.
- [4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS.
- [5] Alex da Silva Curiel, Lee Boland, John Cooksley, Mohammed Bekhti, Paul Stephens, Wei Sun, and Martin Sweeting. First results from the disaster monitoring constellation (DMC). *Acta Astronautica*, 56(1):261–271, January 2005.
- [6] Sergio DeFlorio. Performances Optimization of Remote Sensing Satellite Constellations: A Heuristic Method. In *Proceedings of 5th International Workshop on Planning and Scheduling for Space (IWPSS 2006)*, October 2006.
- [7] Yonghao Du, Tao Wang, Bin Xin, Ling Wang, Yingguo Chen, and Lining Xing. A data-driven parallel scheduling approach for multiple agile earth observation satellites. *IEEE Transactions on Evolutionary Computation*, 24(4):679–693, August 2020.
- [8] Duncan Eddy and Mykel Kochenderfer. Markov decision processes for multi-objective satellite task planning. In 2020 IEEE Aerospace Conference, pages 1–12. IEEE, 2020.
- [9] Ye Fan, Zhi Liu, Rugui Yao, Hao Jiang, Jialong Shi, Xu Yang, Xiaoya Zuo, and Victor C. M. Leung. Multi-Objective Regular Mapping QoS Path Planning for Mega LEO Constellation Networks. *IEEE Transactions on Communications*, pages 1–1, 2025.
- [10] Al Globus, James Crawford, Jason Lohn, and Anna Pryor. Scheduling Earth Observing Satellites with Evolutionary Algorithms, January 2003.
- [11] Edwin Goh, Hamsa Shwetha Venkataram, Bharathan Balaji, Brian D Wilson, and Mark D Johnston. Satnet: A benchmark for satellite scheduling optimization. In *AAAI-22 Workshop on Machine Learning for Operations Research (ML4OR)*, 2021.
- [12] Djamal Habet and Michel Vasquez. Saturated and consistent neighborhood for selecting and scheduling photographs of agile earth observing satellite. In *Proceedings of the 5th Metaheuristics International Conference*, number 28, pages 1–6. Citeseer, August 2003.
- [13] Adam Herrmann and Hanspeter Schaub. Autonomous On-board Planning for Earth-Orbiting Spacecraft. In *IEEE Aerospace Conference (AERO)*, pages 1–9, March 2022.
- [14] Adam Herrmann and Hanspeter Schaub. Reinforcement learning for the agile earth-observing satellite scheduling problem. *IEEE Transactions on Aerospace and Electronic Systems*, 59(5):5235–5247, October 2023.
- [15] Joshua Holder, Natasha Jaques, and Mehran Mesbahi. Multi Agent Reinforcement Learning for Sequential Satellite Assignment Problems. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(25):26516–26524, April 2025.

- [16] Joshua Holder, Spencer Kraisler, and Mehran Mesbahi. Centralized and Distributed Strategies for Handover-Aware Task Allocation in Satellite Constellations. *Journal of Guidance, Control, and Dynamics*, 0(0):1–10.
- [17] Claudio Iacopino, Phil Palmer, Andrew Brewer, Nicola Policella, and Alessandro Donati. EO constellation MPS based on ant colony optimization algorithms. In *International Conference on Recent Advances in Space Technologies (RAST)*, pages 159–164, June 2013.
- [18] Guillaume Infantes, Stéphanie Roussel, Antoine Jacquet, Emmanuel Benazera, Nicolas Meuleau, Vincent Baudoui, and Jonathan Guerra. Earth observation satellite scheduling with graph neural networks, 2024.
- [19] Patrick W. Kenneally, Scott Piggott, and Hanspeter Schaub. Basilisk: A Flexible, Scalable and Modular Astrodynamics Simulation Framework. *Journal of Aerospace Information Systems*, 17(9):496–507, 2020.
- [20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything. In *ICCV*.
- [21] Michel Lemaître, Gérard Verfaillie, Frank Jouhaud, Jean-Michel Lachiver, and Nicolas Bataille. Selecting and scheduling observations of agile satellites. *Aerospace Science and Technology*, 6(5):367–381, September 2002.
- [22] Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and Jun Zhu. RDT-1B: A diffusion foundation model for bimanual manipulation.
- [23] Yaosong Long, Chengjun Shan, Wei Shang, Jin Li, and Yulin Wang. Deep Reinforcement Learning-Based Approach With Varying-Scale Generalization for the Earth Observation Satellite Scheduling Problem Considering Resource Consumptions and Supplements. *IEEE Transactions on Aerospace and Electronic Systems*, 60(3):2572–2585, June 2024.
- [24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR.
- [25] Jing Qi, Min Hu, and Lining Xing. A decompose-and-learn multi-objective algorithm for scheduling large-scale earth observation satellites. *Swarm and Evolutionary Computation*, 92:101792, February 2025.
- [26] Giancarlo Santilli, Cristian Vendittozzi, Chantal Cappelletti, Simone Battistini, and Paolo Gessini. CubeSat constellations for disaster management in remote areas. *Acta Astronautica*, 145:11–17, April 2018.
- [27] Emmanuel Sin, Murat Arcak, Sreeja Nag, Vinay Ravindra, Alan Li, and Richard Levinson. Attitude Trajectory Optimization for Agile Satellites in Autonomous Remote Sensing Constellations. In *AIAA Scitech 2021 Forum*. American Institute of Aeronautics and Astronautics.
- [28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*.
- [29] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015.
- [30] He Wang, Weiquan Huang, Sindri Magnússon, Tony Lindgren, Ran Wang, and Yanjie Song. A strategy fusion-based multi-objective optimization approach for agile earth observation satellite scheduling problem. *IEEE Transactions on Geoscience and Remote Sensing*, 2024.
- [31] Pei Wang, Gerhard Reinelt, Peng Gao, and Yuejin Tan. A model, a heuristic and a decision support system to solve the scheduling problem of an earth observing satellite constellation. *Computers & Industrial Engineering*, 61(2):322–335, September 2011.
- [32] Xinwei Wang, Guohua Wu, Lining Xing, and Witold Pedrycz. Agile earth observation satellite scheduling over 20 years: Formulations, methods, and future directions. *IEEE Systems Journal*, 15(3):3881–3892, September 2021.

- [33] Yinfeng Wang, Xiaoshe Dong, Xiuqiang He, Hua Guo, Fang Zheng, and Zhongsheng Qin. A Constellation Model for Grid Resource Management. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, Jiannong Cao, Wolfgang Nejdl, and Ming Xu, editors, *Advanced Parallel Processing Technologies*, volume 3756, pages 263–272. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.
- [34] Zhijiang Wen, Lu Li, Jiakai Song, Shengyu Zhang, and Haiying Hu. Scheduling single-satellite observation and transmission tasks by using hybrid actor-critic reinforcement learning. *Advances in Space Research*, 71(9):3883–3896, 2023.
- [35] Zhijiang Wen, Lu Li, Jiakai Song, Shengyu Zhang, and Haiying Hu. Scheduling single-satellite observation and transmission tasks by using hybrid Actor-Critic reinforcement learning. *Advances in Space Research*, 71(9):3883–3896, May 2023.
- [36] Guohua Wu, Qizhang Luo, Xiao Du, Yingguo Chen, Ponnuthurai Nagaratnam Suganthan, and Xinwei Wang. Ensemble of Metaheuristic and Exact Algorithm Based on the Divide-and-Conquer Framework for Multisatellite Observation Scheduling. *IEEE Transactions on Aerospace and Electronic Systems*, 58(5):4396–4408, October 2022.
- [37] Weiyi Yang, Lei He, Xiaolu Liu, and Yingwu Chen. Onboard coordination and scheduling of multiple autonomous satellites in an uncertain environment. *Advances in Space Research*, 68(11):4505–4524, December 2021.
- [38] Xueying Yang, Min Hu, Gang Huang, and Feiyao Huang. Multi-Layer Objective Model and Progressive Optimization Mechanism for Multi-Satellite Imaging Mission Planning in Large-Scale Target Scenarios. *Applied Sciences*, 14(19):8597, January 2024.
- [39] Jiyang Yu, Dan Huang, Jinyang Li, Wenjie Li, Xianjie Wang, and Qunzhi Li. Real-Time Parallel LU Decomposition of Space Debris Features On-Board. In 2023 IEEE 15th International Conference on Advanced Infocomm Technology (ICAIT), pages 79–85, October 2023.
- [40] Jiyang Yu, Dan Huang, Wenjie Li, Xianjie Wang, and Xiaolong Shi. Parallel accelerated computing architecture for dim target tracking on-board. *Computational Intelligence*, 40(1):e12604, 2024.
- [41] Jiyang Yu, Dan Huang, Xiaolong Shi, Wenjie Li, and Xianjie Wang. Real-Time Moving Ship Detection from Low-Resolution Large-Scale Remote Sensing Image Sequence. *Applied Sciences*, 13(4):2584, January 2023.
- [42] Jiyang Yu, Dan Huang, Nan Wu, Jinyang Li, Wenjie Li, and Xianjie Wang. On-board Time-varying Topology Self Prediction Routing Network Communication Technology. In 2023 IEEE 15th International Conference on Advanced Infocomm Technology (ICAIT), pages 54–60, October 2023.
- [43] Xuexuan Zhao, Zhaokui Wang, and Gangtie Zheng. Two-Phase Neural Combinatorial Optimization with Reinforcement Learning for Agile Satellite Scheduling. *Journal of Aerospace Information Systems*, 17(7):346–357, 2020.
- [44] Chang Zhongxiang, Zhou Zhongbao, Yao Feng, and Liu Xiaolu. Observation scheduling problem for AEOS with a comprehensive task clustering. *Journal of Systems Engineering and Electronics*, 32(2):347–364, April 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: This paper focuses on the scheduling problem of AEOS constellation. A standardized benchmark suit (AEOS-Bench) and a novel scheduling model (AEOS-Former) are proposed.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Appendix A.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details are described in Sec. 5.1. Code and data are provided in https://github.com/buaa-colalab/AEOSBench.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code and data are provided in https://github.com/buaa-colalab/AEOSBench.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Dataset partition is discussed in Sec. 3.3. Implementation details are illustrated in Sec. 5.1. Code is provided in https://github.com/buaa-colalab/AEOSBench.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Given the massive amount of experiments conducted in this paper, providing error bars would be computationally prohibitive.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Compute resources are described in Sec. 5.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Potential societal impacts are discussed in Appendix B.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The AEOS-Bench suit is illustrated in Sec. 3 and Appendix C.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can
 either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

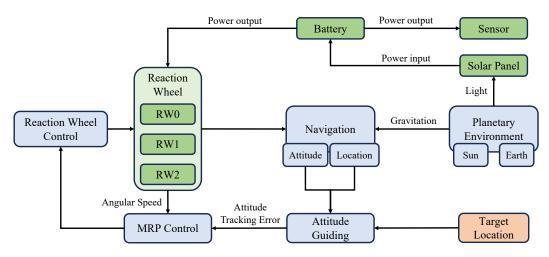


Figure 9: Architecture of the simulation platform used in AEOS-Bench.

A Limitations

In our AEOS-Bench, each task is represented as a single location point. In the future, we plan to propose a new task to incorporate area-based task representations, allowing each observation request to span a defined region. This would enable the evaluation of scheduling algorithms under more realistic constraints, such as partial area coverage, time-window flexibility, and spatial prioritization.

B Broader Impacts

AEOS-Bench is an open-source suite for AEOS constellation scheduling research, enabling researchers to develop more effective models and conduct fair comparisons. Enhanced scheduling models for AEOS constellations offer several societal benefits. In disaster response, optimized task assignment delivers timely data to first responders, improving search and rescue operations, damage assessment, and resettlement planning. In environmental protection, high-quality imagery data enables early detection of threats such as illegal logging and industrial pollution, strengthening ecosystem oversight and facilitating rapid intervention.

C Scenario Modeling

Fig. 9 demonstrates the architecture of our simulation platform. The green modules simulate satellite components, including reaction wheels, batteries, sensors, and solar panels. Reaction wheels and sensors draw power from batteries, while solar panels recharge those batteries. The blue modules handle satellite dynamics. A planetary environment, including the Sun and the Earth, supplies the solar incidence angle for the solar panels and simulates gravitational forces. Closed-loop attitude control is achieved by the navigation module, the attitude-guiding module, the MRP control module, and the reaction-wheel control module. The MRP algorithm adjusts the orientation of satellites to keep target locations in view.

Parameters for the simulation platform are summarized in Tab. 4. The range for each parameter is also specified to facilitate random scenario generation. Task parameters are listed in Tab. 5.

Table 4: Satellite parameters.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Index	Description	Range	Unit	
	1	scaled moment of inertia	$50 \cdot \mathbf{I}_3 \sim 200 \cdot \mathbf{I}_3$	$kg \cdot m^2$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	scaled mass	$50 \sim 200$	kg	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$-180 \sim 180$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	direction of solar panel	$-90 \sim 90$	\deg	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$-180 \sim 180$		
$ \begin{array}{ c c c c c }\hline 6 & power of sensor & 2 \sim 8 & W \\ \hline 7 & power status of sensor & \{0,1\} & - \\ \hline 8 & battery capacity & 8,000 \sim 30,000 & mA \cdot h \\ \hline 9 & battery percentage & 0 \sim 100 & \% \\ \hline 10 & maximum angular momentum of reaction wheels & 10 \sim 100 & \text{kg} \cdot \text{m}^2/$	4	scaled area of solar panel	$5 \sim 10$	m^2	
$ \begin{array}{ c c c c }\hline 7 & power status of sensor & \{0,1\} & - \\ \hline 8 & battery capacity & 8,000 \sim 30,000 & mA \cdot h \\ \hline 9 & battery percentage & 0 \sim 100 & \% \\ \hline 10 & maximum angular momentum of reaction wheels & 10 \sim 100 & kg \cdot m^2/\\ \hline 11 & direction of reaction wheels & -180 \sim 180 \\ \hline 12 & angular speed of reaction wheels & -6,000 \sim 6,000 & rpm \\ \hline 13 & power of reaction wheels & 0.1 \sim 0.5 & - \\ \hline 14 & power efficiency of reaction wheels & 0.1 \sim 0.5 & - \\ \hline 15 & MRP control parameter k & 2 \sim 5 \\ \hline 16 & MRP control parameter p & 6 \sim 12 \\ \hline MRP control parameter integral limit & 0.0 \sim 0.5 \\ \hline 16 & orbital true anomaly & 0 \sim 360 & deg \\ \hline 17 & orbital eccentricity & 0 \sim 0.005 & - \\ \hline 18 & orbital semi-major axis length & 6,800 \sim 8,000 & km \\ \hline 19 & orbital right ascension of the ascending node & 0 \sim 360 & deg \\ \hline 20 & orbital right ascension of the ascending node & 0 \sim 360 & deg \\ \hline \end{array}$	5	half field of view (FOV) of sensor	$0.5 \sim 1.5$	rad	
8battery capacity $8,000 \sim 30,000$ $mA \cdot h$ 9battery percentage $0 \sim 100$ %10maximum angular momentum of reaction wheels $10 \sim 100$ $kg \cdot m^2/$ 11direction of reaction wheels $-180 \sim 180$ $-90 \sim 90$ 12angular speed of reaction wheels $-6,000 \sim 6,000$ rpm13power of reaction wheels $0 \sim 22$ W14power efficiency of reaction wheels $0.1 \sim 0.5$ -15MRP control parameter k $2 \sim 5$ MRP control parameter ki $0.0 \sim 0.1$ -MRP control parameter p $6 \sim 12$ MRP control parameter integral limit $0.0 \sim 0.5$ 16orbital true anomaly $0 \sim 360$ deg17orbital eccentricity $0 \sim 0.005$ -18orbital semi-major axis length $6,800 \sim 8,000$ km19orbital right ascension of the ascending node $0 \sim 360$ deg	6	power of sensor	$2 \sim 8$	W	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	power status of sensor	{0,1}	-	
10maximum angular momentum of reaction wheels $10 \sim 100$ kg \cdot m²/11direction of reaction wheels $-180 \sim 180$ deg12angular speed of reaction wheels $-6,000 \sim 6,000$ rpm13power of reaction wheels $0 \sim 22$ W14power efficiency of reaction wheels $0.1 \sim 0.5$ -MRP control parameter k $2 \sim 5$ -MRP control parameter ki $0.0 \sim 0.1$ -MRP control parameter p $6 \sim 12$ -MRP control parameter integral limit $0.0 \sim 0.5$ -16orbital true anomaly $0 \sim 360$ deg17orbital eccentricity $0 \sim 0.005$ -18orbital semi-major axis length $6,800 \sim 8,000$ km19orbital right ascension of the ascending node $0 \sim 360$ deg	8	battery capacity	$8,000 \sim 30,000$	$mA \cdot h$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	battery percentage	$0 \sim 100$	%	
	10	maximum angular momentum of reaction wheels	$10 \sim 100$	$kg \cdot m^2/s$	
	-		$-180 \sim 180$		
12angular speed of reaction wheels $-6,000 \sim 6,000$ rpm13power of reaction wheels $0 \sim 22$ W14power efficiency of reaction wheels $0.1 \sim 0.5$ -15MRP control parameter k $2 \sim 5$ -MRP control parameter p $6 \sim 12$ -MRP control parameter integral limit $0.0 \sim 0.5$ -16orbital true anomaly $0 \sim 360$ deg17orbital eccentricity $0 \sim 0.005$ -18orbital semi-major axis length $6,800 \sim 8,000$ km19orbital inclination $0 \sim 180$ deg20orbital right ascension of the ascending node $0 \sim 360$ deg	11	direction of reaction wheels	$-90 \sim 90$	\deg	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$-180 \sim 180$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	angular speed of reaction wheels	$-6,000 \sim 6,000$	rpm	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	power of reaction wheels	$0 \sim 22$	W	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	power efficiency of reaction wheels	$0.1 \sim 0.5$	-	
$\frac{\text{MRP control parameter p}}{\text{MRP control parameter integral limit}} \frac{6 \sim 12}{0.0 \sim 0.5}$ $\frac{16}{16} \qquad \text{orbital true anomaly} \qquad 0 \sim 360 \qquad \text{deg}$ $\frac{17}{18} \qquad \text{orbital semi-major axis length} \qquad 6,800 \sim 8,000 \qquad \text{km}$ $\frac{19}{19} \qquad \text{orbital inclination} \qquad 0 \sim 180 \qquad \text{deg}$ $\frac{19}{19} \qquad \text{orbital right ascension of the ascending node} \qquad 0 \sim 360 \qquad \text{deg}$		MRP control parameter k	$2 \sim 5$		
MRP control parameter integral limit $0.0 \sim 0.5$ 16orbital true anomaly $0 \sim 360$ deg17orbital eccentricity $0 \sim 0.005$ -18orbital semi-major axis length $6,800 \sim 8,000$ km19orbital inclination $0 \sim 180$ deg20orbital right ascension of the ascending node $0 \sim 360$ deg	15	MRP control parameter ki	$0.0 \sim 0.1$	-	
16orbital true anomaly $0 \sim 360$ deg17orbital eccentricity $0 \sim 0.005$ -18orbital semi-major axis length $6,800 \sim 8,000$ km19orbital inclination $0 \sim 180$ deg20orbital right ascension of the ascending node $0 \sim 360$ deg		MRP control parameter p	$6 \sim 12$		
17orbital eccentricity $0 \sim 0.005$ -18orbital semi-major axis length $6,800 \sim 8,000$ km19orbital inclination $0 \sim 180$ deg20orbital right ascension of the ascending node $0 \sim 360$ deg		MRP control parameter integral limit	$0.0 \sim 0.5$		
18orbital semi-major axis length $6,800 \sim 8,000$ km19orbital inclination $0 \sim 180$ deg20orbital right ascension of the ascending node $0 \sim 360$ deg	16	orbital true anomaly	$0 \sim 360$	deg	
	17	orbital eccentricity	$0 \sim 0.005$	-	
20 orbital right ascension of the ascending node $0 \sim 360$ deg	18	orbital semi-major axis length	$6,800 \sim 8,000$	km	
	19	orbital inclination	$0 \sim 180$	deg	
21 orbital argument of perigee $0 \sim 360$ deg	20	orbital right ascension of the ascending node	$0 \sim 360$	deg	
	21	orbital argument of perigee	$0 \sim 360$	deg	

Table 5: Task parameters

Index	Description	Range	Unit
1	minimum time of consecutive observation for a task to be considered completed	$15 \sim 60$	s
2	release time	$0 \sim 3{,}600$	S
3	due time	$0 \sim 3,600$	s
4	latitude of the target location	$-90 \sim 90$	\deg
	longitude of the target location	$-180 \sim 180$	deg