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ABSTRACT

Storing the weights of Large Language Models (LLMs) in GPU memory for local
inference is challenging due to their size. While quantization has proven successful
in reducing the memory footprint of LLMs, unstructured pruning introduces overhead
by requiring the non-pruned weights’ location to be encoded. This overhead hinders
the efficient combination of quantization and unstructured pruning, especially for
smaller batch sizes common in inference scenarios. To address this, we propose the
CS256 storage format, which offers a better balance between space efficiency and
hardware acceleration compared to existing formats. CS256 partitions the weight
matrix into tiles and uses a hierarchical indexing scheme to locate non-zero values,
reducing the overhead associated with storing sparsity patterns. Our preliminary
results with one-shot pruning of LLMs show that CS256 matches the performance
of unstructured sparsity while being more hardware-friendly. Our code is available
at: https://github.com/mklasby/llm-compressor/tree/mklasby-cs256.

1 INTRODUCTION

In recent years, machine learning models have seen an unprecedented growth in size, far outstripping
the increase in compute power predicted by Moore’s law. Thus, training these foundation models
requires increasingly longer durations and a growing number of accelerators in datacenters (Narayanan
et al., 2021). While inference is significantly less resource intensive than training (e.g., except for a
KV cache, no activations need to be persisted), even just storing the weights of such a model in GPU
memory can be infeasible outside of datacenter deployments. For instance, LLama3 (Dubey et al., 2024)
requires ≈754GiB in 16-bit precision for its 405 billion weights, equivalent to the capacity of 16 A6000
workstation GPUs. Consequently, model compression has become essential, converting the gigantic
foundation models into smaller, locally runnable versions. Interestingly, a compressed version of a large
model typically outperforms a memory-matched, uncompressed smaller model (Li et al., 2020).

Model compression can be broadly classified into two approaches: Storing less bits per weight (quantization,
e.g. Dettmers et al. (2024); Frantar & Alistarh (2023)), and storing fewer weights at all (pruning, e.g. Han
et al. (2015); Hoefler et al. (2021)). Quantization has had resounding success with LLMs: reducing the
bit-width to eight bits per weight can be achieved without noticeable quality loss (Dettmers et al., 2022),
and even reducing to four bits is possible with minimal degradation (Frantar et al., 2022). Recent methods
are even approaching the 1-bit boundary (Ma et al., 2024), although such extreme quantization does result
in a significant drop in generation quality. In fact, quantization has been so successful that newer hardware
generations have support for smaller and smaller data types built directly in silicone, with 8-bit floating
point support in H100 (NVIDIA, 2022) and 4-bit types in B100 (NVIDIA, 2025).

However, a fundamental drawback of pruning is that, in order to implement it efficiently, one would like the
pruned elements to be as structured as possible; pruning of entire layers (Gromov et al., 2024) or neurons
can be implemented almost without overhead, but also quickly deteriorates the models performance. On
the other hand, unstructured pruning generally allows for removing a larger fraction of weights, but this
is paid for in two ways. First, unstructured calculations can only use a small fraction of a GPUs theoretical
maximum FLOPs (Gale et al., 2020), and second, one needs to encode the location of the non-pruned
weights, thus introducing memory overhead. Nonetheless, some limited form of sparsity support has also
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Figure 1: Compression ratio of several sparse storage at 16 and 8 bit weight precision, compared with
8 and 4 bit quantization (assuming effectively 4.127 bits per parameter (Dettmers et al., 2024)).

found its way into recent hardware in the form of 2:4 sparsity (Mishra et al., 2021). Due to the strong
structural constraint, 2:4 sparsity has an overhead of only two bits per nonzero weight, but at the same
time, also does not allow for pruning more than 50% of the weights.

In this paper, we take the stance that the second problem is much more problematic, because at small
batch sizes, such as during inference, the computations will be memory-bandwidth bound instead of
compute-bound. Even more importantly, there is a steep performance cliff between being able to fit a model
fully on device memory, and having to stream its weights through the slow PCIe connection. This makes
the overhead of sparse data formats the main obstacle, from a computational perspective, to the adoption
of sparsity at a similar rate as quantization. To make matters worse, metadata overhead is independent
of the weights’ precision, preventing efficient combination of quantization with unstructured sparsity.

Figure 1 illustrates the storage overhead for different sparsity formats. Traditional sparsity formats such
as coordinate (COO) or compressed-sparse row (CSR) formats, which are natively supported by PyTorch,
come with significant overhead. To achieve a 50% reduction in memory, sparsities of 83.5% (90% for 8-bit
weights) and 75% (83%) are required, beyond what current pruning algorithms can provide with acceptable
loss in model quality. On the other hand, bitmasks are highly efficient at the intermediate sparsity regime
most interesting to ML research, yet they require sequential decoding, anathema to current parallel hardware.

One way of achieving a sparsity format that is both space-efficient and amenable to hardware acceleration
is by imposing constraints on the supported sparsity patterns (Gray et al., 2017; Castro et al., 2023; Yu
et al., 2024; Okanovic et al., 2024; Lin et al., 2023). Most famously, 2:4 sparsity is natively supported
in NVidia hardware since Ampere. Not only does this format lead to a true speedup of almost 2× (when
doing matrix-matrix multiplications using tensor cores), it also requires only 4 bits of indexing for each
block of 4 weights, making it as memory-efficient as a bitmask representation. Another alternative are
block-sparse formats, where a single piece of indexing information pertains to an entire block of weights.

Below, we propose the CS256 storage format, which offers a better balance between space efficiency and
hardware acceleration compared to existing formats: it is (essentially) unstructured, but with less overhead
than CSC, and better parallelizability than bitmasks.

2 COMPRESSED SPARSE TILES

In COO format, each weight has its location identified by explicitly specifying its row and column,
requiring two sufficiently large (typically 16-bit) integers, so that a single sparse weight is three times
as expensive as a single weight in a dense matrix in 16-bit precision. The overhead is reduced in CSR
format by observing that, for non-extreme sparsity levels, many weights will share their row index. By
storing just the the column index, and an additional data structure that points to the beginning of each row,
the overhead can be almost halved. The key improvement in CSR is to perform the localization of weights
hierarchically: First, group weights together by coarse location (i.e., row), then locate them within (i.e.,
column). However, the coarse location is still large enough that the inner locator needs to have 16 bits.1

1Of course, for smaller matrices, one might get away with fewer bits, i.e., 12 bits would be enough for 4096
columns, but non-multiples of 8 make implementations much more difficult.
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Figure 2: Visualization of the CS256 format, using a smaller tile size of 4 for illustration.

In order to reduce the memory overhead further, one needs to reduce the size of the regions such that 8 bits
are sufficient to locate a weight. Thus, a straightforward improvement over CSR is to partition the matrix
into rectangular tiles with an area of 256 entries, replace the pointers to row starts with pointers to tile starts,
and use 8-bit indices to identify weights within a tile. Of course, we have now traded the reduced number of
bits per weight with a larger number of pointers to tiles; a favorable trade at medium sparsities, but inefficient
for extremely sparse matrices. This problem becomes even more apparent if we were to attempt and reduce
the bits per weight further. Going down to only 2 bits per weight, we require tiles of size 4; but then, ann×n
matrix would require n2/4 tile pointers, which would consume a huge amount of memory in themselves.

One way to address this is to make tiles uniform; if each tile has exactly the same number of non-zero
entries, there is no need to store any tile pointers at all. For n entries per tile, the kth weight belong into
tile ⌊k/n⌋. For tiles sizes of four and n=2, this results in the hardware-accelerated 2:4 sparsity format.
However, the space savings are achieved by placing a strong structural constraint on the sparsity pattern.

In order to reduce the pointer overhead without introducing additional constraints, we can introduce another
level in the location hierarchy: Group tiles together into larger super-tiles, have one 32-bit pointer per
such super-tile, and then user smaller-sized offsets to identify the location of the tile inside the larger area.

Let us focus, for now, on tiles of shape 1×256, that is, a tile spans 256 columns in one row. As there
cannot be more than 256 non-zeros per tile, the size of the tile can be saved in 8 bit. Saving tile sizes,
as opposed to offsets to their start, has the disadvantage that a prefix-sum needs to be computed in order
to identify each particular tile. However, a typical matrix multiplication algorithm will iterate over the
k dimension (i.e., the weights for one particular neuron) within one compute unit2, so that the tile offset
can be calculated without overhead.

This leaves us with the following storage format, illustrated in Figure 2. Weight values are stored in one
continuous array Values (V in the figure). A second array RowPointers (P ) of 32-bit indices
indicates the start of each row within the weight array. For each tile of 256 columns within one row, its size
is saved in an 8-bit value BlockIncrements (O). Finally, for each structural non-zero, one 8-bit index
within the 256-wide tile is stores in Indices (I). While this raw definition of the format imposes no
structural requirements on the distribution of non-zero elements, in order to enable efficient implementation,

2with the exception of split-k algorithms
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Figure 3: Average accuracy on OpenLLM Leaderboard V1 benchmarks for various sparsities and for-
mats for Llama-3.1-8B-Instruct (fig. 3a) and Qwen-2.5-7B-Instruct (fig. 3b). CS256 matches unstructured
sparsity. For N:M, M=256 yields considerable improvements over the 1:4, 2:6, and 2:4 formats.

we want to ensure data alignment for vectorized memory access. This is achieved by requiring that the
number of non-zeros within each tile is a multiple of 4/8/16 (but can be different in different tiles).3

3 EXPERIMENTAL RESULTS

We extend SparseGPT (Frantar & Alistarh, 2023) such that the pruned weights conform to the CS256
format, that is, we prune such that the number of active weights in each tile is a multiple of 8. We prune
Llama-3.1-8B-Instruct (Llama Team, AI @ Meta, 2024) with a block size of 256 and dampening fraction
of 0.01 to unstructured, CS256, and two N:M formats – M ≈ 4 and M =256 – with 50%, 66%, and
75% sparsity. For calibration data we randomly select 512 samples from UltraChat-200K4 (Ding et al.,
2023) truncated to a maximum sequence length of 2048. We evaluate the pruned models on OpenLLM
Leaderboard V1 tasks using the EleutherAI evaluation harness (Gao et al., 2023) in Figure 3. These tasks
include: 25-shot ARC-C (Clark et al., 2018), 5-shot strict exact match GSM8k (Cobbe et al., 2021), 10-shot
HellaSwag (Zellers et al., 2019), 5-shot MMLU (Hendrycks et al., 2021), 5-shot Winogrande (Sakaguchi
et al., 2019), and 0-shot multi-true (MC2) TruthfulQA (Lin et al., 2022). We report byte-length normalized
accuracies for ARC-C and HellaSwag.

Having little structural constraints, we find that CS256 matches the performance of unstructured sparsity,
outperforming the more structured formats. We posit that these improvements may be attributed to the
non-uniform allocation of parameters across rows of the weight matrix. These preliminary results suggest

3One could always fill up the additional elements with explicit zeros, but that does not make sense for a ML
application. If we have to pay the memory cost, we may as well put these weights to good use.

4https://huggingface.co/datasets/HuggingFaceH4/ultrachat 200k
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that CS256 may offer generalization performance comparable to unstructured sparsity while providing
practical benefits on commodity hardware.

Testing on a 16GiB RTX A4000 card, running the default (bfloat16) implementation of transform-
ers, a few of the model layers end up getting offloaded to CPU, and text generation, using a batch size
of 1, proceeds at a speed of 0.41 sec/tok. Converting to 66% sparse CS256 format and using our custom
kernel for spmv (see A.1), the model fits comfortably in device memory (see A.2), and generation speed
increases to 0.21 sec/tok.

4 CONCLUSIONS AND OUTLOOK

This work introduces the CS256 format, a novel approach to LLM compression that offers flexibility and ef-
ficiency. Our analysis shows that CS256 enables significant memory reduction without compromising accu-
racy, making it suitable for deploying large models on resource-constrained devices. While further empirical
validation is necessary, our preliminary findings suggest that CS256 is a promising addition to the LLM com-
pression toolkit, opening possibilities for wider deployment and accessibility of powerful language models.

As Figure 1 suggests, the CS256 format would still retain noticable compression at 66% sparsity when
using 8-bit weights, a combination which we intend to explore in future work.
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A APPENDIX

A.1 CS256 SPMV KERNEL

Below is the implementation of the sparse-matrix-vector implementation for CS256 sparse matrices:

template<class Scalar, int VecSize>
__global__ void spmv(CS256<const Scalar, VecSize> cs256, const Scalar* B,

Scalar* C) {
constexpr const int BLK_UNROLL = 4;
constexpr const int BLOCK_DIM = 256;
int m = cs256.m;
int n = cs256.n;
int blk_per_row = (n + 255) / 256;
int blk_offset = ((blk_per_row + 3) / 4) * 4;

__shared__ Scalar B_buffer[BLK_UNROLL][256];

// block-index among unrolled blocks
int block_offset = threadIdx.x % 4;
int neuron_offset = threadIdx.x / 4;
int neurons_per_block = BLOCK_DIM / 4;

assert(m % 64 == 0);

using WeightVec = GenericVector<Scalar, VecSize>;
using IdxVec = GenericVector<std::uint8_t, VecSize>;
using FtrVec = GenericVector<Scalar, 4>;

for (int i = blockIdx.x * neurons_per_block + neuron_offset; i < m;
i += gridDim.x * neurons_per_block) {

int start = cs256.RowPointers[i];
float s = 0.f;
FtrVec ftr;
int idx = threadIdx.x * 4;
if (idx < cs256.n) {
ftr = FtrVec::load(B + idx);

} else {
ftr = FtrVec::zeros();

}

for (int blk_o = 0; blk_o < blk_offset; blk_o += BLK_UNROLL) {
auto increments = GenericVector<std::uint8_t, BLK_UNROLL>::load(

cs256.BlockIncrements + i * blk_offset + blk_o);

__syncthreads();
*reinterpret_cast<FtrVec*>(&B_buffer[threadIdx.x * 4 / 256][idx % 256]) =

ftr;
idx = (blk_o + BLK_UNROLL) * 256 + threadIdx.x * 4;
if (idx < cs256.n) {
ftr = FtrVec::load(B + idx);

} else {
ftr = FtrVec::zeros();

}
__syncthreads();

int blk = blk_o + block_offset;
if (blk >= blk_per_row) continue;

int end = start;
for (int j = 0; j <= block_offset; ++j) {
start = end;
end += increments[j];

}

8
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Figure 4: Memory profile when replacing dense weights with CS256 at 66% sparsity.

for (int t = start; t != end; t += VecSize) {
IdxVec idxs = IdxVec::load(cs256.Indices + t);
WeightVec vals = WeightVec::load(cs256.Values + t);
for (int tt = 0; tt < VecSize; ++tt) {
int idx = idxs[tt];
float feature = B_buffer[block_offset][idx];
s += (float) vals[tt] * (float) feature;

}
}

for (int j = block_offset; j < 4; ++j) { start += increments[j]; }
}

// reduction for split-k
{
cooperative_groups::thread_block block =

cooperative_groups::this_thread_block();
cooperative_groups::thread_block_tile<4> tile =

cooperative_groups::tiled_partition<4>(block);
s = cooperative_groups::reduce(tile, s,

cooperative_groups::plus<float>{});
if (tile.thread_rank() == 0) { C[i] = s; }

}
}

}

A.2 MEMORY PROFILE

In Figure 4, we present the memory trace as extracted with PyTorch’s memory profiler, when substituting
weights in LLama-8B from dense to 66% sparse CS256 weights when running on an RTX A4000 GPU.
Most of the dense layers fit on the GPU, so when these initial layers are sparsified, the GPU memory
consumption decreases. However, the last few layers of the model are offloaded to CPU, so when these are
replaced, GPU memory consumption actually increases. The large orange chunk at the bottom of the dia-
gram corresponds to embedding/LM head weights, which remain untouched in our sparsification procedure.

9


	Introduction
	Compressed Sparse Tiles
	Experimental Results
	Conclusions and Outlook
	Appendix
	CS256 SPMV kernel
	Memory profile


