
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEMORY SAVINGS AT WHAT COST?
A STUDY OF ALTERNATIVES TO BACKPROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Forward-mode automatic differentiation (FMAD) and zero-order (ZO) optimization
have been proposed as memory-efficient alternatives to backpropagation (BP)
for gradient computation, especially in low-resource settings. However, their
practical benefits remain unclear due to two key gaps: a lack of comparison
against memory-efficient BP variants, such as activation checkpointing, and a
lack of systematic characterization of tradeoffs between accuracy, memory, and
computation efficiency among these methods. This work presents a comprehensive
comparison of BP, FMAD, and ZO methods. Through theoretical analysis under a
common framework, we present intuition that, while FMAD and ZO can reduce
memory usage, they incur significant costs in accuracy, convergence speed, and
computation compared to BP with checkpointing. These drawbacks worsen with
larger models or constrained perturbation budgets. Through empirical experiments
on large language and vision-language models, we show that BP with checkpointing
outperforms FMAD and ZO variants, including those enhanced with variance
reduction, achieving up to 31.1% higher accuracy, 34.8% faster convergence,
and 3.8× fewer computations at comparable memory usage. We also investigate
specific failure modes in FMAD and ZO, including instabilities in Jacobian-vector
products that can destabilize training. Our results highlight fundamental limitations
of FMAD and ZO, and the effectiveness of BP with checkpointing for model
training under memory-constrained settings.

1 INTRODUCTION

Backpropagation (BP) (Rumelhart et al., 1986) is the standard algorithm for gradient computation in
deep learning due to its convergence efficiency and widespread support in automatic differentiation
frameworks such as PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018). However, BP
incurs high memory overhead in training large models, as it must store intermediate activations
for the backward pass. To address this limitation, recent research has explored alternative gradient
estimation methods such as forward-mode automatic differentiation (FMAD) (Baydin et al., 2017;
2022; Panchal et al., 2024) and zero-order (ZO) optimization (Richardson, 1955; Malladi et al., 2023),
which approximate gradients (using directional derivatives or two forward pass evaluations) based on
randomly perturbed weights. These methods are often promoted as memory-efficient or hardware-
friendly alternatives to BP, especially in resource-constrained or non-differentiable settings (Panchal
et al., 2024; Malladi et al., 2023; Xu et al., 2024).

Despite growing interest, prior work on FMAD and ZO suffers from two critical limitations that leave
their practical value inadequately understood. First, the existing comparisons (Gautam et al., 2024;
Zhang et al., 2024) often overlook activation checkpointing (Chen et al., 2016), a widely supported
and effective BP variant that substantially reduces memory usage by recomputing rather than storing
intermediate activations. Second, as shown in Table 1, key considerations such as computational cost
and wall-clock time to convergence are often omitted, leaving even the comparisons against vanilla
BP incomplete. This one-sided narrative of ZO and FMAD as superior to BP motivates our study: we
aim to provide a comprehensive account of these trade-offs, encompassing not only memory usage
but also convergence speed and overall computational efficiency of the gradient estimation methods.

This paper addresses the above-mentioned limitations through a comprehensive study of BP, FMAD,
and ZO approaches. We first outline the expected trade-offs among convergence behavior, memory

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: While some existing research empirically compares vanilla backpropagation (BP-Vanilla)
across multiple metrics including memory usage, convergence time, and computational cost, they
examine only a subset of these criteria, and notably, none include comparisons with backpropagation
using checkpointing (BP-Checkpointing). We omit accuracy as it is evaluated in all the studies.

METHODS
CONV.
TIME

MEMORY
COMP.
COST

CONTRIBUTION

MEZO
(Malladi et al., 2023) ✗ ✓ ✗ ZO uses 12× less memory than Vanilla BP while achieving

accuracy within 5%.
MEZO-SVRG
(Gautam et al., 2024) ✗ ✓ ✗ Enhances the convergence accuracy of MEZO through vari-

ance reduction, improving accuracy by up to 20%.
Revisiting ZO
(Zhang et al., 2024) ✗ ✓ ✗ Benchmarks ZO optimization in LLM fine-tuning, along

with proposing novel techniques that enhance accuracy over
MeZO by up to 3%.

ZOSPARSE
(Guo et al., 2025) ✓ ✗ ✗ ZO fine-tuning achieves full ZO accuracy by updating just

0.1% of sensitive parameters, with up to 2.5× speedup.
SPRY
(Panchal et al., 2024) ✓ ✓ ✗ Distributes trainable parameters across federated clients, im-

proving FMAD’s convergence speed by up to 20× and final
accuracy by up to 13% compared to ZO.

FOMOH
(Cobb et al., 2024) ✗ ✗ ✗ Introduces forward-mode second-order optimization; im-

proves accuracy by 1–3% compared to first-order FMAD
on logistic regression and CNN tasks.

This paper ✓ ✓ ✓ First to evaluate how BP with checkpointing fares in the three-
way tradeoff vs. variance-reduced ZO and FMAD.

consumption, and computational cost as functions of model dimensionality d and the number of
perturbations per iteration n. These theoretical results suggest that, while FMAD and ZO may
reduce memory under certain regimes (e.g., when perturbations are evaluated sequentially), they face
scalability challenges: higher per-iteration computational cost, O(nd), and slower convergence in
high dimensions or with limited perturbation budgets. In contrast, BP with activation checkpointing
is expected to achieve favorable convergence with comparable memory usage.

0k 1k 2k 3k 4k 5k 6k
Convergence Time (minutes)

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

11.66GB

5.99GB

5.99GB
5.99GB

12.21GB

12.21GB
12.21GB

60.91GB

17.33GB

Gradient Computation Methods
BP-Checkpointing
ZO-Vanilla
ZO-Accumulate
ZO-Multiple (Sequential)
FmAD-Vanilla

FmAD-Accumulate
FmAD-Multiple (Sequential)
FmAD-Multiple (Parallel)
ZO-Multiple (Parallel)

Figure 1: The three-way trade-off between accu-
racy, convergence time, and memory consumption
during training of LLAMA 3.1 (8B) on the AG-
News dataset. The circle radii are proportional to
the memory consumption. BP-CHECKPOINTING
achieves highest accuracy with lowest convergence
time using comparable memory to FMAD and ZO
variants. §4 describes these methods in detail.

We then conduct extensive empirical evaluations
on large language and vision-language models
across tasks including text classification, text
generation, and visual question answering. We
compare BP with checkpointing against a wide
range of FMAD and ZO variants (including
SVRG (Liu et al., 2018), multiple perturbations
per iteration (Feng et al., 2024)), and our own
enhanced versions with variance reduction: gra-
dient accumulation and adaptive perturbation
sampling. As illustrated in Figure 1, BP with
checkpointing consistently achieves higher accu-
racy and faster convergence, while using mem-
ory on par with FMAD and ZO variants.

Beyond standard performance metrics (accuracy,
memory, and convergence time), we also per-
form a dedicated study of specific failure modes
in FMAD and ZO, focusing on instabilities in
Jacobian-vector products (jvps) that can arise
under adaptive optimizers and hinder conver-
gence. This analysis provides insight into why these gradient estimation methods behave unpre-
dictably in practice and complements our broader evaluation of their scalability and reliability.

These findings lead to a critical insight: despite recent enthusiasm for forward-mode and zero-order
methods (Panchal et al., 2024; Malladi et al., 2023; Gautam et al., 2024; Liu et al., 2018), they remain
fundamentally constrained by their inability to efficiently scale to large models. Rather than serving

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

as alternatives to backpropagation, they operate as inefficient approximations that trade off accuracy
or convergence speed for marginal memory reductions.

This paper’s main contributions are:

• A theoretical analysis of the convergence rates, memory cost, and compute complexity of BP,
FMAD, and ZO under a common theoretical framework, highlighting their three-way trade-offs.

• A comprehensive empirical study of BP, FMAD, and ZO on large-scale models across diverse tasks.
We show that BP with checkpointing consistently achieves 4.5–31.1% higher accuracy, 21.4–34.8%
faster convergence, and 3.2–3.8× lower computation cost than FMAD and ZO variants, while
using comparable memory.

• The design and benchmarking of two new variance reduction methods for FMAD and ZO. These
methods improve accuracy by 7.5–14.0%, but still fall short of BP’s overall efficiency, and introduce
overheads in either convergence time or memory.

• An analysis of FMAD’s and ZO’s failure modes, including high-dimensional perturbations, noisy
Jacobian-vector products, and optimizer-dependent instabilities (e.g., abrupt jvp spikes under
adaptive optimizers like AdamW) that destabilize training and degrade convergence.

2 BACKGROUND

This section reviews three gradient computation techniques central to our study: (a) reverse-mode
automatic differentiation (RMAD, of which backpropagation is a special case), (b) forward-mode
automatic differentiation (FMAD), and (c) zero-order (ZO) finite-difference methods. For an in-depth
survey of these approaches, we refer readers to Baydin et al. (2017). Appendix A reviews related
work in detail. Details on signal propagation mechanism of these methods are in Appendix G.

The three methods described below operate on a function f , which in deep learning corresponds
to a neural network and can be non-convex. This function f is composed of nested functions fi,
i ∈ [p], where p is the number of layers given a neural network. Each nested function produces
intermediate activations yi = fi(wi, yi−1), given weights wi and previous activations yi−1, where
y0 = x is the input. The weights are represented by the vector www = w1, w2, . . . , wp, where each
w[1,...,p] ∈ R[m1,...,mp]. The total number of trainable parameter is d =

∑p
i=1 mi. The intermediate

activations are yyy = y1, . . . , yp. The final output is y = yp = f(www, x) ∈ Rq, where typically
q ≪ mi, ∀i ∈ [p]. The loss function L(y, ŷ) ∈ R measures the difference between the predicted
output y and the true target values ŷ.

Reverse-mode Auto Differentiation (RMAD). RMAD computes gradients by propagating sensitivi-
ties (which is the rate at which the output of a function changes with respect to a given intermediate
value) backward through the neural network. RMAD relies on vector-Jacobian product (vjp), where
the Jacobian represents partial derivatives of an intermediate activation yi with respect to weights
wi−1, denoted ∂yi

∂wi−1
, and the vector is the activation gradient ∂f

∂yi
. RMAD starts by setting ∂f

∂yp
to

1, and propagating ∂f
∂wi−1

= ∂f
∂yi

∂yi

∂wi−1
and ∂f

∂yi−1
= ∂f

∂yi

∂yi

∂yi−1
, for i ∈ [2, p], backwards. The final

result is the weight gradient ∂f
∂www , formed from a series of vjp computations.

Backpropagation (Rumelhart et al., 1986) (BP) is a specific case of RMAD tailored for neural
networks. While RMAD’s backward pass begins by ∂f

∂yp
set to 1, BP initializes from the gradient

of the loss function: ∂L
∂yp

, which provides a semantically meaningful signal for optimization. The
backward phase is preceded by a forward pass that computes the activations and the loss L.

Forward-mode Auto Differentiation (FMAD). FMAD propagates directional derivatives through
the neural network to compute Jacobian-vector products (jvp). FMAD analyzes how a small
perturbation vvv in the weights www affects the outputs. Starting from δy1 = ∂y1

∂w1
v1, FMAD propagates

changes forward as:

δyi =
∂yi
∂wi

vi +
∂yi

∂yi−1
δyi−1, for i ∈ [2, p] (1)

until the final scalar perturbation in the loss δL is computed. Here, the Jacobian term ∂yi

∂wi
reflects

sensitivity to weight changes, and the perturbation vector is vi ∈ vvv, where vvv is typically sampled from
N (0, Id). The scalar δL is referred to as the jvp. Weight gradients (also called forward gradients)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Big O bounds of gradient computation methods on (a) Convergence error, (b) Memory
consumption, and (c) Compute cost (per-iteration). Let c denote the memory required to store
activations for a single layer, ch the maximum per-layer activation memory, p the total number of
layers, and d the number of trainable parameters. While BP with checkpointing retains the fast
convergence of BP with additional memory savings; both FMAD and ZO methods suffer from worse
convergence and higher compute costs, with parallel variants further increasing memory consumption.

Method Convergence Error Memory Compute

BP
O(1/T) with η ≤ 1

L

O(cp) O(d)

BP (with checkpointing) O(c
√
p) O(d log p)

FMAD (Parallel)
O

(
1

T [1−Lη
2 (1+ d+1

n)]

)
with η < 2

L(1+ d+1
n)

O(nch) O(nd)

FMAD (Sequential) O(ch) O(nd)

ZO (Parallel) O
(

1

T [1−Lη
2 (1+ d+1

n)]

)
+ Ldη2

2n
O(ϵ2)

with η < 2

L(1+ d+1
n)

O(nch) O(nd)

ZO (Sequential) O(ch) O(nd)

are computed as ∂L
∂wi

= jvp · vi. In contrast to BP, which propagates ∂L
∂yi

backward (i from p to 1),

FMAD propagates ∂yi

∂wj
forward (i from 1 to p, for all j).

Zero-order (ZO) Finite Differences. ZO optimization estimates gradients using only function f
evaluations, with no first-order derivative information required. These methods, including finite
differences (Richardson, 1955; Malladi et al., 2023), perturb the weights and approximate gradients
through changes in the loss values of the perturbed function evaluations. Given a perturbation
direction vvv ∼ N (0, Id), the gradient with respect to wi is approximated via:

∂L
∂wi

≈ L(f(www + ϵvvv, x), ŷ)− L(f(www − ϵvvv, x), ŷ)

2ϵ
· vi, (2)

where ϵ is a small step size. This symmetric difference estimator requires two sequential forward
passes per perturbation direction.

3 CONVERGENCE, MEMORY, AND COMPUTE TRADE-OFFS

We next review the theoretical characteristics of BP, FMAD, and ZO optimization, focusing on their
convergence, memory, and computational profiles. These methods have been analyzed individually in
prior works (Malladi et al., 2023; Gautam et al., 2024; Guo et al., 2025; Chen et al., 2019), as well as
in classic results on BP (Bottou et al., 2018; Garrigos and Gower, 2024) and automatic differentiation.
The derivations of convergence bounds on a non-convex function f , for the three gradient computation
approaches studied in this work are shown in Appendix I. Analysis on computation complexity is
in Appendix H. Here, we compile the theoretical results into a common comparative framework to
highlight their trade-offs under shared assumptions.

Table 2 shows how convergence behavior is affected by key parameters, including the trainable
parameter dimensionality d and the number of perturbations per iteration n. Although FMAD and
ZO can achieve memory savings in certain regimes, they incur higher per-iteration compute costs
and slower convergence in high-dimensional or low-perturbation settings. In contrast, BP (especially
when paired with activation checkpointing) retains favorable convergence with competitive memory
efficiency. These theoretical results provide intuitions for our empirical analysis in §4, where we
quantify how these trade-offs manifest in large-scale training. We summarize theoretical comparisons
of BP, FMAD, and ZO along three key axes:

Observation 1: Accuracy. FMAD and ZO introduce approximation noise and discretization effects,
leading to higher convergence error than BP, especially in high-dimensional models or with limited
perturbations. §4.2 empirically demonstrates that ZO suffers greater accuracy degradation than
FMAD due to discretization error, and that both ZO and FMAD achieve lower accuracy than BP
because of additional learning rate constraints, which are detailed in Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Observation 2: Convergence Speed. Both FMAD and ZO require stricter learning-rate constraints
than BP, which slows convergence as dimensionality grows or perturbation budgets shrink. §4.3
supports this observation by showing that FMAD and ZO converge more slowly and reach lower
accuracy compared to BP.

Observation 3: Memory-compute Trade-offs. While able to reduce activation memory, FMAD and
ZO incur O(nd) compute cost per iteration, and face a fundamental trade-off: parallel perturbations
reduce runtime but increase memory, whereas sequential perturbations conserve memory but slow
training. §4.4 corroborates these memory bounds and shows a breakdown of the memory consumption.
§4.5 empirically validates the computation cost.

A Note on Non-differentiable and Black-box Settings. While it’s claimed that ZO has utility in
settings with non-differentiable objectives (Qiu et al., 2023; Rando et al., 2023) or limited model
access (Nikolakakis et al., 2022; Lobanov et al., 2024), its applicability to large-scale model training
is fundamentally constrained. In true black-box scenarios, it is often infeasible to perturb weights or
query the loss values, making ZO methods impractical. In contrast, first-order methods such as BP
and FMAD require access to model internals and automatic differentiation support, challenges that
are largely engineering in nature and increasingly well-supported by modern frameworks. As such,
the growing trend (Gautam et al., 2024; Guo et al., 2025) of applying ZO to train LLMs is misguided:
the computational cost and degraded convergence significantly outweigh the memory gains.

4 EMPIRICAL EVALUATION

This section empirically compares the variants of BP, FMAD, and ZO optimization. We evaluate these
methods across multiple axes, including (a) accuracy, (b) wallclock convergence time, (c) memory
consumption, and (d) computation cost. For each of these dimensions, we also examine how different
variance reduction strategies affect performance. Last but not least, we empirically show that variance
reduction methods and adaptive optimizers fail to make FMAD and ZO converge reliably.

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate gradient computation methods across a diverse set of 5 text-based tasks and
2 vision-based tasks. The 5 text-based tasks are (a) Gsm8K (text generation on math problems/next-
word prediction) (Cobbe et al., 2021), (b) MMLU (multiple-choice question-answering covering
various domains of knowledge) (Hendrycks et al., 2021), (c) AGNews (4-class news article text
classification task) (Zhang et al., 2015), (d) BoolQ (boolean question-answering) (Clark et al., 2019),
and (e) MultiRC (closed-book question-answering) (Khashabi et al., 2018). The 2 vision-based tasks
are both based on visual question-answering: (a) VQAv2 (Goyal et al., 2019), and (b) TextVQA (Singh
et al., 2019). Appendix B describes the datasets in detail, including the train/test splits.

Models. Our evaluation uses 5 models with a varying number of total parameters (listed in paren-
theses). For text-based tasks, on the billion-parameters scale, we use LLAMA 3.1 (8B) (Grattafiori
et al., 2024) and OPT (1.3B, 6.7B, 13B) (Zhang et al., 2022). Additionally, we include medium-sized
language models BERT (110M, 340M) (Devlin et al., 2019) and ROBERTA (125M, 355M) (Liu
et al., 2020) to analyze performance variations across model sizes. For vision-based tasks, we use
QWEN 2 VL (7B) (Qwen et al., 2025). To finetune these models, we use QLORA (Dettmers et al.,
2023), where low-rank adapters are trainable while the rest of the weights are frozen and quantized to
4 bits. By default, we set the LORA rank r = 1 and scale α = 1 to minimize the number of trainable
parameters for FMAD and ZO. Appendix F.4 reports results on higher LORA ranks.

Methods for Comparison. We categorize the 16 gradient computation methods our evaluation com-
pares into three groups: (a) Backpropagation Methods: BP-VANILLA (Rumelhart et al., 1986) (the
standard implementation that stores all intermediate activations), BP-CHECKPOINTING (Chen et al.,
2016) (reduces peak memory consumption by storing only a subset of activations and recomputing the
rest during the backward pass), and BP-ACCUMULATE (uses gradient accumulation). (b) Zero-order
Methods: ZO-VANILLA (Chen et al., 2019) (use a single perturbation to estimate gradients as in
Equation 2), MEZO (Malladi et al., 2023) (incorporates a prompt-finetuning approach to convert
classification tasks into next-word prediction with a constrained vocabulary), ZO-ACCUMULATE
(applies gradient accumulation to reduce noise in gradient estimates), ZO-MULTIPLE (Feng et al.,
2024) (averages gradient estimates from multiple perturbations per iteration to improve estimate
stability), ZO-ADAPTIVE (adaptively selects perturbation directions based on prior gradients), ZO-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: BP, FMAD, and ZO variant accuracies (higher is better) across models and datasets.
Subscripts show accuracy gaps from BP-VANILLA/CHKPT (CHKPT = CHECKPOINTING). While BP
remains the most accurate, FMAD and ZO variants -ACCUMULATE and -MULTIPLE offer notable
gains over their -VANILLA forms but still lag behind BP, especially on generation tasks, such as
GSM8K. Appendix F.1 reports variance across runs. Darker shade = range of high accuracies,
lighter shade = range of moderate accuracies, unshaded = range of low accuracies.

Method

Model + Dataset LLAMA 3.1 (8B) QWEN 2 VL (7B)

AGNews BoolQ MultiRC GSM8K MMLU VQAv2 TextVQA

No Finetuning 23.5 51.6 52.8 27.3 51.1 73.2 71.1

BP-VANILLA/CHKPT 94.2 88.3 85.2 54.3 60.3 87.1 98.5
BP-ACCUMULATE 93.8(-0.4) 87.9(-0.4) 83.3(-1.9) 33.1(-21.1) 53.8(-6.4) 86.3(-0.7) 97.1(-1.4)

ZO-VANILLA 73.6(-20.6) 57.1(-31.1) 57.2(-28.0) 36.3(-17.9) 54.7(-5.6) 77.6(-9.4) 72.9(-25.6)
ZO-ACCUMULATE 85.8(-8.4) 60.9(-27.3) 60.3(-24.8) 28.0(-26.3) 55.2(-5.1) 79.7(-7.4) 73.1(-25.4)
ZO-MULTIPLE 86.7(-7.4) 60.0(-28.2) 61.0(-24.1) 35.8(-18.5) 56.8(-3.4) 81.5(-5.6) 74.7(-23.8)
ZO-ADAPTIVE 81.5(-12.7) 57.4(-30.9) 59.0(-26.1) 30.2(-24.1) 52.6(-7.6) 79.5(-7.5) 79.1(-19.3)
ZO-SVRG 84.7(-9.5) 62.6(-25.7) 61.2(-23.9) 32.1(-22.2) 55.9(-4.3) 79.1(-7.9) 72.9(-25.6)
ZO-SPARSE 64.5(-29.6) 53.2(-35.1) 55.3(-29.8) 29.1(-25.1) 51.4(-8.9) 78.6(-8.5) 73.8(-24.7)
MEZO 80.5(-13.7) 58.2(-30.1) 60.4(-24.8) — — — —

FMAD-VANILLA 80.5(-13.7) 60.7(-27.6) 61.4(-23.8) 37.7(-16.6) 55.8(-4.5) 82.3(-4.8) 78.3(-20.2)
FMAD-ACCUMULATE 88.0(-6.2) 70.3(-17.9) 71.2(-14.0) 30.8(-23.5) 57.1(-3.1) 83.7(-3.4) 80.9(-17.6)
FMAD-MULTIPLE 86.2(-8.0) 64.4(-23.8) 65.4(-19.7) 40.5(-13.8) 57.7(-2.6) 82.9(-4.2) 79.1(-19.4)
FMAD-ADAPTIVE 78.5(-15.7) 56.4(-31.9) 58.2(-27.0) 38.1(-16.2) 56.3(-3.9) 82.9(-4.1) 78.2(-20.3)
FMAD-SVRG 82.5(-11.7) 64.6(-23.7) 64.1(-21.0) 35.4(-18.9) 56.1(-4.2) 83.0(-4.0) 79.5(-19.0)
FMAD-SPARSE 70.4(-23.8) 56.9(-29.4) 53.1(-32.1) 30.3(-23.9) 53.4(-6.8) 80.3(-6.7) 77.0(-21.5)

SVRG (Liu et al., 2018) (applies stochastic variance reduction to correct noisy gradients), and
ZO-SPARSE (Guo et al., 2025) (only updates top-1% parameters each iteration). (c) Forward-mode
AD Methods: FMAD-VANILLA (Baydin et al., 2022), FMAD-ACCUMULATE, FMAD-MULTIPLE,
FMAD-ADAPTIVE, FMAD-SVRG, and FMAD-SPARSE. The -VANILLA suffix denotes the original
implementation according to Equation 1, while the other variants mirror the corresponding ZO
method in (b), adapting similar strategies for the forward-mode setting. Appendix C describes these
methods and their hyperparameters in detail.

Metrics. We evaluate the efficiency of the gradient computation methods using four metrics. (a) Ac-
curacy at test-time assesses the efficacy of the learned models. (b) Wallclock convergence time (in
minutes) measures the time each approach takes to achieve stable-state accuracy. (c) Peak memory
consumption (in GBs) quantifies the maximum memory consumed during training. (d) Compu-
tation cost for each iteration and until convergence, in Tera Floating-Point Operations per Second
(TFLOPs). Additionally, in our failure mode analysis, for ZO and FMAD approaches, Section 4.6
reports statistics, such as the mean of effective gradient norms and jvp values across iterations,
capturing the instability of estimated gradients and its impact on optimization dynamics.

Libraries and Hardware. Our codebase is built using PyTorch (Paszke et al., 2019). Quantization
uses AutoGPTQ (Frantar et al., 2022). We conducted all experiments involving billion-scale models
across ZO and FMAD variants on a single Nvidia L40 GPU (48GB RAM). For experiments on OPT
(13B) model, we used one Nvidia A100 (80GB RAM). For BERT and ROBERTA models, we used
an Nvidia 2080ti (11GB RAM). We repeated each experiment three times with random seeds set to 0,
1, and 2 to ensure consistency and robustness. Our source code is available for replication 1.

4.2 COMPARISON ON ACCURACY

Accuracy is the primary metric of interest since any gradient computation method that reduces memory
consumption or computational cost is of little practical value if it cannot match the predictive perfor-
mance of BP. Table 3 presents accuracy results and Appendix F.1 shows variance across 3 executions.

Backpropagation achieves significantly higher accuracy than FMAD-VANILLA and ZO-
VANILLA. Backpropagation, both in its standard form (BP-VANILLA) and with checkpointing
(BP-CHKPT), consistently achieves the highest accuracy across all tasks. Among the alternatives, the

1
https://anonymous.4open.science/r/Gradient_Estimation

6

https://anonymous.4open.science/r/Gradient_Estimation

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

-VANILLA forms of FMAD and ZO are most directly comparable to BP. Due to the inherent random-
ness in their perturbation-based gradients (see §3 Obs 1), both FMAD-VANILLA and ZO-VANILLA
lag behind BP by 4.5–27.5% and 5.6–31.1% across datasets, respectively. Further, across all the
datasets, FMAD-VANILLA outperforms ZO-VANILLA, with gains of 1.1–6.9%. This consistent
margin illustrates FMAD’s fundamental advantage: access to analytic first-order Jacobian-vector
products (jvp), over ZO’s reliance on noisy finite-difference estimates.

0 2000 4000 6000 8000 10000
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y Method
ZO
FmAD

Perturbation
 Count (n)

n = 1
n = 10
n = 50

(a) Averaging gradients over
multiple perturbations per iteration

0 1000 2000 3000 4000
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y Method
BP-Chkpt
ZO
FmAD

Accumulation
 Step Count

1
100
200

(b) Accumulating and averaging
gradients across iterations

Figure 2: Experiments (on AGNews dataset with LLAMA 3.1 8B
model) with varying perturbation counts (-MULTIPLE) and accu-
mulation steps (-ACCUMULATE) show that both strategies reduce
gradient noise and improve convergence stability for FMAD and
ZO. However, -MULTIPLE increases memory and compute costs,
while -ACCUMULATE slows down convergence. Furthermore,
as shown in (right), BP-CHECKPOINTING achieves the highest,
most stable accuracy fastest. FMAD performs moderately but is
unstable or slow, and ZO (with step size 1) suffers early collapse
and fails to match BP’s accuracy.

Variance reduction ap-
proaches improve the accuracy
of FMAD and ZO methods yet
fall short of closing the gap
with BP methods. Both FMAD
and ZO benefit from their
-ACCUMULATE and -MULTIPLE
variants, which reduce gradient
noise by trading off higher
compute or memory. FMAD-
ACCUMULATE improves over
FMAD-VANILLA by 1.4–9.8%
across datasets, except on
GSM8K (-6.9%), likely due to
its need for smaller batch sizes.
Similarly, ZO-ACCUMULATE
boosts accuracy by 0.2–12.2%,
with an 8.3% drop on GSM8K.
FMAD-MULTIPLE improves by
0.6–5.7%, and ZO-MULTIPLE
by 0.2–13.2%, with only a 0.5%
drop on GSM8K.

To understand the effects of these two variance reduction techniques, we vary the number of pertur-
bations and accumulation steps. Figure 2a shows that increasing perturbation count (n = 10, 50)
yields 5.7–7.7% (FMAD) and 13.2–14.0% (ZO) accuracy gains on AGNews, consistent with the
observations of § 3. Similarly, Figure 2b shows that increasing accumulation steps (100, 200) yields
7.5–7.6% (FMAD) and 12.2–14.0% (ZO) gains. These improvements come at the cost of increased
convergence time (sequential implementation of -MULTIPLE), memory (parallel implementation of
-MULTIPLE), or slower updates (-ACCUMULATE). These trade-offs are discussed in §4.3 and 4.4.

Other variance reduction approaches offer limited or inconsistent accuracy improvements for
FMAD and ZO. -ADAPTIVE often underperforms, with FMAD-ADAPTIVE trailing -VANILLA
on BoolQ (-4.3%) and MultiRC (-3.2%), likely due to biased updates from gradient-informed
perturbation sampling. -SPARSE performs worst overall, lagging -VANILLA by 1.2–10.1% (FMAD)
and 1.9–9.0% (ZO), as random perturbations of early steps mislead saliency-based parameter selection.
-SVRG improves classification accuracy by 4.0–11.1%, but failing on GSM8K (-4.2%) due to
homogenized updates that weaken variance correction (see Appendix F.5.2). MEZO offers modest
gains (1.0–6.9%) on classification but lacks applicability to generative and vision-language tasks.

Accuracy gaps widen as trainable parameters or model size increases. To further evaluate the
impact of trainable parameter count on FMAD and ZO, we conducted additional experiments on
medium-sized models (110M–350M parametered BERT and ROBERTA) and large-sized models
(OPT 1.3B, 6.7B, with various LORA ranks, and 13B), as detailed in Appendices F.2 and F.4. Both
FMAD and ZO still exhibit slower convergence and degraded performance compared to BP, with the
gap widening as model size increases (especially in the case of BERT and ROBERTA). Experiments
on changing the perturbation variance are presented in Appendix F.3.

4.3 COMPARISON ON WALLCLOCK CONVERGENCE TIME

Convergence time determines how quickly a trained model becomes feasible for practical use.
We contextualize our analysis using Figure 2, which illustrates the time-to-accuracy curve of the
-VANILLA methods. Figure 4 in Appendix F.1 includes results on the remaining datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Compared to ZO and FMAD, BP-CHECKPOINTING achieves the fastest convergence speed
and highest accuracy. Figure 2b (AGNews, batch size 40) compares test accuracy against
wall-clock time. Since BP-VANILLA runs out of memory at this batch size, we instead re-
port a smaller batch size (8) for a fair runtime comparison between BP-VANILLA and BP-
CHECKPOINTING. At batch size 8, BP-VANILLA requires 804.4s/iter, while BP-CHECKPOINTING
takes 936.3s/iter (∼1.2× slower per iteration). Despite this overhead, BP-CHECKPOINTING
still outperforms FMAD by ∼1.2× per iteration and achieves 4.5–27.6% higher accuracy.

BP-
Vanilla

BP-
Chkpt

ZO-
Vanilla

FmAD-
Vanilla

0

10

20

30

40

M
em

or
y

Fo
ot

pr
in

t
(in

 G
Bs

)

OOM

11.66
5.99

12.21

Llama3.1-8B

BP-
Vanilla

BP-
Chkpt

ZO-
Vanilla

FmAD-
Vanilla

0

10

20

30

40

OOM

14.41
8.95

15.75

OPT-13B

Parameters
Activations

Gradients+Optimizer States+Misc

Figure 3: Breakdown of memory consumption
of training (left) LLAMA 3.1 (8B) and (right)
OPT (13B) models on AGNews. Although BP-
CHECKPOINTING is 1.6–1.9× takes more memory
than ZO, it takes far fewer iterations to achieve 4.5–
31.1% higher accuracy (as shown in Figure 2b).

At batch size 40, where memory is the lim-
iting factor, BP-CHECKPOINTING converges
reliably with 1112.8s/iter. In comparison,
FMAD requires 1286.5s/iter, and ZO is the
fastest at 726.7s/iter (∼1.5× faster than BP-
CHECKPOINTING). However, this runtime ad-
vantage does not translate to accuracy: BP-
CHECKPOINTING reaches ∼94% accuracy,
while FMAD and ZO fall short due to slower
convergence and instability. Specifically, ZO
suffers from approximation errors in gradient
estimation, leading to accuracy degradation of
5.6–31.1% relative to BP-based methods.

In terms of overall time-to-accuracy, BP-
CHECKPOINTING achieves convergence 21.4–
34.8% faster than alternatives. The gap with
FMAD arises from its computational ineffi-
ciency: unlike BP, which reuses downstream
gradients with a single matrix multiplication per
layer, FMAD requires two matrix multiplications per layer for jvp evaluation (Eq. 1).

Variance reduction improves convergence, but often slows down convergence time. As shown in
Figure 2a, -MULTIPLE variants (e.g., with n = 10, 50) yield smoother training and higher accuracy
than their n = 1 counterparts. However, these gains come with a proportional increase in convergence
time for sequential implementations as the runtime scales linearly with the number of perturbations.
-ACCUMULATE variants (Figure 2b) improve accuracy without increasing per-iteration cost, as they
amortize single-step estimates over multiple updates. However, the delay in parameter updates slows
down overall convergence: with an accumulation window of 200, training is 14.8× and 10.9× slower
for FMAD and ZO, respectively, than when trained without accumulation.

4.4 COMPARISON ON MEMORY CONSUMPTION

Memory savings from FMAD and ZO come at the cost of accuracy and convergence speed.
Figure 3 shows that both FMAD and ZO reduce memory usage relative to BP-VANILLA, which runs
out of memory (OOM) due to storing all activations. By contrast, FMAD and ZO store only the
previous layer’s activation, yielding a lower memory footprint. However, as seen in Figure 2b, these
savings lead to significantly longer training times and degraded model performance. Meanwhile,
BP-CHECKPOINTING uses 0.6–1.3GB less memory than FMAD, while delivering substantially faster
convergence and 4.5–31.1% higher accuracy. Further, FMAD consumes 3.3–4.3× more activation
memory than ZO. This overhead stems from the need to simultaneously store previous layer’s
intermediate activations for both the primary forward pass and the additional jvp computation.

Variance reduction strategies introduce memory-accuracy trade-offs. The -MULTIPLE variants
improve gradient quality by evaluating multiple perturbations per step, but parallel implementations
require linearly more memory. For instance, if one forward pass needs 1.26GB (ZO) or 5.41GB
(FMAD) for activations, using n perturbations inflates this to 1.26nGB or 5.41nGB, respectively. On
the other hand, -ACCUMULATE amortizes these computations over time and introduces no memory
overhead, though at the cost of slower convergence.

4.5 COMPARISON ON COMPUTATION COST

Computation cost in terms of FLOPS directly impacts energy consumption and determines whether
training large models is feasible under given resources. Table 4 reports both per-iteration cost and
total cost until convergence. (Table 2 summarized the theoretical bounds.)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

FMAD and ZO methods reduce per-iteration compute costs but incur significantly higher total
compute due to slow convergence. ZO-VANILLA incurs a relatively low per-iteration cost of 288.7
TFLOPs, approximately 0.7× the cost of BP-CHECKPOINTING, because it only requires two forward
passes per gradient estimate. However, this advantage is misleading: due to slow convergence, its
total computation cost until convergence is 3.8× higher than that of BP-CHECKPOINTING. FMAD-
VANILLA shows a per-iteration cost nearly identical to BP-CHECKPOINTING, but its convergence is
hindered by gradient estimates with high variance, leading to 3.2× higher total compute costs.

Table 4: Computation cost per iteration and until convergence
(lower is better) for LLAMA 3.1 (8B) on AGNews dataset.
BP-CHECKPOINTING remains by far the most compute-
efficient; whereas the perturbation-based methods (ZO and
FMAD), even their -ACCUMULATE variants, incur order-of-
magnitude more TFLOPs to reach convergence.

Method TFLOPs
per Iter. (↓)

TFLOPs until
Convergence (↓)

Iter. until
Convergence

BP-CHECKPOINTING 434.4 65.2 ×104 1.5×103

ZO-VANILLA 288.7 251.2 ×104 8.7 ×103

ZO-MULTIPLE 2886.8 2425.0 ×104 8.4 ×103

ZO-ACCUMULATE 288.7 2165.1 ×104 75.0 ×103

FMAD-VANILLA 432.0 207.4 ×104 4.8 ×103

FMAD-MULTIPLE 4320.3 4147.5 ×104 9.6 ×103

Multiple perturbations per itera-
tion improves accuracy but linearly
increases cost. In ZO-MULTIPLE,
using 10 perturbations per iteration
leads to a 9.7× increase in compute,
showcasing the linear relationship be-
tween the number of perturbations and
cost. In contrast, ZO-ACCUMULATE,
which accumulates gradients across
iterations without increasing perturba-
tion count, maintains similar cost to
ZO-VANILLA but still suffers from
slow convergence. Similarly, for
FMAD, when we increase the num-
ber of perturbations by 10× to reduce
gradient variance and improve accu-
racy, the cost increases by 20× that of
BP, as each jvp involves two matrix multiplications.

4.6 FAILURE MODE ANALYSIS

Here, we analyze why variance reduction methods and adaptive optimizers sometimes fail to make
FMAD and ZO converge reliably.

Cascading JVP Amplification with Adaptive Optimizers. A key failure mode in FMAD arises
with adaptive optimizers, such as ADAMW, triggering cascading amplification of Jacobian-vector
products (jvp). On GSM8K, jvp magnitudes remain stable under SGD within [−50, 50], but spike
8–10× under ADAMW (Figure 9). These spikes produce large gradient updates, inflating weights and
further amplifying jvp values, a positive feedback loop that can cause divergence or noisy updates.

Gradient Variance and Magnitude Explains Performance Drops. Effective gradient variance
under ADAMW is 4–6× higher than SGD, with peaks of 200–400 in hidden layers of the LLaMA-
7B subset. This instability correlates with 2–5% lower final accuracy vs. BP with checkpointing,
and some runs yield NaN gradients. Spikes typically appear after 50–100 iterations, indicating
accumulation from the rolling-average mechanism in adaptive optimizers.

Non-Adaptive SGD Maintains Stability. In contrast, SGD keeps jvp bounded and gradients
closely track backpropagation, producing stable convergence (Figures 9a, 9b). These results highlight
a critical interaction between optimizer choice and FMAD stability: adaptive optimizers can introduce
harmful gradient artifacts in FMAD and ZO methods. Further details, including additional datasets,
layer-wise analyses, and variance-reduction strategies, are provided in Appendix F.5.

5 CONCLUSION

While forward-mode AD (FMAD) and zero-order (ZO) optimization have been proposed as memory-
efficient alternatives to backpropagation (BP), prior work lacked comparison with checkpointed
BP and unified theoretical bounds. Our analysis closes these gaps, revealing that FMAD and ZO
incur higher computational cost, slower convergence, and greater sensitivity to dimensionality and
perturbation budgets. Even with enhancements like variance reduction, they remain less efficient
and robust than BP with activation checkpointing. Empirical results on large models confirm that
checkpointed BP consistently outperforms FMAD and ZO across accuracy, convergence speed, and
compute cost – at comparable memory usage. These findings reaffirm checkpointed BP as the most
practical strategy for memory-constrained training and clarify the limitations of FMAD and ZO.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. Nature, 1986.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: A survey. The Journal of Machine Learning Research, 2017.

Atılım Güneş Baydin, Barak A. Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients without
backpropagation. arXiv 2202.08587, 2022.

Kunjal Panchal, Nisarg Parikh, Sunav Choudhary, Lijun Zhang, Yuriy Brun, and Hui Guan. Thinking forward:
Memory-efficient federated finetuning of language models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

C. H. Richardson. An introduction to the calculus of finite differences. The Mathematical Gazette, 1955.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. Fwdllm: Efficient federated
finetuning of large language models with perturbed inferences. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), 2024.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-reduced
zeroth-order methods for fine-tuning language models. In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR, 2024.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D.
Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen. Revisiting zeroth-order
optimization for memory-efficient llm fine-tuning: a benchmark. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174, 2016.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert Bastani,
Christopher De Sa, Xiaodong Yu, Beidi Chen, and Zhaozhuo Xu. Zeroth-order fine-tuning of LLMs with
transferable static sparsity. In The Thirteenth International Conference on Learning Representations, 2025.

Adam D. Cobb, Atılım Güneş Baydin, Barak A. Pearlmutter, and Susmit Jha. Second-order forward-mode
automatic differentiation for optimization. arXiv preprint arXiv:2408.10419, 2024.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-order stochastic
variance reduction for nonconvex optimization. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, 2018.

Haozhe Feng, Tianyu Pang, Chao Du, Wei Chen, Shuicheng Yan, and Min Lin. Baffle: A baseline of
backpropagation-free federated learning. In European Conference on Computer Vision. Springer, 2024.

Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-adamm: Zeroth-
order adaptive momentum method for black-box optimization. Advances in neural information processing
systems, 2019.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. SIAM
review, 2018.

Guillaume Garrigos and Robert M. Gower. Handbook of convergence theorems for (stochastic) gradient methods,
2024. URL https://arxiv.org/abs/2301.11235.

10

http://github.com/jax-ml/jax
https://arxiv.org/abs/2301.11235

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuyang Qiu, Uday Shanbhag, and Farzad Yousefian. Zeroth-order methods for nondifferentiable, nonconvex,
and hierarchical federated optimization. Advances in Neural Information Processing Systems, 36, 2023.

Marco Rando, Cesare Molinari, Lorenzo Rosasco, and Silvia Villa. An optimal structured zeroth-order algorithm
for non-smooth optimization. Advances in Neural Information Processing Systems, 36:36738–36767, 2023.

Konstantinos Nikolakakis, Farzin Haddadpour, Dionysis Kalogerias, and Amin Karbasi. Black-box generaliza-
tion: Stability of zeroth-order learning. Advances in neural information processing systems, 35:31525–31541,
2022.

Aleksandr Lobanov, Nail Bashirov, and Alexander Gasnikov. The “black-box” optimization problem: Zero-order
accelerated stochastic method via kernel approximation. Journal of Optimization Theory and Applications,
pages 1–36, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In
Advances in Neural Information Processing Systems, 2015.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL, 2019.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking beyond
the surface: A challenge set for reading comprehension over multiple sentences. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, 2018.

Yash Goyal, Tejas Khot, Aishwarya Agrawal, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making
the v in vqa matter: Elevating the role of image understanding in visual question answering. Int. J. Comput.
Vision, 2019.

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Association for Computational Linguistics, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pretraining approach, 2020.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen2.5 technical report, 2025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized
llms. arXiv preprint arXiv:2305.14314, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Federico Belotti and Davide Angioni. Implementation of FGD, 2023. URL https://github.com/
orobix/fwdgrad?tab=readme-ov-file#perfomance-comparison.

Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Can forward
gradient match backpropagation? In Proceedings of the 40th International Conference on Machine Learning,
2023.

Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Taylor-mode automatic differentiation for
higher-order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS 2019, 2019.

Khemraj Shukla and Yeonjong Shin. Randomized forward mode of automatic differentiation for optimization
algorithms. arXiv preprint arXiv:2310.14168, 2023.

M Rostami and Solmaz S Kia. Forward gradient-based frank-wolfe optimization for memory efficient deep
neural network training. arXiv preprint arXiv:2403.12511, 2024.

Katharina Flügel, Daniel Coquelin, Marie Weiel, Achim Streit, and Markus Götz. Beyond backpropagation:
Optimization with multi-tangent forward gradients. arXiv preprint arXiv:2410.17764, 2024.

Johannes Schmidt-Hieber. Interpreting learning in biological neural networks as zero-order optimization method,
2023.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online pseudo-zeroth-order
training of neuromorphic spiking neural networks, 2024.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor Tsang. Second-order fine-tuning without
pain for LLMs: A hessian informed zeroth-order optimizer. In The Thirteenth International Conference on
Learning Representations, 2025.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng Liu, Yihua
Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up zeroth-order optimization for
deep model training. In The Twelfth International Conference on Learning Representations, 2024.

Hongxu Chen, Jinchi Chen, and Ke Wei. A zeroth-order variance-reduced method for decentralized stochastic
non-convex optimization. arXiv preprint arXiv:2310.18883, 2023.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, 2013.

Zhuanghua Liu, Cheng Chen, Luo Luo, and Bryan Kian Hsiang Low. Zeroth-order methods for constrained
nonconvex nonsmooth stochastic optimization. In Forty-first International Conference on Machine Learning,
2024.

Guy Kornowski and Ohad Shamir. An algorithm with optimal dimension-dependence for zero-order nonsmooth
nonconvex stochastic optimization. Journal of Machine Learning Research, 2024.

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex stochastic optimization via
conditional gradient and gradient updates. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, 2018.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order optimization in
high dimensions. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Research. PMLR, 2018.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, 2017.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient backpropa-
gation through time. Advances in neural information processing systems, 2016.

Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient combination of rematerialization and
offloading for training dnns. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

Lewis Tunstall. Agnews on huggingface. https://huggingface.co/datasets/SetFit/ag_news/
tree/main, 2022. [Online; accessed 23-April-2025].

12

https://github.com/orobix/fwdgrad?tab=readme-ov-file#perfomance-comparison
https://github.com/orobix/fwdgrad?tab=readme-ov-file#perfomance-comparison
https://huggingface.co/datasets/SetFit/ag_news/tree/main
https://huggingface.co/datasets/SetFit/ag_news/tree/main

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Albert Villanova del Moral. Boolq on huggingface. https://huggingface.co/datasets/google/
boolq, 2022a. [Online; accessed 23-April-2025].

Albert Villanova del Moral. Multirc on huggingface. https://huggingface.co/datasets/aps/
super_glue, 2022b. [Online; accessed 23-April-2025].

Albert Villanova del Moral. Gsm8k on huggingface. https://huggingface.co/datasets/openai/
gsm8k, 2022c. [Online; accessed 23-April-2025].

Long Phan. Mmlu on huggingface. https://huggingface.co/datasets/cais/mmlu, 2024. [On-
line; accessed 23-April-2025].

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014. Springer International Publishing,
2014.

Yash Goyal. Vqav2. https://visualqa.org/, 2017. [Online; accessed 23-April-2025].

Aman Preet. Textvqa on huggingface. https://huggingface.co/datasets/facebook/textvqa,
2022. [Online; accessed 23-April-2025].

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for
Computational Linguistics, 2021.

Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of checkpointing for the
reverse or adjoint mode of computational differentiation. ACM Trans. Math. Softw., 2000.

13

https://huggingface.co/datasets/google/boolq
https://huggingface.co/datasets/google/boolq
https://huggingface.co/datasets/aps/super_glue
https://huggingface.co/datasets/aps/super_glue
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/cais/mmlu
https://visualqa.org/
https://huggingface.co/datasets/facebook/textvqa

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Here we review recent works on forward-mode AD and zero-order optimization methods; along with
a discussion on various methods to refine the memory and time efficiency of backpropagation.

A.1 FORWARD-MODE AD

The application of forward-mode automatic differentiation (FMAD) for training deep neural networks
was first introduced in Forward-Gradient Descent (FGD) (Baydin et al., 2022), building on an earlier
survey on automatic differentiation (Baydin et al., 2017). FGD demonstrated FMAD on a small-scale
three-layer fully connected model and a four-layer convolutional network, claiming that FMAD
can outperform backpropagation (BP) in speed and loss reduction per unit time. However, these
claims remain unverifiable, as the implementation was never made publicly available, and subsequent
independent evaluations (Belotti and Angioni, 2023) have found these results difficult to reproduce.

Beyond this initial demonstration, more recent efforts have attempted to improve FMAD’s efficiency.
Can Forward Gradients Match Backpropagation? (Fournier et al., 2023) seeks to enhance FMAD by
generating more structured perturbations rather than relying on random sampling. This approach in-
troduces local losses computed via small auxiliary networks to inform perturbation choices. However,
training these auxiliary networks significantly increases memory consumption and computational
overhead, undermining FMAD’s intended efficiency advantage.

Other studies have focused on extending FMAD beyond first-order gradients. Second-order
FmAD (Cobb et al., 2024) provides a formal framework for computing second-order gradients
with FMAD, demonstrating improved optimization performance. However, this comes at a substan-
tial computational cost, and experiments remain limited to small-scale benchmarks (e.g., a CNN
with only 431K parameters), leaving open the question of whether second-order FMAD can scale
competitively against BP. Similarly, Taylor-mode Auto Differentiation (Bettencourt et al., 2019)
generalizes FMAD to compute higher-order gradients, yet the memory and time-to-convergence
trade-offs compared to BP remain unexplored.

Several other works have proposed variations of FMAD without fundamentally addressing its ineffi-
ciencies. Randomized Forward Gradient-based GD (Shukla and Shin, 2023) provides a convergence
analysis of FMAD using random perturbations but offers no new insights into its computational effi-
ciency. PROJECTED-FG (Rostami and Kia, 2024) applies FMAD to memory-efficient Frank-Wolfe
optimization but evaluates only small models, making its conclusions inapplicable to large-scale deep
learning. Beyond Backpropagation (Flügel et al., 2024) investigates the use of multiple perturbations
per iteration to improve forward-gradient computation but fails to identify why FMAD remains
inferior to BP in practice.

A more recent large-scale application of FMAD appears in SPRY (Panchal et al., 2024), which
employs FMAD for fine-tuning large models (ranging from 100K to 13B parameters) in a federated
learning setting. By restricting each client to a small subset of weights, SPRY circumvents FMAD’s
poor performance in high-dimensional perturbations. However, even in this setting, FMAD exhibits
slower convergence and higher variance than BP, further reinforcing its fundamental limitations.

For applications besides LLM training or finetuning, biological plausibility (Schmidt-Hieber, 2023;
Xiao et al., 2024) has been proposed as a motivating factor for exploring alternative gradient estimation
techniques. FMAD avoids the backward signal transport required by backpropagation and has
therefore been considered more biologically plausible. Though FMAD still relies on first-order
derivatives and engineered automatic differentiation, which limits its direct applicability to biological
systems.

While prior works have demonstrated narrow successes of FMAD in specialized scenarios, none
have systematically analyzed its fundamental computational constraints. Besides, the comparison
of FMAD against a strong baseline of BP-CHECKPOINTING remains uncharted. Unlike these
related studies, our work provides a principled theoretical and empirical investigation into the
scalability bottlenecks of FMAD, explicitly comparing its memory and time complexity against BP-
CHECKPOINTING. We also uncover failure modes of FMAD in deep networks, offering new insights
into why it cannot consistently surpass BP in terms of both time-to-convergence and efficiency.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 ZERO-ORDER OPTIMIZATION

Zero-order (ZO) optimization has received significant attention, particularly in settings where first-
order gradient information is unavailable or impractical to compute. Unlike FMAD, which has
seen limited large-scale adoption, ZO methods have been actively explored in deep learning due to
their applicability in scenarios such as adversarial attacks, black-box optimization, and gradient-free
fine-tuning. Similar to FMAD, we also note that none of the works discussed below have made a
comparison of their ZO-based variant against BP-CHECKPOINTING, an aspect which is fleshed out
in this work.

MEZO (Malladi et al., 2023) and its extension MEZO-SVRG (Gautam et al., 2024) introduced
memory-efficient ZO optimization strategies that regenerate random perturbations instead of storing
them, effectively reducing memory overhead. These methods have demonstrated practical advantages
in fine-tuning large language models (LLMs) for classification tasks without requiring explicit
backpropagation. While they address memory constraints, they do not provide insights into the
fundamental efficiency trade-offs between ZO and BP in terms of time-to-convergence, memory
consumption, and attained accuracy; which are the key concerns of our work. A closely related line
of work is HIZOO (Zhao et al., 2025), which proposes a forward-only second-order ZO optimizer
that uses Hessian-informed perturbations to accelerate MeZO-style fine-tuning. While HIZOO
successfully demonstrates reduced activation-memory usage relative to MEZO, its evaluation focuses
primarily on memory rather than wall-clock convergence time or total compute cost—metrics that
are central to our analysis. Moreover, the algorithm introduces additional second-order computations
(via Hessian-related estimators), whose overhead is not thoroughly quantified.

Expanding on these efforts, DEEPZERO (Chen et al., 2024) proposed a ZO deep learning framework
capable of training deep neural networks from scratch. By leveraging coordinate-wise gradient
estimation (CGE) over randomized vector-wise estimation, DEEPZERO achieves improved accuracy
and computational efficiency. Additionally, the introduction of sparsity-induced training, feature
reuse, and forward parallelization brings ZO training closer to first-order methods, achieving state-
of-the-art results on ResNet-20 trained on CIFAR-10. However, despite these advancements, ZO
remains fundamentally limited by high variance and inefficient gradient estimation, resulting in
slower convergence compared to BP, which is an issue we empirically validate in our benchmarks.

Other works, such as DZOVR (Chen et al., 2023) and ZO-SVRG (Liu et al., 2018), have attempted to
improve ZO efficiency by incorporating Stochastic Variance Reduced Gradients (SVRG) (Johnson and
Zhang, 2013). Similarly, research on ZO methods for non-convex and non-smooth optimization (Liu
et al., 2024; Kornowski and Shamir, 2024; Balasubramanian and Ghadimi, 2018) has provided
valuable theoretical insights. However, none of these studies systematically compare ZO to BP in
terms of memory consumption, execution time, and scalability, leaving open the question of whether
ZO can ever be a viable alternative. Our work explicitly addresses this gap by benchmarking these
methods against BP and highlighting their structural inefficiencies.

Further, ZO-ADAMM (Chen et al., 2019) integrates an adaptive optimizer (ADAMM) into ZO,
demonstrating improved stability. However, even with adaptive optimization, ZO struggles to match
the convergence speed of BP, as shown in their experiments on a small-scale CNN. Additionally,
work on ZO optimization in high-dimensional settings (Wang et al., 2018) has focused primarily on
convergence properties rather than the computational and memory efficiency bottlenecks that limit
ZO’s practical scalability.

Revisiting ZO (Zhang et al., 2024) benchmarks the performance of large language models trained
using BP, FMAD, and ZO optimization. Our work differs in several key ways: (a) We include
comparisons against a backpropagation with checkpointing baseline, offering new insights into the
memory-efficiency trade-offs among gradient computation methods. (b) Unlike Revisiting ZO, our
study evaluates both time-to-convergence and overall computational cost, which are critical for
understanding practical scalability. (c) We also provide an in-depth failure mode analysis, focusing on
the behavior of Jacobian-vector products and their influence on model updates, an aspect unexplored
in their work.

We note that like ZO with LLMs, ZO for biological systems (Schmidt-Hieber, 2023) would face
scalability and convergence challenges when applied to high-dimensional models. Our study does
not aim to contest the conceptual motivations behind these techniques; rather, we show their practical

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

limitations, in terms of computational cost and optimization performance, for large-scale models like
LLMs.

A.3 OPTIMIZATIONS ON BACKPROPAGATION

Backpropagation (BP) remains the dominant method for training deep neural networks due to its
computational efficiency and well-optimized implementations. However, standard BP incurs high
memory costs, as it requires storing intermediate activations for the entire computational graph during
the forward pass. This limitation has motivated extensive research into memory-efficient variants of
BP that aim to reduce memory consumption without significantly compromising training speed.

Checkpointing-based methods, such as REVERSIBLE RESIDUAL NETWORKS (Gomez et al., 2017)
and ACTIVATION CHECKPOINTING (Chen et al., 2016), trade memory for recomputation by strategi-
cally discarding and later recomputing activations. These techniques have proven effective in reducing
memory overhead, but they introduce additional computational costs. More recent approaches, such
as EFFICIENT REMATERIALIZATION (Gruslys et al., 2016) and DYNAMIC PROGRAMMING-BASED
ACTIVATION OFFLOADING (Beaumont et al., 2021), attempt to optimize checkpointing strategies to
minimize recomputation overhead. Despite these advances, BP with checkpointing still follows the
same fundamental backpropagation framework and benefits from computation reuse – an efficiency
advantage that FMAD and ZO methods lack.

B DATASETS

In this section, we provide detailed descriptions of the datasets used in our experiments. For each
dataset, we outline its origin, licensing, the version we have used, and task-specific characteristics,
including the number of samples, sequence lengths and relevant domain or classification details.

AGNews. The AG News dataset (Zhang et al., 2015) is derived from a corpus of 496,835 labeled
news articles collected from over 2,000 web-based news sources published between 2004 and 2005.
For this work, we use a widely adopted, cleaned, and balanced subset comprising 120,000 training
samples and 7,600 test samples, evenly distributed across four categories: World, Sports, Business,
and Science/Technology. We divide the test data into half to create validation and test splits. The
dataset is primarily used for topic classification, which is also the focus of our study. The maximum
sequence length for our experiments is set to 350 tokens during training. It is released under the
Creative Commons CC0 1.0 Universal license, placing it in the public domain. We obtained the
dataset via the Hugging Face Datasets library (Tunstall, 2022).

BoolQ. The Boolean Questions (BoolQ) dataset (Clark et al., 2019) is a reading comprehension
benchmark consisting of naturally occurring yes/no questions. Each instance includes a question, a
passage (typically a paragraph from Wikipedia), and a binary answer (“yes” or “no”) derived from the
passage content. Unlike synthetic question-generation benchmarks, BoolQ features real user queries
collected from Google search logs, making the task more reflective of real-world comprehension.
The dataset contains approximately 9,427 question-passage training pairs, and 3,270 validation pairs.
We divide the validation data into half to create the validation and test data splits for this work.
The maximum sequence length for our experiments is set to 1200 tokens during training. BoolQ is
released under the Creative Commons Share-Alike 3.0, which allows for flexible use, modification,
and redistribution with appropriate attribution. Once again, Hugging Face Datasets was used to access
BoolQ (del Moral, 2022a).

MultiRC. The Multi-Sentence Reading Comprehension (MultiRC) (Khashabi et al., 2018) dataset
is a benchmark corpus designed to evaluate machine reading comprehension over short paragraphs.
Each example consists of a paragraph followed by one or more questions, with corresponding
candidate answers that must be inferred from the text. In our setup, we frame the task as a binary
classification problem, determining whether a given question-answer pair is correct or incorrect based
on the paragraph content. The dataset contains approximately 6,000 multi-sentence questions drawn
from over 800 distinct paragraphs. The maximum sequence length for our experiments is set to
1500 tokens during training. MultiRC is released under the MIT License, permitting broad use and
redistribution with attribution. We accessed the dataset through Hugging Face (del Moral, 2022b).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GSM8K. The Grade School Math 8K (GSM8K) dataset (Cobbe et al., 2021) is a high-quality
benchmark for evaluating arithmetic reasoning and problem-solving abilities of language models.
Each example consists of a single math word problem followed by a detailed, step-by-step answer.
Designed to emphasize multi-step reasoning, the problems are written in natural language and reflect
concepts typically found in grade school (middle school) curricula. The dataset contains 7,470
training examples and 1,319 test examples, all manually curated for clarity and correctness. The
maximum sequence length for our experiments is set to 800 tokens during training. In this work, we
use GSM8K as a text-to-text supervised learning task, where the input is the problem statement and
the target is the final answer (without the reasoning steps). The dataset is publicly available under
the MIT License, allowing broad reuse and modification with attribution. The dataset is available on
Hugging Face (del Moral, 2022c).

MMLU. The Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021)
dataset is a comprehensive benchmark designed to assess general knowledge and reasoning ability
across a wide range of academic and professional subjects. It covers 57 diverse topics, including
mathematics, history, law, medicine, and the sciences, with questions derived from standardized
exams and expert-written materials. Each example is a multiple-choice question with four answer
options, requiring both factual knowledge and reasoning skills. All four answer options are included
in the prompt. The dataset consists of 99.8k training samples, 1.5k validation samples, and 14k test
samples. The maximum sequence length for our experiments is set to 1500 tokens during training.
MMLU is publicly available under the MIT License, allowing free use, modification, and distribution
with appropriate credit. Its breadth and difficulty make it a challenging benchmark for evaluating
finetuned language models. In line with rest of the datasets, we have used the Hugging Face Datasets
version of MMLU (Phan, 2024).

VQAv2. The Visual Question Answering v2.0 (VQAv2) (Goyal et al., 2019) dataset is a large-scale
benchmark designed to evaluate a model’s ability to understand and reason over both visual and
textual inputs. Each example consists of an image (sourced primarily from the MS COCO dataset (Lin
et al., 2014)) paired with a natural language question, and the task is to generate an accurate, typically
short (often single-word), answer based on the visual content of the image.

VQAv2 addresses the language bias issues present in its predecessor (VQAv1) by ensuring that each
question is associated with multiple images, such that the correct answer varies depending on the
visual context. This structure encourages models to genuinely integrate image understanding rather
than relying solely on question priors.

The dataset contains 443,757 training questions, 214,354 validation questions, and 447,793 test
questions, associated with over 200,000 images. Each question has 10 human-provided answers,
allowing for nuanced evaluation metrics such as accuracy based on answer consensus (Goyal, 2017).
The maximum sequence length for our experiments is set to 100 tokens during training. VQAv2 is
distributed under the 2-Clause BSD License, allowing for use and adaptation with attribution. We
access the dataset through the VisualQA website (Goyal, 2017).

TextVQA. The TextVQA (Text-based Visual Question Answering) dataset (Singh et al., 2019)
is a vision-language benchmark specifically designed to evaluate a model’s ability to read and
reason about text within images. Unlike standard VQA tasks that focus on general object and scene
understanding, TextVQA centers on questions where the answer relies on text present in the image
itself; such as signs, labels, documents, product packaging, and storefronts.

Each example in the dataset includes an image, a natural language question, and a free-form textual
answer. To correctly answer a question, models must integrate visual understanding with OCR
(Optical Character Recognition) capabilities. TextVQA challenges systems to perform multimodal
reasoning that spans spatial, linguistic, and visual modalities.

The dataset consists of approximately 28,408 questions associated with 14,987 images, split into:
21,953 training questions; 3,166 validation questions; and 3,289 test questions. Each question is
annotated with 10 answers from human annotators to support consensus-based evaluation metrics.
The maximum sequence length for our experiments is set to 100 tokens during training. TextVQA is
publicly available under the CC BY 4.0 (Creative Commons Attribution 4.0 International License),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

allowing flexible use, sharing, and adaptation with attribution. The dataset is available for access on
Hugging Face (Preet, 2022).

C BASELINES AND HYPERPARAMETERS

BP-VANILLA. This baseline (Rumelhart et al., 1986) uses a standard implementation of the training
loop with backpropagation as the gradient computation method, without any modifications or enhance-
ments. Due to out-of-memory (OOM) issues encountered with larger batch sizes, most experiments
involving BP-VANILLA are conducted using smaller batches. Table 5 lists the hyperparameters.

Table 5: Hyperparameters related to BP-VANILLA, for all datasets.

AGNews BoolQ MultiRC GSM8K MMLU VQAv2 TextVQA

Batch Size 8 4 8 4 6 6 8
Learning Rate 10−3 10−3 10−3 10−5 10−4 10−4 10−4

Optimizer ADAMW ADAMW ADAMW ADAMW SGD Nesterov
Momentum 0.9 SGD ADAMW

BP-CHECKPOINTING. BP-CHECKPOINTING (Chen et al., 2016) is identical to BP-VANILLA
with one key difference: it employs activation checkpointing (also known as gradient checkpointing)
to reduce memory consumption, allowing for larger batch sizes without incurring out-of-memory
(OOM) errors. To ensure a fair comparison, the batch sizes used for BP-CHECKPOINTING match
those used for the ZO and FMAD variants. The hyperparameters are given in Table 6.

Table 6: Hyperparameters related to BP-CHECKPOINTING and BP-ACCUMULATE, for all datasets.

AGNews BoolQ MultiRC GSM8K MMLU VQAv2 TextVQA

Batch Size 40 40 40 6 8 8 8
Learning Rate 10−3 10−3 10−3 10−5 10−4 10−4 10−4

Optimizer ADAMW ADAMW ADAMW ADAMW SGD Nesterov
Momentum 0.9 SGD ADAMW

BP-ACCUMULATE. BP-ACCUMULATE follows the same training procedure as BP-
CHECKPOINTING, but incorporates gradient accumulation to simulate larger effective batch sizes
without exceeding memory constraints. Instead of updating model weights after every mini-batch,
gradients are accumulated over multiple smaller batches and the update is performed after a fixed
number of steps. At the end of the accumulation period, the summed gradients are averaged by
dividing them by the number of accumulation steps. The hyperparameters are same as those of
BP-CHECKPOINTING (see Table 6), with accumulation step count being 100 as default.

ZO-VANILLA. ZO-VANILLA (Chen et al., 2019) implements a standard zero-order optimization
approach, which estimates gradients using only function evaluations according to Equation 2, without
requiring access to the model’s internal, first-order gradients. Specifically, it perturbs the model
parameters along randomly sampled directions and uses finite differences to approximate the gradient.
We have used the memory-efficient perturbation trick of MEZO for all the ZO- variants, which
includes storing the random seed and regenerating perturbations for forward pass evaluations, instead
of persisting entire perturbations in the memory. For fair comparison, we use the same batch sizes as
in BP-CHECKPOINTING and FMAD baselines. The hyperparameters are given in Table 7.

ZO-ACCUMULATE. ZO-ACCUMULATE extends the ZO-VANILLA baseline by incorporating
gradient accumulation to simulate larger effective batch sizes without exceeding memory constraints.
Instead of estimating and applying a parameter update after each mini-batch, gradient approximations
(based on finite differences) are accumulated over multiple steps and averaged before updating the
model. This approach results in improved stability due to averaging out the noisy gradient estimates.
The hyperparameters are same as with ZO-VANILLA, given in Table 7, with default accumulation
window of 100.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters related to ZO-VANILLA, for all datasets.

AGNews BoolQ MultiRC GSM8K MMLU VQAv2 TextVQA

Batch Size 40 40 40 6 8 8 8
Learning Rate 10−4 10−3 10−3 10−5 10−5 10−4 10−4

Optimizer ADAMW ADAMW SGD
SGD
Nesterov
Mmtm 0.9

SGD
Nesterov
Mmtm 0.9

ADAMW SGD

Perturbation
Step Size 10−3 10−2 10−2 10−3 10−4 10−3 10−3

ZO-MULTIPLE. ZO-MULTIPLE (also shown in (Panchal et al., 2024; Xu et al., 2024; Feng et al.,
2024)) builds on the ZO-VANILLA method by using multiple random perturbation directions per
iteration, to improve the accuracy of the gradient estimate. Instead of relying on a single direction,
this variant samples several perturbations and averages the resulting finite-difference approximations,
leading to a lower-variance and more stable update. However, this approach increases the number of
function evaluations per step. The hyperparameters are same as with ZO-VANILLA, given in Table 7,
with default perturbation count per iteration of 10.

ZO-ADAPTIVE. ZO-ADAPTIVE enhances zero-order optimization by incorporating an adaptive
perturbation strategy that aligns gradient estimates more closely with the true gradient direction over
time. The optimization proceeds in two phases. In the calibration phase (typically the first iteration),
multiple perturbation directions are sampled, and the one with the highest positive projected gradient
is selected. This direction is assumed to have the smallest angle with the true gradient. This calibrated
perturbation is then used to compute an initial gradient estimate. In the adaptive phase (subsequent
iterations), new perturbations are sampled based on the previously estimated gradient, and a rolling
average is maintained between the new perturbation and the historical gradient direction. This
mechanism biases the search toward more promising directions while still allowing for exploratory
variation. The hyperparameters are same as those of ZO-VANILLA, with the inclusion of sampling 4
perturbations during the calibration phase.

ZO-SVRG. ZO-SVRG (Liu et al., 2018) applies the principles of Stochastic Variance Reduced
Gradient (SVRG) (Johnson and Zhang, 2013) to the zero-order optimization setting, aiming to
improve convergence speed and stability by reducing the variance inherent in gradient estimates. The
method alternates between two types of updates: full gradient estimation at a reference point (called
a snapshot) and subsequent inner-loop updates that correct noisy estimates using control variates. In
the zero-order context, both the snapshot gradient and the inner-loop updates are computed using
finite-difference approximations along random perturbations. The variance reduction comes from
reusing the snapshot gradient to correct each inner-step estimate. Besides the hyperparameters shown
in Table 7, we use interval of 5 epochs to compute full gradients.

ZO-SPARSE. ZO-SPARSE (Guo et al., 2025) introduces sparsity into zero-order optimization
by restricting gradient estimation and updates to only the top 1% of model parameters, selected
based on their magnitude at each iteration. Unlike structured approaches such as LoRA, this method
dynamically identifies and perturbs the most significant weights, those likely to contribute most to loss
reduction. Hence, ZO-SPARSE focuses the optimization on a small, adaptive subset of parameters.
This sparsity constraint reduces the dimensionality of the optimization problem, leading to fewer
function evaluations. The hyperparameters are exactly the same as those of Table 7.

MEZO. MEZO (Malladi et al., 2023) builds on ZO-VANILLA, but with a key modification
tailored for classification tasks using language models. Instead of relying on a separate classifier
head, MEZO employs the language modeling (LM) head and masks out logits corresponding to
vocabulary tokens that are not class labels. This approach is presented in the prompt-based fine-tuning
strategy introduced by Gao et al. (2021). MEZO integrates this prompting technique with zero-order
optimization, enabling effective gradient-free fine-tuning of large language models, although it is
limited to the classification tasks. We use the same hyperparameters as ZO-VANILLA (see Table 7).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

FMAD-VANILLA. FMAD-VANILLA implements the standard forward-mode automatic differ-
entiation (Baydin et al., 2017; 2022) approach for computing gradients, more details are in §2. In
this baseline, we use a straightforward implementation of forward-mode AD without any memory-
saving strategies or structural optimizations. The hyperparameters used for FMAD-VANILLA are
summarized in Table 8. Additionally, the variance of the Gaussian distribution used for perturbation
sampling is fixed at 1 across all datasets.

Table 8: Hyperparameters related to FMAD-VANILLA, for all datasets.

AGNews BoolQ MultiRC GSM8K MMLU VQAv2 TextVQA

Batch Size 40 40 40 6 8 8 8
Learning Rate 10−3 10−4 10−4 10−5 10−5 10−4 10−4

Optimizer ADAMW SGD ADAMW
SGD
Nesterov
Mmtm 0.9

SGD
Nesterov
Mmtm 0.9

SGD SGD

FMAD-ACCUMULATE. FMAD-ACCUMULATE extends the standard forward-mode automatic dif-
ferentiation by incorporating gradient accumulation to simulate larger batch sizes without increasing
memory consumption. The same accumulation strategy is used in corresponding BP-ACCUMULATE
and ZO baselines to maintain fairness in comparison. The hyperparameters are given in Table 8, with
the addition of accumulation window of 100.

FMAD-MULTIPLE. FMAD-MULTIPLE enhances the basic forward-mode AD approach by using
multiple perturbation directions per update to improve the stability and accuracy of gradient estimates.
The setup closely mirrors that of ZO-MULTIPLE, with hyperparameters listed in Table 8. The only
addition is the use of 10 perturbation count per iteration.

FMAD-ADAPTIVE. FMAD-ADAPTIVE mirrors the two-phase procedure described in ZO-
ADAPTIVE, including the calibration phase for selecting an initial perturbation direction and the
adaptive phase that updates this direction using a rolling average of past gradients. For full details,
we refer the reader to the ZO-ADAPTIVE description. All hyperparameters remain consistent with
Table 8, with calibration phase including 4 perturbations just like ZO-ADAPTIVE.

FMAD-SVRG. FMAD-SVRG adopts the same stochastic variance-reduced gradient (SVRG)
framework used in ZO-SVRG, but applies it within the forward-mode AD setting. It alternates be-
tween full-gradient computation on a reference batch and variance-reduced updates on mini-batches,
thereby reducing the noise in gradient estimates while maintaining computational efficiency. For de-
tails on the SVRG formulation, we refer the reader to the description of ZO-SVRG. Hyperparameters
are in Table 8, with full gradients getting computed every 5 epochs (similar to ZO-SVRG).

FMAD-SPARSE. FMAD-SPARSE adopts the same sparsity strategy described in ZO-SPARSE,
where only the top 1% of parameters (by magnitude) are selected for gradient updates during each
iteration. As with the ZO-SPARSE variant, this method avoids techniques like LoRA and instead
relies on direct selection of high-magnitude weights. For complete details on the sparsity mechanism,
we refer the reader to the ZO-SPARSE description. All hyperparameters are in Table 8.

A Note on the Theoretical vs. Empirical Learning Rate. The theoretical convergence bound
of ZO (Theorem I.8) has the condition of η < 2

L(1+ d+1
n)

. The condition becomes increasingly
conservative as L and d scale, which is especially relevant for large models. This is a standard
limitation of worst-case analysis: the bound is derived under minimal assumptions (e.g., global
L-smoothness, worst-case variance), and thus prioritizes generality over tightness. In practice, we
start with relatively large learning rates (10−4 to 10−3) to measure the best-case time to convergence
for ZO and FmAD. With adaptive optimizers like AdamW, the learning rate is automatically scaled
down during training, often yielding stable and effective performance even when theoretical bounds
are violated.

However, in line with the theory, we observe convergence failures (including NaNs or divergence,
see Appendix F.5) when using non-adaptive optimizers such as SGD, especially under large d/n

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ratios (typically around 105) or for FmAD and ZO methods. These failures reinforce that while
the theoretical bound is conservative, it qualitatively predicts instability when learning rates are too
aggressive relative to dimensionality and batch size (see Appendices F.3 and F.5). That said, we do
observe (especially in the zero-order case) that overly aggressive learning rates can lead to instability
or degraded final performance, in line with the theoretical intuition. Hence, the theoretical rate serves
as a safeguard for convergence analysis rather than a recommended training setting, and that practical
hyperparameters typically benefit from empirical tuning beyond what the theory prescribes. Further
discussion is provided in Corollary I.10.

D LIMITATIONS AND FUTURE WORK

While the aim of our work was to provide a comprehensive comparison of backpropagation (BP),
forward-mode automatic differentiation (FMAD), and zero-order (ZO) optimization strategies, several
limitations remain, which can serve as venues for a further exploration.

First, our experiments focus on deep models, and we did not systematically evaluate backpropagation
with checkpointing (BP-CHECKPOINTING) on wider but shallower models. In principle, checkpoint-
ing may offer less benefit for such architectures. However, since wider and shallower models are
relatively uncommon in practice, we chose not to extend our evaluations in that direction. Further, our
checkpointing implementation operates at only one granularity (where which activations to checkpoint
is not controlled by us) due to current Hugging Face library support, which limits finer control over
which activations are saved or recomputed. Finer-grained checkpointing could reduce memory usage
further and potentially narrow the memory efficiency gap between BP-CHECKPOINTING and ZO
methods. However, this would come at the cost of increased runtime, introducing a different trade-off.
Finally, while we focused on tuning and training LORA layers, an important future direction would
be to extend our comparison framework to full model finetuning. Such an extension would allow
for a more complete characterization of the trade-offs between memory, time-to-convergence, and
accuracy across different gradient computation strategies.

E BROADER IMPACT

Training deep learning models already carries a high environmental cost due to significant energy
consumption. Our study shows that forward-mode AD and zero-order optimization, despite saving
memory in some cases, require much longer training times and compute compared to backpropagation
with checkpointing. This inefficiency leads to greater carbon emissions overall. Therefore, we show
that optimizing for true computational efficiency (time-to-convergence and compute; along with
memory consumption) is crucial for reducing the environmental footprint of large-scale training.

We also acknowledge that misinterpreting our results could lead to the premature dismissal of
forward-mode AD or zero-order methods altogether. While they are not scalable replacements for
backpropagation in large-scale training, they may still be uniquely suited for small models, non-
differentiable tasks, or privacy-preserving settings where explicit gradients are inaccessible. Careful
contextual understanding is necessary when applying our conclusions.

F ADDITIONAL RESULTS

F.1 EXPERIMENTAL VARIANCE AND LOSS CURVES

Table 9 shows variance in reported accuracy numbers of Table 3. For each experiment, we performed
three independent runs on seeds 0, 1, and 2. For each run, we computed the steady-state accuracy
(averaged over the final evaluation steps). We then reported the mean (in Table 3) and variance (in
Table 9) computed across these three steady-state accuracies. Furthermore, Figure 4 illustrates the
training loss curves with respect to the training time, highlighting the convergence behavior. We have
only showed the best-performing baselines to maintain clarity.

Figure 5 reports the mean gradient norm across all trainable parameters for all the datasets on LLAMA
3.1 (8B) model. These curves closely mirror the loss trajectories reported in Figure 4, exhibiting
similar convergence tendencies across all methods. Specifically, BP-CHECKPOINTING shows the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Time (in minutes)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Tr
ai

ni
ng

 L
os

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(a) AGNews.

0 5000 10000 15000 20000 25000
Time (in minutes)

0.00

0.01

0.02

0.03

0.04

0.05

Tr
ai

ni
ng

 L
os

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(b) BoolQ.

0 2000 4000 6000 8000 10000 12000 14000
Time (in minutes)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Tr
ai

ni
ng

 L
os

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(c) MultiRC.

0 5000 10000 15000 20000 25000
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(d) GSM8K.

0 2000 4000 6000 8000 10000 12000
Time (in minutes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Tr

ai
ni

ng
 L

os
s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(e) MMLU.

0 5000 10000 15000 20000
Time (in minutes)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ai

ni
ng

 L
os

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(f) TextVQA.

0 2000 4000 6000 8000 10000
Time (in minutes)

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 L
os

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(g) VQAv2.

Figure 4: Training loss vs. training time (in minutes) for (top) training LLAMA 3.1 (8B) on three text
classification datasets (AGNews, BoolQ, and MultiRC), and (middle) two text generation datasets
(GSM8K and MMLU). (bottom) VQAv2 and TextVQA are used to train QWEN 2 VL (7B) on visual
question-answering task.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Experimental variance (±) of test accuracy across three runs with seeds 0, 1, and 2.

Method

Model + Dataset LLAMA 3.1 (8B) QWEN 2 VL (7B)

AGNews BoolQ MultiRC GSM8K MMLU VQAv2 TextVQA

BP-VANILLA 0.46 0.54 0.59 0.41 0.63 1.49 0.78
BP-CHECKPOINTING 0.45 0.56 0.62 0.39 0.61 1.52 0.77
BP-ACCUMULATE 0.67 0.78 0.84 0.79 0.69 1.71 0.98

ZO-VANILLA 0.98 0.76 0.8 0.55 0.95 1.22 0.89
ZO-ACCUMULATE 0.84 0.72 0.76 0.53 0.84 1.16 0.85
ZO-MULTIPLE 0.79 0.64 0.67 0.53 0.86 1.13 0.86
ZO-ADAPTIVE 1.02 0.95 1.13 0.84 0.83 0.95 0.78
ZO-SVRG 0.94 1.03 0.92 0.82 0.46 1.02 1.13
ZO-SPARSE 0.53 0.67 0.62 0.34 1.03 0.89 0.9
MEZO 0.86 0.73 0.73 — — — —

FMAD-VANILLA 0.81 0.72 0.64 0.73 0.86 1.34 0.92
FMAD-ACCUMULATE 0.69 0.73 0.80 0.62 0.78 0.91 0.95
FMAD-MULTIPLE 0.85 0.77 0.89 1.04 0.96 0.74 0.83
FMAD-ADAPTIVE 1.63 1.25 1.34 0.95 1.52 1.11 1.31
FMAD-SVRG 1.42 0.96 0.89 1.02 1.44 1.05 1.29
FMAD-SPARSE 0.93 0.75 1.10 0.54 0.67 1.24 0.93

steepest and most stable decay in gradient norm, aligning with its superior convergence behavior
in loss and accuracy. This strengthens the consistency between the theoretical observations of § 3
(which centers on the gradient norm) and our empirical findings of § 4.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Time (in minutes)

3

4

5

6

7

8

9

10

11

M
ea

n
Gr

ad
ie

nt
 N

or
m

 o
f

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(a) AGNews

0 5000 10000 15000 20000 25000
Time (in minutes)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

M
ea

n
Gr

ad
ie

nt
 N

or
m

 o
f

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(b) BoolQ

0 2000 4000 6000 8000 10000 12000 14000
Time (in minutes)

6

8

10

12

14

16

18

M
ea

n
Gr

ad
ie

nt
 N

or
m

 o
f

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(c) MultiRC

0 5000 10000 15000 20000 25000
Time (in minutes)

0

50

100

150

200

250

300

350

M
ea

n
Gr

ad
ie

nt
 N

or
m

 o
f

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(d) GSM8K

0 2000 4000 6000 8000 10000 12000
Time (in minutes)

0

25

50

75

100

125

150

175

200

M
ea

n
Gr

ad
ie

nt
 N

or
m

 o
f

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(e) MMLU

0 5000 10000 15000 20000
Time (in minutes)

15

20

25

30

35

40

45

50

55

M
ea

n
Gr

ad
ie

nt
 N

or
m

 o
f

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(f) TextVQA

0 2000 4000 6000 8000 10000
Time (in minutes)

75

100

125

150

175

200

225

250

275

M
ea

n
Gr

ad
ie

nt
 N

or
m

 o
f

Tr
ai

na
bl

e
Pa

ra
m

et
er

s

BP-Checkpointing
BP-Accumulate
ZO-Vanilla
ZO-Accumulate

ZO-Multiple
FmAD-Vanilla
FmAD-Accumulate
FmAD-Multiple

(g) VQAv2

Figure 5: Gradient norm vs. training time (in minutes) for (top) training LLAMA 3.1 (8B) on three
text classification datasets (AGNews, BoolQ, and MultiRC), and (middle) two text generation datasets
(GSM8K and MMLU). (bottom) VQAv2 and TextVQA are used to train QWEN 2 VL (7B) on visual
question-answering task.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.2 EXPERIMENTS WITH MEDIUM-SIZED MODELS

The goal of these experiments was to investigate whether forward-mode automatic differentiation
(FMAD) and zero-order (ZO) optimization could perform competitively when applied to medium-
sized models, specifically BERT Base (110M), BERT Large (340M), ROBERTA Base (125M), and
ROBERTA Large (350M). While FMAD and ZO have shown some promise on very small-scale
problems in prior work (Cobb et al., 2024; Chen et al., 2019; Rostami and Kia, 2024), it remained an
open question whether the convergence speed could scale reasonably with model sizes.

Figure 6 highlights a clear and consistent trend: backpropagation (with checkpointing) achieves
superior convergence speed and final test accuracy, even for medium-sized models, compared to
FMAD and ZO methods. Even for BERT Base (110M weights), FMAD and ZO lag significantly
behind backpropagation in terms of convergence rate. While FMAD and ZO eventually approach
a comparable final accuracy (with a gap of 0.74–1.66%) for BERT Base, they require substantially
more training time to do so.

0 50 100 150 200 250 300 350 400
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Method
Backpropagation
Zero-order
Forward-mode AD

(a) BERT Base (110M)

0 200 400 600 800 1000
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Method
Backpropagation
Zero-order
Forward-mode AD

(b) BERT Large (340M)

0 50 100 150 200 250 300 350 400
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Method
Backpropagation
Zero-order
Forward-mode AD

(c) ROBERTA Base (125M)

0 200 400 600 800 1000 1200
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Method
Backpropagation
Zero-order
Forward-mode AD

(d) ROBERTA Large (350M)

Figure 6: Accuracy versus training time comparison across Backpropagation (with checkpointing),
Zero-order (ZO), and Forward-mode AD (FMAD) on BERT (Base and Large) and ROBERTA (Base
and Large). Even at a smaller scale of trainable parameter count, ZO and FMAD either fail to reach
to the accuracy of backpropagation (in case of ROBERTA), or takes longer to reach to the desired
accuracy (in case of BERT).

As we scale to larger models, BERT Large and ROBERTA variants, the performance of FMAD
and ZO deteriorates further. Both methods experience slower convergence, greater instability, and
often plateau at lower final accuracies (with a drop of 1.19–6.71% for BERT Large, 6.76–7.62% for
ROBERTA Base, 9.33–12.98% for ROBERTA Large) despite extensive training. ZO, in particular,
struggles to reach acceptable performance, while FMAD shows increasingly volatile learning curves.

In summary, our experiments confirm that FMAD and ZO are fundamentally limited in their ability
to compete with backpropagation in realistic settings. Their inefficiency becomes increasingly
pronounced as we evaluate accuracy, along side memory consumption and time-to-convergence.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Accuracy of BP, ZO, and FMAD under
model size scaling: Only BP-CHECKPOINTING
(abbreviated as BP-CHKPT) maintains high accu-
racy as model size increases.

OPT Variants Variant Size Accuracy (↑)

BP-CHKPT
1.3B 94.08
6.7B 94.35

13.0B 94.51

ZO-VANILLA
1.3B 73.16
6.7B 65.75

13.0B 71.00

FMAD-VANILLA
1.3B 88.28
6.7B 87.50

13.0B 77.07

Table 11: Accuracy as the LORA rank increases
for OPT 6.7B: BP-CHECKPOINTING remains ro-
bust, while FMAD becomes unstable and ZO
shows minimal gains.

OPT 6.7B LORA Rank Accuracy (↑)

BP-CHKPT
1 94.35

16 88.44
32 85.54

ZO-VANILLA
1 65.75

16 68.07
32 68.97

FMAD-VANILLA
1 87.50

16 jvp = NaN
32 jvp = NaN

F.3 CHANGING VARIANCE OF RANDOM PERTURBATION SAMPLING

We examine the effect of variance σ2 of random perturbations which are sampled from Gaussian
distributionN (0, σ2) on the accuracy performance of FMAD and ZO. Figure 7 presents test accuracy
over time for different values of σ2, ranging from 1 to 10−2 for FMAD and from 10−2 to 10−4 for ZO.

0 200 400 600 800 1000 1200 1400
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

ZO (2 = 1e-2)
ZO (2 = 1e-3)
ZO (2 = 1e-4)

FmAD (2 = 1e+0)
FmAD (2 = 1e-1)
FmAD (2 = 1e-2)

Figure 7: Changing variance σ2 of ran-
dom sampling of perturbations. Directly
reducing randomness variance does not
lead to reduced noise in the gradients.

The results reveal a strong sensitivity to the choice of
variance: small variances reduce the diversity of pertur-
bations, while large variances introduce excessive noise
in high-dimensions, destabilizing training. Both FMAD
and ZO achieve their best performance at intermediate
values, σ2 = 1 for FMAD and σ2 = 10−3 for ZO, which
balance signal strength and noise. For ZO, reducing the
variance from 10−3 to 10−4 results in a sharp accuracy
drop of 13.75%. In contrast, FMAD shows a more gradual
decline of 0.94% and 2.27% as σ2 decreases from 1 to
10−1 and 10−2, respectively. The lower optimal variance
for ZO arises from its gradient estimator, which includes
an explicit division by the perturbation variance to scale
the update magnitude (Equation 2). These findings sug-
gest that simply reducing variance of the distribution from
which perturbations are sampled does not result in better
gradient estimates, nor does it improve convergence.

F.4 REDUCING TRAINABLE PARAMETER COUNT

We investigate how increasing the number of trainable parameters affects performance under BP,
ZO and FMAD. Tables 10 and 11 present results across varying model sizes and LORA ranks,
respectively. Further comparison of convergence time is available in Figure 8.

In Table 10, we evaluate BP-CHECKPOINTING, ZO-VANILLA, and FMAD-VANILLA on OPT
model variants of size 1.3B, 6.7B, and 13B. As the model size increases, BP-CHECKPOINTING
consistently maintains high accuracy of ∼94%. In contrast, ZO and FMAD exhibit noticeable
drops in accuracy at larger model scales. Notably, FMAD achieves 88.28% accuracy on the 1.3B
model but declines to 77.07% on the 13B model, showing degradation from scaling the count of
trainable parameters. This result are consistent with our theoretical findings of convergence er-
ror bounded by the trainable parameter count (§3). Table 11 explores accuracy as a function of
LORA rank for OPT 6.7B. While BP-CHECKPOINTING degrades gracefully as rank increases
(likely due to overfitting), FMAD becomes unstable and fails to converge beyond rank 1, yielding
NaN outputs for higher ranks. FMAD’s instability at higher LORA ranks is due to inherent insta-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

bility of perturbation-based gradient estimations, which we discuss in Appendix F.5. ZO, while
stable, shows limited improvement with increased rank, reaching only 68.97% accuracy at rank 32.

0 2000 4000 6000 80001000012000
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

BP-Checkpointing
ZO-Vanilla
FmAD-Vanilla

Figure 8: Comparison of convergence
time among BP-CHECKPOINTING,
FMAD-VANILLA, and ZO-VANILLA
with OPT(13B) on AGNews dataset.

F.5 FAILURE MODE ANALYSIS

In order to understand why variance reduction methods or
adaptive optimizers sometimes fail to make FMAD and
ZO converge, or converge at a suboptimal accuracy; we
present failure mode analysis with different optimizers and
SVRG.

F.5.1 CHALLENGES WITH OPTIMIZER CHOICE

Here we discuss a distinct failure mode of FMAD which
has been frequently observed in our preliminary exper-
iments: the computed Jacobian-vector products (jvp)
abruptly spike in magnitude. These sudden surges lead
to disproportionately large gradient updates, destabilizing
training and hindering convergence. A similar failure mode has been observed in zero-order (ZO)
methods, where the projected gradients, mathematically equivalent to FMAD’s jvp values, exhibit
comparable instability.

0 2000 4000 6000 8000 10000
Step

400

200

0

200

400

jv
p

AdamW
SGD

Figure 9: Effect of ADAMW and
SGD optimizers on jvp values in
FMAD on GSM8K dataset.

0 2000 4000 6000 8000 10000
Iterations

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3

M
ea

n
of

 E
ffe

ct
iv

e
Gr

ad
ie

nt
s

Backpropagation
Forward-mode AD

(a) ADAMW optimizer.

0 2000 4000 6000 8000 10000
Iterations

0.06

0.04

0.02

0.00

0.02

M
ea

n
of

 E
ffe

ct
iv

e
Gr

ad
ie

nt
s

Backpropagation
Forward-mode AD

(b) SGD optimizer.

Figure 10: Mean of effective gradients of Backpropagation
and Forward-mode AD with ADAMW and SGD optimizers on
GSM8K dataset.

Figure 9 illustrates the impact of optimizer choice, specifically ADAMW (adaptive) versus SGD
(non-adaptive), on jvp values in FMAD. Under SGD, jvp values remain bounded within a stable
range of [−50, 50] for the case of GSM8K dataset. However, with ADAMW, these values exhibit a
gradual increase followed by sharp spikes for certain datasets including GSM8K. In some cases, the
spikes reach 8–10× higher magnitudes than the stable baseline observed with SGD.

Figures 9a and 9b further illustrate the implications of these spikes. Under ADAMW, the effective
gradient magnitudes produced by FMAD exhibit substantially higher variance than those from
backpropagation, indicating instability and less reliable gradient directions. These inflated updates
also increase weight magnitudes, which in turn amplify subsequent jvp evaluations, since these
depend on both the current weights and their perturbations. This positive feedback loop can lead
to divergence and, eventually, NaN values in jvp computations, as observed in several FMAD
runs in Table 11. Even when divergence does not occur, the resulting gradient updates can be
excessively noisy or of high magnitude, leading to suboptimal convergence. In contrast, under SGD,
the effective gradients computed by FMAD closely mirror those from backpropagation across most
iterations, with stable behavior and no evidence of runaway magnitudes. We posit that this cascading
rise in magnitude for the case of ADAMW is due to its adaptive nature, where a rolling average
of historical and current gradients is computed each iteration, leading to amplification of higher
magnitude gradients. In contrast, the impact of jvp spikes is diminished with non-adaptive SGD
since the previous iteration’s gradients would have limited effect (to only one iteration’s gradient
updates).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0
25

00
50

00
75

00
10

00
0

12
50

0
15

00
0

17
50

0

Step

200

100

0

100

200
jv
p

snapshot jvp
current jvp
| current jvp snapshot jvp |

(a) The current iteration’s jvp, jvp computed based
on the snapshot weights, and the difference between
these two values.

0
25

00
50

00
75

00
10

00
0

12
50

0
15

00
0

17
50

0

Step

2

1

0

1

2

3

4

5

M
ea

n
of

 E
ffe

ct
iv

e
Gr

ad
ie

nt
s Full Gradient

Minibatch Gradient

(b) Magnitude of the mean effective full gradients (com-
puted at specific epoch intervals) and the current itera-
tion’s mini-batch gradient.

Figure 11: Impact of incorporating SVRG into FMAD on (a) jvp values and the mean of effective
full-batch and (b) mini-batch gradients, evaluated on the GSM8K dataset.

This stark contrast highlights a critical interaction between optimizer choice and the numerical
stability of FMAD. While ADAMW is widely favored for its adaptive learning rates and regularization
capabilities, its use with FMAD (and by extension ZO) can introduce harmful gradient artifacts which
are driven by uncontrolled jvp amplification. These results underscore the specific vulnerabilities in
gradient estimation methods and point to a need for further study into stabilizing FMAD and ZO for
more reliable deployment in large-scale training regimes.

F.5.2 CHALLENGES WITH SVRG

In this section, we discuss a failure mode of SVRG observed in the context of text generation tasks.
While SVRG improves performance for both ZO-VANILLA and FMAD-VANILLA baselines by
4.04–11.13 and 1.97–3.86, respectively, in many settings, it leads to performance degradation in
certain sequence modeling tasks like GSM8K. Figure 11 illustrates the behavior of jvp values
and the corresponding gradients when SVRG is applied to FMAD on the GSM8K dataset. In
Figure 11a, we observe that the difference between the jvp computed on the current model weights
and the one computed on the snapshot weights is minimal. Consequently, the control variate, the
difference between mini-batch gradients at current and snapshot weights, has little impact relative to
the magnitude of the full gradient.

This hypothesis is supported by Figure 11b, which shows that the mean of the effective full gradi-
ents remains consistently large, while the mini-batch gradient magnitudes are significantly smaller.
Because the full gradients are updated only at periodic intervals (every 5 epochs in our case), their
inflated magnitude dominates the update direction across multiple steps. This inflation stems from
the accumulation of large jvp values during the summation of per-batch gradients, occasionally
resulting in outlier gradients with extremely high norms. As a result, the SVRG mechanism fails
to provide meaningful variance reduction and instead perpetuates overly large updates, ultimately
degrading model performance.

A similar performance degradation was observed in ZO-SVRG (Liu et al., 2018), albeit on a smaller
model with approximately 852K parameters. However, that work does not address the scalability
challenges of SVRG-based methods in the context of zeroth-order optimization.

F.5.3 IMPROVING STABILITY VIA MULTIPLE-PERTURBATION AND
ACCUMULATED-GRADIENT

We further extend our analysis of jvp magnitudes and mean gradient values to the variance-reducing
baselines -MULTIPLE (which samples multiple perturbations per iteration and averages the resulting

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Step

400
300
200
100

0
100
200
300
400

jv
p

AdamW
SGD

(a) -MULTIPLE with n = 10.

0 200 400 600 800 1000 1200
Step

400
300
200
100

0
100
200
300
400

jv
p

AdamW
SGD

(b) -ACCUMULATE with Step Count=100.

Figure 12: Effect of ADAMW and SGD optimizers on jvp values in FMAD-MULTIPLE and
FMAD-ACCUMULATE on GSM8K dataset.

gradients) and -ACCUMULATE (which uses a single perturbation per iteration but accumulates
gradients over several steps before applying an update).

Figure 12 reports the corresponding jvp trajectories. Note that the SGD baseline contains fewer
plotted steps because it converged substantially earlier than the other configurations, and the experi-
ment was therefore terminated once convergence was reached. In contrast to the instability observed
for FMAD-VANILLA in Figure 9, both baselines exhibit stable jvp magnitudes even under ADAMW.
This stability, in turn, yields lower error and more reliable convergence. This behavior can be at-
tributed to the inherent variance-reduction mechanisms in these baselines. In -MULTIPLE, averaging
multiple jvp-induced gradient estimates suppresses the high-variance noise that otherwise interacts
negatively with ADAMW’s adaptive accumulators. Similarly, -ACCUMULATE delays updates and
aggregates gradient signals across several steps, effectively smoothing out perturbation-induced
fluctuations before the optimizer sees them. In both cases, the optimizer receives a more stable and
lower-variance gradient stream, preventing the cascading amplification effects that cause jvp spikes
in FMAD-VANILLA. As a result, these variance-reduction strategies mitigate the optimizer–noise
interaction responsible for divergence, leading to substantially more stable training dynamics.

Figure 13 reports the mean gradient magnitudes. The curves for Backpropagation and FMAD are
identical to those shown previously in Figure 10. In addition, we include the results for FMAD-
MULTIPLE and FMAD-ACCUMULATE. Unlike the pronounced gradient-magnitude spikes observed
in FMAD, both -MULTIPLE and -ACCUMULATE exhibit markedly steadier behavior under both
optimizers ADAMW and SGD. Notably, ACCUMULATE displays the greatest stability. This is
expected: accumulating gradients over several iterations before applying an update effectively
averages out the perturbation-induced noise and prevents high-variance signals from being directly
fed into the optimizer’s adaptive state. As a result, ADAMW receives smoother, lower-variance
updates, which suppresses the positive feedback loop responsible for the divergence in FMAD. In
contrast, MULTIPLE exhibits a slight upward drift near the end of training when used with ADAMW.
This behavior is consistent with the fact that, although multiple perturbations are averaged per
iteration, the optimizer still processes an update at every step; thus, residual noise (especially as
weights grow in magnitude) can accumulate in the adaptive moments and produce a mild increase
in gradient scale. Nevertheless, this increase remains small relative to the uncontrolled spikes
in FMAD-VANILLA, confirming that perturbation-level averaging substantially reduces variance.
Finally, note that ACCUMULATE has fewer points plotted because it performs fewer parameter-update
steps; gradients are accumulated locally and applied only periodically, resulting in a lower number of
optimizer interactions reflected in the visualization.

F.6 EFFECT OF PERTURBATION DISTRIBUTIONS AND NORMALIZATION STRATEGIES

We additionally experimented with perturbation sampling strategies: (a) Sampling from a normal
distribution and using the perturbations as-is (unnormalized), (b) Sampling from a normal distri-

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Iterations

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3

M
ea

n
of

 E
ffe

ct
iv

e
Gr

ad
ie

nt
s

FmAD
FmAD-Multiple
FmAD-Accumulate
Backpropagation

(a) ADAMW optimizer.

0 2000 4000 6000 8000 10000
Iterations

0.100
0.075
0.050
0.025
0.000
0.025
0.050
0.075

M
ea

n
of

 E
ffe

ct
iv

e
Gr

ad
ie

nt
s

FmAD
FmAD-Multiple
FmAD-Accumulate
Backpropagation

(b) SGD optimizer.

Figure 13: Mean of effective gradients of Backpropagation, FMAD, FMAD-MULTIPLE (n = 10),
and FMAD-ACCUMULATE (Step Count=100) with ADAMW and SGD optimizers on GSM8K
dataset.

bution and normalizing the perturbations, (c) Sampling from a uniform distribution and using the
perturbations as-is (unnormalized), and (d) Sampling from a uniform distribution and normalizing
the perturbations.

0 500 1000 1500 2000 2500
Time (in minutes)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Unnormalized
Normalized

Normal Distribution
Uniform Distribution
Normal Distribution
Uniform Distribution

Figure 14: Finetuning LLAMA 3.1 (8B) on the AG-
News dataset using FMAD, comparing perturba-
tions drawn from normal vs. uniform distributions,
with both normalized and unnormalized variants.

Our findings are as follows. Normalization con-
sistently reduces accuracy for both the normal
and uniform variants. This degradation arises
because normalization forces every perturbation
to have identical magnitude, eliminating natural
variability in scale that carries useful informa-
tion for estimating the local curvature of the
loss landscape. By projecting all perturbations
onto a fixed-radius hypersphere, the method re-
duces the effective signal-to-noise ratio of the
jvp estimate and prevents larger, informative
perturbations (particularly in high-curvature re-
gions) from contributing to learning. As a result,
the gradients become less expressive and exhibit
higher relative variance, leading to poorer opti-
mization.

Among the unnormalized variants, sampling
from a normal distribution yields the strongest
performance, with the unnormalized uniform
distribution performing comparably closely, be-
fore both resulting in overfitting. The slight

advantage of the normal distribution can be attributed to its heavier tails, which naturally introduce a
broader range of perturbation magnitudes. This diversity more closely mimics the statistical struc-
ture of true gradients in large neural networks, allowing the estimator to explore directions of both
small and moderately large curvature. In contrast, the unnormalized uniform distribution produces
perturbations bounded within a fixed interval, limiting the range of effective step sizes and resulting
in marginally less efficient gradient estimation.

F.7 COMPARISON AGAINST SIGNZO

Table 12 shows a comparison of accuracy, memory usage, compute cost, and convergence time for
BP-CHECKPOINTING, ZO, SIGNZO, ZO-ACCUMULATE, and ZO-MULTIPLE when finetuning
LLAMA-3.1 (8B) on AGNews.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 12: Performance, memory, and efficiency trade-offs across BP-CHECKPOINTING, ZO baselines,
and SIGNZO for finetuning LLAMA-3.1 (8B) on AGNews.

Accuracy
Memory

Consumption
(in GB)

Compute Cost
(in FLOPs)

Wallclock Convergence
Time (in seconds)

BP-CHECKPOINTING 93.8% 11.66 65.2 x 104 16,691
ZO 73.6% 5.99 251.2 x 104 21,074
SIGNZO 82.6% 5.99 251.9 x 104 56,892
ZO-ACCUMULATE 85.8% 5.99 2165.1 x 104 181,510
ZO-MULTIPLE 86.7% 5.99 2425 x 104 201,747

Accuracy Comparison: Although SIGNZO improves stability relative to vanilla ZO (as
reflected in its smoother learning trajectory in the Figure 15) its overall accuracy per-
formance remains significantly below the backpropagation baseline. On AGNews with
LLAMA3.1 (8B), SIGNZO reaches 82.6% accuracy, which is a noticeable improvement over
the 73.6% achieved by standard ZO but still far from the 93.8% obtained via backpropa-
gation. This gap indicates that the sign-based estimator, while stabilizing the update direc-
tion, does not provide sufficient gradient resolution to match the fidelity of true gradients.

0 200 400 600 800 1000 1200 1400
Time (in minutes)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

ZO
SignZO

Figure 15: SignZO against ZO for training LLAMA
3.1 (8B) on AGNews dataset.

SIGNZO also underperforms compared to the
variance-reducing methods (ZO-MULTIPLE and
ZO-ACCUMULATE). ZO-MULTIPLE and ZO-
ACCUMULATE reach 86–87% accuracy, and al-
though they require larger FLOPs and longer
runtimes, they converge to higher-quality solu-
tions.

Memory, Computation cost, and Conver-
gence Time Comparison: SIGNZO matches
the memory footprint of other ZO baselines
(5.99 GB) and maintains similar FLOP-level
compute costs. However, its wall-clock conver-
gence time is substantially longer (≈56.9k sec-
onds), more than 2.7× slower than ZO and 3.4×
slower than BP-Checkpointing. The longer con-
vergence time stems from the fact that stabiliz-
ing noisy ZO directions via sign compression
requires more optimization steps to make mean-
ingful progress. Although Table 12 reports only
wall-clock time, SIGNZO and ZO have identical
per-iteration runtime, the only difference between them is that SIGNZO applies a sign-compressed
update during optimizer.step(), which does not affect iteration cost. Consequently, time on
the x-axis is effectively proportional to the number of optimization steps, allowing us to conclude that
the longer wall-clock time directly reflects the larger number of iterations required for convergence.

Overall, SIGNZO improves upon naïve ZO in terms of final accuracy (82.6% vs. 73.6%), but
does so by requiring substantially more computation: although its per-iteration FLOPs are nearly
identical to ZO, its wall-clock convergence time is 2.7× longer (56.9k s vs. 21.1k s). Compared to
BP-Checkpointing, SIGNZO achieves a markedly smaller memory footprint (5.99 GB vs. 11.66 GB),
but only by trading off both efficiency and performance, requiring ≈3.4× longer time to converge,
≈3.9× more compute, and yielding 11.2 percentage points lower accuracy. Furthermore, while
SIGNZO converges faster than the variance-reduced ZO-Accumulate and ZO-Multiple baselines,
those methods achieve higher accuracies (85.8% and 86.7%), reinforcing the broader trend observed
in our paper: stability alone is not sufficient, effective ZO training at scale also requires variance-
reduction mechanisms to improve both accuracy and efficiency.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.8 SENSITIVITY TO PERTURBATION BUDGET FOR OPT13B

Figure 16 shows the training of the OPT (13B) model on the AGNews dataset using ZO with varying
perturbation budgets n.

0 1000 2000 3000 4000 5000 6000 7000
Time (in minutes)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

n = 1
n = 10
n = 50

Figure 16: Training the OPT (13B) model on the
AGNews dataset using ZO with varying perturba-
tion budgets n. Larger budgets reduce variance
in the jvp estimates, improving final accuracy,
but sequential application of perturbations under
resource constraints increases wallclock conver-
gence time.

For n = 1, convergence occurs around 5000
minutes, reaching an accuracy of 71%. With
n = 10, convergence also occurs near 5000 min-
utes, with a slight improvement in accuracy to
72%. Increasing the budget further to n = 50
improves the final accuracy to 75.5%, but con-
vergence is delayed until approximately 6500
minutes. This behavior can be explained by
the trade-off between gradient estimate quality
and computational overhead: larger perturba-
tion budgets reduce the variance of the jvp es-
timates, leading to more accurate gradients and
higher final accuracy, but in this case, the pertur-
bations are applied sequentially due to hardware
limitations, which increases wall-clock time per
iteration. Additionally, small increases in n (e.g.,
from 1 to 10) yield only modest accuracy gains
because even a few perturbations are sufficient
to capture enough directional information for
effective early-stage training. Overall, these re-
sults highlight a trade-off between perturbation
budget, convergence speed, and final accuracy:
larger budgets improve the quality of gradient
estimates at the cost of increased computation
time, particularly when sequential execution is required.

G SIGNAL PROPAGATION FOR GRADIENT COMPUTATION

A key difference between BP and FMAD/ZO methods lies in how they propagate the loss signal to
compute weight updates. BP computes the derivative of the loss L with respect to each weight wi,
effectively mapping changes in the loss to precise updates in the parameter space. The gradients of
the intermediate activations, computed during the backward pass, are also derived from δL, allowing
the loss signal to guide every stage of the update. This direct path from the loss to the parameters
makes BP a loss-to-weights approach, where the signal flows backward through the network in a
structured and deterministic way.

In contrast, both FMAD and ZO adopt a weights-to-loss perspective: they estimate how perturbations
in the weights, δwww = vvv; affect the loss, δL. The forward-mode Jacobian-vector product (jvp) and
the ZO projected gradient scalar both incorporate the resulting change in the loss, but they do so
indirectly. Specifically, they multiply δL by the perturbation direction vvv to approximate weight
gradients (as detailed in § 2). However, in these approaches, the intermediate changes δyp (which
influence δL) are driven by the initial perturbations δwp ∼ N (0, Id); not by the loss. As a result,
the variance introduced at the input level through the perturbations propagates forward through the
network, ultimately contaminating the gradient signal. This lack of an explicit loss-driven mechanism
for shaping activation gradients leads to noisier gradient updates. Consequently, FMAD and ZO
require stricter step size constraints (see Theorems I.8 and I.9) and exhibit degraded convergence
behavior.

Moreover, both FMAD and ZO optimization methods incur additional noise and estimation error
compared to backpropagation. This noise is not just a side effect, it is an inherent consequence
of using random perturbations to estimate gradients. In both FMAD and ZO, the injection of
perturbations δwww ∼ N (0, Id) is core to the algorithmic process, and the resulting activation (δyi) and
loss variations (δL) carry this randomness forward. Therefore, the gradient estimates vary depending
on the sampled perturbation, making noise a deterministic outcome of the method itself.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

In essence, while BP precisely channels loss information to guide weight updates, FMAD and ZO
rely on stochastic approximations that make their updates fundamentally noisy and less targeted.

H COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of different methods used to compute
gradients in a neural network setting. We begin with a one-layer neural network, providing a
detailed breakdown of the computational cost for the forward pass, backpropagation, zero-order
optimization, and forward-mode automatic differentiation. Understanding these complexities is
essential for evaluating the efficiency of gradient computation methods, especially in resource-
constrained environments. Empirical computational cost of the gradient computation methods is
shown in §4.5.

H.1 BASICS

In this section, we analyze the computational complexity of a one-layer neural network f with weight
matrix w ∈ Rd×m. The network takes an input x ∈ Rd and produces an output y ∈ Rm. While we
focus on a single-layer setting for clarity, the analysis naturally extends to a deep neural network with
L layers, each with weight matrix wℓ for ℓ ∈ [L].

Forward Pass. Since all three gradient computation methods share the same forward pass, we
first establish its computational complexity. The forward pass consists of a matrix multiplication
y = xw, where x has dimensions 1× d and w has dimensions d×m. This results in a computational
complexity of O(dm).

H.2 BACKPROPAGATION

Backpropagation requires computing the gradient of the loss L with respect to the weights, given by

∂L
∂w

=
∂L
∂y
· ∂y
∂w

.

The first term, ∂L
∂y , involves differentiating the loss with respect to the output, which has a computa-

tional complexity of O(m). The second term, ∂y
∂w , follows from the linear transformation y = xw,

contributing a complexity of O(dm). The final gradient computation involves the multiplication of a
1×m matrix with an m× d matrix, resulting in an additional complexity of O(dm).

Although activation functions introduce constant factors, 3 for the last layer and 5 for intermediate
layers, these constants do not affect the asymptotic complexity. Hence, the overall computational
complexity of backpropagation remains O(dm).

H.3 BACKPROPAGATION WITH CHECKPOINTING

Checkpointing builds on standard backpropagation by trading memory for additional computation.
Instead of storing all intermediate activations, only selected layers are checkpointed, and discarded
activations are recomputed as needed during the backward pass.

This recomputation introduces an overhead, resulting in a total compute complexity of O(dm log p)
for a network with p layers Griewank and Walther (2000). Here, the log p factor reflects the optimal
checkpointing schedule, capturing the additional cost of recomputing intermediate activations while
still reducing peak memory usage compared to standard backpropagation. In this way, checkpointing
offers a controlled trade-off between memory efficiency and computational overhead, extending the
base O(dm) cost of standard backpropagation.

H.4 ZERO-ORDER OPTIMIZATION

The zero-order optimization method with central finite differences involves perturbing the weights
twice, evaluating at (www + ϵvvv) and (www − ϵvvv), where vvv ∈ Rd×m is a randomly sampled perturbation
and ϵ ∈ R is a small step size. The element-wise multiplication ϵvvv incurs a computational cost of

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

O(dm), as does the addition and subtraction with w. Since each perturbation requires evaluating the
function at the perturbed points, the function evaluations f(www ± ϵvvv) also contribute a complexity of
O(dm).

With n such perturbations per iteration, the total computational cost sums to O(ndm), where n is the
number of perturbations used in each iteration.

Compared to the forward pass on the original weights w, zero-order adds a constant of 4, which gets
absorbed in O(ndm).

H.5 FORWARD-MODE AD

The jvp (Jacobian-vector product) computation incurs a complexity of O(dm), as it partially
computes ∂L

∂w . The resulting jvp is then multiplied with the perturbation vector vvv to obtain the
weight gradient for www. Since vvv has dimensions d×m, this multiplication also has a computational
complexity of O(dm).

Repeating this process n times for n perturbations per iteration leads to a total computational cost of
O(ndm).

I PROOFS OF CONVERGENCE BOUNDS

This section includes the details on upper error bounds of all three gradient computation methods:
Backpropagation, Zero-order optimization, and Forward-mode Auto Differentiation.

I.1 BASICS

All examples of gradient computation methods are based on a function f , which, in the context of
machine learning, corresponds to a neural network. This function f is composed of nested functions fi,
i ∈ [p]; where each function corresponds to an intermediate output (or activation) yi = fi(wi, yi−1),
generated from the input weights wi and previous activation yi−1. y0 is set to x, which can be data
points in ML. We assume that x is fixed, for the ease of exposition. The input weights are represented
by the vector www = w1, w2, . . . , wp, where each w[1,...,p] ∈ R[m1,...,mp]. The intermediate outputs,
or activations, are denoted by yyy = y1, . . . , yp. The final output is y = yp = f(www, x) ∈ Rn, where
typically n << mi for all i ∈ [p]. The loss function L(y, ŷ) ∈ R is then computed to measure the
difference between the predicted output y and the true target values ŷ.

With gradient descent, one update to the weights www looks like this,

wwwt+1 ← wwwt − η∇f(wwwt), (3)

where t is the iteration count, and η is the learning rate.

The objective is to minimize f(www): minwww∈Rd f(www).

Definition I.1 (Optimality Gap). The optimality gap at iteration t is defined as the difference between
the function value at the current iterate wwwt and the function value at an optimal solution www∗:

∆t = f(wwwt)− f(www∗) (4)

The optimality gap quantifies how far the current function value is from the optimal value. In
convergence analysis, the goal is to show that this gap decreases over iterations.

I.2 ASSUMPTIONS

Assumption I.2 (Smoothness). Let f : Rd → R be L-smooth, meaning that its gradient is Lipschitz
continuous with constant L > 0. That is, for all www,www′ ∈ Rd, the function f satisfies,

||∇f(www′)−∇f(www)|| ≤ L||www′ −www||. (5)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

I.3 LEMMAS

Lemma I.3 (Bias of Gradient Estimate of the Central Finite Difference). Let g(vvv) be the gradient
estimate obtained using the central finite difference method with a perturbation vector vvv ∼ N (0, Id).
Then, the expectation of the estimator satisfies

Evvv[g(vvv)] = ∇f(www), (6)

implying that the central finite difference gradient estimator is unbiased up to first-order error terms.
Furthermore, the second moment of the estimator satisfies

Evvv

[
∥g(vvv)∥2

]
= ∥∇f(www)∥2(d+ 2) +O(ϵ2)d. (7)

Proof. We start with one evaluation of the central finite difference, for a perturbation vvv ∈ Rd. The
full derivation is given in Theorem I.8,

g(vvv) =
(
(vvv⊤∇f(www))vvv +O(ϵ)vvv

)
. (8)

In order to measure the bias of the above gradient estimate, we take expectation with respect to the
randomness of vvv,

Evvv [g(vvv)] = Evvv

[
(vvv⊤∇f(www))vvv +O(ϵ)vvv

]
(9)

= ∇f(www)Evvv

[
vvv⊤vvv

]
+O(ϵ)Evvv [vvv] (10)

= ∇f(www)Id +O(ϵ) · 0 (since vvv ∼ N (0, Id)) (11)
∴ Evvv [g(vvv)] = ∇f(www). (12)

This shows that the estimator is unbiased.

Now, we analyze the second moment of the estimator:

Evvv

[
∥g(vvv)∥2

]
= Evvv

[∥∥(vvv⊤∇f(www))vvv +O(ϵ)vvv∥∥2] (13)

= Evvv

[
(vvv⊤∇f(www))2∥vvv∥2

]
+O(ϵ2)Evvv

[
∥vvv∥2

]
. (14)

Using the known expectation property of Gaussian vectors:

E
[
vvvvvv⊤∥vvv∥2

]
= (d+ 2)Id, (15)

we obtain:

Evvv

[
∥g(vvv)∥2

]
= Evvv

[
Tr((vvvvvv⊤)∇f(www)∇f(www)⊤vvvvvv⊤)

]
+O(ϵ2)d (16)

= Tr(∇f(www)∇f(www)⊤)(d+ 2) +O(ϵ2)d (17)

= ∥∇f(www)∥2(d+ 2) +O(ϵ2)d. (18)

Lemma I.4 (Variance of Gradient Estimate of the Central Finite Difference). Let ĝ(vvv) be the central
finite difference gradient estimator using n perturbations vvv1, . . . , vvvn ∼ N (0, Id), given by

ĝ(www) =
1

n

n∑
i=1

g(vvvi), where g(vvvi) =
f(www + ϵvvvi)− f(www − ϵvvvi)

2ϵ
vvvi. (19)

Assuming the finite-difference step ϵ, the variance of the estimator satisfies:

Var[ĝ(www)] =
1

n

(
∥∇f(www)∥2(d+ 1) +O(ϵ2)d

)
. (20)

This result shows that the variance of the gradient estimator scales asO((d+1)/n), which quantifies
how the dimension d and the number of samples n influence the estimator’s variance.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Proof. We can derive the variance of the estimator

ĝ(www) =
1

n

n∑
i=1

g(vvvi), with g(vvvi) =
f(www + ϵvvvi)− f(www − ϵvvvi)

2ϵ
vvvi

by computing
Var[ĝ(www)] = Evvv[||ĝ(www)||2]− ||Evvv[ĝ(www)]||2. (21)

For clarity, in the following we assume that the finite-difference step is chosen so that the bias is
negligible (i.e. the estimator is unbiased according to Lemma I.3, so that Evvv[g(vvvi)] = ∇f(www) and
Evvv[ĝ(www)] = ∇f(www). (We can add the higher-order remainder later.)

We write the second moment (squared norm) of ĝ as

Evvv[||ĝ(www)||2] = Evvv

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

g(vvvi)

∣∣∣∣∣
∣∣∣∣∣
2
 =

1

n2
Evvv

 n∑
i=1

n∑
j=1

g(vvvi)
⊤g(vvvj)

 . (22)

We split the sum into diagonal and off-diagonal parts:

Evvv[||ĝ(www)||2] =
1

n2

 n∑
i=1

Evvv[||g(vvvi)||2] +
∑
i̸=j

E[g(vvvi)⊤g(vvvj)]

 . (23)

Since the gi are independent,

Evvv[g(vvvi)
⊤g(vvvj)] = Evvv[g(vvvi)]

⊤Evvv[g(vvvj)] = ∇f(www)⊤∇f(www) = ||∇f(www)||2 for i ̸= j. (24)
Thus,

Evvv[||ĝ(www)||2] =
1

n2
(nEvvv[||g(vvv)||2] + n(n− 1)||∇f(www)||2). (25)

Plugging the above result, along with the result derived from Lemma I.3 on ||Evvv[ĝ(www)]||2 =
||∇f(www)||2, in Equation 21,

Var[ĝ(www)] =
1

n2

(
nEvvv[||g(vvv)||2] + n(n− 1)||∇f(www)||2

)
− ||∇f(www)||2 (26)

=
1

n

(
Evvv[||g(vvv)||2]− ||∇f(www)||2

)
. (27)

The second moment of the estimator was derived in Lemma I.3, in Equation 18. We use that result in
the above equation as follows,

Var[ĝ(www)] =
1

n

(
∥∇f(www)∥2(d+ 2) +O(ϵ2)d− ∥∇f(www)∥2

)
(28)

=
1

n

(
∥∇f(www)∥2(d+ 1) +O(ϵ2)d

)
(29)

This leads us to a variance bound that scales as d+1
n times ||∇f(θ)||2 (plus a O(ϵ2) contribution),

which exhibits the dependence of variance of the estimator ĝ(www) on the dimension d and the number
of samples n.

The key difference between the above two lemmas and the next two lemmas is that the central
finite difference estimator introduces a small O(ϵ) bias due to numerical approximation,
whereas the forward-mode AD estimator is exactly unbiased. Additionally, the second
moment of the central finite difference estimator includes an extra O(ϵ2)d term, which is
absent in forward-mode AD, making the latter more precise.

Lemma I.5 (Bias of Gradient Estimate of Forward-mode Auto Differentiation). Let g(vvv) be the
gradient estimate obtained using the central finite difference method with a perturbation vector
vvv ∼ N (0, Id). Then, the expectation of the estimator satisfies

Evvv[g(vvv)] = ∇f(www), (30)
implying that the central finite difference gradient estimator is unbiased. Furthermore, the second
moment of the estimator satisfies

Evvv

[
∥g(vvv)∥2

]
= ∥∇f(www)∥2(d+ 2). (31)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Proof. We start with one evaluation of forward-mode auto differentiation, for a perturbation vvv ∈ Rd.
The full derivation is given in Theorem I.9,

g(vvv) =
(
vvv⊤∇f(www)

)
vvv. (32)

In order to measure the bias of the above gradient estimate, we take expectation with respect to the
randomness of vvv,

Evvv [g(vvv)] = Evvv

[
(vvv⊤∇f(www))vvv

]
(33)

= ∇f(www)Evvv

[
vvv⊤vvv

]
= ∇f(www)Id (34)

∴ Evvv [g(vvv)] = ∇f(www). (35)

This shows that the estimator is unbiased.

Now, we analyze the second moment of the estimator:

Evvv

[
∥g(vvv)∥2

]
= Evvv

[∥∥(vvv⊤∇f(www))vvv∥∥2] = Evvv

[
(vvv⊤∇f(www))2∥vvv∥2

]
. (36)

Using the known expectation property of Gaussian vectors:

E
[
vvvvvv⊤∥vvv∥2

]
= (d+ 2)Id, (37)

We obtain:

Evvv

[
∥g(vvv)∥2

]
= Evvv

[
Tr((vvvvvv⊤)∇f(www)∇f(www)⊤vvvvvv⊤)

]
(38)

= Tr(∇f(www)∇f(www)⊤)(d+ 2) = ∥∇f(www)∥2(d+ 2). (39)

Lemma I.6 (Variance of Gradient Estimate of Forward-mode Auto Differentiation). Let ĝ(vvv) be the
central finite difference gradient estimator using n perturbations vvv1, . . . , vvvn ∼ N (0, Id), given by

ĝ(www) =
1

n

n∑
i=1

g(vvvi), where g(vvvi) = (vvv⊤i ∇f(www))vvvi. (40)

Assuming the finite-difference step ϵ, the variance of the estimator satisfies:

Var[ĝ(www)] =
1

n

(
∥∇f(www)∥2(d+ 1)

)
. (41)

This result shows that the variance of the gradient estimator scales asO((d+1)/n), which quantifies
how the dimension d and the number of samples n influence the estimator’s variance.

Proof. We can derive the variance of the estimator

ĝ(www) =
1

n

n∑
i=1

g(vvvi), with g(vvvi) = (vvv⊤i ∇f(www))vvvi

by computing

Var[ĝ(www)] = Evvv[||ĝ(www)||2]− ||Evvv[ĝ(www)]||2. (42)

The estimator is unbiased according to Lemma I.5, so that Evvv[g(vvvi)] = ∇f(www) and Evvv[ĝ(www)] =
∇f(www).
We write the second moment (squared norm) of ĝ as

Evvv[||ĝ(www)||2] = Evvv

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

g(vvvi)

∣∣∣∣∣
∣∣∣∣∣
2
 =

1

n2
Evvv

 n∑
i=1

n∑
j=1

g(vvvi)
⊤g(vvvj)

 . (43)

We split the sum into diagonal and off-diagonal parts:

Evvv[||ĝ(www)||2] =
1

n2

 n∑
i=1

Evvv[||g(vvvi)||2] +
∑
i̸=j

E[g(vvvi)⊤g(vvvj)]

 . (44)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Since the gi are independent,

Evvv[g(vvvi)
⊤g(vvvj)] = Evvv[g(vvvi)]

⊤Evvv[g(vvvj)] = ∇f(www)⊤∇f(www) = ||∇f(www)||2 for i ̸= j. (45)

Thus,

Evvv[||ĝ(www)||2] =
1

n2
(nEvvv[||g(vvv)||2] + n(n− 1)||∇f(www)||2). (46)

Plugging the above result, along with the result derived from Lemma I.3 on ||Evvv[ĝ(www)]||2 =
||∇f(www)||2, in Equation 42,

Var[ĝ(www)] =
1

n2

(
nEvvv[||g(vvv)||2] + n(n− 1)||∇f(www)||2

)
− ||∇f(www)||2 (47)

=
1

n

(
Evvv[||g(vvv)||2]− ||∇f(www)||2

)
. (48)

The second moment of the estimator was derived in Lemma I.5, in Equation 39. We use that result in
the above equation as follows,

Var[ĝ(www)] =
1

n

(
∥∇f(www)∥2(d+ 2)− ∥∇f(www)∥2

)
(49)

=
1

n

(
∥∇f(www)∥2(d+ 1)

)
(50)

This leads us to a variance bound that scales as d+1
n times ||∇f(θ)||2, which exhibits the dependence

of variance of the estimator ĝ(www) on the dimension d and the number of samples n.

I.4 THEOREMS

The given analysis for all gradient computation methods is for a non-convex objective f .
We begin by reiterating the descent lemma applied to gradients computed by backpropagation.
Theorem I.7 (Error Bound of Backpropagation). Let f : Rd → R be a differentiable, L-smooth
function. Consider the gradient descent update rule:

wwwt+1 = wwwt − η∇f(wwwt),

where η is the step size (learning rate). Suppose 0 < η ≤ 1
L . Then, after T iterations, the minimum

gradient norm satisfies the following bound:

min
t∈[T]

||∇f(wwwt)||2 ≤
2L

T
(f(www1)− f(wwwT)) ,

This bound shows that gradient descent achieves an O(1
T) convergence rate in terms of gradient

norm, which is the optimal rate for first-order methods in smooth optimization.

Proof. Using Assumption I.2, we apply the smoothness condition, which gives the following
quadratic upper bound:

f(wwwt+1) ≤ f(wwwt) +∇f(wwwt)
⊤(wwwt+1 −wwwt) +

L

2
||wwwt+1 −wwwt||2 (51)

Substituting the gradient descent update rule Equation 3, we obtain,

∴ f(wwwt+1) ≤ f(wwwt)− η||∇f(wwwt)||2 +
L

2
η2||∇f(wwwt)||2 (52)

Rearranging the above terms,

∴ f(wwwt+1)− f(wwwt) ≤ −η||∇f(wwwt)||2 +
Lη2

2
||∇f(wwwt)||2 = −

(
η − Lη2

2

)
||∇f(wwwt)||2 (53)

To ensure progress in minimizing f(www), we need the term (1− Lη
2) to be positive. Hence we assume

η ≤ 1
L , along with 0 < η,

∴ f(wwwt+1)− f(wwwt) ≤ −
1

2L
||∇f(wwwt)||2 (54)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Summing over t = 1 to t = T ,
T∑

t=1

(f(wwwt+1)− f(wwwt)) ≤ −
1

2L

T∑
t=1

||∇f(wwwt)||2 (55)

The left-hand side forms a telescoping sum, resulting in

f(wwwT+1)− f(www1) ≤ −
1

2L

T∑
t=1

||∇f(wwwt)||2 (56)

1

T

T∑
t=1

||∇f(wwwt)||2 ≤
2L

T
(f(www1)− f(wwwT+1)) (57)

Using the definition of optimality gap from Equation I.1,

min
t∈[T]

||∇f(wwwt)||2 ≤
2L

T
(f(wwwt)− f(wwwT)) (58)

Thus, the optimality gap reduces at a rate of O(1
T), given η ≤ 1

L .

Next, we will give a similar treatment to the gradients derived from zero-order finite differences,
Theorem I.8 (Error Bound of Zero-Order Optimization). Consider a function f : Rd → R that
is L-smooth. Let the central finite-difference gradient estimator with n perturbations per iteration,
where each perturbation vector vvvi is sampled independently from N (0, Id) and step size η be

ĝ(wwwt) =
1

n

n∑
i=1

(
f(wwwt + ϵvvvi)− f(wwwt − ϵvvvi)

2ϵ
vvvi

)
.

Then, the expected average squared gradient norm is bounded by

1

T

T∑
t=1

||∇f(wwwt)||2 ≤
f(www1)− f(wwwT)

ηT
[
1− Lη

2

(
1 + d+1

n

)] +
Ldη2

2n
O(ϵ2), (59)

To ensure convergence, the step size must satisfy

η <
2

L
(
1 + d+1

n

) . (60)

This result highlights how the convergence rate depends on the dimension d, the number of perturba-
tions n, and the perturbation magnitude ϵ. Specifically, a larger d or a smaller n increases the bound,
implying slower convergence.

Proof. The central finite-difference gradient estimator for n perturbations per iteration is

ĝ(wwwt) =
1

n

n∑
i=1

(
f(wwwt + ϵvvvi)− f(wwwt − ϵvvvi)

2ϵ
vvvi

)
(61)

where each vvvi ∈ Rd is a perturbation drawn from a Gaussian distribution N (0, 1).

Assuming that f is sufficiently smooth so that the following Taylor expansions are valid,

f(www + ϵvvv) = f(www) + ϵvvv⊤∇f(www) +O(ϵ2), and (62)

f(www − ϵvvv) = f(www)− ϵvvv⊤∇f(www) +O(ϵ2) (63)

Subtracting the above two expansions yields:

f(www + ϵvvv)− f(www − ϵvvv) = 2ϵvvv⊤∇f(www) +O(ϵ2) (64)

Plugging the above result in Equation 61,

ĝ(wwwt) =
1

n

n∑
i=1

(
(vvv⊤i ∇f(www))vvvi +O(ϵ)vvvi

)︸ ︷︷ ︸
g(vvvi)

(65)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Now we will use the derived ĝ(wwwt) in the descent lemma:

Similar to Theorem I.7, using the Assumption I.2, we apply the smoothness on f :

f(wwwt+1) ≤ f(wwwt) +∇f(wwwt)
⊤(wwwt+1 −wwwt) +

L

2
||wwwt+1 −wwwt||2 (66)

For the gradient descent update with central finite differences, we set the model update rule as

wwwt+1 = wwwt − ηĝ(wwwt). (67)

Plugging the model update rule into the smoothness inequality,

f(wwwt+1) ≤ f(wwwt)− η∇f(wwwt)
⊤ĝ(wwwt) +

Lη2

2
||ĝ(wwwt)||2 (68)

Taking expectation conditioned on vvv ∼ N (0, Id),

f(wwwt+1) ≤ f(wwwt)− η∇f(wwwt)
⊤ Evvv[ĝ(wwwt)]︸ ︷︷ ︸

Term1

+
Lη2

2
Evvv[||ĝ(wwwt)||2]︸ ︷︷ ︸

Term2

(69)

Solving Term1 and Term2 separately,

Term1: From Lemma I.3, we get E[g(vvv)] = ∇f(www), which also gets us

E[ĝ(www)] =
1

n

n∑
i=1

E[g(vvv)] = ∇f(www)

Term2: The error of ĝ(www) is measured by δ,

||ĝ(www)||2 = ||∇f(www) + δ||2 = ||∇f(www)||2 + 2∇f(www)⊤δ + ||δ||2 (70)

Taking expectation and noting that E[δ] = 0 and E[||δ||2] = Var[ĝ(www)],

Evvv[||ĝ(www)||2] = ||∇f(www)||2 + Var[ĝ(www)] (71)

Using Lemma I.4 to get the bound of Var[ĝ(www)],

Evvv[||ĝ(www)||2] = ||∇f(www)||2 +
d+ 1

n
||∇f(www)||2 + d

n
O(ϵ2) (72)

Back to Equation 69, plugging in Term1 and Term2:

f(wwwt+1) ≤ f(wwwt)− η∇f(wwwt)
⊤∇f(wwwt) +

Lη2

2

((
1 +

d+ 1

n

)
||∇f(www)||2 + d

n
O(ϵ2)

)
(73)

= f(wwwt)− η||∇f(wwwt)||2 +
Lη2

2

(
1 +

d+ 1

n

)
||∇f(www)||2 + Ldη2

2n
O(ϵ2) (74)

Grouping the terms involving ||∇f(www)||2,

f(wwwt+1) ≤ f(wwwt)− η

[
1− Lη

2

(
1 +

d+ 1

n

)]
||∇f(wwwt)||2 +

Ldη2

2n
O(ϵ2) (75)

This inequality shows that, provided the step size η is small enough so that,

1− Lη

2

(
1 +

d+ 1

n

)
> 0

Summing the inequality over epochs t = 1 to T :

f(wwwT)− f(www1) ≤ −η
[
1− Lη

2

(
1 +

d+ 1

n

)] T∑
t=1

||∇f(wwwt)||2 +
Ldη2T

2n
O(ϵ2) (76)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Rearranging the terms give us,

T∑
t=1

||∇f(wwwt)||2 ≤
f(www1)− f(wwwT)

η
[
1− Lη

2

(
1 + d+1

n

)] +
Ldη2T

2n
O(ϵ2) (77)

Dividing by T gives the bound on the average squared gradient norm:

1

T

T∑
t=1

||∇f(wwwt)||2 ≤
f(www1)− f(wwwT)

ηT
[
1− Lη

2

(
1 + d+1

n

)] +
Ldη2

2n
O(ϵ2) (78)

To ensure that 1− Lη
2

(
1 + d+1

n

)
> 0, the step size η must be chosen so that

η <
2

L
(
1 + d+1

n

) . (79)

As the dimension d increases (or as the number of samples n decreases), the factor

Lη

2

(
1 +

d+ 1

n

)
increases. This makes

1− Lη

2

(
1 +

d+ 1

n

)
smaller, which in turn makes the entire bound larger. In other words, a larger d (or a smaller n) results
in a worse (higher) error bound. This interplay of d and n also puts limitations on the order of η,
keeping the learning rate quite small for stable learning.

Moving on, we will get the convergence bound of the gradients derived from forward-mode auto
differentiation.

The key difference between the two theorems is that the error bound for zero-order op-
timization includes an additional O(ϵ2) term due to the finite-difference approximation,
whereas the bound for forward-mode AD is exact and free from such errors. This makes
forward-mode AD theoretically more efficient, as it avoids the additional error introduced
by numerical differentiation while maintaining the same dependency on dimension d and
number of perturbations n.

Theorem I.9 (Error Bound of Forward-mode Auto Differentiation). Consider a function f : Rd → R
that is L-smooth. Let the forward-mode AD gradient estimator with n perturbations per iteration,
where each perturbation vector vvvi is sampled independently from N (0, Id) and step size η be

ĝ(wwwt) =
1

n

n∑
i=1

((
vvv⊤i ∇f(wwwt)

)
vvvi
)
.

Then, the expected average squared gradient norm is bounded by

1

T

T∑
t=1

||∇f(wwwt)||2 ≤
f(www1)− f(wwwT)

ηT
[
1− Lη

2

(
1 + d+1

n

)] , (80)

To ensure convergence, the step size must satisfy

η <
2

L
(
1 + d+1

n

) . (81)

This result highlights how the convergence rate depends on the dimension d, the number of perturba-
tions n, and the perturbation magnitude ϵ. Specifically, a larger d or a smaller n increases the bound,
implying slower convergence.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Proof. The forward-mode AD gradient estimator for n perturbations per iteration is

ĝ(wwwt) =
1

n

n∑
i=1

(
(∇vvv⊤i f(wwwt))vvvi

)
(82)

where each vvvi ∈ Rd is a perturbation drawn from a Gaussian distribution N (0, 1).

We will use ĝ(wwwt) in the descent lemma. Similar to Theorem I.8, using the Assumption I.2, we apply
the smoothness on f :

f(wwwt+1) ≤ f(wwwt) +∇f(wwwt)
⊤(wwwt+1 −wwwt) +

L

2
||wwwt+1 −wwwt||2 (83)

For the gradient descent update with forward-mode AD, we set the model update rule as

wwwt+1 = wwwt − ηĝ(wwwt). (84)

Plugging the model update rule into the smoothness inequality,

f(wwwt+1) ≤ f(wwwt)− η∇f(wwwt)
⊤ĝ(wwwt) +

Lη2

2
||ĝ(wwwt)||2 (85)

Taking expectation conditioned on vvv ∼ N (0, Id),

f(wwwt+1) ≤ f(wwwt)− η∇f(wwwt)
⊤ Evvv[ĝ(wwwt)]︸ ︷︷ ︸

Term1

+
Lη2

2
Evvv[||ĝ(wwwt)||2]︸ ︷︷ ︸

Term2

(86)

Solving Term1 and Term2 separately,

Term1: From Lemma I.5, we get E[g(vvv)] = ∇f(www), which also gets us

E[ĝ(www)] =
1

n

n∑
i=1

E[g(vvv)] = ∇f(www)

Term2: The error of ĝ(www) is measured by δ,

||ĝ(www)||2 = ||∇f(www) + δ||2 = ||∇f(www)||2 + 2∇f(www)⊤δ + ||δ||2 (87)

Taking expectation and noting that E[δ] = 0 and E[||δ||2] = Var[ĝ(www)],

Evvv[||ĝ(www)||2] = ||∇f(www)||2 + Var[ĝ(www)] (88)

Using Lemma I.6 to get the bound of Var[ĝ(www)],

Evvv[||ĝ(www)||2] = ||∇f(www)||2 +
d+ 1

n
||∇f(www)||2 (89)

Back to Equation 86, plugging in Term1 and Term2:

f(wwwt+1) ≤ f(wwwt)− η∇f(wwwt)
⊤∇f(wwwt) +

Lη2

2

(
1 +

d+ 1

n

)
||∇f(www)||2 (90)

= f(wwwt)− η||∇f(wwwt)||2 +
Lη2

2

(
1 +

d+ 1

n

)
||∇f(www)||2 (91)

Grouping the terms involving ||∇f(www)||2,

f(wwwt+1) ≤ f(wwwt)− η

[
1− Lη

2

(
1 +

d+ 1

n

)]
||∇f(wwwt)||2 (92)

This inequality shows that, provided the step size η is small enough so that,

1− Lη

2

(
1 +

d+ 1

n

)
> 0

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Summing the inequality over epochs t = 1 to T :

f(wwwT)− f(www1) ≤ −η
[
1− Lη

2

(
1 +

d+ 1

n

)] T∑
t=1

||∇f(wwwt)||2 (93)

Rearranging the terms give us,

T∑
t=1

||∇f(wwwt)||2 ≤
f(www1)− f(wwwT)

η
[
1− Lη

2

(
1 + d+1

n

)] (94)

Dividing by T gives the bound on the average squared gradient norm:

1

T

T∑
t=1

||∇f(wwwt)||2 ≤
f(www1)− f(wwwT)

ηT
[
1− Lη

2

(
1 + d+1

n

)] (95)

To ensure that 1− Lη
2

(
1 + d+1

n

)
> 0, the step size η must be chosen so that

η <
2

L
(
1 + d+1

n

) . (96)

As the dimension d increases (or as the number of samples n decreases), the factor

Lη

2

(
1 +

d+ 1

n

)
increases. This makes

1− Lη

2

(
1 +

d+ 1

n

)
smaller, which in turn makes the entire bound larger. In other words – similar to zero-order method –
a larger d (or a smaller n) results in a worse (higher) error bound. This interplay of d and n also puts
limitations on the order of η, keeping the learning rate quite small for stable learning.

Corollary I.10 (Convergence Rate of ZO under Standard Parameter Choices). Under the assumptions
of Theorem I.8, the zeroth-order method achieves the well-known O(d/T) convergence rate when the
parameters are chosen according to either of the following equivalent strategies:

1. Setting the step size to η = Θ

(
1

L(1+
d+1
n)

)
, which yields the rate by balancing the contrac-

tion factor in the denominator term; or

2. Using the two-point estimator (n = 1) with perturbation radius ϵ = O(T−1/4), so that
ϵ2 = O(T−1/2) and the variance term becomes O(d/T).

Both parameterizations recover

min
t∈[T]

∥∇f(wt)∥2 = O
(
d

T

)
.

While the first approach modulates the learning rate η, the second adapts the perturbation scale ϵ; in
practice both routes give consistent rates, though excessively small η (scaling as 1/d) may be less
practical in high dimensions.

Proof. Start from the bound in Theorem I.8:

1

T

T∑
t=1

∥∇f(wt)∥2 ≤
f(w1)− f(wT)

ηT
[
1− Lη

2

(
1 + d+1

n

)] +
Ldη2

2n
O(ϵ2).

We treat the two parameterizations separately.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

(1) Step-size choice. Set the denominator factor to a constant by choosing

1− Lη

2

(
1 +

d+ 1

n

)
= 1

2 , so η = Θ
(1

L(1 + d+1
n)

)
.

With this choice the first term scales as

f(w1)− f(wT)

ηT [· · ·]
= Θ

(1

ηT

)
= Θ

(L(1 + d+1
n)

T

)
.

When d≫ n this is Θ(d/T), so the first term already yields O(d/T). The second term becomes

Ldη2

2n
O(ϵ2) = O

(Ld
n
· 1

L2(1 + d+1
n)2

ϵ2
)
= O

(d

Ln(1 + d+1
n)2

ϵ2
)
,

which is typically smaller than the first term for reasonable (non-growing) ϵ; hence the overall rate is
dominated by O(d/T).

(2) Smoothing-radius choice (two-point / n = 1). Take n = 1 and set ϵ = O(T−1/4), so
ϵ2 = O(T−1/2). Keeping the same η scale as above (or any constant-in-T η satisfying the step-size
constraint), the first term is again O(1/(ηT)). With η = Θ(1/(L(1 + (d + 1)/n))) ≈ Θ(1/(Ld))
this yields O(d/T). The second term becomes

Ldη2

2
O(ϵ2) = O

(
Ld · 1

L2d2
· T−1/2

)
= O

(1

Ld
T−1/2

)
,

which is negligible compared to O(d/T) for typical T and moderate L. Thus both choices give the
stated O(d/T) rate.

Discussion.

• Two equivalent levers. The corollary emphasizes two ways to recover the classical O(d/T)
bound: (i) scale down the learning rate η (reviewer’s route), or (ii) scale the perturbation radius ϵ
with T (the alternate route used in our original derivation). Both are valid theoretically and lead to
the same asymptotic dependence on d and T .

• Dominant term and constants. In the parameter regimes of interest the first term (the 1/(ηT)-
type term) typically dominates and yields the Θ(d/T) dependency; the variance/truncation term
involving ϵ2 is often smaller when ϵ is chosen to decay suitably with T .

• Practicality. Although setting η = Θ(1/d) recovers the rate, such tiny learning rates become
impractical as model size grows (since η → 0 with d → ∞). The alternative of shrinking ϵ
(e.g., ϵ= T−1/4 gives ϵ=0.1 at T = 100 and ϵ=0.03 at T = 1000) is often more feasible in
practice, but it reduces signal-to-noise in finite-sample regimes and may require larger sample or
perturbation budgets to get stable estimates.

44

	Introduction
	Background
	Convergence, Memory, and Compute Trade-offs
	Empirical Evaluation
	Experimental Settings
	Comparison on Accuracy
	Comparison on Wallclock Convergence Time
	Comparison on Memory Consumption
	Comparison on Computation Cost
	Failure Mode Analysis

	Conclusion
	Related Work
	Forward-mode AD
	Zero-order Optimization
	Optimizations on Backpropagation

	Datasets
	Baselines and Hyperparameters
	Limitations and Future Work
	Broader Impact
	Additional Results
	Experimental Variance and Loss Curves
	Experiments with Medium-sized Models
	Changing Variance of Random Perturbation Sampling
	Reducing Trainable Parameter Count
	Failure Mode Analysis
	Challenges with Optimizer Choice
	Challenges with SVRG
	Improving Stability via Multiple-Perturbation and Accumulated-Gradient

	Effect of Perturbation Distributions and Normalization Strategies
	Comparison against SignZO
	Sensitivity to Perturbation Budget for OPT13B

	Signal Propagation for Gradient Computation
	Computational Complexity
	Basics
	Backpropagation
	Backpropagation with Checkpointing
	Zero-Order Optimization
	Forward-Mode AD

	Proofs of Convergence Bounds
	Basics
	Assumptions
	Lemmas
	Theorems

