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Abstract

Code editing encompasses a variety of prag-
matic tasks that developers deal with daily. De-
spite its relevance and practical usefulness, au-
tomatic code editing remains an underexplored
area in the evolution of deep learning mod-
els, partly due to data scarcity. In this work,
we explore the use of large language models
(LLMs) to edit code based on user instructions,
covering a broad range of implicit tasks such
as comment insertion, code optimization, and
code refactoring. To facilitate this, we intro-
duce InstructCoder, the first dataset designed to
adapt LLMs for general-purpose code editing,
containing high-diversity code-editing tasks.
It consists of over 114,000 instruction-input-
output triplets and covers multiple distinct code
editing scenarios. The dataset is systematically
expanded through an iterative process that com-
mences with code editing data sourced from
GitHub commits as seed tasks. Seed and gen-
erated tasks are used subsequently to prompt
ChatGPT for more task data. Our experiments
demonstrate that open-source LLMs fine-tuned
on InstructCoder can edit code correctly based
on users’ instructions most of the time , exhibit-
ing unprecedented code-editing performance
levels on par with ChatGPT. Such results
suggest that proficient instruction-finetuning
can lead to significant amelioration in code-
editing abilities. The dataset and the source
code are available at https://github.com/
qishenghu/InstructCoder.

1 Introduction

Developers typically engage in a cyclic routine
of writing and revising code. As a crucial ele-
ment, automatic code editing could potentially en-
hance development efficiency significantly. How-
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†Equal advising. Ordering is determined by dice rolling.

ever, the intricacy of this task has hampered sub-
stantial progress by deep learning models. This is
attributable to the fact that code editing encapsu-
lates diverse subtasks, such as code optimization,
comment insertion, and bug fixing. Each of these
diverse subtasks presents distinct challenges and re-
quires unique capabilities to solve, thereby posing
considerable hurdles for modeling.

Recent development of large language models
(LLMs) has made remarkable progresses in NLP,
demonstrating strong few-shot and zero-shot abili-
ties (Brown et al., 2020; Scao et al., 2022; Chowd-
hery et al., 2022; Ouyang et al., 2022; OpenAI,
2022; Touvron et al., 2023). Beyond text models,
code LLMs have also elicited significant interest,
highlighting their immense potential in code gener-
ation (Nijkamp et al., 2023a; Chen et al., 2021; Li
et al., 2023). Inspired by these advancements, we
explore the proficiency of LLMs in editing code
based on user instructions, for instance, “add doc-
string to the function for clarity”, “remove redun-
dant code”, or “refactor it into reusable functions”.

To this end, we curate a code editing dataset,
dubbed InstructCoder, for improving and evaluat-
ing code editing abilities of LLMs. InstructCoder
is an instructional dataset containing diverse code-
editing tasks. The dataset is primarily generated
by ChatGPT (OpenAI, 2022). Specifically, we first
collect and manually scrutinize git commit data
from public repositories on GitHub as the seed
code editing tasks, then we utilize the seed data to
prompt ChatGPT to generate new instructions and
input-output pairs respectively, where a scenario
(e.g. web development) is randomly sampled from
a list of scenarios and specified to ensure diver-
sity of the data. This process resembles the Self-
Instruct (Wang et al., 2022a) and Alpaca (Taori
et al., 2023) frameworks.

By innovatively incorporating scenarios during
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Figure 1: Data collection pipeline of InstructCoder (left) and an qualitative example from the dataset (right,
best viewed with zoom). Initial seed tasks are selected from GitHub commits, and inspire ChatGPT to generate
new instructions. Plausible scenarios where the filtered instructions may be used are then generated. Finally,
corresponding code input and output are obtained conditioned on both the instruction and scenario. High-quality
samples are manually selected and recurrently added to the task pool for further generation.

the generation process, our approach ensures that
the code-editing instances in the InstructCoder
dataset are diverse and relevant to real-world pro-
gramming situations. This approach enables Chat-
GPT to synthesize more diverse input-output code
snippets in terms of variable naming and function-
ality given the code-editing instructions and sce-
narios, resulting in a robust dataset for instruction
finetuning in the code editing domain. After proper
deduplication and postprocessing, we retain over
114,000 samples in the dataset.

Our empirical studies reveal that LLMs display
notable gains in code editing abilities post fine-
tuning on InstructCoder. The largest model used
in the experiment, LLaMA-33B (Touvron et al.,
2023), performs on-par with ChatGPT, achieving
an edit accuracy of 89.3% and 76.3% as evalu-
ated by GPT-4 (OpenAI, 2023) and humans respec-
tively. Further findings signify that edit accuracy
improves log-linearly with data scale.

2 Related Work

2.1 Instruction Finetuning Datasets

Previous studies have concluded that instruction
finetuning LLMs on a diverse collection of in-

structional tasks can further improve the ability of
LLMs to generalize well on unseen tasks (Ouyang
et al., 2022; Mishra et al., 2022; Wei et al., 2022;
Chung et al., 2022; Wang et al., 2023c). To support
these tasks, datasets consisting of a large number
of code snippets with corresponding annotations
are necessary. These instruction can be reformu-
lated from existing datasets (Aribandi et al., 2022;
Wei et al., 2022; Mishra et al., 2022; Longpre et al.,
2023), or human-written with crowd-sourcing ef-
forts (Ouyang et al., 2022; Wang et al., 2022b).
Machine generation of instruction data has also
been explored to reduce human labour (Wang et al.,
2022a; Honovich et al., 2022; Taori et al., 2023;
Xue et al., 2023). Despite the presence of elevated
noise levels within the data, its effectiveness has
been identified.

2.2 Code Synthesis

Code generation is an extensively studied area.
Language models pretrained on large collections of
code have demonstrated strong abilities in a variety
of programming tasks. A number of general LLMs
gain code generation abilities due to the mixture of
code in the pretraining corpus (e.g. The Pile (Gao
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Figure 2: Distribution of code edit intent categories.

(a) The top 20 most common root verbs with each top 4 noun
objects in the instructions. Instructions with other infrequent
root verbs takes up 25%.

(b) Wordcloud of scenario domains. Each sector with differ-
ent color corresponds to a different scenario domain. Each
domain is a cluster of similar scenarios.

Figure 3: Visualizations of InstructCoder data. Best viewed in zoom.

et al., 2020)), such as GPT-3 (Brown et al., 2020),
ChatGPT, GPT-4 (OpenAI, 2023), LLaMA (Tou-
vron et al., 2023), BLOOM (Scao et al., 2022),
GPT-NeoX (Black et al., 2022), and Pythia (Bider-
man et al., 2023). LLMs specifically trained on
code and optimized for code generation are also
studied, e.g. CodeX (Chen et al., 2021), Code-
Gen (Nijkamp et al., 2023b), CodeGeeX (Zheng
et al., 2023) and StarCoder (Li et al., 2023). These
models all adopt the decoder-only transformer ar-
chitecture, but differ in size and specific model de-
sign (e.g. positional embedding, norm layer place-

ment) as well as the selection and preprocessing of
pretraining corpus.

On the other hand, relatively fewer literature
addresses the objective of code editing. Previ-
ous works focus on a subset of code editing tasks,
such as code infilling (Fried et al., 2023) and de-
bugging (Just et al., 2014; Tarlow et al., 2020;
Ding et al., 2020). The PIE (Madaan et al.,
2023) dataset is a concurrent work most relevant
to ours, which focuses on speeding up programs.
Other works (Yin et al., 2018; Wei et al., 2023;
Chakraborty et al., 2020) can not accept natural
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language as edit intentions, rendering them less
user-friendly.

Nevertheless, datasets particularly tailored for
general-purpose code editing are absent. To fill this
gap, we introduce InstructCoder, a novel dataset
aimed at further advancing the capabilities of code
editing with LLMs.

3 InstructCoder Dataset Collection

To generate instructional data for code editing, we
employed a method based on Self-Instruct (Wang
et al., 2022a), which expands instruction finetuning
data by bootstrapping off language model genera-
tion. The methodology of generating data with
LLMs requires minimal human-labeled data as
seed tasks while maintaining the quality and rel-
evance of the tasks in dataset. Through an itera-
tive process of generating instructions and refining
them with deduplication, we create a dataset of a
wide range of code-editing tasks. Figure 1 illus-
trates the data collection pipeline of InstructCoder.

3.1 Seed Data Collection

GitHub is a code hosting platform whose version
control service naturally records code edits with
commits, which can be converted to instructions.
The repositories on GitHub provide diverse data
with human-generated quality. However, the data
cannot be directly utilized. First, commit messages
are mostly brief and resultant, missing detailed
descriptions. Furthermore, they can be imprecise
or even absent. Second, commits can be huge
involving multiple files, which is beyond the scope
of this work. In light of this, we direct our attention
towards LLMs as a means to generate data, instead
of the direct utilization of collected data.

Initially, raw github commit data were collated
through BigQuery.1 The task instructions were de-
rived from the commit message, while the input
and output corresponded to the code version be-
fore/after the commits. We came across many im-
precise or emotionally charged commit messages.
To convert commit messages to proper instructions,
we employed Codex (Chen et al., 2021) to clarify
the changes made between versions and improve
the commit messages, resulting in more precise and
informative instructions. A total of 768 seed tasks

1https://cloud.google.com/bigquery

were processed from the commit data through man-
ual efforts. 634 tasks were used for self-instruct
purposes while 134 tasks reserved for evaluation.

In addition to GitHub commit data, we lever-
age high-quality generated samples for seed tasks.
With manual inspection, we compiled a batch of
592 high-quality samples as additional seed tasks.
This set of seed data cover a wide range of code-
editing scenarios and forms the very basis on which
InstructCoder is created, ensuring that the tasks are
rooted in plausible real-world code-editing cases.

3.2 Instruction Bootstrapping

Self-Instruct (Wang et al., 2022a) serves as an ef-
fective automated framework for instruction data
generation. It works by iterative bootstrapping off
LLM’s generation, presenting a way to enrich the
instructional dataset while maintaining task quality
and relevance from a small set of human-evaluated
seed tasks. We leveraged a similar approach to
generate diverse code editing instructional data.
In each iteration, seven seed task instructions and
one ChatGPT-generated task instruction are sam-
pled and combined in a few-shot manner to prompt
ChatGPT for more instructions. To generate more
diverse and practically applicable instructions, we
also generate tasks across multiple sub-domains
by specifying the editing intent in the prompt pro-
vided. Relevant prompt used can be found in Table
3 in Appendix A.

3.3 Scenario-conditional Generation

We originally found many generated samples share
similar codebases and variable names despite dif-
ferent instructions and few-shot examples provided.
Such similarity could largely diminish the dataset’s
research value. Empirical analysis suggests the is-
sue could be attributed to LLM generating general
codebases for input/output snippets when insuffi-
cient context provided. To mitigate this, we in-
troduce scenarios to input/output generation. As
an illustration of the effects of scenario genera-
tion, we present some examples in Figure 7,8,9
in Appendix B, where we observe that instances
generated with scenario demonstrate higher qual-
ity in terms of richer context and code structure
compared to those without.

For each generated instruction, we first prompt
ChatGPT to generate practical events as “real-
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world” scenarios where the editing instruction
could be performed, and randomly selected one
for instance generation in the next step. Subse-
quently, the LLM is instructed to generate samples
that correspond with the instruction and scenario,
ensuring the codebases and variable names are ap-
propriate. The prompt used can be found in Table
3 in Appendix A.

By incorporating scenario-conditional genera-
tion, the resulting samples exhibit increased vari-
ability in regards to codebases and variable naming,
thus augmenting the diversity of InstructCoder.

3.4 Postprocessing
Following Self-Instruct (Wang et al., 2022a), dedu-
plication is applied on the generated instructions
to remove instructions that have a ROUGE-L (Lin,
2004) overlap score larger than 0.7 with the exist-
ing instructions. We also employ MinHash with
Locality Sensitive Hashing (LSH) indexing using
datasketch2 to remove instances with an input code
Jaccard similarity greater than 0.75, in order to
deduplicate at the code level. More heuristic rules
were used to clean the generated data. With post-
processing, we achieved a high level of effective-
ness in eliminating erroneous and redundant data.

We kept 95% of the dataset as the train set and
assigned 5% of the dataset as the validation set.
The test set is built with held-out seed samples from
real GitHub data to better reflect the real-world
edit cases. Since commit messages from GitHub
code edits are noisy, we conducted manual quality
filtering. As a result, InstructCoder consists of
108391 training samples, 5708 validation samples
and 134 test samples.

4 Data Analysis

We analyze InstructCoder in terms of 1) diversity,
2) complexity, and 3) correctness. We provide
distribution and complexity analyses of the task
instances. Finally, we demonstrate through human
investigation that our data is highly reliable.

4.1 Statistic Overview
InstructCoder comprises over 114 thousand code
editing instructions, each paired with an input/out-
put instance. The token length distribution of in-
put/output can be viewed in Figure 4 and Table

2http://ekzhu.com/datasketch/

Figure 4: Token length distribution of InstructCoder

4 in Appendix C. Most of the data falls within a
reasonable range in terms of length, while there are
also some extreme values that reflect the breadth
of our dataset.

4.2 Instruction Diversity

To explore the diversity of tasks in InstructCoder
and their practical applicability, we present various
instruction intents i.e. what the code edits intend
to accomplish, and instruction verbs, i.e. how the
code edit is accomplished.

Instruction Intents. We asked ChatGPT to clas-
sify the types of code edits in our dataset, and
manually identified 27 empirical genres. Figure
2 shows the distribution of the code edit intent
categories in InstructCoder, which include adding
functionalities, optimizing code, improving read-
ability, etc. These objectives underscore the exten-
sive range of InstructCoder.

Instruction Verbs. The diversity of instruction
verbs is also portrayed in Figure 3a. We demon-
strate the top-20 root verbs and their top-4 direct
nouns both ranked by frequency. While a great
portion of the instructions can be roughly clustered
as creation (e.g. “add”, “implement”, “creat”) and
modification (e.g. “modify”, “replace”, “change”),
InstructCoder presents a long-tail distribution with
less common verbs other than the top-20 taking
up 25.0% percentage. This demonstrates that the
dataset contains a wide spectrum of instructions.

4.3 Scenario Diversity

InstructCoder is designed to cover a wide range of
scenarios. Each instruction is prompted to generate
different scenarios where the editing instruction
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could be performed. This approach ensures that
the generated samples exhibit greater diversity in
terms of codebases and contexts. A wordcloud is
provided to show some of the scenario domains in
our dataset, as illustrated in Figure 3b, with each
sector referring to a different domain. The diversity
of the dataset is emphasized by the presence of a
wide range of domains such as image processing,
web development, and cybersecurity.

4.4 Complexity
We reflect the complexity of a code edit task by
the number of differing lines and its ratio in the
input/output pair, which are defined as:

ndiff = |I ∪O \ I ∩O |, (1)

rdiff =
ndiff

|I ∪O |
, (2)

where I and O are sets of input/output code with
single lines as elements. We measure the differ-
ing lines of a code-editing task instance using the
Python library difflib.3 We found that the average
number of differing lines in InstructCoder is 11.9
and the average ratio is 0.52. These values suggest
a fairly acceptable level of complexity, indicating
that the dataset is neither too easy nor too hard.
InstructCoder strikes a balance in terms of com-
plexity, making it well-suited for finetuning and
evaluating LLMs in a wide range of code editing
tasks. Figure 10 in Appendix C illustrates the dis-
tribution of the number of differing lines.

4.5 Correctness
We further randomly sample 200 instances and in-
vite three co-authors to evaluate the instances based
on two criteria: the validity of the instruction and
the correctness of the instances. The validity as-
sessment focuses on deciding if the instructions
clearly exhibit editing intent and are appropriate
for code editing. The correctness evaluation exam-
ines if the input-output pairs reflect the changes
specified by the instructions.

The results in Table 1 indicate that most instruc-
tions in the InstructCoder dataset are valid. A few
instances exhibit noise and occasional failure to fol-
low the instruction, but overall high correctness is
achieved. Out of the 200 evaluated instances, 180

3https://docs.python.org/3/library/difflib.
html

Question Pass
Determine if the instruction is valid. 97%

Is the output an acceptable edited code

response to the instruction and input?

90%

Table 1: Quality check questions and results on a ran-
domly sampled subset with 200 data points.

were successfully solved, showcasing the overall
quality and reliability of InstructCoder.

5 Experiments

5.1 Setup
Training. We experiment with two families of
open-source language models: LLaMA (7B, 13B,
33B) (Touvron et al., 2023) and BLOOM (560M,
3B, 7B) (Scao et al., 2022). LLaMA is a series
of large language models with parameter counts
ranging from 7B to 65B, and pretrained with an
excessive amount of tokens, wherein code takes
up approximately 4.5%. BLOOM is a multilingual
LLM capable of generating human-like outputs
in 46 languages and 13 programming languages.
A full finetuning which updates all the parame-
ters in an LLM can be computationally expen-
sive. Instead, we adopt LoRA (Hu et al., 2022),
a parameter-efficient finetuning method which op-
timizes an approximated low-rank delta matrix of
the fully-connected layers. Though the number of
parameters updated in LoRA is typically several
magnitudes lower than that of the full model, many
works have demonstrated its effectiveness compa-
rable to full finetuning (Hu et al., 2022; Wang et al.,
2023a). In this way we could finetune a 33B model
in a single A100-80GB GPU card. Across all our
experiments, LoRA is applied on the query, key,
value and output transform weights of the Trans-
former architecture (Vaswani et al., 2017). All
hyperparameters can be found in Table 5 in Ap-
pendix D.

Baselines. We select zero-shot ChatGPT (Ope-
nAI, 2022) as a strong baseline. We also in-
clude open-source models, LLaMA (Touvron et al.,
2023) and Alpaca (Taori et al., 2023), and report
their zero-shot and one-shot performance. We do
not experiment on k-shot with larger k, because
these prompts take up too many tokens.

6
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Concurrent to our work, CodeAlpaca4 is a pop-
ular dataset generated with the pipeline of Al-
paca (Taori et al., 2023). Its seed data is replaced by
hand-written easy instructions with short programs.
We finetune LLaMA models with CodeAlpaca and
compare the results.

5.2 Metrics

Evaluating the accuracy of code edits presents a
complex challenge due to the potential for incom-
plete code snippets and the existence of multiple
valid modifications. Evaluating correctness using
conventional metrics proves arduous, hence our re-
liance on human evaluation. Each sample is anno-
tated by three examiners, and the average accuracy
is reported. We also endeavored to prompt GPT-4
(OpenAI, 2023) in inspecting the modifications.

Human Scoring. We establish a rule indicating
three scoring levels: correct, partial and wrong.
To ensure impartiality, output samples from differ-
ent models are shuffled and each is evaluated by
three co-authors using a tool that guarantees the
anonymity of the models was used. The edit is
assigned correct if it correctly reflects the instruc-
tion demands and wrong if it fails to follow the
instruction. We introduce a partial class to contain
subtle situations where the edit is correct but unex-
pected modifications are made, such as removal of
comments or redundant continuous generation.

GPT-4 (OpenAI, 2023) Evaluation. We lever-
age GPT-4 as an automatic evaluator to alleviate
the need of human effort and ensure fair evalua-
tion. Using LLMs as generation evaluators has
been demonstrated effective in NLG tasks (Liu
et al., 2023; Wang et al., 2023b; Fu et al., 2023),
and especially in code generation (Zhuo, 2023).
We prompt GPT-4 to evaluate if the code edit is
an acceptable response to the input and instruction.
The prompts can be found in Table 3 in Appendix
A.

6 Results

6.1 Finetuning Efficacy with InstructCoder

Table 2 provides a comprehensive comparison
across models finetuned with InstructCoder and the
baselines. We leave the discussion of the validity of

4https://github.com/sahil280114/codealpaca

Model Size Accuracy (%)
Baselines

ChatGPT (0-shot) - 90.5
BLOOM (0-shot) 3B 3.0
BLOOM (1-shot) 3B 3.0
BLOOM (0-shot) 7B 5.2
BLOOM (1-shot) 7B 11.7
LLaMA (0-shot) 7B 12.4
LLaMA (1-shot) 7B 14.2
LLaMA (0-shot) 13B 18.7
LLaMA (1-shot) 13B 25.6
LLaMA (0-shot) 33B 24.1
LLaMA (1-shot) 33B 54.5

Finetuned with Alpaca Dataset

LLaMA
7B 39.3
13B 55.2
33B 70.6

Finetuned with CodeAlpaca Dataset

LLaMA 13B 48.5
33B 74.6

Finetuned with CodeInstruct Dataset

BLOOM
560M 20.9

3B 51.2
7B 56.2

LLaMA
7B 69.2
13B 75.9
33B 89.3

Table 2: Accuracy evaluated by GPT-4.

using GPT-4 as an evaluator and human scoring re-
sults in Appendix E. The average of three runs was
taken for each score. We also showcase human-
evaluated model performance finetuned with In-
structCoder in Table 6. While low accuracy are
observed in plain open-source models and only
marginal improvement is achieved through few-
shot prompting, finetuning with InstructCoder sig-
nificantly boost the accuracy, suggesting the ef-
fectiveness of efficient instruction finetuning with
machine-generatied code edit pairs.

It is noteworthy that our largest finetuned
LLaMA-33B exhibits a performance comparable
with the strong baseline ChatGPT on the test set.
Some qualitative results are shown in Appendix
F. Despite the noise present in the data points col-
lected through git-diff,5 which might entail incom-
plete contextual information and some disparity in
code structure, the finetuned LLaMA-33B achieves
an accuracy of 89.3% under GPT-4 evaluation,
with a 65% increase over its plain counterpart.

The ability of the underlying LLM also serves
as a significant determinant in the code-editing
capacity. While enhancements are evident across

5https://git-scm.com/docs/git-diff
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Figure 5: Data scaling performance of InstructCoder on
LLaMA evaluated by GPT-4, using 1%, 10%, 50% and
100% training data.

all finetuned models, the LLaMA models exhibit
superior accuracies when compared to BLOOM
models of comparable sizes.

The models finetuned with CodeAlpaca exhibit
unsatisfactory results. The 13B model exhibits a
mere 48.5% accuracy, a markedly inferior perfor-
mance compared to the finetuning with Instruct-
Coder, and even lower than that of Alpaca. In the
case of the 33B model, CodeAlpaca surpasses Al-
paca in performance; however, it remains substan-
tially worse than InstructCoder. This finding vali-
dates our methodology of employing GitHub seed
data to produce a more challenging and diverse
dataset. The observation suggests the presence of a
considerable domain gap between CodeAlpaca and
authentic real-world test data, rendering CodeAl-
paca suboptimal, though the phenomenon can be
partially alleviated by scaling up model size.

6.2 Dataset Scaling
InstructCoder has a scale considerably smaller than
what LLMs are typically pretrained on. In order to
ascertain the sufficiency of this scale, we conducted
an experiment wherein we fine-tuned the LLaMA
family of models using varying proportions (1%,
10%, 50%, and 100%) of the dataset. The data
subsets corresponding to smaller proportions are
guaranteed to be encompassed within the larger
data subsets. The results are shown in Figure 5.

The identified trend demonstrates a positive cor-
relation between the model’s accuracy and the
scale of the training set. However, this relation-
ship exhibits diminishing returns as the dataset
size continues to expand. Utilizing just 10% of the
data brings significant increase and surpass the cor-
respoding zero-shot and one-shot accuracies with-
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Figure 6: GPT-4 evaluation results at different edit ra-
tios on 2000 validation samples.

out finetuning (see Table 2) by considerable mar-
gins. With over 10% training data, larger models
demonstrates superior performance than smaller
models trained with full data. except for LLaMA-
13B@10% and LLaMA-7B@100%. While we
empirically observed that the training time grows
approximate linearly with parameter count in our
experiments, the results reveals that larger models
should be preferred with limited training compute
budget.

6.3 Edit Ratios

Figure 6 shows the accuracy of finetuned LLaMA
models across five levels of edit ratio. Larger mod-
els consistently outperforms smaller ones within
each bin. Interestingly, the accuracy of models’
edit is generally lower as the edit ratio decreases.
One plausible reason is that, as the fine-tuning loss
is the average of cross-entropy on the label tokens,
a shortcut of copying the inputs is easily learnt
by the model to achieve a fairly low loss value,
especially when the absolute number of modifica-
tions is small. Our observations indicate that this
issue can be alleviated by scaling up the models.
Larger models perform better in capturing subtle
differences in low edit ratio cases.

7 Conclusion

We introduce InstructCoder, the first instruction
tuning dataset for general-purpose code-editing
tasks. The dataset comprises generations of Large
Language Models, where real GitHub commits
serve as seed tasks to guide the generation process.
A scenario-conditional approach is introduced to
ensure both diversity and high quality of the data.
Our experiments show that with computationally
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lightweight parameter-efficient finetuning, open-
source models can gain huge improvements and
even yield ChatGPT-like performance. We also
reveal that the LLM base model and the scale of
finetuning data are both profound factors of code-
editing ability. We hope the dataset can benefit and
inspire more research in this area towards building
more powerful coding models.

Limitations

While we chose genuine github commits as the
source of our seed tasks, the data produced may
still exhibit biases that deviate from real-world ap-
plication. Moreover, our approach did not encom-
pass code changes involving cross-files contexts,
which might be the common case in development.
We hope to explore these aspects further and incor-
porate additional programming languages in our
future research.

Ethics Statement

This research paper adheres to the ethical guide-
lines and principles set forth by the Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP) and the wider scientific community.
All real-world data were collected only from public
repositories from GitHub.
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A Prompts

The prompts we used in our data collection and experiments are listed in Table 3.

Stage Prompt
Instruction Generation Given the existing instructions, please generate a list of

diverse python code editing instructions. The new instructions
should address diverse editing tasks. Please ensure that the
instructions are clear and diverse. Include any relevant
variable names in the instruction.

Scenario Generation Given a python code editing task, please come up with 10
diverse scenarios concise description where this python code
editing task could be performed or come from.

Instance Generation Given python code editing task instructions and their
scenarios where the task instruction could be used, you need
to come up with examples for the following code editing tasks.
You need to generate input and output code pair and make
sure your variable names are suitable for the scenario. The
input code is related to the task instruction, but must NOT
meet the task requirements. The output code fulfills the task
requirements based on input code.

GPT4 Evaluation Given a code editing instruction, please determine if the
output is an acceptable edited code response to the instruction
and input? Give "Yes" or "No".

Table 3: Prompts used in this work.
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B Qualitative Examples of Scenario-Conditional Generation

Three comparisons are presented, each showing instances that were generated with or without the
inclusion of a scenario.

Figure 7: Example instance #1 generated without scenario (Left) and with scenario (Right)

Figure 8: Example instance #2 generated without scenario (Left) and with scenario (Right)
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Figure 9: Example instance #3 generated without scenario (Left) and with scenario (Right)

C Additional statistics of InstructCoder

Token Length Instruction Input Output
mean 21.85 172.03 248.43
25% 17 99 138
50% 21 147 213
75% 26 218 321
min 3 10 10
max 116 1019 1024

Table 4: Token length statistics using the LLaMA (Touvron et al., 2023) tokenizer.
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Figure 10: Edit rows distribution of InstructCoder (Number greater than 40 are aggregated as the last bin.)

D Hyperparameters

The hyperparameters used in all finetuning experiments is listed in Table 5.

Hyperparameter Value

learning rate 0.0003
batch size 128

epochs 3
max sentence length 1024

lora rank 16
lora dropout 0.05
lora modules key, query, value, output

Table 5: Hyperparameters used for finetuning language models.
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E Human Evaluation Results and Analysis on Human Alignment of GPT-4

Using the scoring standard described in 5.2, we conducted human evaluation on the test set code edits
sampled from ChatGPT and LLaMA fine-tuned on InstructCoder. The results are provided in Table 6.
The results is compared to the evaluation results of GPT-4. When considering the partial type of human
scoring as correct, our observations reveal an average consistency ratio of 68.2%, and on the largest
evaluated model, LLaMA-33B, the value rises to 78.4%. This renders GPT-4 evaluation as an acceptable
method for evaluating the correctness of code edit tasks.

Model Correct Partial Wrong

ChatGPT 79.3 10.4 10.3
LLaMA-7B 54.1 8.1 37.8
LLaMA-13B 69.6 5.2 25.2
LLaMA-33B 76.3 8.1 15.6

Table 6: Human evaluation results of LLaMA models finetuned with CodeInstruct on the test set collected from
GitHub. Correct means the edit correctly reflect the task demand. Partial means the edit is mostly correct, but with
minor unexpected modifications. Wrong indicates non-acceptable edit.

F Qualitative Examples Generated by Finetuned LLaMA-33B

We demonstrate some qualitative example response generated by finetuned LLaMA-33B.

Figure 11: Qualitative examples generated by finetuned LLaMA-33B
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G Data Filtering Process

The detailed process of filtering the dataset is listed below:

• We selected github repos with over 100 stars to ensure the overall quality. We only utilized repos
with permissive licenses (MIT, Apache-2.0, GPL-3.0, GPL-2.0, BSD-2.0, BSD-3.0, LGPL-2.1,
LGPL-3.0, AGPL-3.0).

• We kept commits in which only one single .py file was changed. Using git-diff, we identified and
preserved commits where only one code block was changed.

• We discarded commits with single-word or empty commit messages.

• We removed commits with over 100 edited rows.

Manual:

• We discarded rare commits containing inappropriate language.

• We discarded commits where the change in the source code does not match the commit message.

• We filtered out project-specific adjustments that lack sufficient context.

• We utilized Codex (Chen et al., 2021) to rewrite ambiguous commit messages, enhancing the clarity
of the intended code edits.
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