

MEMORY SAVINGS AT WHAT COST? A STUDY OF ALTERNATIVES TO BACKPROPAGATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Forward-mode automatic differentiation (FMAD) and zero-order (ZO) optimization
012 have been proposed as memory-efficient alternatives to backpropagation (BP)
013 for gradient computation, especially in low-resource settings. However, their
014 practical benefits remain unclear due to two key gaps: a lack of comparison
015 against memory-efficient BP variants, such as activation checkpointing, and a
016 lack of systematic characterization of tradeoffs between accuracy, memory, and
017 computation efficiency among these methods. This work presents a comprehensive
018 comparison of BP, FMAD, and ZO methods. Through theoretical analysis under a
019 common framework, we present intuition that, while FMAD and ZO can reduce
020 memory usage, they incur significant costs in accuracy, convergence speed, and
021 computation compared to BP with checkpointing. These drawbacks worsen with
022 larger models or constrained perturbation budgets. Through empirical experiments
023 on large language and vision-language models, we show that BP with checkpointing
024 outperforms FMAD and ZO variants, including those enhanced with variance
025 reduction, achieving up to 31.1% higher accuracy, 34.8% faster convergence,
026 and 3.8 \times fewer computations at comparable memory usage. We also investigate
027 specific failure modes in FMAD and ZO, including instabilities in Jacobian-vector
028 products that can destabilize training. Our results highlight fundamental limitations
029 of FMAD and ZO, and the effectiveness of BP with checkpointing for model
030 training under memory-constrained settings.

1 INTRODUCTION

031 Backpropagation (BP) (Rumelhart et al., 1986) is the standard algorithm for gradient computation in
032 deep learning due to its convergence efficiency and widespread support in automatic differentiation
033 frameworks such as PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018). However, BP
034 incurs high memory overhead in training large models, as it must store intermediate activations
035 for the backward pass. To address this limitation, recent research has explored alternative gradient
036 estimation methods such as forward-mode automatic differentiation (FMAD) (Baydin et al., 2017;
037 2022; Panchal et al., 2024) and zero-order (ZO) optimization (Richardson, 1955; Malladi et al., 2023),
038 which approximate gradients (using directional derivatives or two forward pass evaluations) based on
039 randomly perturbed weights. These methods are often promoted as memory-efficient or hardware-
040 friendly alternatives to BP, especially in resource-constrained or non-differentiable settings (Panchal
041 et al., 2024; Malladi et al., 2023; Xu et al., 2024).

042 Despite growing interest, prior work on FMAD and ZO suffers from two critical limitations that leave
043 their practical value inadequately understood. First, the existing comparisons (Gautam et al., 2024;
044 Zhang et al., 2024) often overlook activation checkpointing (Chen et al., 2016), a widely supported
045 and effective BP variant that substantially reduces memory usage by recomputing rather than storing
046 intermediate activations. Second, as shown in Table 1, key considerations such as computational cost
047 and wall-clock time to convergence are often omitted, leaving even the comparisons against vanilla
048 BP incomplete. This one-sided narrative of ZO and FMAD as superior to BP motivates our study: we
049 aim to provide a comprehensive account of these trade-offs, encompassing not only memory usage
050 but also convergence speed and overall computational efficiency of the gradient estimation methods.

051 This paper addresses the above-mentioned limitations through a comprehensive study of BP, FMAD,
052 and ZO approaches. We first outline the expected trade-offs among convergence behavior, memory

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Table 1: While some existing research empirically compares vanilla backpropagation (BP-Vanilla) across multiple metrics including memory usage, convergence time, and computational cost, they examine only a subset of these criteria, and notably, none include comparisons with backpropagation using checkpointing (BP-Checkpointing). We omit accuracy as it is evaluated in all the studies.

METHODS	CONV. TIME	MEMORY	COMP. COST	CONTRIBUTION
MEZO (Malladi et al., 2023)	✗	✓	✗	ZO uses 12× less memory than Vanilla BP while achieving accuracy within 5%.
MEZO-SVRG (Gautam et al., 2024)	✗	✓	✗	Enhances the convergence accuracy of MEZO through variance reduction, improving accuracy by up to 20%.
Revisiting ZO (Zhang et al., 2024)	✗	✓	✗	Benchmarks ZO optimization in LLM fine-tuning, along with proposing novel techniques that enhance accuracy over MeZO by up to 3%.
ZOSPARSE (Guo et al., 2025)	✓	✗	✗	ZO fine-tuning achieves full ZO accuracy by updating just 0.1% of sensitive parameters, with up to 2.5× speedup.
SPRY (Panchal et al., 2024)	✓	✓	✗	Distributes trainable parameters across federated clients, improving FMAD’s convergence speed by up to 20× and final accuracy by up to 13% compared to ZO.
FoMoH (Cobb et al., 2024)	✗	✗	✗	Introduces forward-mode second-order optimization; improves accuracy by 1–3% compared to first-order FMAD on logistic regression and CNN tasks.
This paper	✓	✓	✓	First to evaluate how BP with checkpointing fares in the three-way tradeoff vs. variance-reduced ZO and FMAD.

consumption, and computational cost as functions of model dimensionality d and the number of perturbations per iteration n . These theoretical results suggest that, while FMAD and ZO may reduce memory under certain regimes (e.g., when perturbations are evaluated sequentially), they face scalability challenges: higher per-iteration computational cost, $\mathcal{O}(nd)$, and slower convergence in high dimensions or with limited perturbation budgets. In contrast, BP with activation checkpointing is expected to achieve favorable convergence with comparable memory usage.

We then conduct extensive empirical evaluations on large language and vision-language models across tasks including text classification, text generation, and visual question answering. We compare BP with checkpointing against a wide range of FMAD and ZO variants (including SVRG (Liu et al., 2018), multiple perturbations per iteration (Feng et al., 2024)), and our own enhanced versions with variance reduction: gradient accumulation and adaptive perturbation sampling. As illustrated in Figure 1, BP with checkpointing consistently achieves higher accuracy and faster convergence, while using memory on par with FMAD and ZO variants.

Beyond standard performance metrics (accuracy, memory, and convergence time), we also perform a dedicated study of specific failure modes in FMAD and ZO, focusing on instabilities in Jacobian-vector products ($\mathbf{J} \mathbf{v}$) that can arise under adaptive optimizers and hinder convergence. This analysis provides insight into why these gradient estimation methods behave unpredictably in practice and complements our broader evaluation of their scalability and reliability.

These findings lead to a critical insight: despite recent enthusiasm for forward-mode and zero-order methods (Panchal et al., 2024; Malladi et al., 2023; Gautam et al., 2024; Liu et al., 2018), they remain fundamentally constrained by their inability to efficiently scale to large models. Rather than serving

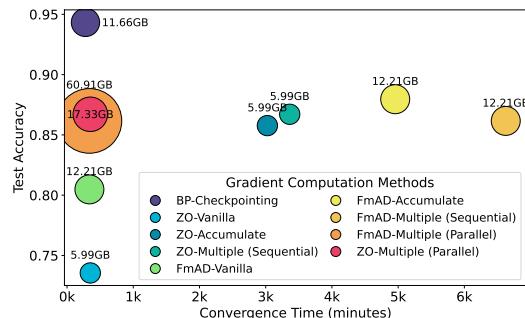


Figure 1: The three-way trade-off between accuracy, convergence time, and memory consumption during training of LLaMA 3.1 (8B) on the AG-News dataset. The circle radii are proportional to the memory consumption. BP-CHECKPOINTING achieves highest accuracy with lowest convergence time using comparable memory to FMAD and ZO variants. §4 describes these methods in detail.

these gradient estimation methods behave unpredictably in practice and complements our broader evaluation of their scalability and reliability.

108 as alternatives to backpropagation, they operate as inefficient approximations that trade off accuracy
 109 or convergence speed for marginal memory reductions.
 110

111 This paper’s main contributions are:

112 • A theoretical analysis of the convergence rates, memory cost, and compute complexity of BP,
 113 FMAD, and ZO under a *common theoretical framework*, highlighting their three-way trade-offs.
 114 • A comprehensive empirical study of BP, FMAD, and ZO on large-scale models across diverse tasks.
 115 We show that BP with checkpointing consistently achieves 4.5–31.1% higher accuracy, 21.4–34.8%
 116 faster convergence, and 3.2–3.8× lower computation cost than FMAD and ZO variants, while
 117 using comparable memory.
 118 • The design and benchmarking of two new variance reduction methods for FMAD and ZO. These
 119 methods improve accuracy by 7.5–14.0%, but still fall short of BP’s overall efficiency, and introduce
 120 overheads in either convergence time or memory.
 121 • An analysis of FMAD’s and ZO’s failure modes, including high-dimensional perturbations, noisy
 122 Jacobian-vector products, and optimizer-dependent instabilities (e.g., abrupt jvp spikes under
 123 adaptive optimizers like AdamW) that destabilize training and degrade convergence.
 124

2 BACKGROUND

126 This section reviews three gradient computation techniques central to our study: (a) reverse-mode
 127 automatic differentiation (RMAD, of which backpropagation is a special case), (b) forward-mode
 128 automatic differentiation (FMAD), and (c) zero-order (ZO) finite-difference methods. For an in-depth
 129 survey of these approaches, we refer readers to Baydin et al. (2017). Appendix A reviews related
 130 work in detail. Details on signal propagation mechanism of these methods are in Appendix G.

131 The three methods described below operate on a function f , which in deep learning corresponds
 132 to a neural network and can be non-convex. This function f is composed of nested functions f_i ,
 133 $i \in [p]$, where p is the number of layers given a neural network. Each nested function produces
 134 intermediate activations $y_i = f_i(w_i, y_{i-1})$, given weights w_i and previous activations y_{i-1} , where
 135 $y_0 = x$ is the input. The weights are represented by the vector $\mathbf{w} = w_1, w_2, \dots, w_p$, where each
 136 $w_{[1, \dots, p]} \in \mathbb{R}^{[m_1, \dots, m_p]}$. The total number of trainable parameter is $d = \sum_{i=1}^p m_i$. The intermediate
 137 activations are $\mathbf{y} = y_1, \dots, y_p$. The final output is $y = y_p = f(\mathbf{w}, x) \in \mathbb{R}^q$, where typically
 138 $q \ll m_i, \forall i \in [p]$. The loss function $\mathcal{L}(y, \hat{y}) \in \mathbb{R}$ measures the difference between the predicted
 139 output y and the true target values \hat{y} .

140 **Reverse-mode Auto Differentiation (RMAD).** RMAD computes gradients by propagating sensitivities
 141 (which is the rate at which the output of a function changes with respect to a given intermediate
 142 value) backward through the neural network. RMAD relies on vector-Jacobian product (vjp), where
 143 the *Jacobian* represents partial derivatives of an intermediate activation y_i with respect to weights
 144 w_{i-1} , denoted $\frac{\partial y_i}{\partial w_{i-1}}$, and the *vector* is the activation gradient $\frac{\partial f}{\partial y_i}$. RMAD starts by setting $\frac{\partial f}{\partial y_p}$ to
 145 1, and propagating $\frac{\partial f}{\partial w_{i-1}} = \frac{\partial f}{\partial y_i} \frac{\partial y_i}{\partial w_{i-1}}$ and $\frac{\partial f}{\partial y_{i-1}} = \frac{\partial f}{\partial y_i} \frac{\partial y_i}{\partial y_{i-1}}$, for $i \in [2, p]$, backwards. The final
 146 result is the weight gradient $\frac{\partial f}{\partial \mathbf{w}}$, formed from a series of vjp computations.
 147

148 Backpropagation (Rumelhart et al., 1986) (BP) is a specific case of RMAD tailored for neural
 149 networks. While RMAD’s backward pass begins by $\frac{\partial f}{\partial y_p}$ set to 1, BP initializes from the gradient
 150 of the loss function: $\frac{\partial \mathcal{L}}{\partial y_p}$, which provides a semantically meaningful signal for optimization. The
 151 backward phase is preceded by a forward pass that computes the activations and the loss \mathcal{L} .
 152

153 **Forward-mode Auto Differentiation (FMAD).** FMAD propagates directional derivatives through
 154 the neural network to compute Jacobian-vector products (jvp). FMAD analyzes how a small
 155 perturbation \mathbf{v} in the weights \mathbf{w} affects the outputs. Starting from $\delta y_1 = \frac{\partial y_1}{\partial w_1} v_1$, FMAD propagates
 156 changes forward as:

$$157 \quad \delta y_i = \frac{\partial y_i}{\partial w_i} v_i + \frac{\partial y_i}{\partial y_{i-1}} \delta y_{i-1}, \quad \text{for } i \in [2, p] \quad (1)$$

158 until the final scalar perturbation in the loss $\delta \mathcal{L}$ is computed. Here, the *Jacobian* term $\frac{\partial y_i}{\partial w_i}$ reflects
 159 sensitivity to weight changes, and the perturbation *vector* is $v_i \in \mathbf{v}$, where \mathbf{v} is typically sampled from
 160 $\mathcal{N}(0, I_d)$. The scalar $\delta \mathcal{L}$ is referred to as the jvp . Weight gradients (also called forward gradients)

162 Table 2: Big \mathcal{O} bounds of gradient computation methods on (a) Convergence error, (b) Memory
 163 consumption, and (c) Compute cost (per-iteration). Let c denote the memory required to store
 164 activations for a single layer, c_h the maximum per-layer activation memory, p the total number of
 165 layers, and d the number of trainable parameters. While BP with checkpointing retains the fast
 166 convergence of BP with additional memory savings; both FMAD and ZO methods suffer from worse
 167 convergence and higher compute costs, with parallel variants further increasing memory consumption.

Method	Convergence Error	Memory	Compute
BP	$\mathcal{O}(1/T)$ with $\eta \leq \frac{1}{L}$	$\mathcal{O}(cp)$	$\mathcal{O}(d)$
BP (with checkpointing)		$\mathcal{O}(c\sqrt{p})$	$\mathcal{O}(d \log p)$
FMAD (Parallel)	$\mathcal{O}\left(\frac{1}{T[1 - \frac{L\eta}{2}(1 + \frac{d+1}{n})]}\right)$ with $\eta < \frac{2}{L(1 + \frac{d+1}{n})}$	$\mathcal{O}(nc_h)$	$\mathcal{O}(nd)$
FMAD (Sequential)		$\mathcal{O}(c_h)$	$\mathcal{O}(nd)$
ZO (Parallel)	$\mathcal{O}\left(\frac{1}{T[1 - \frac{L\eta}{2}(1 + \frac{d+1}{n})]}\right) + \frac{Ld\eta^2}{2n} \mathcal{O}(\epsilon^2)$	$\mathcal{O}(nc_h)$	$\mathcal{O}(nd)$
ZO (Sequential)	with $\eta < \frac{2}{L(1 + \frac{d+1}{n})}$	$\mathcal{O}(c_h)$	$\mathcal{O}(nd)$

182 are computed as $\frac{\partial \mathcal{L}}{\partial w_i} = \mathbf{j} \cdot \mathbf{v}_i$. In contrast to BP, which propagates $\frac{\partial \mathcal{L}}{\partial y_i}$ backward (i from p to 1),
 183 FMAD propagates $\frac{\partial y_i}{\partial w_j}$ forward (i from 1 to p , for all j).
 184

185 **Zero-order (ZO) Finite Differences.** ZO optimization estimates gradients using only function f
 186 evaluations, with no first-order derivative information required. These methods, including finite
 187 differences (Richardson, 1955; Malladi et al., 2023), perturb the weights and approximate gradients
 188 through changes in the loss values of the perturbed function evaluations. Given a perturbation
 189 direction $\mathbf{v} \sim \mathcal{N}(0, I_d)$, the gradient with respect to w_i is approximated via:

$$\frac{\partial \mathcal{L}}{\partial w_i} \approx \frac{\mathcal{L}(f(\mathbf{w} + \epsilon \mathbf{v}, x), \hat{y}) - \mathcal{L}(f(\mathbf{w} - \epsilon \mathbf{v}, x), \hat{y})}{2\epsilon} \cdot v_i, \quad (2)$$

192 where ϵ is a small step size. This symmetric difference estimator requires two sequential forward
 193 passes per perturbation direction.

3 CONVERGENCE, MEMORY, AND COMPUTE TRADE-OFFS

196 We next review the theoretical characteristics of BP, FMAD, and ZO optimization, focusing on their
 197 convergence, memory, and computational profiles. These methods have been analyzed individually in
 198 prior works (Malladi et al., 2023; Gautam et al., 2024; Guo et al., 2025; Chen et al., 2019), as well as
 199 in classic results on BP (Bottou et al., 2018; Garrigos and Gower, 2024) and automatic differentiation.
 200 The derivations of convergence bounds on a non-convex function f , for the three gradient computation
 201 approaches studied in this work are shown in Appendix I. Analysis on computation complexity is
 202 in Appendix H. Here, we compile the theoretical results into a common comparative framework to
 203 highlight their trade-offs under shared assumptions.

204 Table 2 shows how convergence behavior is affected by key parameters, including the trainable
 205 parameter dimensionality d and the number of perturbations per iteration n . Although FMAD and
 206 ZO can achieve memory savings in certain regimes, they incur higher per-iteration compute costs
 207 and slower convergence in high-dimensional or low-perturbation settings. In contrast, BP (especially
 208 when paired with activation checkpointing) retains favorable convergence with competitive memory
 209 efficiency. These theoretical results provide intuitions for our empirical analysis in §4, where we
 210 quantify how these trade-offs manifest in large-scale training. We summarize theoretical comparisons
 211 of BP, FMAD, and ZO along three key axes:

212 **Observation 1: Accuracy.** FMAD and ZO introduce approximation noise and discretization effects,
 213 leading to higher convergence error than BP, especially in high-dimensional models or with limited
 214 perturbations. §4.2 empirically demonstrates that ZO suffers greater accuracy degradation than
 215 FMAD due to discretization error, and that both ZO and FMAD achieve lower accuracy than BP
 because of additional learning rate constraints, which are detailed in Appendix C.

216 **Observation 2: Convergence Speed.** Both FMAD and ZO require stricter learning-rate constraints
 217 than BP, which slows convergence as dimensionality grows or perturbation budgets shrink. §4.3
 218 supports this observation by showing that FMAD and ZO converge more slowly and reach lower
 219 accuracy compared to BP.

220 **Observation 3: Memory-compute Trade-offs.** While able to reduce activation memory, FMAD and
 221 ZO incur $\mathcal{O}(nd)$ compute cost per iteration, and face a fundamental trade-off: parallel perturbations
 222 reduce runtime but increase memory, whereas sequential perturbations conserve memory but slow
 223 training. §4.4 corroborates these memory bounds and shows a breakdown of the memory consumption.
 224 §4.5 empirically validates the computation cost.

225 **A Note on Non-differentiable and Black-box Settings.** While it's claimed that ZO has utility in
 226 settings with non-differentiable objectives (Qiu et al., 2023; Rando et al., 2023) or limited model
 227 access (Nikolakakis et al., 2022; Lobanov et al., 2024), its applicability to large-scale model training
 228 is fundamentally constrained. In true black-box scenarios, it is often infeasible to perturb weights or
 229 query the loss values, making ZO methods impractical. In contrast, first-order methods such as BP
 230 and FMAD require access to model internals and automatic differentiation support, challenges that
 231 are largely engineering in nature and increasingly well-supported by modern frameworks. As such,
 232 the growing trend (Gautam et al., 2024; Guo et al., 2025) of applying ZO to train LLMs is misguided:
 233 the computational cost and degraded convergence significantly outweigh the memory gains.

234 4 EMPIRICAL EVALUATION

235 This section empirically compares the variants of BP, FMAD, and ZO optimization. We evaluate these
 236 methods across multiple axes, including (a) accuracy, (b) wallclock convergence time, (c) memory
 237 consumption, and (d) computation cost. For each of these dimensions, we also examine how different
 238 variance reduction strategies affect performance. Last but not least, we empirically show that variance
 239 reduction methods and adaptive optimizers fail to make FMAD and ZO converge reliably.

240 4.1 EXPERIMENTAL SETTINGS

241 **Datasets.** We evaluate gradient computation methods across a diverse set of **5 text-based tasks** and
 242 **2 vision-based tasks**. The 5 text-based tasks are (a) Gsm8K (text generation on math problems/next-
 243 word prediction) (Cobbe et al., 2021), (b) MMLU (multiple-choice question-answering covering
 244 various domains of knowledge) (Hendrycks et al., 2021), (c) AGNews (4-class news article text
 245 classification task) (Zhang et al., 2015), (d) BoolQ (boolean question-answering) (Clark et al., 2019),
 246 and (e) MultiRC (closed-book question-answering) (Khashabi et al., 2018). The 2 vision-based tasks
 247 are both based on visual question-answering: (a) VQAv2 (Goyal et al., 2019), and (b) TextVQA (Singh
 248 et al., 2019). Appendix B describes the datasets in detail, including the train/test splits.

249 **Models.** Our evaluation uses 5 models with a varying number of total parameters (listed in parentheses). For text-based tasks, on the billion-parameters scale, we use LLAMA 3.1 (8B) (Grattafiori
 250 et al., 2024) and OPT (1.3B, 6.7B, 13B) (Zhang et al., 2022). Additionally, we include medium-sized
 251 language models BERT (110M, 340M) (Devlin et al., 2019) and ROBERTA (125M, 355M) (Liu
 252 et al., 2020) to analyze performance variations across model sizes. For vision-based tasks, we use
 253 QWEN 2 VL (7B) (Qwen et al., 2025). To finetune these models, we use QLORA (Dettmers et al.,
 254 2023), where low-rank adapters are trainable while the rest of the weights are frozen and quantized to
 255 4 bits. By default, we set the LORA rank $r = 1$ and scale $\alpha = 1$ to minimize the number of trainable
 256 parameters for FMAD and ZO. Appendix F.4 reports results on higher LORA ranks.

257 **Methods for Comparison.** We categorize the 16 gradient computation methods our evaluation compares
 258 into three groups: (a) **Backpropagation Methods:** BP-VANILLA (Rumelhart et al., 1986) (the
 259 standard implementation that stores all intermediate activations), BP-CHECKPOINTING (Chen et al.,
 260 2016) (reduces peak memory consumption by storing only a subset of activations and recomputing the
 261 rest during the backward pass), and BP-ACCUMULATE (uses gradient accumulation). (b) **Zero-order
 262 Methods:** ZO-VANILLA (Chen et al., 2019) (use a single perturbation to estimate gradients as in
 263 Equation 2), MEZO (Malladi et al., 2023) (incorporates a prompt-finetuning approach to convert
 264 classification tasks into next-word prediction with a constrained vocabulary), ZO-ACCUMULATE
 265 (applies gradient accumulation to reduce noise in gradient estimates), ZO-MULTIPLE (Feng et al.,
 266 2024) (averages gradient estimates from multiple perturbations per iteration to improve estimate
 267 stability), ZO-ADAPTIVE (adaptively selects perturbation directions based on prior gradients), ZO-

Table 3: BP, FMAD, and ZO variant accuracies (higher is better) across models and datasets. Subscripts show accuracy gaps from BP-VANILLA/CHKPT (CHKPT = CHECKPOINTING). While BP remains the most accurate, FMAD and ZO variants -ACCUMULATE and -MULTIPLE offer notable gains over their -VANILLA forms but still lag behind BP, especially on generation tasks, such as GSM8K. Appendix F.1 reports variance across runs. Darker shade \blacksquare = range of high accuracies, lighter shade \square = range of moderate accuracies, unshaded = range of low accuracies.

Method	Model + Dataset						LLAMA 3.1 (8B)		QWEN 2 VL (7B)	
	AGNews	BoolQ	MultiRC	GSM8K	MMLU	VQAv2	TextVQA			
No Finetuning	23.5	51.6	52.8	27.3	51.1	73.2	71.1			
BP-VANILLA/CHKPT	94.2	88.3	85.2	54.3	60.3	87.1	98.5			
BP-ACCUMULATE	93.8 _(-0.4)	87.9 _(-0.4)	83.3 _(-1.9)	33.1 _(-21.1)	53.8 _(-6.4)	86.3 _(-0.7)	97.1 _(-1.4)			
ZO-VANILLA	73.6 _(-20.6)	57.1 _(-31.1)	57.2 _(-28.0)	36.3 _(-17.9)	54.7 _(-5.6)	77.6 _(-9.4)	72.9 _(-25.6)			
ZO-ACCUMULATE	85.8 _(-8.4)	60.9 _(-27.3)	60.3 _(-24.8)	28.0 _(-26.3)	55.2 _(-5.1)	79.7 _(-7.4)	73.1 _(-25.4)			
ZO-MULTIPLE	86.7 _(-7.4)	60.0 _(-28.2)	61.0 _(-24.1)	35.8 _(-18.5)	56.8 _(-3.4)	81.5 _(-5.6)	74.7 _(-23.8)			
ZO-ADAPTIVE	81.5 _(-12.7)	57.4 _(-30.9)	59.0 _(-26.1)	30.2 _(-24.1)	52.6 _(-7.6)	79.5 _(-7.5)	79.1 _(-19.3)			
ZO-SVRG	84.7 _(-9.5)	62.6 _(-25.7)	61.2 _(-23.9)	32.1 _(-22.2)	55.9 _(-4.3)	79.1 _(-7.9)	72.9 _(-25.6)			
ZO-SPARSE	64.5 _(-29.6)	53.2 _(-35.1)	55.3 _(-29.8)	29.1 _(-25.1)	51.4 _(-8.9)	78.6 _(-8.5)	73.8 _(-24.7)			
MEZO	80.5 _(-13.7)	58.2 _(-30.1)	60.4 _(-24.8)	—	—	—	—			
FMAD-VANILLA	80.5 _(-13.7)	60.7 _(-27.6)	61.4 _(-23.8)	37.7 _(-16.6)	55.8 _(-4.5)	82.3 _(-4.8)	78.3 _(-20.2)			
FMAD-ACCUMULATE	88.0 _(-6.2)	70.3 _(-17.9)	71.2 _(-14.0)	30.8 _(-23.5)	57.1 _(-3.1)	83.7 _(-3.4)	80.9 _(-17.6)			
FMAD-MULTIPLE	86.2 _(-8.0)	64.4 _(-23.8)	65.4 _(-19.7)	40.5 _(-13.8)	57.7 _(-2.6)	82.9 _(-4.2)	79.1 _(-19.4)			
FMAD-ADAPTIVE	78.5 _(-15.7)	56.4 _(-31.9)	58.2 _(-27.0)	38.1 _(-16.2)	56.3 _(-3.9)	82.9 _(-4.1)	78.2 _(-20.3)			
FMAD-SVRG	82.5 _(-11.7)	64.6 _(-23.7)	64.1 _(-21.0)	35.4 _(-18.9)	56.1 _(-4.2)	83.0 _(-4.0)	79.5 _(-19.0)			
FMAD-SPARSE	70.4 _(-23.8)	56.9 _(-29.4)	53.1 _(-32.1)	30.3 _(-23.9)	53.4 _(-6.8)	80.3 _(-6.7)	77.0 _(-21.5)			

SVRG (Liu et al., 2018) (applies stochastic variance reduction to correct noisy gradients), and ZO-SPARSE (Guo et al., 2025) (only updates top-1% parameters each iteration). (c) **Forward-mode AD Methods:** FMAD-VANILLA (Baydin et al., 2022), FMAD-ACCUMULATE, FMAD-MULTIPLE, FMAD-ADAPTIVE, FMAD-SVRG, and FMAD-SPARSE. The -VANILLA suffix denotes the original implementation according to Equation 1, while the other variants mirror the corresponding ZO method in (b), adapting similar strategies for the forward-mode setting. Appendix C describes these methods and their hyperparameters in detail.

Metrics. We evaluate the efficiency of the gradient computation methods using four metrics. (a) **Accuracy** at test-time assesses the efficacy of the learned models. (b) **Wallclock convergence time** (in minutes) measures the time each approach takes to achieve stable-state accuracy. (c) **Peak memory consumption** (in GBs) quantifies the maximum memory consumed during training. (d) **Computation cost** for each iteration and until convergence, in Tera Floating-Point Operations per Second (TFLOPs). Additionally, in our failure mode analysis, for ZO and FMAD approaches, Section 4.6 reports statistics, such as the mean of effective gradient norms and jvp values across iterations, capturing the instability of estimated gradients and its impact on optimization dynamics.

Libraries and Hardware. Our codebase is built using PyTorch (Paszke et al., 2019). Quantization uses AutoGPTQ (Frantar et al., 2022). We conducted all experiments involving billion-scale models across ZO and FMAD variants on a single Nvidia L40 GPU (48GB RAM). For experiments on OPT (13B) model, we used one Nvidia A100 (80GB RAM). For BERT and ROBERTA models, we used an Nvidia 2080ti (11GB RAM). We repeated each experiment three times with random seeds set to 0, 1, and 2 to ensure consistency and robustness. Our source code is available for replication ¹.

4.2 COMPARISON ON ACCURACY

Accuracy is the primary metric of interest since any gradient computation method that reduces memory consumption or computational cost is of little practical value if it cannot match the predictive performance of BP. Table 3 presents accuracy results and Appendix F.1 shows variance across 3 executions.

Backpropagation achieves significantly higher accuracy than FMAD-VANILLA and ZO-VANILLA. Backpropagation, both in its standard form (BP-VANILLA) and with checkpointing (BP-CHKPT), consistently achieves the highest accuracy across all tasks. Among the alternatives, the

¹https://anonymous.4open.science/r/Gradient_Estimation

-VANILLA forms of FMAD and ZO are most directly comparable to BP. Due to the inherent randomness in their perturbation-based gradients (see §3 Obs 1), both FMAD-VANILLA and ZO-VANILLA lag behind BP by 4.5–27.5% and 5.6–31.1% across datasets, respectively. Further, across all the datasets, FMAD-VANILLA outperforms ZO-VANILLA, with gains of 1.1–6.9%. This consistent margin illustrates FMAD’s fundamental advantage: access to analytic first-order Jacobian-vector products (\mathbf{jvp}), over ZO’s reliance on noisy finite-difference estimates.

Variance reduction approaches improve the accuracy of FMAD and ZO methods yet fall short of closing the gap with BP methods. Both FMAD and ZO benefit from their -ACCUMULATE and -MULTIPLE variants, which reduce gradient noise by trading off higher compute or memory. FMAD-ACCUMULATE improves over FMAD-VANILLA by 1.4–9.8% across datasets, except on GSM8K (-6.9%), likely due to its need for smaller batch sizes. Similarly, ZO-ACCUMULATE boosts accuracy by 0.2–12.2%, with an 8.3% drop on GSM8K. FMAD-MULTIPLE improves by 0.6–5.7%, and ZO-MULTIPLE by 0.2–13.2%, with only a 0.5% drop on GSM8K.

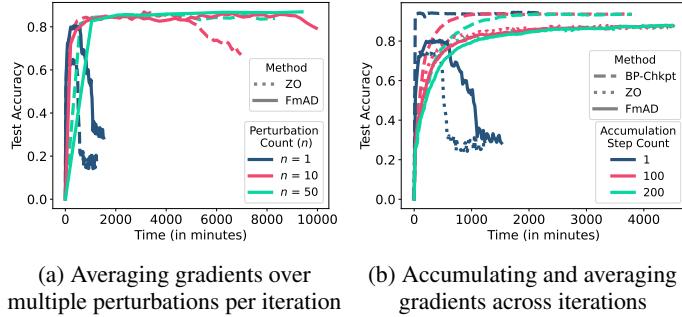
To understand the effects of these two variance reduction techniques, we vary the number of perturbations and accumulation steps. Figure 2a shows that increasing perturbation count ($n = 10, 50$) yields 5.7–7.7% (FMAD) and 13.2–14.0% (ZO) accuracy gains on AGNews, consistent with the observations of § 3. Similarly, Figure 2b shows that increasing accumulation steps (100, 200) yields 7.5–7.6% (FMAD) and 12.2–14.0% (ZO) gains. These improvements come at the cost of increased convergence time (sequential implementation of -MULTIPLE), memory (parallel implementation of -MULTIPLE), or slower updates (-ACCUMULATE). These trade-offs are discussed in §4.3 and 4.4.

Other variance reduction approaches offer limited or inconsistent accuracy improvements for FMAD and ZO. -ADAPTIVE often underperforms, with FMAD-ADAPTIVE trailing -VANILLA on BoolQ (-4.3%) and MultiRC (-3.2%), likely due to biased updates from gradient-informed perturbation sampling. -SPARSE performs worst overall, lagging -VANILLA by 1.2–10.1% (FMAD) and 1.9–9.0% (ZO), as random perturbations of early steps mislead saliency-based parameter selection. -SVRG improves classification accuracy by 4.0–11.1%, but failing on GSM8K (-4.2%) due to homogenized updates that weaken variance correction (see Appendix F.5.2). MEZO offers modest gains (1.0–6.9%) on classification but lacks applicability to generative and vision-language tasks.

Accuracy gaps widen as trainable parameters or model size increases. To further evaluate the impact of trainable parameter count on FMAD and ZO, we conducted additional experiments on medium-sized models (110M–350M parameterized BERT and ROBERTA) and large-sized models (OPT 1.3B, 6.7B, with various LORA ranks, and 13B), as detailed in Appendices F.2 and F.4. Both FMAD and ZO still exhibit slower convergence and degraded performance compared to BP, with the gap widening as model size increases (especially in the case of BERT and ROBERTA). Experiments on changing the perturbation variance are presented in Appendix F.3.

4.3 COMPARISON ON WALLCLOCK CONVERGENCE TIME

Convergence time determines how quickly a trained model becomes feasible for practical use. We contextualize our analysis using Figure 2, which illustrates the time-to-accuracy curve of the -VANILLA methods. Figure 4 in Appendix F.1 includes results on the remaining datasets.



(a) Averaging gradients over multiple perturbations per iteration

(b) Accumulating and averaging gradients across iterations

Figure 2: Experiments (on AGNews dataset with LLAMA 3.1 8B model) with varying perturbation counts (-MULTIPLE) and accumulation steps (-ACCUMULATE) show that both strategies reduce gradient noise and improve convergence stability for FMAD and ZO. However, -MULTIPLE increases memory and compute costs, while -ACCUMULATE slows down convergence. Furthermore, as shown in (right), BP-CHECKPOINTING achieves the highest, most stable accuracy fastest. FMAD performs moderately but is unstable or slow, and ZO (with step size 1) suffers early collapse and fails to match BP’s accuracy.

378 **Compared to ZO and FMAD, BP-CHECKPOINTING achieves the fastest convergence speed**
 379 **and highest accuracy.** Figure 2b (AGNews, batch size 40) compares test accuracy against
 380 wall-clock time. Since BP-VANILLA runs out of memory at this batch size, we instead re-
 381 port a smaller batch size (8) for a fair runtime comparison between BP-VANILLA and BP-
 382 CHECKPOINTING. At batch size 8, BP-VANILLA requires 804.4s/iter, while BP-CHECKPOINTING
 383 takes 936.3s/iter ($\sim 1.2 \times$ slower per iteration). Despite this overhead, BP-CHECKPOINTING
 384 still outperforms FMAD by $\sim 1.2 \times$ per iteration and achieves 4.5–27.6% higher accuracy.
 385 At batch size 40, where memory is the lim-
 386 iting factor, BP-CHECKPOINTING converges
 387 reliably with 1112.8s/iter. In comparison,
 388 FMAD requires 1286.5s/iter, and ZO is the
 389 fastest at 726.7s/iter ($\sim 1.5 \times$ faster than BP-
 390 CHECKPOINTING). However, this runtime ad-
 391 vantage does not translate to accuracy: BP-
 392 CHECKPOINTING reaches $\sim 94\%$ accuracy,
 393 while FMAD and ZO fall short due to slower
 394 convergence and instability. Specifically, ZO
 395 suffers from approximation errors in gradient
 396 estimation, leading to accuracy degradation of
 397 5.6–31.1% relative to BP-based methods.

398 In terms of overall time-to-accuracy, BP-
 399 CHECKPOINTING achieves convergence 21.4–
 400 34.8% faster than alternatives. The gap with
 401 FMAD arises from its computational ineffi-
 402 ciency: unlike BP, which reuses downstream
 403 gradients with a single matrix multiplication per
 404 layer, FMAD requires two matrix multiplications per layer for jvp evaluation (Eq. 1).

405 **Variance reduction improves convergence, but often slows down convergence time.** As shown in
 406 Figure 2a, -MULTIPLE variants (e.g., with $n = 10, 50$) yield smoother training and higher accuracy
 407 than their $n = 1$ counterparts. However, these gains come with a proportional increase in convergence
 408 time for sequential implementations as the runtime scales linearly with the number of perturbations.
 409 -ACCUMULATE variants (Figure 2b) improve accuracy without increasing per-iteration cost, as they
 410 amortize single-step estimates over multiple updates. However, the delay in parameter updates slows
 411 down overall convergence: with an accumulation window of 200, training is $14.8 \times$ and $10.9 \times$ slower
 412 for FMAD and ZO, respectively, than when trained without accumulation.

4.4 COMPARISON ON MEMORY CONSUMPTION

413 **Memory savings from FMAD and ZO come at the cost of accuracy and convergence speed.**
 414 Figure 3 shows that both FMAD and ZO reduce memory usage relative to BP-VANILLA, which runs
 415 out of memory (OOM) due to storing all activations. By contrast, FMAD and ZO store only the
 416 previous layer’s activation, yielding a lower memory footprint. However, as seen in Figure 2b, these
 417 savings lead to significantly longer training times and degraded model performance. Meanwhile,
 418 BP-CHECKPOINTING uses 0.6–1.3GB less memory than FMAD, while delivering substantially faster
 419 convergence and 4.5–31.1% higher accuracy. Further, FMAD consumes 3.3–4.3× more activation
 420 memory than ZO. This overhead stems from the need to simultaneously store previous layer’s
 421 intermediate activations for both the primary forward pass and the additional jvp computation.

422 **Variance reduction strategies introduce memory-accuracy trade-offs.** The -MULTIPLE variants
 423 improve gradient quality by evaluating multiple perturbations per step, but parallel implementations
 424 require linearly more memory. For instance, if one forward pass needs 1.26GB (ZO) or 5.41GB
 425 (FMAD) for activations, using n perturbations inflates this to $1.26n$ GB or $5.41n$ GB, respectively. On
 426 the other hand, -ACCUMULATE amortizes these computations over time and introduces no memory
 427 overhead, though at the cost of slower convergence.

4.5 COMPARISON ON COMPUTATION COST

428 Computation cost in terms of FLOPS directly impacts energy consumption and determines whether
 429 training large models is feasible under given resources. Table 4 reports both per-iteration cost and
 430 total cost until convergence. (Table 2 summarized the theoretical bounds.)

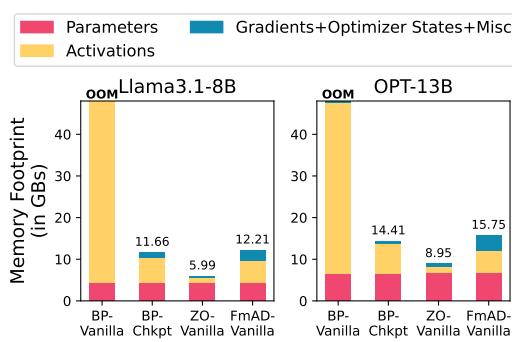


Figure 3: Breakdown of memory consumption of training (left) LLAMA 3.1 (8B) and (right) OPT (13B) models on AGNews. Although BP-CHECKPOINTING is 1.6–1.9× takes more memory than ZO, it takes far fewer iterations to achieve 4.5–31.1% higher accuracy (as shown in Figure 2b).

432 **FMAD and ZO methods reduce per-iteration compute costs but incur significantly higher total**
 433 **compute due to slow convergence.** ZO-VANILLA incurs a relatively low per-iteration cost of 288.7
 434 TFLOPs, approximately $0.7 \times$ the cost of BP-CHECKPOINTING, because it only requires two forward
 435 passes per gradient estimate. However, this advantage is misleading: due to slow convergence, its
 436 total computation cost *until convergence* is $3.8 \times$ higher than that of BP-CHECKPOINTING. FMAD-
 437 VANILLA shows a per-iteration cost nearly identical to BP-CHECKPOINTING, but its convergence is
 438 hindered by gradient estimates with high variance, leading to $3.2 \times$ higher total compute costs.

439 **Multiple perturbations per iteration improves accuracy but linearly**
 440 **increases cost.** In ZO-MULTIPLE, using 10 perturbations per iteration leads to a $9.7 \times$ increase in compute,
 441 showcasing the linear relationship between the number of perturbations and cost. In contrast, ZO-ACCUMULATE,
 442 which accumulates gradients across iterations without increasing perturbation count, maintains similar cost to
 443 ZO-VANILLA but still suffers from slow convergence. Similarly, for FMAD, when we increase the number
 444 of perturbations by $10 \times$ to reduce gradient variance and improve accuracy, the cost increases by $20 \times$ that of
 445 BP, as each `jvp` involves two matrix multiplications.

446 Table 4: Computation cost per iteration and until convergence
 447 (lower is better) for LLAMA 3.1 (8B) on AGNews dataset.
 448 BP-CHECKPOINTING remains by far the most compute-
 449 efficient; whereas the perturbation-based methods (ZO and
 450 FMAD), even their -ACCUMULATE variants, incur order-of-
 451 magnitude more TFLOPs to reach convergence.

Method	TFLOPs per Iter. (↓)	TFLOPs until Convergence (↓)	# Iter. until Convergence
BP-CHECKPOINTING	434.4	65.2×10^4	1.5×10^3
ZO-VANILLA	288.7	251.2×10^4	8.7×10^3
ZO-MULTIPLE	2886.8	2425.0×10^4	8.4×10^3
ZO-ACCUMULATE	288.7	2165.1×10^4	75.0×10^3
FMAD-VANILLA	432.0	207.4×10^4	4.8×10^3
FMAD-MULTIPLE	4320.3	4147.5×10^4	9.6×10^3

452 4.6 FAILURE MODE ANALYSIS

453 Here, we analyze why variance reduction methods and adaptive optimizers sometimes fail to make
 454 FMAD and ZO converge reliably.

455 **Cascading JVP Amplification with Adaptive Optimizers.** A key failure mode in FMAD arises
 456 with adaptive optimizers, such as ADAMW, triggering cascading amplification of Jacobian-vector
 457 products (`jvp`). On GSM8K, `jvp` magnitudes remain stable under SGD within $[-50, 50]$, but spike
 458 $8\text{--}10 \times$ under ADAMW (Figure 9). These spikes produce large gradient updates, inflating weights and
 459 further amplifying `jvp` values, a positive feedback loop that can cause divergence or noisy updates.

460 **Gradient Variance and Magnitude Explains Performance Drops.** Effective gradient variance
 461 under ADAMW is $4\text{--}6 \times$ higher than SGD, with peaks of 200–400 in hidden layers of the LLaMA-
 462 7B subset. This instability correlates with 2–5% lower final accuracy vs. BP with checkpointing,
 463 and some runs yield NaN gradients. Spikes typically appear after 50–100 iterations, indicating
 464 accumulation from the rolling-average mechanism in adaptive optimizers.

465 **Non-Adaptive SGD Maintains Stability.** In contrast, SGD keeps `jvp` bounded and gradients
 466 closely track backpropagation, producing stable convergence (Figures 9a, 9b). These results highlight
 467 a critical interaction between optimizer choice and FMAD stability: adaptive optimizers can introduce
 468 harmful gradient artifacts in FMAD and ZO methods. Further details, including additional datasets,
 469 layer-wise analyses, and variance-reduction strategies, are provided in Appendix F.5.

470 5 CONCLUSION

471 While forward-mode AD (FMAD) and zero-order (ZO) optimization have been proposed as memory-
 472 efficient alternatives to backpropagation (BP), prior work lacked comparison with checkpointed
 473 BP and unified theoretical bounds. Our analysis closes these gaps, revealing that FMAD and ZO
 474 incur higher computational cost, slower convergence, and greater sensitivity to dimensionality and
 475 perturbation budgets. Even with enhancements like variance reduction, they remain less efficient
 476 and robust than BP with activation checkpointing. Empirical results on large models confirm that
 477 checkpointed BP consistently outperforms FMAD and ZO across accuracy, convergence speed, and
 478 compute cost – at comparable memory usage. These findings reaffirm checkpointed BP as the most
 479 practical strategy for memory-constrained training and clarify the limitations of FMAD and ZO.

486 REFERENCES
487

488 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
489 errors. *Nature*, 1986.

490 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
491 Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
492 Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
493 Chintala. Pytorch: An imperative style, high-performance deep learning library. In *Proceedings of the 33rd
494 International Conference on Neural Information Processing Systems*, 2019.

495 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
496 Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
497 transformations of Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

498 Atilim Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
499 differentiation in machine learning: A survey. *The Journal of Machine Learning Research*, 2017.

500 Atilim Güneş Baydin, Barak A. Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients without
501 backpropagation. *arXiv* 2202.08587, 2022.

502 Kunjal Panchal, Nisarg Parikh, Sunav Choudhary, Lijun Zhang, Yuriy Brun, and Hui Guan. Thinking forward:
503 Memory-efficient federated finetuning of language models. In *The Thirty-eighth Annual Conference on
504 Neural Information Processing Systems*, 2024.

505 C. H. Richardson. An introduction to the calculus of finite differences. *The Mathematical Gazette*, 1955.

506 Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and Sanjeev Arora.
507 Fine-tuning language models with just forward passes. In *Thirty-seventh Conference on Neural Information
508 Processing Systems*, 2023.

509 Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. Fwdllm: Efficient federated
510 finetuning of large language models with perturbed inferences. In *2024 USENIX Annual Technical Conference
511 (USENIX ATC 24)*, 2024.

512 Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-reduced
513 zeroth-order methods for fine-tuning language models. In *Proceedings of the 41st International Conference
514 on Machine Learning*, ICML'24. JMLR, 2024.

515 Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D.
516 Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen. Revisiting zeroth-order
517 optimization for memory-efficient llm fine-tuning: a benchmark. In *Proceedings of the 41st International
518 Conference on Machine Learning*, ICML'24, 2024.

519 Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost.
520 *arXiv preprint arXiv:1604.06174*, 2016.

521 Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert Bastani,
522 Christopher De Sa, Xiaodong Yu, Beidi Chen, and Zhaozhuo Xu. Zeroth-order fine-tuning of LLMs with
523 transferable static sparsity. In *The Thirteenth International Conference on Learning Representations*, 2025.

524 Adam D. Cobb, Atilim Güneş Baydin, Barak A. Pearlmutter, and Susmit Jha. Second-order forward-mode
525 automatic differentiation for optimization. *arXiv preprint arXiv:2408.10419*, 2024.

526 Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-order stochastic
527 variance reduction for nonconvex optimization. In *Proceedings of the 32nd International Conference on
528 Neural Information Processing Systems*, NIPS'18, 2018.

529 Haozhe Feng, Tianyu Pang, Chao Du, Wei Chen, Shuicheng Yan, and Min Lin. Baffle: A baseline of
530 backpropagation-free federated learning. In *European Conference on Computer Vision*. Springer, 2024.

531 Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-adamm: Zeroth-
532 order adaptive momentum method for black-box optimization. *Advances in neural information processing
533 systems*, 2019.

534 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. *SIAM
535 review*, 2018.

536 Guillaume Garrigos and Robert M. Gower. Handbook of convergence theorems for (stochastic) gradient methods,
537 2024. URL <https://arxiv.org/abs/2301.11235>.

540 Yuyang Qiu, Uday Shanbhag, and Farzad Yousefian. Zeroth-order methods for nondifferentiable, nonconvex,
 541 and hierarchical federated optimization. *Advances in Neural Information Processing Systems*, 36, 2023.

542 Marco Rando, Cesare Molinari, Lorenzo Rosasco, and Silvia Villa. An optimal structured zeroth-order algorithm
 543 for non-smooth optimization. *Advances in Neural Information Processing Systems*, 36:36738–36767, 2023.

544 Konstantinos Nikolakakis, Farzin Haddadpour, Dionysis Kalogerias, and Amin Karbasi. Black-box generaliza-
 545 tion: Stability of zeroth-order learning. *Advances in neural information processing systems*, 35:31525–31541,
 546 2022.

547 Aleksandr Lobanov, Nail Bashirov, and Alexander Gasnikov. The “black-box” optimization problem: Zero-order
 548 accelerated stochastic method via kernel approximation. *Journal of Optimization Theory and Applications*,
 549 pages 1–36, 2024.

550 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
 551 Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
 552 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

553 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
 554 Measuring massive multitask language understanding. *Proceedings of the International Conference on
 555 Learning Representations (ICLR)*, 2021.

556 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In
 557 *Advances in Neural Information Processing Systems*, 2015.

558 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
 559 Boolq: Exploring the surprising difficulty of natural yes/no questions. In *NAACL*, 2019.

560 Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking beyond
 561 the surface: A challenge set for reading comprehension over multiple sentences. In *Proceedings of the
 562 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
 563 Language Technologies, Volume 1 (Long Papers)*. Association for Computational Linguistics, 2018.

564 Yash Goyal, Tejas Khot, Aishwarya Agrawal, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making
 565 the v in vqa matter: Elevating the role of image understanding in visual question answering. *Int. J. Comput.
 566 Vision*, 2019.

567 Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus
 568 Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE Conference on Computer Vision
 569 and Pattern Recognition*, 2019.

570 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
 571 Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv
 572 preprint arXiv:2407.21783*, 2024.

573 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
 574 Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. *arXiv
 575 preprint arXiv:2205.01068*, 2022.

576 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
 577 transformers for language understanding. In *Proceedings of the 2019 Conference of the North American
 578 Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 579 and Short Papers)*. Association for Computational Linguistics, 2019.

580 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
 581 Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pretraining approach, 2020.

582 Qwen, ;, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
 583 Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
 584 Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
 585 Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng
 586 Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
 587 Qwen2.5 technical report, 2025.

588 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized
 589 llms. *arXiv preprint arXiv:2305.14314*, 2023.

590 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training quantization for
 591 generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

594 Federico Belotti and Davide Angioni. Implementation of FGD, 2023. URL <https://github.com/orobix/fwdgrad?tab=readme-ov-file#perfomance-comparison>.
595
596

597 Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Can forward
598 gradient match backpropagation? In *Proceedings of the 40th International Conference on Machine Learning*,
599 2023.

600 Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Taylor-mode automatic differentiation for
601 higher-order derivatives in JAX. In *Program Transformations for ML Workshop at NeurIPS 2019*, 2019.

602 Khemraj Shukla and Yeonjong Shin. Randomized forward mode of automatic differentiation for optimization
603 algorithms. *arXiv preprint arXiv:2310.14168*, 2023.

604 M Rostami and Solmaz S Kia. Forward gradient-based frank-wolfe optimization for memory efficient deep
605 neural network training. *arXiv preprint arXiv:2403.12511*, 2024.

606
607 Katharina Flügel, Daniel Coquelin, Marie Weil, Achim Streit, and Markus Götz. Beyond backpropagation:
608 Optimization with multi-tangent forward gradients. *arXiv preprint arXiv:2410.17764*, 2024.

609 Johannes Schmidt-Hieber. Interpreting learning in biological neural networks as zero-order optimization method,
610 2023.

611 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online pseudo-zeroth-order
612 training of neuromorphic spiking neural networks, 2024.

613
614 Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor Tsang. Second-order fine-tuning without
615 pain for LLMs: A hessian informed zeroth-order optimizer. In *The Thirteenth International Conference on*
616 *Learning Representations*, 2025.

617 Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng Liu, Yihua
618 Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up zeroth-order optimization for
619 deep model training. In *The Twelfth International Conference on Learning Representations*, 2024.

620 Hongxu Chen, Jinchi Chen, and Ke Wei. A zeroth-order variance-reduced method for decentralized stochastic
621 non-convex optimization. *arXiv preprint arXiv:2310.18883*, 2023.

622
623 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
624 In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, *Advances in Neural*
625 *Information Processing Systems*, 2013.

626 Zhuanghua Liu, Cheng Chen, Luo Luo, and Bryan Kian Hsiang Low. Zeroth-order methods for constrained
627 nonconvex nonsmooth stochastic optimization. In *Forty-first International Conference on Machine Learning*,
628 2024.

629 Guy Kornowski and Ohad Shamir. An algorithm with optimal dimension-dependence for zero-order nonsmooth
630 nonconvex stochastic optimization. *Journal of Machine Learning Research*, 2024.

631
632 Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex stochastic optimization via
633 conditional gradient and gradient updates. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
634 Bianchi, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, 2018.

635 Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order optimization in
636 high dimensions. In *Proceedings of the Twenty-First International Conference on Artificial Intelligence and*
637 *Statistics, Proceedings of Machine Learning Research*. PMLR, 2018.

638 Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
639 Backpropagation without storing activations. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
640 S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, 2017.

641 Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient backpropa-
642 gation through time. *Advances in neural information processing systems*, 2016.

643
644 Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient combination of rematerialization and
645 offloading for training dnns. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
646 editors, *Advances in Neural Information Processing Systems*, 2021.

647 Lewis Tunstall. Agnews on huggingface. https://huggingface.co/datasets/SetFit/ag_news/tree/main, 2022. [Online; accessed 23-April-2025].

648 Albert Villanova del Moral. Boolq on huggingface. [https://huggingface.co/datasets/google/](https://huggingface.co/datasets/google/boolq)
649 boolq, 2022a. [Online; accessed 23-April-2025].
650
651 Albert Villanova del Moral. Multirc on huggingface. [https://huggingface.co/datasets/aps/](https://huggingface.co/datasets/aps/super_glue)
652 super_glue, 2022b. [Online; accessed 23-April-2025].
653
654 Albert Villanova del Moral. Gsm8k on huggingface. [https://huggingface.co/datasets/openai/](https://huggingface.co/datasets/openai/gsm8k)
655 gsm8k, 2022c. [Online; accessed 23-April-2025].
656
657 Long Phan. Mmlu on huggingface. <https://huggingface.co/datasets/cais/mmlu>, 2024. [On-
658 line; accessed 23-April-2025].
659
660 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
661 C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt
662 Schiele, and Tinne Tuytelaars, editors, *Computer Vision – ECCV 2014*. Springer International Publishing,
663 2014.
664
665 Yash Goyal. Vqav2. <https://visualqa.org/>, 2017. [Online; accessed 23-April-2025].
666
667 Aman Preet. Textvqa on huggingface. <https://huggingface.co/datasets/facebook/textvqa>,
668 2022. [Online; accessed 23-April-2025].
669
670 Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners.
671 In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th*
672 *International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*. Association for
673 Computational Linguistics, 2021.
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A RELATED WORK
703704
705 Here we review recent works on forward-mode AD and zero-order optimization methods; along with
706 a discussion on various methods to refine the memory and time efficiency of backpropagation.
707708 A.1 FORWARD-MODE AD
709710 The application of forward-mode automatic differentiation (FMAD) for training deep neural networks
711 was first introduced in Forward-Gradient Descent (FGD) (Baydin et al., 2022), building on an earlier
712 survey on automatic differentiation (Baydin et al., 2017). FGD demonstrated FMAD on a small-scale
713 three-layer fully connected model and a four-layer convolutional network, claiming that FMAD
714 can outperform backpropagation (BP) in speed and loss reduction per unit time. However, these
715 claims remain unverifiable, as the implementation was never made publicly available, and subsequent
716 independent evaluations (Belotti and Angioni, 2023) have found these results difficult to reproduce.
717718 Beyond this initial demonstration, more recent efforts have attempted to improve FMAD’s efficiency.
719 *Can Forward Gradients Match Backpropagation?* (Fournier et al., 2023) seeks to enhance FMAD by
720 generating more structured perturbations rather than relying on random sampling. This approach in-
721 troduces local losses computed via small auxiliary networks to inform perturbation choices. However,
722 training these auxiliary networks significantly increases memory consumption and computational
723 overhead, undermining FMAD’s intended efficiency advantage.724 Other studies have focused on extending FMAD beyond first-order gradients. *Second-order*
725 *FmAD* (Cobb et al., 2024) provides a formal framework for computing second-order gradients
726 with FMAD, demonstrating improved optimization performance. However, this comes at a substan-
727 tial computational cost, and experiments remain limited to small-scale benchmarks (e.g., a CNN
728 with only 431K parameters), leaving open the question of whether second-order FMAD can scale
729 competitively against BP. Similarly, Taylor-mode Auto Differentiation (Bettencourt et al., 2019)
730 generalizes FMAD to compute higher-order gradients, yet the memory and time-to-convergence
731 trade-offs compared to BP remain unexplored.732 Several other works have proposed variations of FMAD without fundamentally addressing its ineffi-
733 ciencies. *Randomized Forward Gradient-based GD* (Shukla and Shin, 2023) provides a convergence
734 analysis of FMAD using random perturbations but offers no new insights into its computational effi-
735 ciency. *PROJECTED-FG* (Rostami and Kia, 2024) applies FMAD to memory-efficient Frank-Wolfe
736 optimization but evaluates only small models, making its conclusions inapplicable to large-scale deep
737 learning. *Beyond Backpropagation* (Flügel et al., 2024) investigates the use of multiple perturbations
738 per iteration to improve forward-gradient computation but fails to identify why FMAD remains
739 inferior to BP in practice.740 A more recent large-scale application of FMAD appears in SPRY (Panchal et al., 2024), which
741 employs FMAD for fine-tuning large models (ranging from 100K to 13B parameters) in a federated
742 learning setting. By restricting each client to a small subset of weights, SPRY circumvents FMAD’s
743 poor performance in high-dimensional perturbations. However, even in this setting, FMAD exhibits
744 slower convergence and higher variance than BP, further reinforcing its fundamental limitations.745 For applications besides LLM training or finetuning, biological plausibility (Schmidt-Hieber, 2023;
746 Xiao et al., 2024) has been proposed as a motivating factor for exploring alternative gradient estimation
747 techniques. FMAD avoids the backward signal transport required by backpropagation and has
748 therefore been considered more biologically plausible. Though FMAD still relies on first-order
749 derivatives and engineered automatic differentiation, which limits its direct applicability to biological
750 systems.751 While prior works have demonstrated narrow successes of FMAD in specialized scenarios, none
752 have systematically analyzed its fundamental computational constraints. Besides, the comparison
753 of FMAD against a strong baseline of BP-CHECKPOINTING remains uncharted. Unlike these
754 related studies, our work provides a principled theoretical and empirical investigation into the
755 scalability bottlenecks of FMAD, explicitly comparing its memory and time complexity against BP-
756 CHECKPOINTING. We also uncover failure modes of FMAD in deep networks, offering new insights
757 into why it cannot consistently surpass BP in terms of both time-to-convergence and efficiency.

756 A.2 ZERO-ORDER OPTIMIZATION
757
758

759 Zero-order (ZO) optimization has received significant attention, particularly in settings where first-
760 order gradient information is unavailable or impractical to compute. Unlike FMAD, which has
761 seen limited large-scale adoption, ZO methods have been actively explored in deep learning due to
762 their applicability in scenarios such as adversarial attacks, black-box optimization, and gradient-free
763 fine-tuning. Similar to FMAD, we also note that none of the works discussed below have made a
764 comparison of their ZO-based variant against BP-CHECKPOINTING, an aspect which is fleshed out
765 in this work.

766 MEZO (Malladi et al., 2023) and its extension MEZO-SVRG (Gautam et al., 2024) introduced
767 memory-efficient ZO optimization strategies that regenerate random perturbations instead of storing
768 them, effectively reducing memory overhead. These methods have demonstrated practical advantages
769 in fine-tuning large language models (LLMs) for classification tasks without requiring explicit
770 backpropagation. While they address memory constraints, they do not provide insights into the
771 fundamental efficiency trade-offs between ZO and BP in terms of time-to-convergence, memory
772 consumption, and attained accuracy; which are the key concerns of our work. [A closely related line of work is HIZOO](#) (Zhao et al., 2025), which proposes a forward-only second-order ZO optimizer
773 that uses Hessian-informed perturbations to accelerate MeZO-style fine-tuning. While HIZOO
774 successfully demonstrates reduced activation-memory usage relative to MEZO, its evaluation focuses
775 primarily on memory rather than wall-clock convergence time or total compute cost—metrics that
776 are central to our analysis. Moreover, the algorithm introduces additional second-order computations
777 (via Hessian-related estimators), whose overhead is not thoroughly quantified.

778 Expanding on these efforts, DEEPZERO (Chen et al., 2024) proposed a ZO deep learning framework
779 capable of training deep neural networks from scratch. By leveraging coordinate-wise gradient
780 estimation (CGE) over randomized vector-wise estimation, DEEPZERO achieves improved accuracy
781 and computational efficiency. Additionally, the introduction of sparsity-induced training, feature
782 reuse, and forward parallelization brings ZO training closer to first-order methods, achieving state-
783 of-the-art results on ResNet-20 trained on CIFAR-10. However, despite these advancements, ZO
784 remains fundamentally limited by high variance and inefficient gradient estimation, resulting in
785 slower convergence compared to BP, which is an issue we empirically validate in our benchmarks.

786 Other works, such as DZOVR (Chen et al., 2023) and ZO-SVRG (Liu et al., 2018), have attempted to
787 improve ZO efficiency by incorporating Stochastic Variance Reduced Gradients (SVRG) (Johnson and
788 Zhang, 2013). Similarly, research on ZO methods for non-convex and non-smooth optimization (Liu
789 et al., 2024; Kornowski and Shamir, 2024; Balasubramanian and Ghadimi, 2018) has provided
790 valuable theoretical insights. However, none of these studies systematically compare ZO to BP in
791 terms of memory consumption, execution time, and scalability, leaving open the question of whether
792 ZO can ever be a viable alternative. Our work explicitly addresses this gap by benchmarking these
793 methods against BP and highlighting their structural inefficiencies.

794 Further, ZO-ADAMM (Chen et al., 2019) integrates an adaptive optimizer (ADAMM) into ZO,
795 demonstrating improved stability. However, even with adaptive optimization, ZO struggles to match
796 the convergence speed of BP, as shown in their experiments on a small-scale CNN. Additionally,
797 work on ZO optimization in high-dimensional settings (Wang et al., 2018) has focused primarily on
798 convergence properties rather than the computational and memory efficiency bottlenecks that limit
799 ZO’s practical scalability.

800 *Revisiting ZO* (Zhang et al., 2024) benchmarks the performance of large language models trained
801 using BP, FMAD, and ZO optimization. Our work differs in several key ways: (a) We include
802 comparisons against a backpropagation with checkpointing baseline, offering new insights into the
803 memory-efficiency trade-offs among gradient computation methods. (b) Unlike *Revisiting ZO*, our
804 study evaluates both time-to-convergence and overall computational cost, which are critical for
805 understanding practical scalability. (c) We also provide an in-depth failure mode analysis, focusing on
806 the behavior of Jacobian-vector products and their influence on model updates, an aspect unexplored
807 in their work.

808 We note that like ZO with LLMs, ZO for biological systems (Schmidt-Hieber, 2023) would face
809 scalability and convergence challenges when applied to high-dimensional models. Our study does
not aim to contest the conceptual motivations behind these techniques; rather, we show their practical

810 limitations, in terms of computational cost and optimization performance, for large-scale models like
 811 LLMs.
 812

813 **A.3 OPTIMIZATIONS ON BACKPROPAGATION**
 814

815 Backpropagation (BP) remains the dominant method for training deep neural networks due to its
 816 computational efficiency and well-optimized implementations. However, standard BP incurs high
 817 memory costs, as it requires storing intermediate activations for the entire computational graph during
 818 the forward pass. This limitation has motivated extensive research into memory-efficient variants of
 819 BP that aim to reduce memory consumption without significantly compromising training speed.
 820

821 Checkpointing-based methods, such as REVERSIBLE RESIDUAL NETWORKS (Gomez et al., 2017)
 822 and ACTIVATION CHECKPOINTING (Chen et al., 2016), trade memory for recomputation by strategi-
 823 cally discarding and later recomputing activations. These techniques have proven effective in reducing
 824 memory overhead, but they introduce additional computational costs. More recent approaches, such
 825 as EFFICIENT REMATERIALIZATION (Gruslys et al., 2016) and DYNAMIC PROGRAMMING-BASED
 826 ACTIVATION OFFLOADING (Beaumont et al., 2021), attempt to optimize checkpointing strategies to
 827 minimize recomputation overhead. Despite these advances, BP with checkpointing still follows the
 828 same fundamental backpropagation framework and benefits from computation reuse – an efficiency
 829 advantage that FMAD and ZO methods lack.
 830

831 **B DATASETS**
 832

833 In this section, we provide detailed descriptions of the datasets used in our experiments. For each
 834 dataset, we outline its origin, licensing, the version we have used, and task-specific characteristics,
 835 including the number of samples, sequence lengths and relevant domain or classification details.
 836

837 **AGNews.** The AG News dataset (Zhang et al., 2015) is derived from a corpus of 496,835 labeled
 838 news articles collected from over 2,000 web-based news sources published between 2004 and 2005.
 839 For this work, we use a widely adopted, cleaned, and balanced subset comprising 120,000 training
 840 samples and 7,600 test samples, evenly distributed across four categories: World, Sports, Business,
 841 and Science/Technology. We divide the test data into half to create validation and test splits. The
 842 dataset is primarily used for topic classification, which is also the focus of our study. The maximum
 843 sequence length for our experiments is set to 350 tokens during training. It is released under the
 844 Creative Commons CC0 1.0 Universal license, placing it in the public domain. We obtained the
 845 dataset via the Hugging Face Datasets library (Tunstall, 2022).
 846

847 **BoolQ.** The Boolean Questions (BoolQ) dataset (Clark et al., 2019) is a reading comprehension
 848 benchmark consisting of naturally occurring yes/no questions. Each instance includes a question, a
 849 passage (typically a paragraph from Wikipedia), and a binary answer (“yes” or “no”) derived from the
 850 passage content. Unlike synthetic question-generation benchmarks, BoolQ features real user queries
 851 collected from Google search logs, making the task more reflective of real-world comprehension.
 852 The dataset contains approximately 9,427 question-passage training pairs, and 3,270 validation pairs.
 853 We divide the validation data into half to create the validation and test data splits for this work.
 854 The maximum sequence length for our experiments is set to 1200 tokens during training. BoolQ is
 855 released under the Creative Commons Share-Alike 3.0, which allows for flexible use, modification,
 856 and redistribution with appropriate attribution. Once again, Hugging Face Datasets was used to access
 857 BoolQ (del Moral, 2022a).
 858

859 **MultiRC.** The Multi-Sentence Reading Comprehension (MultiRC) (Khashabi et al., 2018) dataset
 860 is a benchmark corpus designed to evaluate machine reading comprehension over short paragraphs.
 861 Each example consists of a paragraph followed by one or more questions, with corresponding
 862 candidate answers that must be inferred from the text. In our setup, we frame the task as a binary
 863 classification problem, determining whether a given question-answer pair is correct or incorrect based
 864 on the paragraph content. The dataset contains approximately 6,000 multi-sentence questions drawn
 865 from over 800 distinct paragraphs. The maximum sequence length for our experiments is set to
 866 1500 tokens during training. MultiRC is released under the MIT License, permitting broad use and
 867 redistribution with attribution. We accessed the dataset through Hugging Face (del Moral, 2022b).
 868

GSM8K. The Grade School Math 8K (GSM8K) dataset (Cobbe et al., 2021) is a high-quality benchmark for evaluating arithmetic reasoning and problem-solving abilities of language models. Each example consists of a single math word problem followed by a detailed, step-by-step answer. Designed to emphasize multi-step reasoning, the problems are written in natural language and reflect concepts typically found in grade school (middle school) curricula. The dataset contains 7,470 training examples and 1,319 test examples, all manually curated for clarity and correctness. The maximum sequence length for our experiments is set to 800 tokens during training. In this work, we use GSM8K as a text-to-text supervised learning task, where the input is the problem statement and the target is the final answer (without the reasoning steps). The dataset is publicly available under the MIT License, allowing broad reuse and modification with attribution. The dataset is available on Hugging Face (del Moral, 2022c).

MMLU. The Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) dataset is a comprehensive benchmark designed to assess general knowledge and reasoning ability across a wide range of academic and professional subjects. It covers 57 diverse topics, including mathematics, history, law, medicine, and the sciences, with questions derived from standardized exams and expert-written materials. Each example is a multiple-choice question with four answer options, requiring both factual knowledge and reasoning skills. All four answer options are included in the prompt. The dataset consists of 99.8k training samples, 1.5k validation samples, and 14k test samples. The maximum sequence length for our experiments is set to 1500 tokens during training. MMLU is publicly available under the MIT License, allowing free use, modification, and distribution with appropriate credit. Its breadth and difficulty make it a challenging benchmark for evaluating finetuned language models. In line with rest of the datasets, we have used the Hugging Face Datasets version of MMLU (Phan, 2024).

VQAv2. The Visual Question Answering v2.0 (VQAv2) (Goyal et al., 2019) dataset is a large-scale benchmark designed to evaluate a model’s ability to understand and reason over both visual and textual inputs. Each example consists of an image (sourced primarily from the MS COCO dataset (Lin et al., 2014)) paired with a natural language question, and the task is to generate an accurate, typically short (often single-word), answer based on the visual content of the image.

VQAv2 addresses the language bias issues present in its predecessor (VQAv1) by ensuring that each question is associated with multiple images, such that the correct answer varies depending on the visual context. This structure encourages models to genuinely integrate image understanding rather than relying solely on question priors.

The dataset contains 443,757 training questions, 214,354 validation questions, and 447,793 test questions, associated with over 200,000 images. Each question has 10 human-provided answers, allowing for nuanced evaluation metrics such as accuracy based on answer consensus (Goyal, 2017). The maximum sequence length for our experiments is set to 100 tokens during training. VQAv2 is distributed under the 2-Clause BSD License, allowing for use and adaptation with attribution. We access the dataset through the VisualQA website (Goyal, 2017).

TextVQA. The TextVQA (Text-based Visual Question Answering) dataset (Singh et al., 2019) is a vision-language benchmark specifically designed to evaluate a model’s ability to read and reason about text within images. Unlike standard VQA tasks that focus on general object and scene understanding, TextVQA centers on questions where the answer relies on text present in the image itself; such as signs, labels, documents, product packaging, and storefronts.

Each example in the dataset includes an image, a natural language question, and a free-form textual answer. To correctly answer a question, models must integrate visual understanding with OCR (Optical Character Recognition) capabilities. TextVQA challenges systems to perform multimodal reasoning that spans spatial, linguistic, and visual modalities.

The dataset consists of approximately 28,408 questions associated with 14,987 images, split into 21,953 training questions; 3,166 validation questions; and 3,289 test questions. Each question is annotated with 10 answers from human annotators to support consensus-based evaluation metrics. The maximum sequence length for our experiments is set to 100 tokens during training. TextVQA is publicly available under the CC BY 4.0 (Creative Commons Attribution 4.0 International License),

918 allowing flexible use, sharing, and adaptation with attribution. The dataset is available for access on
 919 Hugging Face (Preet, 2022).
 920

921 C BASELINES AND HYPERPARAMETERS

922
 923 **BP-VANILLA.** This baseline (Rumelhart et al., 1986) uses a standard implementation of the training
 924 loop with backpropagation as the gradient computation method, without any modifications or enhance-
 925 ments. Due to out-of-memory (OOM) issues encountered with larger batch sizes, most experiments
 926 involving BP-VANILLA are conducted using smaller batches. Table 5 lists the hyperparameters.
 927

928 Table 5: Hyperparameters related to BP-VANILLA, for all datasets.
 929

	AGNews	BoolQ	MultiRC	GSM8K	MMLU	VQAv2	TextVQA
Batch Size	8	4	8	4	6	6	8
Learning Rate	10^{-3}	10^{-3}	10^{-3}	10^{-5}	10^{-4}	10^{-4}	10^{-4}
Optimizer	ADAMW	ADAMW	ADAMW	ADAMW	SGD Nesterov Momentum 0.9	SGD	ADAMW

930
 931 **BP-CHECKPOINTING.** BP-CHECKPOINTING (Chen et al., 2016) is identical to BP-VANILLA
 932 with one key difference: it employs activation checkpointing (also known as gradient checkpointing)
 933 to reduce memory consumption, allowing for larger batch sizes without incurring out-of-memory
 934 (OOM) errors. To ensure a fair comparison, the batch sizes used for BP-CHECKPOINTING match
 935 those used for the ZO and FMAD variants. The hyperparameters are given in Table 6.
 936

937 Table 6: Hyperparameters related to BP-CHECKPOINTING and BP-ACCUMULATE, for all datasets.
 938

	AGNews	BoolQ	MultiRC	GSM8K	MMLU	VQAv2	TextVQA
Batch Size	40	40	40	6	8	8	8
Learning Rate	10^{-3}	10^{-3}	10^{-3}	10^{-5}	10^{-4}	10^{-4}	10^{-4}
Optimizer	ADAMW	ADAMW	ADAMW	ADAMW	SGD Nesterov Momentum 0.9	SGD	ADAMW

939
 940 **BP-ACCUMULATE.** BP-ACCUMULATE follows the same training procedure as BP-
 941 CHECKPOINTING, but incorporates gradient accumulation to simulate larger effective batch sizes
 942 without exceeding memory constraints. Instead of updating model weights after every mini-batch,
 943 gradients are accumulated over multiple smaller batches and the update is performed after a fixed
 944 number of steps. At the end of the accumulation period, the summed gradients are averaged by
 945 dividing them by the number of accumulation steps. The hyperparameters are same as those of
 946 BP-CHECKPOINTING (see Table 6), with accumulation step count being 100 as default.
 947

948
 949 **ZO-VANILLA.** ZO-VANILLA (Chen et al., 2019) implements a standard zero-order optimization
 950 approach, which estimates gradients using only function evaluations according to Equation 2, without
 951 requiring access to the model’s internal, first-order gradients. Specifically, it perturbs the model
 952 parameters along randomly sampled directions and uses finite differences to approximate the gradient.
 953 We have used the memory-efficient perturbation trick of MEZO for all the ZO- variants, which
 954 includes storing the random seed and regenerating perturbations for forward pass evaluations, instead
 955 of persisting entire perturbations in the memory. For fair comparison, we use the same batch sizes as
 956 in BP-CHECKPOINTING and FMAD baselines. The hyperparameters are given in Table 7.
 957

958
 959 **ZO-ACCUMULATE.** ZO-ACCUMULATE extends the ZO-VANILLA baseline by incorporating
 960 gradient accumulation to simulate larger effective batch sizes without exceeding memory constraints.
 961 Instead of estimating and applying a parameter update after each mini-batch, gradient approximations
 962 (based on finite differences) are accumulated over multiple steps and averaged before updating the
 963 model. This approach results in improved stability due to averaging out the noisy gradient estimates.
 964 The hyperparameters are same as with ZO-VANILLA, given in Table 7, with default accumulation
 965 window of 100.
 966

972
973
974 Table 7: Hyperparameters related to ZO-VANILLA, for all datasets.
975
976
977
978
979
980
981

	AGNews	BoolQ	MultiRC	GSM8K	MMLU	VQAv2	TextVQA
Batch Size	40	40	40	6	8	8	8
Learning Rate	10^{-4}	10^{-3}	10^{-3}	10^{-5}	10^{-5}	10^{-4}	10^{-4}
				SGD	SGD		
Optimizer	ADAMW	ADAMW	SGD	Nesterov	Nesterov	ADAMW	SGD
				Mmtm 0.9	Mmtm 0.9		
Perturbation Step Size	10^{-3}	10^{-2}	10^{-2}	10^{-3}	10^{-4}	10^{-3}	10^{-3}

982
983
984 **ZO-MULTIPLE.** ZO-MULTIPLE (also shown in (Panchal et al., 2024; Xu et al., 2024; Feng et al.,
985 2024)) builds on the ZO-VANILLA method by using multiple random perturbation directions per
986 iteration, to improve the accuracy of the gradient estimate. Instead of relying on a single direction,
987 this variant samples several perturbations and averages the resulting finite-difference approximations,
988 leading to a lower-variance and more stable update. However, this approach increases the number of
989 function evaluations per step. The hyperparameters are same as with ZO-VANILLA, given in Table 7,
990 with default perturbation count per iteration of 10.

991
992 **ZO-ADAPTIVE.** ZO-ADAPTIVE enhances zero-order optimization by incorporating an adaptive
993 perturbation strategy that aligns gradient estimates more closely with the true gradient direction over
994 time. The optimization proceeds in two phases. In the *calibration phase* (typically the first iteration),
995 multiple perturbation directions are sampled, and the one with the highest positive projected gradient
996 is selected. This direction is assumed to have the smallest angle with the true gradient. This calibrated
997 perturbation is then used to compute an initial gradient estimate. In the *adaptive phase* (subsequent
998 iterations), new perturbations are sampled based on the previously estimated gradient, and a rolling
999 average is maintained between the new perturbation and the historical gradient direction. This
1000 mechanism biases the search toward more promising directions while still allowing for exploratory
1001 variation. The hyperparameters are same as those of ZO-VANILLA, with the inclusion of sampling 4
1002 perturbations during the calibration phase.

1003
1004 **ZO-SVRG.** ZO-SVRG (Liu et al., 2018) applies the principles of Stochastic Variance Reduced
1005 Gradient (SVRG) (Johnson and Zhang, 2013) to the zero-order optimization setting, aiming to
1006 improve convergence speed and stability by reducing the variance inherent in gradient estimates. The
1007 method alternates between two types of updates: full gradient estimation at a reference point (called
1008 a snapshot) and subsequent inner-loop updates that correct noisy estimates using control variates. In
1009 the zero-order context, both the snapshot gradient and the inner-loop updates are computed using
1010 finite-difference approximations along random perturbations. The variance reduction comes from
1011 reusing the snapshot gradient to correct each inner-step estimate. Besides the hyperparameters shown
1012 in Table 7, we use interval of 5 epochs to compute full gradients.

1013
1014 **ZO-SPARSE.** ZO-SPARSE (Guo et al., 2025) introduces sparsity into zero-order optimization
1015 by restricting gradient estimation and updates to only the top 1% of model parameters, selected
1016 based on their magnitude at each iteration. Unlike structured approaches such as LoRA, this method
1017 dynamically identifies and perturbs the most significant weights, those likely to contribute most to loss
1018 reduction. Hence, ZO-SPARSE focuses the optimization on a small, adaptive subset of parameters.
1019 This sparsity constraint reduces the dimensionality of the optimization problem, leading to fewer
1020 function evaluations. The hyperparameters are exactly the same as those of Table 7.

1021
1022 **MEZO.** MEZO (Malladi et al., 2023) builds on ZO-VANILLA, but with a key modification
1023 tailored for classification tasks using language models. Instead of relying on a separate classifier
1024 head, MEZO employs the language modeling (LM) head and masks out logits corresponding to
1025 vocabulary tokens that are not class labels. This approach is presented in the prompt-based fine-tuning
1026 strategy introduced by Gao et al. (2021). MEZO integrates this prompting technique with zero-order
1027 optimization, enabling effective gradient-free fine-tuning of large language models, although it is
1028 limited to the classification tasks. We use the same hyperparameters as ZO-VANILLA (see Table 7).

1026
1027 FMAD-VANILLA. FMAD-VANILLA implements the standard forward-mode automatic differ-
 1028 entiation (Baydin et al., 2017; 2022) approach for computing gradients, more details are in §2. In
 1029 this baseline, we use a straightforward implementation of forward-mode AD without any memory-
 1030 saving strategies or structural optimizations. The hyperparameters used for FMAD-VANILLA are
 1031 summarized in Table 8. Additionally, the variance of the Gaussian distribution used for perturbation
 sampling is fixed at 1 across all datasets.

1032 Table 8: Hyperparameters related to FMAD-VANILLA, for all datasets.
 1033

	AGNews	BoolQ	MultiRC	GSM8K	MMLU	VQAv2	TextVQA
Batch Size	40	40	40	6	8	8	8
Learning Rate	10^{-3}	10^{-4}	10^{-4}	10^{-5}	10^{-5}	10^{-4}	10^{-4}
Optimizer	ADAMW	SGD	ADAMW	SGD Nesterov Mmtm 0.9	SGD Nesterov Mmtm 0.9	SGD	SGD

1041
1042 FMAD-ACCUMULATE. FMAD-ACCUMULATE extends the standard forward-mode automatic dif-
 1043 ferentiation by incorporating gradient accumulation to simulate larger batch sizes without increasing
 1044 memory consumption. The same accumulation strategy is used in corresponding BP-ACCUMULATE
 1045 and ZO baselines to maintain fairness in comparison. The hyperparameters are given in Table 8, with
 1046 the addition of accumulation window of 100.

1047
1048 FMAD-MULTIPLE. FMAD-MULTIPLE enhances the basic forward-mode AD approach by using
 1049 multiple perturbation directions per update to improve the stability and accuracy of gradient estimates.
 1050 The setup closely mirrors that of ZO-MULTIPLE, with hyperparameters listed in Table 8. The only
 1051 addition is the use of 10 perturbation count per iteration.

1052
1053 FMAD-ADAPTIVE. FMAD-ADAPTIVE mirrors the two-phase procedure described in ZO-
 1054 ADAPTIVE, including the calibration phase for selecting an initial perturbation direction and the
 1055 adaptive phase that updates this direction using a rolling average of past gradients. For full details,
 1056 we refer the reader to the ZO-ADAPTIVE description. All hyperparameters remain consistent with
 1057 Table 8, with calibration phase including 4 perturbations just like ZO-ADAPTIVE.

1058
1059 FMAD-SVRG. FMAD-SVRG adopts the same stochastic variance-reduced gradient (SVRG)
 1060 framework used in ZO-SVRG, but applies it within the forward-mode AD setting. It alternates be-
 1061 tween full-gradient computation on a reference batch and variance-reduced updates on mini-batches,
 1062 thereby reducing the noise in gradient estimates while maintaining computational efficiency. For de-
 1063 tails on the SVRG formulation, we refer the reader to the description of ZO-SVRG. Hyperparameters
 1064 are in Table 8, with full gradients getting computed every 5 epochs (similar to ZO-SVRG).

1065
1066 FMAD-SPARSE. FMAD-SPARSE adopts the same sparsity strategy described in ZO-SPARSE,
 1067 where only the top 1% of parameters (by magnitude) are selected for gradient updates during each
 1068 iteration. As with the ZO-SPARSE variant, this method avoids techniques like LoRA and instead
 1069 relies on direct selection of high-magnitude weights. For complete details on the sparsity mechanism,
 1070 we refer the reader to the ZO-SPARSE description. All hyperparameters are in Table 8.

1071
1072 A Note on the Theoretical vs. Empirical Learning Rate. The theoretical convergence bound
 1073 of ZO (Theorem I.8) has the condition of $\eta < \frac{2}{L(1 + \frac{d+1}{n})}$. The condition becomes increasingly
 1074 conservative as L and d scale, which is especially relevant for large models. This is a standard
 1075 limitation of worst-case analysis: the bound is derived under minimal assumptions (e.g., global
 1076 L -smoothness, worst-case variance), and thus prioritizes generality over tightness. In practice, we
 1077 start with relatively large learning rates (10^{-4} to 10^{-3}) to measure the best-case time to convergence
 1078 for ZO and FmAD. With adaptive optimizers like AdamW, the learning rate is automatically scaled
 1079 down during training, often yielding stable and effective performance even when theoretical bounds
 are violated.

However, in line with the theory, we observe convergence failures (including NaNs or divergence,
 see Appendix F.5) when using non-adaptive optimizers such as SGD, especially under large d/n

1080 ratios (typically around 10^5) or for FmAD and ZO methods. These failures reinforce that while
 1081 the theoretical bound is conservative, it qualitatively predicts instability when learning rates are too
 1082 aggressive relative to dimensionality and batch size (see Appendices F.3 and F.5). That said, we do
 1083 observe (especially in the zero-order case) that overly aggressive learning rates can lead to instability
 1084 or degraded final performance, in line with the theoretical intuition. Hence, the theoretical rate serves
 1085 as a safeguard for convergence analysis rather than a recommended training setting, and that practical
 1086 hyperparameters typically benefit from empirical tuning beyond what the theory prescribes. Further
 1087 discussion is provided in Corollary I.10.

1088

1089 D LIMITATIONS AND FUTURE WORK

1090

1091 While the aim of our work was to provide a comprehensive comparison of backpropagation (BP),
 1092 forward-mode automatic differentiation (FmAD), and zero-order (ZO) optimization strategies, several
 1093 limitations remain, which can serve as venues for a further exploration.

1094

1095 First, our experiments focus on deep models, and we did not systematically evaluate backpropagation
 1096 with checkpointing (BP-CHECKPOINTING) on wider but shallower models. In principle, checkpointing
 1097 may offer less benefit for such architectures. However, since wider and shallower models are
 1098 relatively uncommon in practice, we chose not to extend our evaluations in that direction. Further,
 1099 our checkpointing implementation operates at only one granularity (where which activations to checkpoint
 1100 is not controlled by us) due to current Hugging Face library support, which limits finer control over
 1101 which activations are saved or recomputed. Finer-grained checkpointing could reduce memory usage
 1102 further and potentially narrow the memory efficiency gap between BP-CHECKPOINTING and ZO
 1103 methods. However, this would come at the cost of increased runtime, introducing a different trade-off.
 1104 Finally, while we focused on tuning and training LORA layers, an important future direction would
 1105 be to extend our comparison framework to full model finetuning. Such an extension would allow
 1106 for a more complete characterization of the trade-offs between memory, time-to-convergence, and
 1107 accuracy across different gradient computation strategies.

1108

1109 E BROADER IMPACT

1110

1111 Training deep learning models already carries a high environmental cost due to significant energy
 1112 consumption. Our study shows that forward-mode AD and zero-order optimization, despite saving
 1113 memory in some cases, require much longer training times and compute compared to backpropagation
 1114 with checkpointing. This inefficiency leads to greater carbon emissions overall. Therefore, we show
 1115 that optimizing for true computational efficiency (time-to-convergence and compute; along with
 1116 memory consumption) is crucial for reducing the environmental footprint of large-scale training.

1117

1118 We also acknowledge that misinterpreting our results could lead to the premature dismissal of
 1119 forward-mode AD or zero-order methods altogether. While they are not scalable replacements for
 1120 backpropagation in large-scale training, they may still be uniquely suited for small models, non-
 1121 differentiable tasks, or privacy-preserving settings where explicit gradients are inaccessible. Careful
 1122 contextual understanding is necessary when applying our conclusions.

1123

1124 F ADDITIONAL RESULTS

1125

1126 F.1 EXPERIMENTAL VARIANCE AND LOSS CURVES

1127

1128 Table 9 shows variance in reported accuracy numbers of Table 3. For each experiment, we performed
 1129 three independent runs on seeds 0, 1, and 2. For each run, we computed the steady-state accuracy
 1130 (averaged over the final evaluation steps). We then reported the mean (in Table 3) and variance (in
 1131 Table 9) computed across these three steady-state accuracies. Furthermore, Figure 4 illustrates the
 1132 training loss curves with respect to the training time, highlighting the convergence behavior. We have
 1133 only showed the best-performing baselines to maintain clarity.

1134

1135 Figure 5 reports the mean gradient norm across all trainable parameters for all the datasets on LLAMA
 1136 3.1 (8B) model. These curves closely mirror the loss trajectories reported in Figure 4, exhibiting
 1137 similar convergence tendencies across all methods. Specifically, BP-CHECKPOINTING shows the

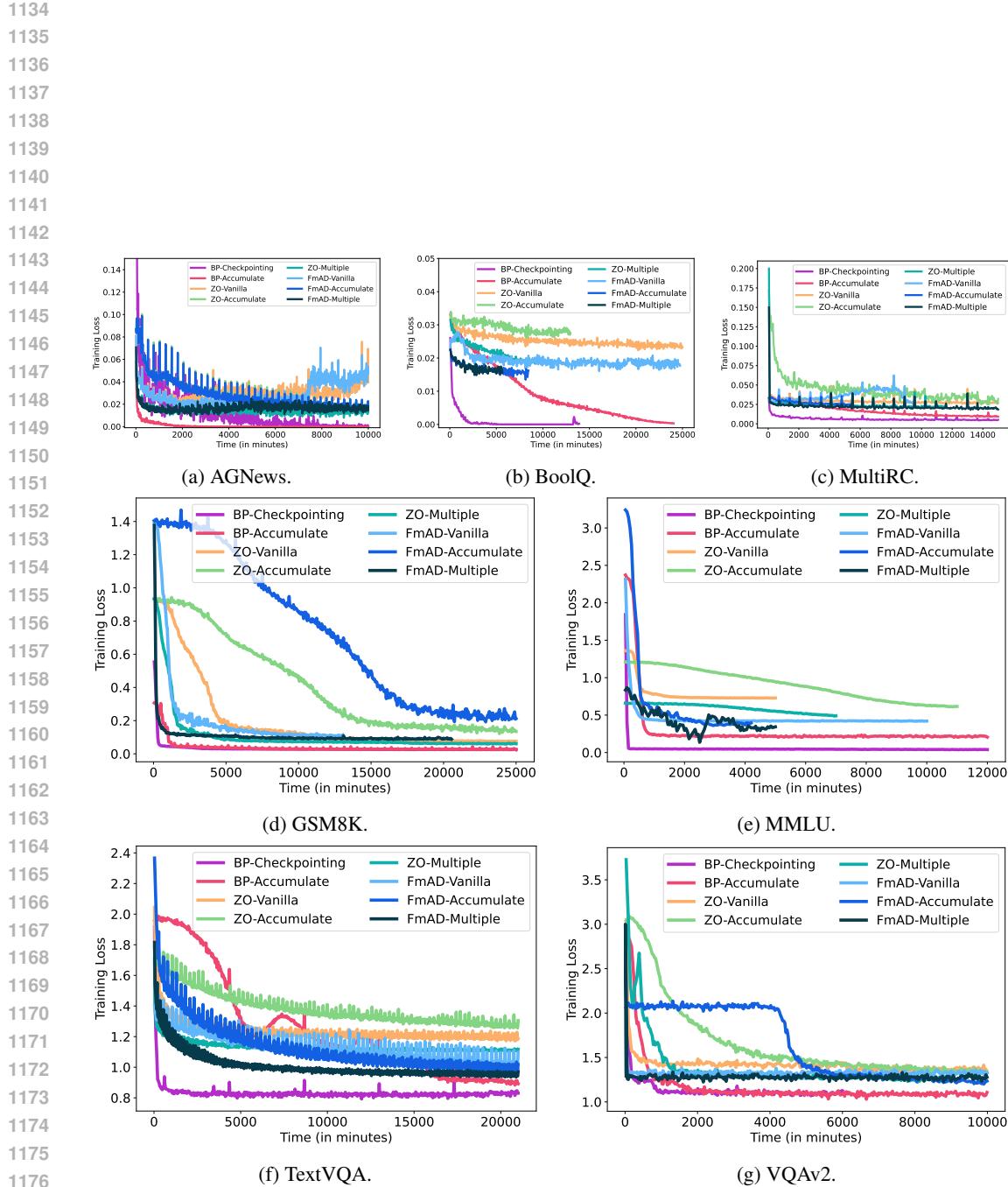


Figure 4: Training loss vs. training time (in minutes) for (top) training LLAMA 3.1 (8B) on three text classification datasets (AGNews, BoolQ, and MultiRC), and (middle) two text generation datasets (GSM8K and MMLU). (bottom) VQAv2 and TextVQA are used to train QWEN 2 VL (7B) on visual question-answering task.

1188 Table 9: Experimental variance (\pm) of test accuracy across three runs with seeds 0, 1, and 2.
1189

1190 Model + Dataset		1191 LLAMA 3.1 (8B)					1192 QWEN 2 VL (7B)	
1193 Method	1194	1195 AGNews	1196 BoolQ	1197 MultiRC	1198 GSM8K	1199 MMLU	1200 VQAv2	1201 TextVQA
BP-VANILLA		0.46	0.54	0.59	0.41	0.63	1.49	0.78
BP-CHECKPOINTING		0.45	0.56	0.62	0.39	0.61	1.52	0.77
BP-ACCUMULATE		0.67	0.78	0.84	0.79	0.69	1.71	0.98
ZO-VANILLA		0.98	0.76	0.8	0.55	0.95	1.22	0.89
ZO-ACCUMULATE		0.84	0.72	0.76	0.53	0.84	1.16	0.85
ZO-MULTIPLE		0.79	0.64	0.67	0.53	0.86	1.13	0.86
ZO-ADAPTIVE		1.02	0.95	1.13	0.84	0.83	0.95	0.78
ZO-SVRG		0.94	1.03	0.92	0.82	0.46	1.02	1.13
ZO-SPARSE		0.53	0.67	0.62	0.34	1.03	0.89	0.9
MEZO		0.86	0.73	0.73	—	—	—	—
FMAD-VANILLA		0.81	0.72	0.64	0.73	0.86	1.34	0.92
FMAD-ACCUMULATE		0.69	0.73	0.80	0.62	0.78	0.91	0.95
FMAD-MULTIPLE		0.85	0.77	0.89	1.04	0.96	0.74	0.83
FMAD-ADAPTIVE		1.63	1.25	1.34	0.95	1.52	1.11	1.31
FMAD-SVRG		1.42	0.96	0.89	1.02	1.44	1.05	1.29
FMAD-SPARSE		0.93	0.75	1.10	0.54	0.67	1.24	0.93

1202
1203
1204
1205
1206
1207
1208
1209 steepest and most stable decay in gradient norm, aligning with its superior convergence behavior
1210 in loss and accuracy. This strengthens the consistency between the theoretical observations of § 3
1211 (which centers on the gradient norm) and our empirical findings of § 4.

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

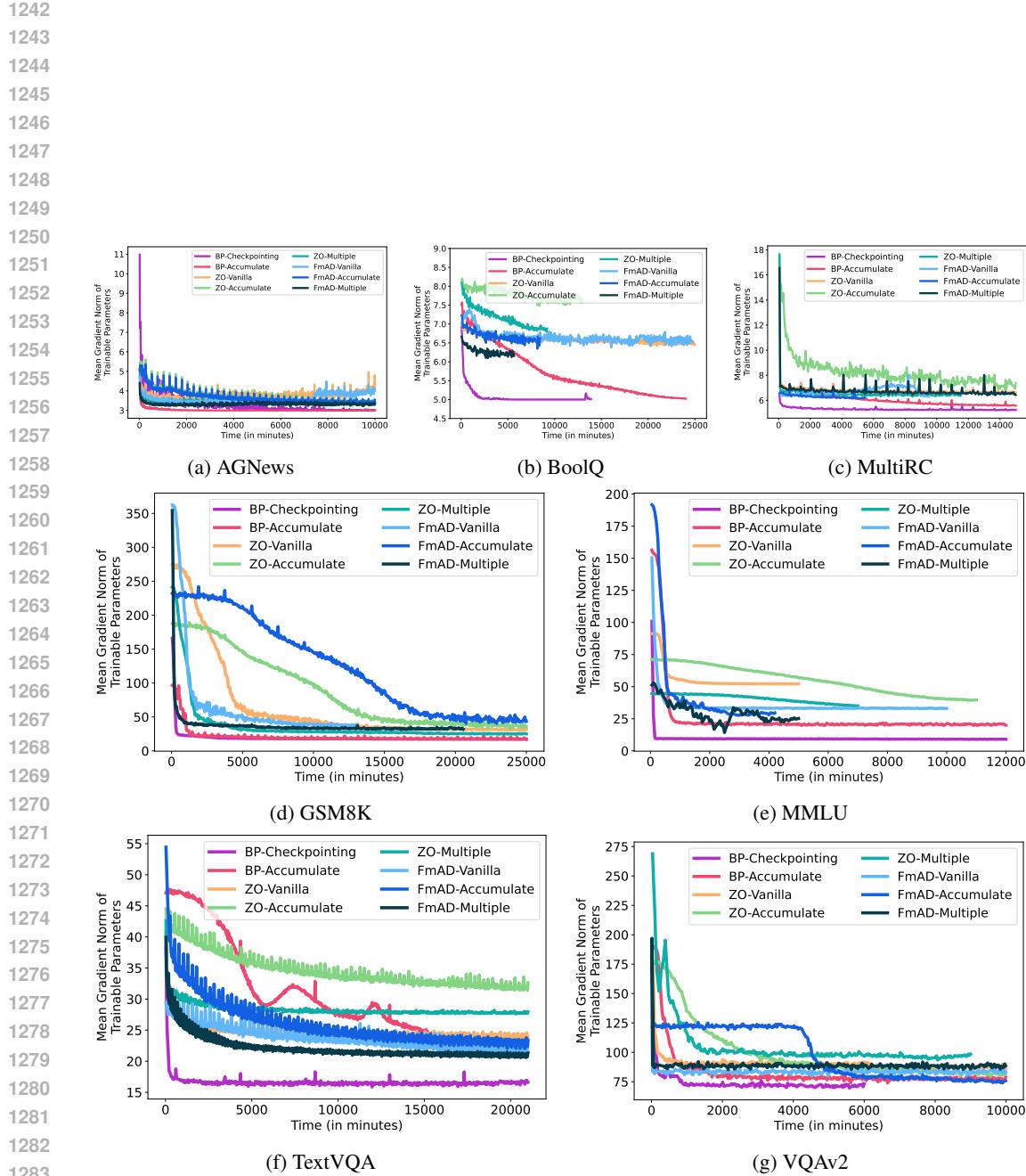


Figure 5: Gradient norm vs. training time (in minutes) for (top) training LLAMA 3.1 (8B) on three text classification datasets (AGNews, BoolQ, and MultiRC), and (middle) two text generation datasets (GSM8K and MMLU). (bottom) VQAv2 and TextVQA are used to train QWEN 2 VL (7B) on visual question-answering task.

1296
1297

F.2 EXPERIMENTS WITH MEDIUM-SIZED MODELS

1298
1299

The goal of these experiments was to investigate whether forward-mode automatic differentiation (FMAD) and zero-order (ZO) optimization could perform competitively when applied to medium-sized models, specifically BERT Base (110M), BERT Large (340M), ROBERTA Base (125M), and ROBERTA Large (350M). While FMAD and ZO have shown some promise on very small-scale problems in prior work (Cobb et al., 2024; Chen et al., 2019; Rostami and Kia, 2024), it remained an open question whether the convergence speed could scale reasonably with model sizes.

1304
1305

Figure 6 highlights a clear and consistent trend: backpropagation (with checkpointing) achieves superior convergence speed and final test accuracy, even for medium-sized models, compared to FMAD and ZO methods. Even for BERT Base (110M weights), FMAD and ZO lag significantly behind backpropagation in terms of convergence rate. While FMAD and ZO eventually approach a comparable final accuracy (with a gap of 0.74–1.66%) for BERT Base, they require substantially more training time to do so.

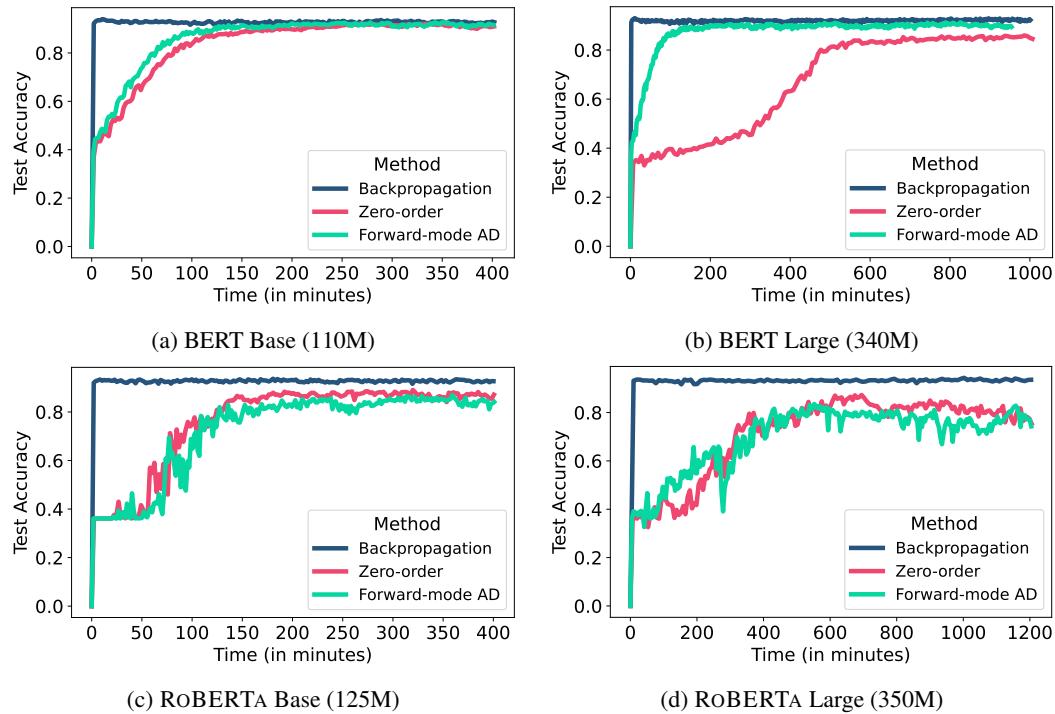
1310
13111323
1324

Figure 6: Accuracy versus training time comparison across Backpropagation (with checkpointing), Zero-order (ZO), and Forward-mode AD (FMAD) on BERT (Base and Large) and ROBERTA (Base and Large). Even at a smaller scale of trainable parameter count, ZO and FMAD either fail to reach to the accuracy of backpropagation (in case of ROBERTA), or takes longer to reach to the desired accuracy (in case of BERT).

1340
1341

As we scale to larger models, BERT Large and ROBERTA variants, the performance of FMAD and ZO deteriorates further. Both methods experience slower convergence, greater instability, and often plateau at lower final accuracies (with a drop of 1.19–6.71% for BERT Large, 6.76–7.62% for ROBERTA Base, 9.33–12.98% for ROBERTA Large) despite extensive training. ZO, in particular, struggles to reach acceptable performance, while FMAD shows increasingly volatile learning curves.

1348
1349

In summary, our experiments confirm that FMAD and ZO are fundamentally limited in their ability to compete with backpropagation in realistic settings. Their inefficiency becomes increasingly pronounced as we evaluate accuracy, along side memory consumption and time-to-convergence.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Table 10: Accuracy of BP, ZO, and FMAD under model size scaling: Only BP-CHECKPOINTING (abbreviated as BP-CHKPT) maintains high accuracy as model size increases.

OPT Variants	Variant Size	Accuracy (\uparrow)
BP-CHKPT	1.3B	94.08
	6.7B	94.35
	13.0B	94.51
ZO-VANILLA	1.3B	73.16
	6.7B	65.75
	13.0B	71.00
FMAD-VANILLA	1.3B	88.28
	6.7B	87.50
	13.0B	77.07

Table 11: Accuracy as the LORA rank increases for OPT 6.7B: BP-CHECKPOINTING remains robust, while FMAD becomes unstable and ZO shows minimal gains.

OPT 6.7B	LoRA Rank	Accuracy (\uparrow)
BP-CHKPT	1	94.35
	16	88.44
	32	85.54
ZO-VANILLA	1	65.75
	16	68.07
	32	68.97
FMAD-VANILLA	1	87.50
	16	jvp = NaN
	32	jvp = NaN

F.3 CHANGING VARIANCE OF RANDOM PERTURBATION SAMPLING

We examine the effect of variance σ^2 of random perturbations which are sampled from Gaussian distribution $\mathcal{N}(0, \sigma^2)$ on the accuracy performance of FMAD and ZO. Figure 7 presents test accuracy over time for different values of σ^2 , ranging from 1 to 10^{-2} for FMAD and from 10^{-2} to 10^{-4} for ZO.

The results reveal a strong sensitivity to the choice of variance: small variances reduce the diversity of perturbations, while large variances introduce excessive noise in high-dimensions, destabilizing training. Both FMAD and ZO achieve their best performance at intermediate values, $\sigma^2 = 1$ for FMAD and $\sigma^2 = 10^{-3}$ for ZO, which balance signal strength and noise. For ZO, reducing the variance from 10^{-3} to 10^{-4} results in a sharp accuracy drop of 13.75%. In contrast, FMAD shows a more gradual decline of 0.94% and 2.27% as σ^2 decreases from 1 to 10^{-1} and 10^{-2} , respectively. The lower optimal variance for ZO arises from its gradient estimator, which includes an explicit division by the perturbation variance to scale the update magnitude (Equation 2). These findings suggest that simply reducing variance of the distribution from which perturbations are sampled does not result in better gradient estimates, nor does it improve convergence.

F.4 REDUCING TRAINABLE PARAMETER COUNT

We investigate how increasing the number of trainable parameters affects performance under BP, ZO and FMAD. Tables 10 and 11 present results across varying model sizes and LORA ranks, respectively. Further comparison of convergence time is available in Figure 8.

In Table 10, we evaluate BP-CHECKPOINTING, ZO-VANILLA, and FMAD-VANILLA on OPT model variants of size 1.3B, 6.7B, and 13B. As the model size increases, BP-CHECKPOINTING consistently maintains high accuracy of $\sim 94\%$. In contrast, ZO and FMAD exhibit noticeable drops in accuracy at larger model scales. Notably, FMAD achieves 88.28% accuracy on the 1.3B model but declines to 77.07% on the 13B model, showing degradation from scaling the count of trainable parameters. This result are consistent with our theoretical findings of convergence error bounded by the trainable parameter count (§3). Table 11 explores accuracy as a function of LORA rank for OPT 6.7B. While BP-CHECKPOINTING degrades gracefully as rank increases (likely due to overfitting), FMAD becomes unstable and fails to converge beyond rank 1, yielding NaN outputs for higher ranks. FMAD’s instability at higher LORA ranks is due to inherent insta-

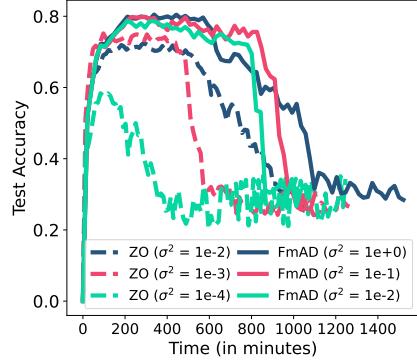


Figure 7: Changing variance σ^2 of random sampling of perturbations. Directly reducing randomness variance does not lead to reduced noise in the gradients.

bility of perturbation-based gradient estimations, which we discuss in Appendix F.5. ZO, while stable, shows limited improvement with increased rank, reaching only 68.97% accuracy at rank 32.

F.5 FAILURE MODE ANALYSIS

In order to understand why variance reduction methods or adaptive optimizers sometimes fail to make FMAD and ZO converge, or converge at a suboptimal accuracy; we present failure mode analysis with different optimizers and SVRG.

F.5.1 CHALLENGES WITH OPTIMIZER CHOICE

Here we discuss a distinct failure mode of FMAD which has been frequently observed in our preliminary experiments: the computed Jacobian-vector products (j_{vp}) abruptly spike in magnitude. These sudden surges lead to disproportionately large gradient updates, destabilizing training and hindering convergence. A similar failure mode has been observed in zero-order (ZO) methods, where the projected gradients, mathematically equivalent to FMAD’s j_{vp} values, exhibit comparable instability.

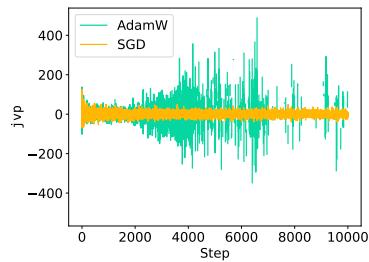


Figure 9: Effect of ADAMW and SGD optimizers on j_{vp} values in FMAD on GSM8K dataset.

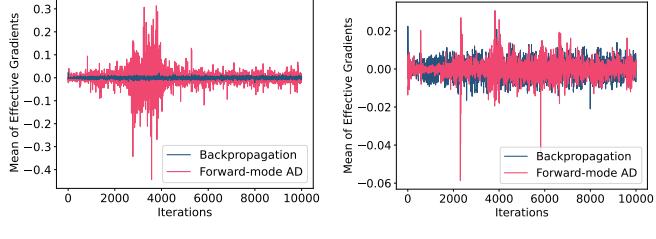


Figure 10: Mean of effective gradients of Backpropagation and Forward-mode AD with ADAMW and SGD optimizers on GSM8K dataset.

Figure 9 illustrates the impact of optimizer choice, specifically ADAMW (adaptive) versus SGD (non-adaptive), on j_{vp} values in FMAD. Under SGD, j_{vp} values remain bounded within a stable range of $[-50, 50]$ for the case of GSM8K dataset. However, with ADAMW, these values exhibit a gradual increase followed by sharp spikes for certain datasets including GSM8K. In some cases, the spikes reach 8–10 \times higher magnitudes than the stable baseline observed with SGD.

Figures 9a and 9b further illustrate the implications of these spikes. Under ADAMW, the effective gradient magnitudes produced by FMAD exhibit substantially higher variance than those from backpropagation, indicating instability and less reliable gradient directions. These inflated updates also increase weight magnitudes, which in turn amplify subsequent j_{vp} evaluations, since these depend on both the current weights and their perturbations. This positive feedback loop can lead to divergence and, eventually, NaN values in j_{vp} computations, as observed in several FMAD runs in Table 11. Even when divergence does not occur, the resulting gradient updates can be excessively noisy or of high magnitude, leading to suboptimal convergence. In contrast, under SGD, the effective gradients computed by FMAD closely mirror those from backpropagation across most iterations, with stable behavior and no evidence of runaway magnitudes. We posit that this cascading rise in magnitude for the case of ADAMW is due to its adaptive nature, where a rolling average of historical and current gradients is computed each iteration, leading to amplification of higher magnitude gradients. In contrast, the impact of j_{vp} spikes is diminished with non-adaptive SGD since the previous iteration’s gradients would have limited effect (to only one iteration’s gradient updates).

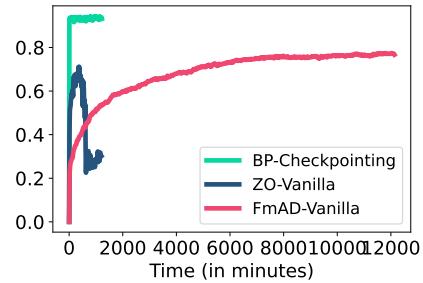
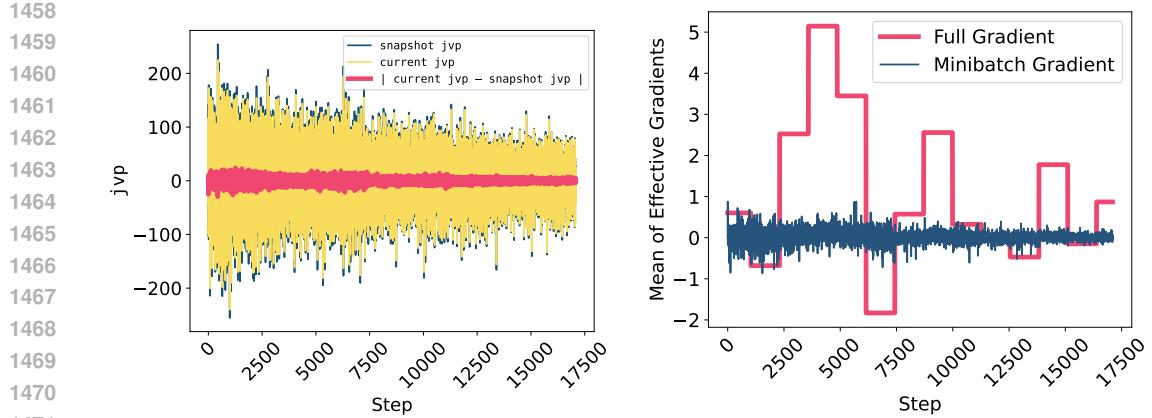


Figure 8: Comparison of convergence time among BP-CHECKPOINTING, FMAD-VANILLA, and ZO-VANILLA with OPT(13B) on AGNews dataset.



(a) The current iteration’s jvp , jvp computed based on the snapshot weights, and the difference between these two values.

(b) Magnitude of the mean effective full gradients (computed at specific epoch intervals) and the current iteration’s mini-batch gradient.

Figure 11: Impact of incorporating SVRG into FMAD on (a) jvp values and the mean of effective full-batch and (b) mini-batch gradients, evaluated on the GSM8K dataset.

This stark contrast highlights a critical interaction between optimizer choice and the numerical stability of FMAD. While ADAMW is widely favored for its adaptive learning rates and regularization capabilities, its use with FMAD (and by extension ZO) can introduce harmful gradient artifacts which are driven by uncontrolled jvp amplification. These results underscore the specific vulnerabilities in gradient estimation methods and point to a need for further study into stabilizing FMAD and ZO for more reliable deployment in large-scale training regimes.

F.5.2 CHALLENGES WITH SVRG

In this section, we discuss a failure mode of SVRG observed in the context of text generation tasks. While SVRG improves performance for both ZO-VANILLA and FMAD-VANILLA baselines by 4.04–11.13 and 1.97–3.86, respectively, in many settings, it leads to performance degradation in certain sequence modeling tasks like GSM8K. Figure 11 illustrates the behavior of jvp values and the corresponding gradients when SVRG is applied to FMAD on the GSM8K dataset. In Figure 11a, we observe that the difference between the jvp computed on the current model weights and the one computed on the snapshot weights is minimal. Consequently, the control variate, the difference between mini-batch gradients at current and snapshot weights, has little impact relative to the magnitude of the full gradient.

This hypothesis is supported by Figure 11b, which shows that the mean of the effective full gradients remains consistently large, while the mini-batch gradient magnitudes are significantly smaller. Because the full gradients are updated only at periodic intervals (every 5 epochs in our case), their inflated magnitude dominates the update direction across multiple steps. This inflation stems from the accumulation of large jvp values during the summation of per-batch gradients, occasionally resulting in outlier gradients with extremely high norms. As a result, the SVRG mechanism fails to provide meaningful variance reduction and instead perpetuates overly large updates, ultimately degrading model performance.

A similar performance degradation was observed in ZO-SVRG (Liu et al., 2018), albeit on a smaller model with approximately 852K parameters. However, that work does not address the scalability challenges of SVRG-based methods in the context of zeroth-order optimization.

F.5.3 IMPROVING STABILITY VIA MULTIPLE-PERTURBATION AND ACCUMULATED-GRADIENT

We further extend our analysis of jvp magnitudes and mean gradient values to the variance-reducing baselines -MULTIPLE (which samples multiple perturbations per iteration and averages the resulting

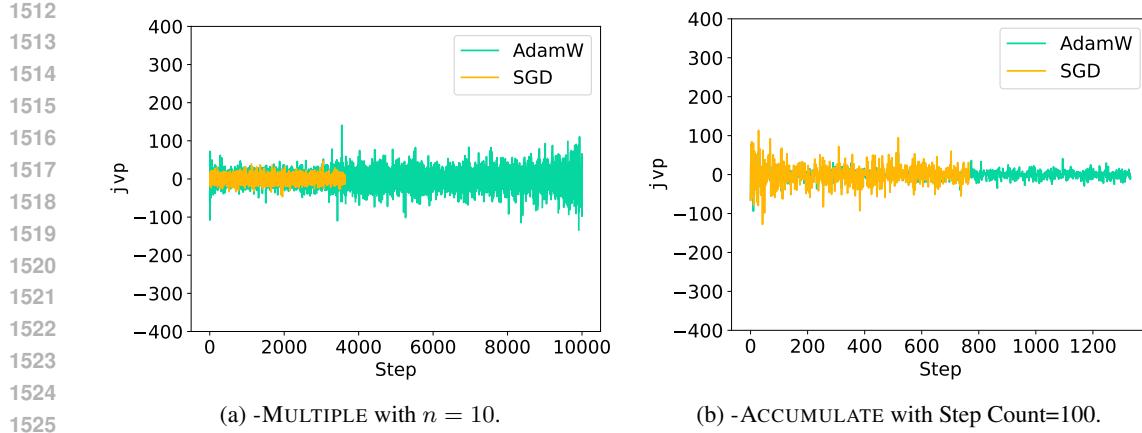


Figure 12: Effect of ADAMW and SGD optimizers on jvp values in FMAD-MULTIPLE and FMAD-ACCUMULATE on GSM8K dataset.

gradients) and -ACCUMULATE (which uses a single perturbation per iteration but accumulates gradients over several steps before applying an update).

Figure 12 reports the corresponding jvp trajectories. Note that the SGD baseline contains fewer plotted steps because it converged substantially earlier than the other configurations, and the experiment was therefore terminated once convergence was reached. In contrast to the instability observed for FMAD-VANILLA in Figure 9, both baselines exhibit stable jvp magnitudes even under ADAMW. This stability, in turn, yields lower error and more reliable convergence. This behavior can be attributed to the inherent variance-reduction mechanisms in these baselines. In -MULTIPLE, averaging *multiple* jvp -induced gradient estimates suppresses the high-variance noise that otherwise interacts negatively with ADAMW’s adaptive accumulators. Similarly, -ACCUMULATE delays updates and aggregates gradient signals across several steps, effectively smoothing out perturbation-induced fluctuations before the optimizer sees them. In both cases, the optimizer receives a more stable and lower-variance gradient stream, preventing the cascading amplification effects that cause jvp spikes in FMAD-VANILLA. As a result, these variance-reduction strategies mitigate the optimizer–noise interaction responsible for divergence, leading to substantially more stable training dynamics.

Figure 13 reports the mean gradient magnitudes. The curves for Backpropagation and FMAD are identical to those shown previously in Figure 10. In addition, we include the results for FMAD-MULTIPLE and FMAD-ACCUMULATE. Unlike the pronounced gradient-magnitude spikes observed in FMAD, both -MULTIPLE and -ACCUMULATE exhibit markedly steadier behavior under both optimizers ADAMW and SGD. Notably, ACCUMULATE displays the greatest stability. This is expected: accumulating gradients over several iterations before applying an update effectively averages out the perturbation-induced noise and prevents high-variance signals from being directly fed into the optimizer’s adaptive state. As a result, ADAMW receives smoother, lower-variance updates, which suppresses the positive feedback loop responsible for the divergence in FMAD. In contrast, MULTIPLE exhibits a slight upward drift near the end of training when used with ADAMW. This behavior is consistent with the fact that, although multiple perturbations are averaged per iteration, the optimizer still processes an update at every step; thus, residual noise (especially as weights grow in magnitude) can accumulate in the adaptive moments and produce a mild increase in gradient scale. Nevertheless, this increase remains small relative to the uncontrolled spikes in FMAD-VANILLA, confirming that perturbation-level averaging substantially reduces variance. Finally, note that ACCUMULATE has fewer points plotted because it performs fewer parameter-update steps; gradients are accumulated locally and applied only periodically, resulting in a lower number of optimizer interactions reflected in the visualization.

F.6 EFFECT OF PERTURBATION DISTRIBUTIONS AND NORMALIZATION STRATEGIES

We additionally experimented with perturbation sampling strategies: (a) Sampling from a normal distribution and using the perturbations as-is (unnormalized), (b) Sampling from a normal distri-

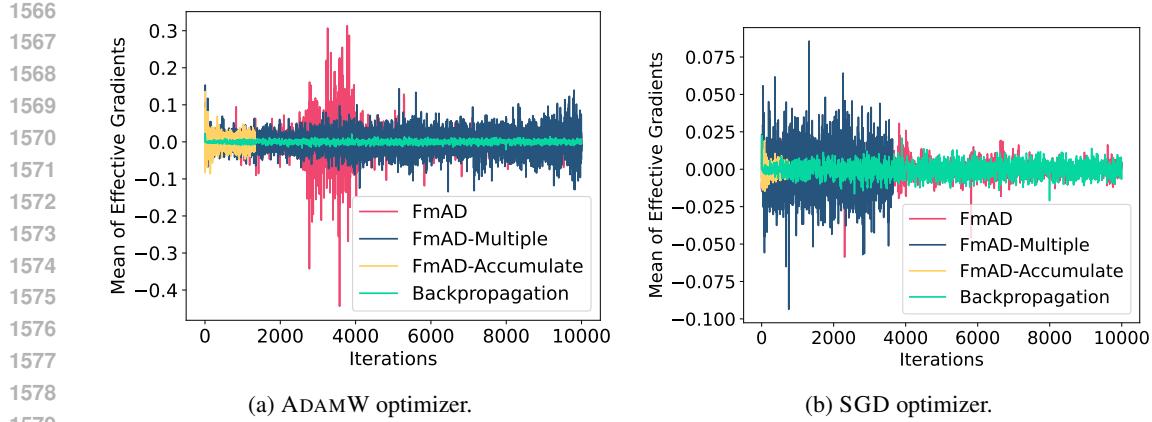


Figure 13: Mean of effective gradients of Backpropagation, FmAD, FmAD-MULTIPLE ($n = 10$), and FmAD-ACCUMULATE (Step Count=100) with ADAMW and SGD optimizers on GSM8K dataset.

bution and normalizing the perturbations, (c) Sampling from a uniform distribution and using the perturbations as-is (unnormalized), and (d) Sampling from a uniform distribution and normalizing the perturbations.

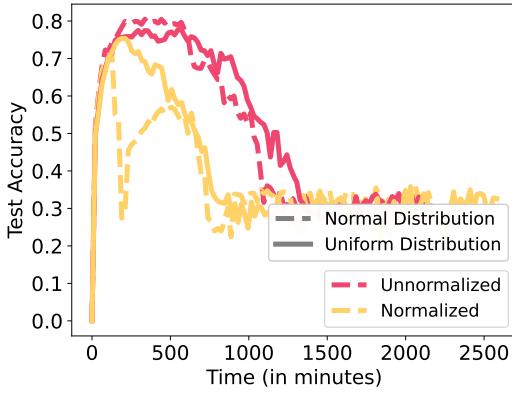


Figure 14: Finetuning LLAMA 3.1 (8B) on the AG-News dataset using FmAD, comparing perturbations drawn from normal vs. uniform distributions, with both normalized and unnormalized variants.

advantage of the normal distribution can be attributed to its heavier tails, which naturally introduce a broader range of perturbation magnitudes. This diversity more closely mimics the statistical structure of true gradients in large neural networks, allowing the estimator to explore directions of both small and moderately large curvature. In contrast, the unnormalized uniform distribution produces perturbations bounded within a fixed interval, limiting the range of effective step sizes and resulting in marginally less efficient gradient estimation.

Our findings are as follows. Normalization consistently reduces accuracy for both the normal and uniform variants. This degradation arises because normalization forces every perturbation to have identical magnitude, eliminating natural variability in scale that carries useful information for estimating the local curvature of the loss landscape. By projecting all perturbations onto a fixed-radius hypersphere, the method reduces the effective signal-to-noise ratio of the $\mathbb{J}_{\mathbb{V}}$ estimate and prevents larger, informative perturbations (particularly in high-curvature regions) from contributing to learning. As a result, the gradients become less expressive and exhibit higher relative variance, leading to poorer optimization.

Among the unnormalized variants, sampling from a normal distribution yields the strongest performance, with the unnormalized uniform distribution performing comparably closely, before both resulting in overfitting. The slight

F.7 COMPARISON AGAINST SIGNZO

Table 12 shows a comparison of accuracy, memory usage, compute cost, and convergence time for BP-CHECKPOINTING, ZO, SIGNZO, ZO-ACCUMULATE, and ZO-MULTIPLE when finetuning LLAMA-3.1 (8B) on AGNews.

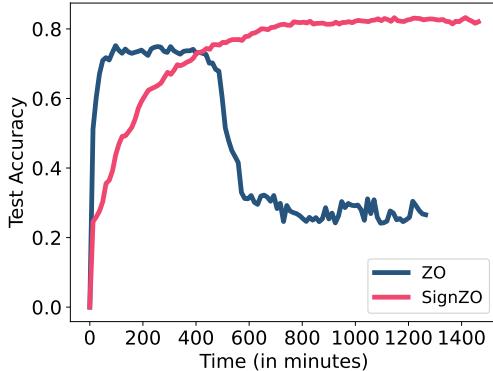
1620 Table 12: Performance, memory, and efficiency trade-offs across BP-CHECKPOINTING, ZO baselines,
 1621 and SIGNZO for finetuning LLAMA-3.1 (8B) on AGNews.

	Accuracy	Memory Consumption (in GB)	Compute Cost (in FLOPs)	Wallclock Convergence Time (in seconds)
BP-CHECKPOINTING	93.8%	11.66	65.2×10^4	16,691
ZO	73.6%	5.99	251.2×10^4	21,074
SIGNZO	82.6%	5.99	251.9×10^4	56,892
ZO-ACCUMULATE	85.8%	5.99	2165.1×10^4	181,510
ZO-MULTIPLE	86.7%	5.99	2425×10^4	201,747

1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636 **Accuracy Comparison:** Although SIGNZO improves stability relative to vanilla ZO (as
 1637 reflected in its smoother learning trajectory in the Figure 15) its overall accuracy per-
 1638 formance remains significantly below the backpropagation baseline. On AGNews with
 1639 LLAMA3.1 (8B), SIGNZO reaches 82.6% accuracy, which is a noticeable improvement over
 1640 the 73.6% achieved by standard ZO but still far from the 93.8% obtained via backpropa-
 1641 gation. This gap indicates that the sign-based estimator, while stabilizing the update direc-
 1642 tion, does not provide sufficient gradient resolution to match the fidelity of true gradients.
 1643 SIGNZO also underperforms compared to the
 1644 variance-reducing methods (ZO-MULTIPLE and
 1645 ZO-ACCUMULATE). ZO-MULTIPLE and ZO-
 1646 ACCUMULATE reach 86–87% accuracy, and al-
 1647 though they require larger FLOPs and longer
 1648 runtimes, they converge to higher-quality solu-
 1649 tions.

1650 **Memory, Computation cost, and Conver-
 1651 gence Time Comparison:** SIGNZO matches
 1652 the memory footprint of other ZO baselines
 1653 (5.99 GB) and maintains similar FLOP-level
 1654 compute costs. However, its wall-clock conver-
 1655 gence time is substantially longer (≈ 56.9 sec-
 1656 onds), more than $2.7 \times$ slower than ZO and $3.4 \times$
 1657 slower than BP-Checkpointing. The longer con-
 1658 vergence time stems from the fact that stabiliz-
 1659 ing noisy ZO directions via sign compression
 1660 requires more optimization steps to make mean-
 1661 ingful progress. Although Table 12 reports only
 1662 wall-clock time, SIGNZO and ZO have identical
 1663 per-iteration runtime, the only difference between them is that SIGNZO applies a sign-compressed
 1664 update during `optimizer.step()`, which does not affect iteration cost. Consequently, time on
 1665 the x-axis is effectively proportional to the number of optimization steps, allowing us to conclude that
 1666 the longer wall-clock time directly reflects the larger number of iterations required for convergence.

1667 Overall, SIGNZO improves upon naïve ZO in terms of final accuracy (82.6% vs. 73.6%), but
 1668 does so by requiring substantially more computation: although its per-iteration FLOPs are nearly
 1669 identical to ZO, its wall-clock convergence time is $2.7 \times$ longer (56.9k s vs. 21.1k s). Compared to
 1670 BP-Checkpointing, SIGNZO achieves a markedly smaller memory footprint (5.99 GB vs. 11.66 GB),
 1671 but only by trading off both efficiency and performance, requiring $\approx 3.4 \times$ longer time to converge,
 1672 $\approx 3.9 \times$ more compute, and yielding 11.2 percentage points lower accuracy. Furthermore, while
 1673 SIGNZO converges faster than the variance-reduced ZO-Accumulate and ZO-Multiple baselines,
 1674 those methods achieve higher accuracies (85.8% and 86.7%), reinforcing the broader trend observed
 1675 in our paper: stability alone is not sufficient, effective ZO training at scale also requires variance-
 1676 reduction mechanisms to improve both accuracy and efficiency.

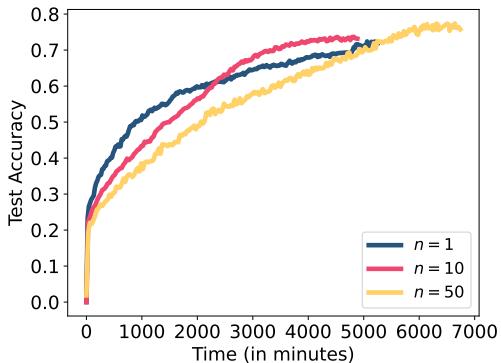


1677 Figure 15: SignZO against ZO for training LLAMA
 1678 3.1 (8B) on AGNews dataset.

1674 **F.8 SENSITIVITY TO PERTURBATION BUDGET FOR OPT13B**

1675
 1676 Figure 16 shows the training of the OPT (13B) model on the AGNews dataset using ZO with varying
 1677 perturbation budgets n .

1678
 1679 For $n = 1$, convergence occurs around 5000
 1680 minutes, reaching an accuracy of 71%. With
 1681 $n = 10$, convergence also occurs near 5000 min-
 1682 utes, with a slight improvement in accuracy to
 1683 72%. Increasing the budget further to $n = 50$
 1684 improves the final accuracy to 75.5%, but con-
 1685 vergence is delayed until approximately 6500
 1686 minutes. This behavior can be explained by
 1687 the trade-off between gradient estimate quality
 1688 and computational overhead: larger pertur-
 1689 bation budgets reduce the variance of the `jvp`
 1690 estimates, leading to more accurate gradients and
 1691 higher final accuracy, but in this case, the per-
 1692 turbations are applied sequentially due to hard-
 1693 ware limitations, which increases wall-clock time per
 1694 iteration. Additionally, small increases in n (e.g.,
 1695 from 1 to 10) yield only modest accuracy gains
 1696 because even a few perturbations are sufficient
 1697 to capture enough directional information for
 1698 effective early-stage training. Overall, these re-
 1699 sults highlight a trade-off between perturbation
 1700 budget, convergence speed, and final accuracy:
 1701 larger budgets improve the quality of gradient
 1702 estimates at the cost of increased computa-
 1703 tion time, particularly when sequential execu-
 1704 tion is required.



1705 Figure 16: Training the OPT (13B) model on the
 1706 AGNews dataset using ZO with varying per-
 1707 turbation budgets n . Larger budgets reduce varian-
 1708 ce in the `jvp` estimates, improving final accuracy,
 1709 but sequential application of perturbations under
 1710 resource constraints increases wallclock conver-
 1711 gence time.

1703 **G SIGNAL PROPAGATION FOR GRADIENT COMPUTATION**

1704
 1705 A key difference between BP and FMAD/ZO methods lies in how they propagate the loss signal to
 1706 compute weight updates. BP computes the derivative of the loss \mathcal{L} with respect to each weight w_i ,
 1707 effectively mapping changes in the loss to precise updates in the parameter space. The gradients of
 1708 the intermediate activations, computed during the backward pass, are also derived from $\delta\mathcal{L}$, allowing
 1709 the loss signal to guide every stage of the update. This direct path from the loss to the parameters
 1710 makes BP a **loss-to-weights** approach, where the signal flows backward through the network in a
 1711 structured and deterministic way.

1712
 1713 In contrast, both FMAD and ZO adopt a **weights-to-loss** perspective: they estimate how perturbations
 1714 in the weights, $\delta\mathbf{w} = \mathbf{v}$; affect the loss, $\delta\mathcal{L}$. The forward-mode Jacobian-vector product (`jvp`) and
 1715 the ZO projected gradient scalar both incorporate the resulting change in the loss, but they do so
 1716 indirectly. Specifically, they multiply $\delta\mathcal{L}$ by the perturbation direction \mathbf{v} to approximate weight
 1717 gradients (as detailed in § 2). However, in these approaches, the intermediate changes δy_p (which
 1718 influence $\delta\mathcal{L}$) are driven by the initial perturbations $\delta w_p \sim \mathcal{N}(0, I_d)$; not by the loss. As a result,
 1719 the variance introduced at the input level through the perturbations propagates forward through the
 1720 network, ultimately contaminating the gradient signal. This lack of an explicit loss-driven mechanism
 1721 for shaping activation gradients leads to noisier gradient updates. Consequently, FMAD and ZO
 1722 require stricter step size constraints (see Theorems I.8 and I.9) and exhibit degraded convergence
 1723 behavior.

1724
 1725 Moreover, both FMAD and ZO optimization methods incur additional noise and estimation error
 1726 compared to backpropagation. This noise is not just a side effect, it is an inherent consequence
 1727 of using random perturbations to estimate gradients. In both FMAD and ZO, the injection of
 1728 perturbations $\delta\mathbf{w} \sim \mathcal{N}(0, I_d)$ is core to the algorithmic process, and the resulting activation (δy_i) and
 1729 loss variations ($\delta\mathcal{L}$) carry this randomness forward. Therefore, the gradient estimates vary depending
 1730 on the sampled perturbation, making noise a deterministic outcome of the method itself.

1728 In essence, while BP precisely channels loss information to guide weight updates, FMAD and ZO
 1729 rely on stochastic approximations that make their updates fundamentally noisy and less targeted.
 1730

1731 H COMPUTATIONAL COMPLEXITY

1732 In this section, we analyze the computational complexity of different methods used to compute
 1733 gradients in a neural network setting. We begin with a one-layer neural network, providing a
 1734 detailed breakdown of the computational cost for the forward pass, backpropagation, zero-order
 1735 optimization, and forward-mode automatic differentiation. Understanding these complexities is
 1736 essential for evaluating the efficiency of gradient computation methods, especially in resource-
 1737 constrained environments. Empirical computational cost of the gradient computation methods is
 1738 shown in §4.5.
 1739

1740 H.1 BASICS

1741 In this section, we analyze the computational complexity of a one-layer neural network f with weight
 1742 matrix $w \in \mathbb{R}^{d \times m}$. The network takes an input $x \in \mathbb{R}^d$ and produces an output $y \in \mathbb{R}^m$. While we
 1743 focus on a single-layer setting for clarity, the analysis naturally extends to a deep neural network with
 1744 L layers, each with weight matrix w_ℓ for $\ell \in [L]$.
 1745

1746 **Forward Pass.** Since all three gradient computation methods share the same forward pass, we
 1747 first establish its computational complexity. The forward pass consists of a matrix multiplication
 1748 $y = xw$, where x has dimensions $1 \times d$ and w has dimensions $d \times m$. This results in a computational
 1749 complexity of $\mathcal{O}(dm)$.
 1750

1751 H.2 BACKPROPAGATION

1752 Backpropagation requires computing the gradient of the loss \mathcal{L} with respect to the weights, given by
 1753

$$1754 \frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial y} \cdot \frac{\partial y}{\partial w}.$$

1755 The first term, $\frac{\partial \mathcal{L}}{\partial y}$, involves differentiating the loss with respect to the output, which has a computa-
 1756 tional complexity of $\mathcal{O}(m)$. The second term, $\frac{\partial y}{\partial w}$, follows from the linear transformation $y = xw$,
 1757 contributing a complexity of $\mathcal{O}(dm)$. The final gradient computation involves the multiplication of a
 1758 $1 \times m$ matrix with an $m \times d$ matrix, resulting in an additional complexity of $\mathcal{O}(dm)$.
 1759

1760 Although activation functions introduce constant factors, 3 for the last layer and 5 for intermediate
 1761 layers, these constants do not affect the asymptotic complexity. Hence, the overall computational
 1762 complexity of backpropagation remains $\mathcal{O}(dm)$.
 1763

1764 H.3 BACKPROPAGATION WITH CHECKPOINTING

1765 Checkpointing builds on standard backpropagation by trading memory for additional computation.
 1766 Instead of storing all intermediate activations, only selected layers are checkpointed, and discarded
 1767 activations are recomputed as needed during the backward pass.
 1768

1769 This recomputation introduces an overhead, resulting in a total compute complexity of $\mathcal{O}(dm \log p)$
 1770 for a network with p layers Griewank and Walther (2000). Here, the $\log p$ factor reflects the optimal
 1771 checkpointing schedule, capturing the additional cost of recomputing intermediate activations while
 1772 still reducing peak memory usage compared to standard backpropagation. In this way, checkpointing
 1773 offers a controlled trade-off between memory efficiency and computational overhead, extending the
 1774 base $\mathcal{O}(dm)$ cost of standard backpropagation.
 1775

1776 H.4 ZERO-ORDER OPTIMIZATION

1777 The zero-order optimization method with central finite differences involves perturbing the weights
 1778 twice, evaluating at $(w + \epsilon v)$ and $(w - \epsilon v)$, where $v \in \mathbb{R}^{d \times m}$ is a randomly sampled perturbation
 1779 and $\epsilon \in \mathbb{R}$ is a small step size. The element-wise multiplication ϵv incurs a computational cost of
 1780

1782 $\mathcal{O}(dm)$, as does the addition and subtraction with w . Since each perturbation requires evaluating the
 1783 function at the perturbed points, the function evaluations $f(\mathbf{w} \pm \epsilon \mathbf{v})$ also contribute a complexity of
 1784 $\mathcal{O}(dm)$.

1785 With n such perturbations per iteration, the total computational cost sums to $\mathcal{O}(ndm)$, where n is the
 1786 number of perturbations used in each iteration.
 1787

1788 Compared to the forward pass on the original weights w , zero-order adds a constant of 4, which gets
 1789 absorbed in $\mathcal{O}(ndm)$.
 1790

1791 H.5 FORWARD-MODE AD

1792 The `jvp` (Jacobian-vector product) computation incurs a complexity of $\mathcal{O}(dm)$, as it partially
 1793 computes $\frac{\partial \mathcal{L}}{\partial w}$. The resulting `jvp` is then multiplied with the perturbation vector \mathbf{v} to obtain the
 1794 weight gradient for \mathbf{w} . Since \mathbf{v} has dimensions $d \times m$, this multiplication also has a computational
 1795 complexity of $\mathcal{O}(dm)$.
 1796

1797 Repeating this process n times for n perturbations per iteration leads to a total computational cost of
 1798 $\mathcal{O}(ndm)$.
 1799

1800 I PROOFS OF CONVERGENCE BOUNDS

1801 This section includes the details on upper error bounds of all three gradient computation methods:
 1802 Backpropagation, Zero-order optimization, and Forward-mode Auto Differentiation.
 1803

1804 I.1 BASICS

1805 All examples of gradient computation methods are based on a function f , which, in the context of
 1806 machine learning, corresponds to a neural network. This function f is composed of nested functions f_i ,
 1807 $i \in [p]$; where each function corresponds to an intermediate output (or activation) $y_i = f_i(w_i, y_{i-1})$,
 1808 generated from the input weights w_i and previous activation y_{i-1} . y_0 is set to x , which can be data
 1809 points in ML. We assume that x is fixed, for the ease of exposition. The input weights are represented
 1810 by the vector $\mathbf{w} = w_1, w_2, \dots, w_p$, where each $w_{[1, \dots, p]} \in \mathbb{R}^{[m_1, \dots, m_p]}$. The intermediate outputs,
 1811 or activations, are denoted by $\mathbf{y} = y_1, \dots, y_p$. The final output is $y = y_p = f(\mathbf{w}, x) \in \mathbb{R}^n$, where
 1812 typically $n \ll m_i$ for all $i \in [p]$. The loss function $\mathcal{L}(y, \hat{y}) \in \mathbb{R}$ is then computed to measure the
 1813 difference between the predicted output y and the true target values \hat{y} .
 1814

1815 With gradient descent, one update to the weights \mathbf{w} looks like this,
 1816

$$1817 \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t), \quad (3)$$

1818 where t is the iteration count, and η is the learning rate.
 1819

1820 The objective is to minimize $f(\mathbf{w})$: $\min_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w})$.
 1821

1822 **Definition I.1** (Optimality Gap). The optimality gap at iteration t is defined as the difference between
 1823 the function value at the current iterate \mathbf{w}_t and the function value at an optimal solution \mathbf{w}^* :
 1824

$$1825 \Delta_t = f(\mathbf{w}_t) - f(\mathbf{w}^*) \quad (4)$$

1826 The optimality gap quantifies how far the current function value is from the optimal value. In
 1827 convergence analysis, the goal is to show that this gap decreases over iterations.
 1828

1829 I.2 ASSUMPTIONS

1830 **Assumption I.2** (Smoothness). Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth, meaning that its gradient is Lipschitz
 1831 continuous with constant $L > 0$. That is, for all $\mathbf{w}, \mathbf{w}' \in \mathbb{R}^d$, the function f satisfies,
 1832

$$1833 ||\nabla f(\mathbf{w}') - \nabla f(\mathbf{w})|| \leq L ||\mathbf{w}' - \mathbf{w}||. \quad (5)$$

1836 I.3 LEMMAS
1837

1838 **Lemma I.3** (Bias of Gradient Estimate of the Central Finite Difference). *Let $g(\mathbf{v})$ be the gradient
1839 estimate obtained using the central finite difference method with a perturbation vector $\mathbf{v} \sim \mathcal{N}(0, I_d)$.
1840 Then, the expectation of the estimator satisfies*

$$1841 \quad \mathbb{E}_{\mathbf{v}}[g(\mathbf{v})] = \nabla f(\mathbf{w}), \quad (6)$$

1843 *implying that the central finite difference gradient estimator is unbiased up to first-order error terms.
1844 Furthermore, the second moment of the estimator satisfies*

$$1845 \quad \mathbb{E}_{\mathbf{v}} [\|g(\mathbf{v})\|^2] = \|\nabla f(\mathbf{w})\|^2(d+2) + \mathcal{O}(\epsilon^2)d. \quad (7)$$

1849 *Proof.* We start with one evaluation of the central finite difference, for a perturbation $\mathbf{v} \in \mathbb{R}^d$. The
1850 full derivation is given in Theorem I.8,
1851

$$1852 \quad g(\mathbf{v}) = ((\mathbf{v}^\top \nabla f(\mathbf{w}))\mathbf{v} + \mathcal{O}(\epsilon)\mathbf{v}). \quad (8)$$

1854 In order to measure the bias of the above gradient estimate, we take expectation with respect to the
1855 randomness of \mathbf{v} ,

$$1856 \quad \mathbb{E}_{\mathbf{v}}[g(\mathbf{v})] = \mathbb{E}_{\mathbf{v}}[(\mathbf{v}^\top \nabla f(\mathbf{w}))\mathbf{v} + \mathcal{O}(\epsilon)\mathbf{v}] \quad (9)$$

$$1857 \quad = \nabla f(\mathbf{w})\mathbb{E}_{\mathbf{v}}[\mathbf{v}^\top \mathbf{v}] + \mathcal{O}(\epsilon)\mathbb{E}_{\mathbf{v}}[\mathbf{v}] \quad (10)$$

$$1859 \quad = \nabla f(\mathbf{w})I_d + \mathcal{O}(\epsilon) \cdot 0 \quad (\text{since } \mathbf{v} \sim \mathcal{N}(0, I_d)) \quad (11)$$

$$1860 \quad \therefore \mathbb{E}_{\mathbf{v}}[g(\mathbf{v})] = \nabla f(\mathbf{w}). \quad (12)$$

1861 This shows that the estimator is unbiased.
1862

1863 Now, we analyze the second moment of the estimator:

$$1865 \quad \mathbb{E}_{\mathbf{v}}[\|g(\mathbf{v})\|^2] = \mathbb{E}_{\mathbf{v}}[\|((\mathbf{v}^\top \nabla f(\mathbf{w}))\mathbf{v} + \mathcal{O}(\epsilon)\mathbf{v})\|^2] \quad (13)$$

$$1866 \quad = \mathbb{E}_{\mathbf{v}}[(\mathbf{v}^\top \nabla f(\mathbf{w}))^2\|\mathbf{v}\|^2] + \mathcal{O}(\epsilon^2)\mathbb{E}_{\mathbf{v}}[\|\mathbf{v}\|^2]. \quad (14)$$

1868 Using the known expectation property of Gaussian vectors:

$$1870 \quad \mathbb{E}[\mathbf{v}\mathbf{v}^\top \|\mathbf{v}\|^2] = (d+2)I_d, \quad (15)$$

1871 we obtain:

$$1873 \quad \mathbb{E}_{\mathbf{v}}[\|g(\mathbf{v})\|^2] = \mathbb{E}_{\mathbf{v}}[\text{Tr}((\mathbf{v}\mathbf{v}^\top)\nabla f(\mathbf{w})\nabla f(\mathbf{w})^\top\mathbf{v}\mathbf{v}^\top)] + \mathcal{O}(\epsilon^2)d \quad (16)$$

$$1874 \quad = \text{Tr}(\nabla f(\mathbf{w})\nabla f(\mathbf{w})^\top)(d+2) + \mathcal{O}(\epsilon^2)d \quad (17)$$

$$1876 \quad = \|\nabla f(\mathbf{w})\|^2(d+2) + \mathcal{O}(\epsilon^2)d. \quad (18)$$

1877 \square
1878

1879 **Lemma I.4** (Variance of Gradient Estimate of the Central Finite Difference). *Let $\hat{g}(\mathbf{v})$ be the central
1880 finite difference gradient estimator using n perturbations $\mathbf{v}_1, \dots, \mathbf{v}_n \sim \mathcal{N}(0, I_d)$, given by
1881*

$$1882 \quad \hat{g}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n g(\mathbf{v}_i), \quad \text{where} \quad g(\mathbf{v}_i) = \frac{f(\mathbf{w} + \epsilon\mathbf{v}_i) - f(\mathbf{w} - \epsilon\mathbf{v}_i)}{2\epsilon} \mathbf{v}_i. \quad (19)$$

1885 Assuming the finite-difference step ϵ , the variance of the estimator satisfies:

$$1886 \quad \text{Var}[\hat{g}(\mathbf{w})] = \frac{1}{n} (\|\nabla f(\mathbf{w})\|^2(d+1) + \mathcal{O}(\epsilon^2)d). \quad (20)$$

1888 This result shows that the variance of the gradient estimator scales as $\mathcal{O}((d+1)/n)$, which quantifies
1889 how the dimension d and the number of samples n influence the estimator's variance.

1890 *Proof.* We can derive the variance of the estimator
 1891

$$1892 \hat{g}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n g(\mathbf{v}_i), \text{ with } g(\mathbf{v}_i) = \frac{f(\mathbf{w} + \epsilon \mathbf{v}_i) - f(\mathbf{w} - \epsilon \mathbf{v}_i)}{2\epsilon} \mathbf{v}_i$$

1893 by computing
 1894

$$1895 \text{Var}[\hat{g}(\mathbf{w})] = \mathbb{E}_{\mathbf{v}}[||\hat{g}(\mathbf{w})||^2] - ||\mathbb{E}_{\mathbf{v}}[\hat{g}(\mathbf{w})]||^2. \quad (21)$$

1896 For clarity, in the following we assume that the finite-difference step is chosen so that the bias is
 1897 negligible (i.e. the estimator is unbiased according to Lemma I.3, so that $\mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_i)] = \nabla f(\mathbf{w})$ and
 1898 $\mathbb{E}_{\mathbf{v}}[\hat{g}(\mathbf{w})] = \nabla f(\mathbf{w})$. (We can add the higher-order remainder later.)
 1899

1900 We write the second moment (squared norm) of \hat{g} as
 1901

$$1902 \mathbb{E}_{\mathbf{v}}[||\hat{g}(\mathbf{w})||^2] = \mathbb{E}_{\mathbf{v}} \left[\left\| \frac{1}{n} \sum_{i=1}^n g(\mathbf{v}_i) \right\|^2 \right] = \frac{1}{n^2} \mathbb{E}_{\mathbf{v}} \left[\sum_{i=1}^n \sum_{j=1}^n g(\mathbf{v}_i)^\top g(\mathbf{v}_j) \right]. \quad (22)$$

1903 We split the sum into diagonal and off-diagonal parts:
 1904

$$1905 \mathbb{E}_{\mathbf{v}}[||\hat{g}(\mathbf{w})||^2] = \frac{1}{n^2} \left(\sum_{i=1}^n \mathbb{E}_{\mathbf{v}}[||g(\mathbf{v}_i)||^2] + \sum_{i \neq j} \mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_i)^\top g(\mathbf{v}_j)] \right). \quad (23)$$

1906 Since the g_i are independent,
 1907

$$1908 \mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_i)^\top g(\mathbf{v}_j)] = \mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_i)]^\top \mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_j)] = \nabla f(\mathbf{w})^\top \nabla f(\mathbf{w}) = ||\nabla f(\mathbf{w})||^2 \quad \text{for } i \neq j. \quad (24)$$

1909 Thus,

$$1910 \mathbb{E}_{\mathbf{v}}[||\hat{g}(\mathbf{w})||^2] = \frac{1}{n^2} (n \mathbb{E}_{\mathbf{v}}[||g(\mathbf{v})||^2] + n(n-1) ||\nabla f(\mathbf{w})||^2). \quad (25)$$

1911 Plugging the above result, along with the result derived from Lemma I.3 on $||\mathbb{E}_{\mathbf{v}}[\hat{g}(\mathbf{w})]||^2 = ||\nabla f(\mathbf{w})||^2$, in Equation 21,

$$1912 \text{Var}[\hat{g}(\mathbf{w})] = \frac{1}{n^2} (n \mathbb{E}_{\mathbf{v}}[||g(\mathbf{v})||^2] + n(n-1) ||\nabla f(\mathbf{w})||^2) - ||\nabla f(\mathbf{w})||^2 \quad (26)$$

$$1913 = \frac{1}{n} (\mathbb{E}_{\mathbf{v}}[||g(\mathbf{v})||^2] - ||\nabla f(\mathbf{w})||^2). \quad (27)$$

1914 The second moment of the estimator was derived in Lemma I.3, in Equation 18. We use that result in
 1915 the above equation as follows,
 1916

$$1917 \text{Var}[\hat{g}(\mathbf{w})] = \frac{1}{n} (||\nabla f(\mathbf{w})||^2(d+2) + \mathcal{O}(\epsilon^2)d - ||\nabla f(\mathbf{w})||^2) \quad (28)$$

$$1918 = \frac{1}{n} (||\nabla f(\mathbf{w})||^2(d+1) + \mathcal{O}(\epsilon^2)d) \quad (29)$$

1919 This leads us to a variance bound that scales as $\frac{d+1}{n}$ times $||\nabla f(\mathbf{w})||^2$ (plus a $\mathcal{O}(\epsilon^2)$ contribution),
 1920 which exhibits the dependence of variance of the estimator $\hat{g}(\mathbf{w})$ on the dimension d and the number
 1921 of samples n . \square
 1922

1923 The key difference between the above two lemmas and the next two lemmas is that the central
 1924 finite difference estimator introduces a small $\mathcal{O}(\epsilon)$ bias due to numerical approximation,
 1925 whereas the forward-mode AD estimator is exactly unbiased. Additionally, the second
 1926 moment of the central finite difference estimator includes an extra $\mathcal{O}(\epsilon^2)d$ term, which is
 1927 absent in forward-mode AD, making the latter more precise.
 1928

1929 **Lemma I.5** (Bias of Gradient Estimate of Forward-mode Auto Differentiation). *Let $g(\mathbf{v})$ be the
 1930 gradient estimate obtained using the central finite difference method with a perturbation vector
 1931 $\mathbf{v} \sim \mathcal{N}(0, I_d)$. Then, the expectation of the estimator satisfies*

$$1932 \mathbb{E}_{\mathbf{v}}[g(\mathbf{v})] = \nabla f(\mathbf{w}), \quad (30)$$

1933 implying that the central finite difference gradient estimator is unbiased. Furthermore, the second
 1934 moment of the estimator satisfies
 1935

$$1936 \mathbb{E}_{\mathbf{v}}[||g(\mathbf{v})||^2] = ||\nabla f(\mathbf{w})||^2(d+2). \quad (31)$$

1944 *Proof.* We start with one evaluation of forward-mode auto differentiation, for a perturbation $\mathbf{v} \in \mathbb{R}^d$.
1945 The full derivation is given in Theorem I.9,

$$1947 \quad g(\mathbf{v}) = (\mathbf{v}^\top \nabla f(\mathbf{w})) \mathbf{v}. \quad (32)$$

1948 In order to measure the bias of the above gradient estimate, we take expectation with respect to the
1949 randomness of \mathbf{v} ,

$$1950 \quad \mathbb{E}_{\mathbf{v}} [g(\mathbf{v})] = \mathbb{E}_{\mathbf{v}} [(\mathbf{v}^\top \nabla f(\mathbf{w})) \mathbf{v}] \quad (33)$$

$$1952 \quad = \nabla f(\mathbf{w}) \mathbb{E}_{\mathbf{v}} [\mathbf{v}^\top \mathbf{v}] = \nabla f(\mathbf{w}) I_d \quad (34)$$

$$1953 \quad \therefore \mathbb{E}_{\mathbf{v}} [g(\mathbf{v})] = \nabla f(\mathbf{w}). \quad (35)$$

1954 This shows that the estimator is unbiased.

1955 Now, we analyze the second moment of the estimator:

$$1957 \quad \mathbb{E}_{\mathbf{v}} [\|g(\mathbf{v})\|^2] = \mathbb{E}_{\mathbf{v}} [\|(\mathbf{v}^\top \nabla f(\mathbf{w})) \mathbf{v}\|^2] = \mathbb{E}_{\mathbf{v}} [(\mathbf{v}^\top \nabla f(\mathbf{w}))^2 \|\mathbf{v}\|^2]. \quad (36)$$

1959 Using the known expectation property of Gaussian vectors:

$$1961 \quad \mathbb{E} [\mathbf{v} \mathbf{v}^\top \|\mathbf{v}\|^2] = (d+2) I_d, \quad (37)$$

1962 We obtain:

$$1963 \quad \mathbb{E}_{\mathbf{v}} [\|g(\mathbf{v})\|^2] = \mathbb{E}_{\mathbf{v}} [\text{Tr}((\mathbf{v} \mathbf{v}^\top) \nabla f(\mathbf{w}) \nabla f(\mathbf{w})^\top \mathbf{v} \mathbf{v}^\top)] \quad (38)$$

$$1965 \quad = \text{Tr}(\nabla f(\mathbf{w}) \nabla f(\mathbf{w})^\top) (d+2) = \|\nabla f(\mathbf{w})\|^2 (d+2). \quad (39)$$

1966 \square

1968 **Lemma I.6** (Variance of Gradient Estimate of Forward-mode Auto Differentiation). *Let $\hat{g}(\mathbf{v})$ be the
1969 central finite difference gradient estimator using n perturbations $\mathbf{v}_1, \dots, \mathbf{v}_n \sim \mathcal{N}(0, I_d)$, given by*

$$1970 \quad \hat{g}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n g(\mathbf{v}_i), \quad \text{where} \quad g(\mathbf{v}_i) = (\mathbf{v}_i^\top \nabla f(\mathbf{w})) \mathbf{v}_i. \quad (40)$$

1973 Assuming the finite-difference step ϵ , the variance of the estimator satisfies:

$$1975 \quad \text{Var}[\hat{g}(\mathbf{w})] = \frac{1}{n} (\|\nabla f(\mathbf{w})\|^2 (d+1)). \quad (41)$$

1977 This result shows that the variance of the gradient estimator scales as $\mathcal{O}((d+1)/n)$, which quantifies
1978 how the dimension d and the number of samples n influence the estimator's variance.

1979 *Proof.* We can derive the variance of the estimator

$$1981 \quad \hat{g}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n g(\mathbf{v}_i), \text{ with } g(\mathbf{v}_i) = (\mathbf{v}_i^\top \nabla f(\mathbf{w})) \mathbf{v}_i$$

1984 by computing

$$1985 \quad \text{Var}[\hat{g}(\mathbf{w})] = \mathbb{E}_{\mathbf{v}} [\|\hat{g}(\mathbf{w})\|^2] - \|\mathbb{E}_{\mathbf{v}} [\hat{g}(\mathbf{w})]\|^2. \quad (42)$$

1987 The estimator is unbiased according to Lemma I.5, so that $\mathbb{E}_{\mathbf{v}} [g(\mathbf{v}_i)] = \nabla f(\mathbf{w})$ and $\mathbb{E}_{\mathbf{v}} [\hat{g}(\mathbf{w})] =$
1988 $\nabla f(\mathbf{w})$.

1989 We write the second moment (squared norm) of \hat{g} as

$$1991 \quad \mathbb{E}_{\mathbf{v}} [\|\hat{g}(\mathbf{w})\|^2] = \mathbb{E}_{\mathbf{v}} \left[\left\| \frac{1}{n} \sum_{i=1}^n g(\mathbf{v}_i) \right\|^2 \right] = \frac{1}{n^2} \mathbb{E}_{\mathbf{v}} \left[\sum_{i=1}^n \sum_{j=1}^n g(\mathbf{v}_i)^\top g(\mathbf{v}_j) \right]. \quad (43)$$

1994 We split the sum into diagonal and off-diagonal parts:

$$1995 \quad \mathbb{E}_{\mathbf{v}} [\|\hat{g}(\mathbf{w})\|^2] = \frac{1}{n^2} \left(\sum_{i=1}^n \mathbb{E}_{\mathbf{v}} [\|g(\mathbf{v}_i)\|^2] + \sum_{i \neq j} \mathbb{E}_{\mathbf{v}} [g(\mathbf{v}_i)^\top g(\mathbf{v}_j)] \right). \quad (44)$$

1998 Since the g_i are independent,
 1999

$$2000 \quad \mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_i)^\top g(\mathbf{v}_j)] = \mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_i)]^\top \mathbb{E}_{\mathbf{v}}[g(\mathbf{v}_j)] = \nabla f(\mathbf{w})^\top \nabla f(\mathbf{w}) = \|\nabla f(\mathbf{w})\|^2 \quad \text{for } i \neq j. \quad (45)$$

2001 Thus,
 2002

$$2003 \quad \mathbb{E}_{\mathbf{v}}[\|\hat{g}(\mathbf{w})\|^2] = \frac{1}{n^2}(n\mathbb{E}_{\mathbf{v}}[\|g(\mathbf{v})\|^2] + n(n-1)\|\nabla f(\mathbf{w})\|^2). \quad (46)$$

2004 Plugging the above result, along with the result derived from Lemma I.3 on $\|\mathbb{E}_{\mathbf{v}}[\hat{g}(\mathbf{w})]\|^2 =$
 2005 $\|\nabla f(\mathbf{w})\|^2$, in Equation 42,

$$2007 \quad \text{Var}[\hat{g}(\mathbf{w})] = \frac{1}{n^2}(n\mathbb{E}_{\mathbf{v}}[\|g(\mathbf{v})\|^2] + n(n-1)\|\nabla f(\mathbf{w})\|^2) - \|\nabla f(\mathbf{w})\|^2 \quad (47)$$

$$2009 \quad = \frac{1}{n}(\mathbb{E}_{\mathbf{v}}[\|g(\mathbf{v})\|^2] - \|\nabla f(\mathbf{w})\|^2). \quad (48)$$

2011 The second moment of the estimator was derived in Lemma I.5, in Equation 39. We use that result in
 2012 the above equation as follows,
 2013

$$2014 \quad \text{Var}[\hat{g}(\mathbf{w})] = \frac{1}{n}(\|\nabla f(\mathbf{w})\|^2(d+2) - \|\nabla f(\mathbf{w})\|^2) \quad (49)$$

$$2016 \quad = \frac{1}{n}(\|\nabla f(\mathbf{w})\|^2(d+1)) \quad (50)$$

2018 This leads us to a variance bound that scales as $\frac{d+1}{n}$ times $\|\nabla f(\mathbf{w})\|^2$, which exhibits the dependence
 2019 of variance of the estimator $\hat{g}(\mathbf{w})$ on the dimension d and the number of samples n . \square

2021 I.4 THEOREMS

2022 The given analysis for all gradient computation methods is for a **non-convex objective** f .

2023 We begin by reiterating the descent lemma applied to gradients computed by backpropagation.

2024 **Theorem I.7** (Error Bound of Backpropagation). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a differentiable, L -smooth
 2025 function. Consider the gradient descent update rule:*

$$2027 \quad \mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t),$$

2028 where η is the step size (learning rate). Suppose $0 < \eta \leq \frac{1}{L}$. Then, after T iterations, the minimum
 2029 gradient norm satisfies the following bound:

$$2031 \quad \min_{t \in [T]} \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{2L}{T} (f(\mathbf{w}_1) - f(\mathbf{w}_T)),$$

2033 This bound shows that gradient descent achieves an $\mathcal{O}(\frac{1}{T})$ convergence rate in terms of gradient
 2034 norm, which is the optimal rate for first-order methods in smooth optimization.

2036 *Proof.* Using Assumption I.2, we apply the smoothness condition, which gives the following
 2037 quadratic upper bound:

$$2038 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) + \nabla f(\mathbf{w}_t)^\top (\mathbf{w}_{t+1} - \mathbf{w}_t) + \frac{L}{2} \|\mathbf{w}_{t+1} - \mathbf{w}_t\|^2 \quad (51)$$

2041 Substituting the gradient descent update rule Equation 3, we obtain,

$$2042 \quad \therefore f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \|\nabla f(\mathbf{w}_t)\|^2 + \frac{L}{2} \eta^2 \|\nabla f(\mathbf{w}_t)\|^2 \quad (52)$$

2044 Rearranging the above terms,

$$2045 \quad \therefore f(\mathbf{w}_{t+1}) - f(\mathbf{w}_t) \leq -\eta \|\nabla f(\mathbf{w}_t)\|^2 + \frac{L\eta^2}{2} \|\nabla f(\mathbf{w}_t)\|^2 = -\left(\eta - \frac{L\eta^2}{2}\right) \|\nabla f(\mathbf{w}_t)\|^2 \quad (53)$$

2048 To ensure progress in minimizing $f(\mathbf{w})$, we need the term $(1 - \frac{L\eta}{2})$ to be positive. Hence we assume
 2049 $\eta \leq \frac{1}{L}$, along with $0 < \eta$,

$$2051 \quad \therefore f(\mathbf{w}_{t+1}) - f(\mathbf{w}_t) \leq -\frac{1}{2L} \|\nabla f(\mathbf{w}_t)\|^2 \quad (54)$$

2052 Summing over $t = 1$ to $t = T$,

$$2054 \quad \sum_{t=1}^T (f(\mathbf{w}_{t+1}) - f(\mathbf{w}_t)) \leq -\frac{1}{2L} \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \quad (55)$$

2056 The left-hand side forms a telescoping sum, resulting in

$$2058 \quad f(\mathbf{w}_{T+1}) - f(\mathbf{w}_1) \leq -\frac{1}{2L} \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \quad (56)$$

$$2061 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{2L}{T} (f(\mathbf{w}_1) - f(\mathbf{w}_{T+1})) \quad (57)$$

2064 Using the definition of optimality gap from Equation I.1,

$$2065 \quad \min_{t \in [T]} \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{2L}{T} (f(\mathbf{w}_t) - f(\mathbf{w}_T)) \quad (58)$$

2068 Thus, the optimality gap reduces at a rate of $\mathcal{O}(\frac{1}{T})$, given $\eta \leq \frac{1}{L}$. \square

2069 Next, we will give a similar treatment to the gradients derived from zero-order finite differences,

2070 **Theorem I.8** (Error Bound of Zero-Order Optimization). *Consider a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ that*
 2071 *is L -smooth. Let the central finite-difference gradient estimator with n perturbations per iteration,*
 2072 *where each perturbation vector \mathbf{v}_i is sampled independently from $\mathcal{N}(0, I_d)$ and step size η be*

$$2074 \quad \hat{g}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \left(\frac{f(\mathbf{w}_t + \epsilon \mathbf{v}_i) - f(\mathbf{w}_t - \epsilon \mathbf{v}_i)}{2\epsilon} \mathbf{v}_i \right).$$

2077 Then, the expected average squared gradient norm is bounded by

$$2079 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{f(\mathbf{w}_1) - f(\mathbf{w}_T)}{\eta T \left[1 - \frac{L\eta}{2} (1 + \frac{d+1}{n}) \right]} + \frac{Ldn^2}{2n} \mathcal{O}(\epsilon^2), \quad (59)$$

2081 To ensure convergence, the step size must satisfy

$$2083 \quad \eta < \frac{2}{L (1 + \frac{d+1}{n})}. \quad (60)$$

2085 This result highlights how the convergence rate depends on the dimension d , the number of perturbations n , and the perturbation magnitude ϵ . Specifically, a larger d or a smaller n increases the bound, implying slower convergence.

2089 *Proof.* The central finite-difference gradient estimator for n perturbations per iteration is

$$2091 \quad \hat{g}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \left(\frac{f(\mathbf{w}_t + \epsilon \mathbf{v}_i) - f(\mathbf{w}_t - \epsilon \mathbf{v}_i)}{2\epsilon} \mathbf{v}_i \right) \quad (61)$$

2094 where each $\mathbf{v}_i \in \mathbb{R}^d$ is a perturbation drawn from a Gaussian distribution $\mathcal{N}(0, 1)$.

2095 Assuming that f is sufficiently smooth so that the following Taylor expansions are valid,

$$2096 \quad f(\mathbf{w} + \epsilon \mathbf{v}) = f(\mathbf{w}) + \epsilon \mathbf{v}^\top \nabla f(\mathbf{w}) + O(\epsilon^2), \text{ and} \quad (62)$$

$$2098 \quad f(\mathbf{w} - \epsilon \mathbf{v}) = f(\mathbf{w}) - \epsilon \mathbf{v}^\top \nabla f(\mathbf{w}) + O(\epsilon^2) \quad (63)$$

2099 Subtracting the above two expansions yields:

$$2101 \quad f(\mathbf{w} + \epsilon \mathbf{v}) - f(\mathbf{w} - \epsilon \mathbf{v}) = 2\epsilon \mathbf{v}^\top \nabla f(\mathbf{w}) + O(\epsilon^2) \quad (64)$$

2102 Plugging the above result in Equation 61,

$$2103 \quad \hat{g}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \underbrace{((\mathbf{v}_i^\top \nabla f(\mathbf{w})) \mathbf{v}_i + \mathcal{O}(\epsilon) \mathbf{v}_i)}_{g(\mathbf{v}_i)} \quad (65)$$

2106 Now we will use the derived $\hat{g}(\mathbf{w}_t)$ in the descent lemma:
 2107

2108 Similar to Theorem I.7, using the Assumption I.2, we apply the smoothness on f :
 2109

$$2110 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) + \nabla f(\mathbf{w}_t)^\top (\mathbf{w}_{t+1} - \mathbf{w}_t) + \frac{L}{2} \|\mathbf{w}_{t+1} - \mathbf{w}_t\|^2 \quad (66)$$

2111 For the gradient descent update with central finite differences, we set the model update rule as
 2112

$$2113 \quad \mathbf{w}_{t+1} = \mathbf{w}_t - \eta \hat{g}(\mathbf{w}_t). \quad (67)$$

2114 Plugging the model update rule into the smoothness inequality,
 2115

$$2116 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \nabla f(\mathbf{w}_t)^\top \hat{g}(\mathbf{w}_t) + \frac{L\eta^2}{2} \|\hat{g}(\mathbf{w}_t)\|^2 \quad (68)$$

2117 Taking expectation conditioned on $\mathbf{v} \sim \mathcal{N}(0, I_d)$,
 2118

$$2119 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \nabla f(\mathbf{w}_t)^\top \underbrace{\mathbb{E}_{\mathbf{v}}[\hat{g}(\mathbf{w}_t)]}_{\text{Term}_1} + \frac{L\eta^2}{2} \underbrace{\mathbb{E}_{\mathbf{v}}[\|\hat{g}(\mathbf{w}_t)\|^2]}_{\text{Term}_2} \quad (69)$$

2120 Solving **Term₁** and **Term₂** separately,
 2121

2122 **Term₁:** From Lemma I.3, we get $\mathbb{E}[g(\mathbf{v})] = \nabla f(\mathbf{w})$, which also gets us
 2123

$$2124 \quad \mathbb{E}[\hat{g}(\mathbf{w})] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[g(\mathbf{v})] = \nabla f(\mathbf{w})$$

2125 **Term₂:** The error of $\hat{g}(\mathbf{w})$ is measured by δ ,
 2126

$$2127 \quad \|\hat{g}(\mathbf{w})\|^2 = \|\nabla f(\mathbf{w}) + \delta\|^2 = \|\nabla f(\mathbf{w})\|^2 + 2\nabla f(\mathbf{w})^\top \delta + \|\delta\|^2 \quad (70)$$

2128 Taking expectation and noting that $\mathbb{E}[\delta] = 0$ and $\mathbb{E}[\|\delta\|^2] = \text{Var}[\hat{g}(\mathbf{w})]$,
 2129

$$2130 \quad \mathbb{E}_{\mathbf{v}}[\|\hat{g}(\mathbf{w})\|^2] = \|\nabla f(\mathbf{w})\|^2 + \text{Var}[\hat{g}(\mathbf{w})] \quad (71)$$

2131 Using Lemma I.4 to get the bound of $\text{Var}[\hat{g}(\mathbf{w})]$,
 2132

$$2133 \quad \mathbb{E}_{\mathbf{v}}[\|\hat{g}(\mathbf{w})\|^2] = \|\nabla f(\mathbf{w})\|^2 + \frac{d+1}{n} \|\nabla f(\mathbf{w})\|^2 + \frac{d}{n} \mathcal{O}(\epsilon^2) \quad (72)$$

2134 **Back to Equation 69, plugging in Term₁ and Term₂:**
 2135

$$2136 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \nabla f(\mathbf{w}_t)^\top \nabla f(\mathbf{w}_t) + \frac{L\eta^2}{2} \left(\left(1 + \frac{d+1}{n}\right) \|\nabla f(\mathbf{w})\|^2 + \frac{d}{n} \mathcal{O}(\epsilon^2) \right) \quad (73)$$

$$2137 \quad = f(\mathbf{w}_t) - \eta \|\nabla f(\mathbf{w}_t)\|^2 + \frac{L\eta^2}{2} \left(1 + \frac{d+1}{n}\right) \|\nabla f(\mathbf{w})\|^2 + \frac{Ld\eta^2}{2n} \mathcal{O}(\epsilon^2) \quad (74)$$

2138 Grouping the terms involving $\|\nabla f(\mathbf{w})\|^2$,
 2139

$$2140 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n}\right) \right] \|\nabla f(\mathbf{w}_t)\|^2 + \frac{Ld\eta^2}{2n} \mathcal{O}(\epsilon^2) \quad (75)$$

2141 This inequality shows that, provided the step size η is small enough so that,
 2142

$$2143 \quad 1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n}\right) > 0$$

2144 Summing the inequality over epochs $t = 1$ to T :
 2145

$$2146 \quad f(\mathbf{w}_T) - f(\mathbf{w}_1) \leq -\eta \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n}\right) \right] \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 + \frac{Ld\eta^2 T}{2n} \mathcal{O}(\epsilon^2) \quad (76)$$

2160 Rearranging the terms give us,
 2161

$$2162 \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{f(\mathbf{w}_1) - f(\mathbf{w}_T)}{\eta \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) \right]} + \frac{Ld\eta^2 T}{2n} \mathcal{O}(\epsilon^2) \quad (77)$$

2165 Dividing by T gives the bound on the average squared gradient norm:
 2166

$$2167 \frac{1}{T} \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{f(\mathbf{w}_1) - f(\mathbf{w}_T)}{\eta T \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) \right]} + \frac{Ld\eta^2}{2n} \mathcal{O}(\epsilon^2) \quad (78)$$

2170 To ensure that $1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) > 0$, the step size η must be chosen so that
 2171

$$2172 \eta < \frac{2}{L \left(1 + \frac{d+1}{n} \right)}. \quad (79)$$

2175 As the dimension d increases (or as the number of samples n decreases), the factor
 2176

$$2177 \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right)$$

2179 increases. This makes
 2180

$$2181 1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right)$$

2182 smaller, which in turn makes the entire bound larger. In other words, a larger d (or a smaller n) results
 2183 in a worse (higher) error bound. This interplay of d and n also puts limitations on the order of η ,
 2184 keeping the learning rate quite small for stable learning. \square
 2185

2186 Moving on, we will get the convergence bound of the gradients derived from forward-mode auto
 2187 differentiation.
 2188

2189 The key difference between the two theorems is that the error bound for zero-order op-
 2190 timization includes an additional $\mathcal{O}(\epsilon^2)$ term due to the finite-difference approximation,
 2191 whereas the bound for forward-mode AD is exact and free from such errors. This makes
 2192 forward-mode AD theoretically more efficient, as it avoids the additional error introduced
 2193 by numerical differentiation while maintaining the same dependency on dimension d and
 2194 number of perturbations n .
 2195

2196 **Theorem I.9** (Error Bound of Forward-mode Auto Differentiation). *Consider a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$
 2197 that is L -smooth. Let the forward-mode AD gradient estimator with n perturbations per iteration,
 2198 where each perturbation vector \mathbf{v}_i is sampled independently from $\mathcal{N}(0, I_d)$ and step size η be*
 2199

$$2200 \hat{g}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \left((\mathbf{v}_i^\top \nabla f(\mathbf{w}_t)) \mathbf{v}_i \right).$$

2202 Then, the expected average squared gradient norm is bounded by
 2203

$$2204 \frac{1}{T} \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{f(\mathbf{w}_1) - f(\mathbf{w}_T)}{\eta T \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) \right]}, \quad (80)$$

2207 To ensure convergence, the step size must satisfy
 2208

$$2209 \eta < \frac{2}{L \left(1 + \frac{d+1}{n} \right)}. \quad (81)$$

2212 This result highlights how the convergence rate depends on the dimension d , the number of perturba-
 2213 tions n , and the perturbation magnitude ϵ . Specifically, a larger d or a smaller n increases the bound,
 implying slower convergence.

2214 *Proof.* The forward-mode AD gradient estimator for n perturbations per iteration is
 2215

$$2216 \quad 2217 \quad 2218 \quad \hat{g}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n ((\nabla \mathbf{v}_i^\top f(\mathbf{w}_t)) \mathbf{v}_i) \quad (82)$$

2219 where each $\mathbf{v}_i \in \mathbb{R}^d$ is a perturbation drawn from a Gaussian distribution $\mathcal{N}(0, 1)$.
 2220

2221 We will use $\hat{g}(\mathbf{w}_t)$ in the descent lemma. Similar to Theorem I.8, using the Assumption I.2, we apply
 2222 the smoothness on f :

$$2223 \quad 2224 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) + \nabla f(\mathbf{w}_t)^\top (\mathbf{w}_{t+1} - \mathbf{w}_t) + \frac{L}{2} \|\mathbf{w}_{t+1} - \mathbf{w}_t\|^2 \quad (83)$$

2225 For the gradient descent update with forward-mode AD, we set the model update rule as
 2226

$$2227 \quad \mathbf{w}_{t+1} = \mathbf{w}_t - \eta \hat{g}(\mathbf{w}_t). \quad (84)$$

2228 Plugging the model update rule into the smoothness inequality,
 2229

$$2230 \quad 2231 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \nabla f(\mathbf{w}_t)^\top \hat{g}(\mathbf{w}_t) + \frac{L\eta^2}{2} \|\hat{g}(\mathbf{w}_t)\|^2 \quad (85)$$

2232 Taking expectation conditioned on $\mathbf{v} \sim \mathcal{N}(0, I_d)$,
 2233

$$2234 \quad 2235 \quad 2236 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \nabla f(\mathbf{w}_t)^\top \underbrace{\mathbb{E}_{\mathbf{v}}[\hat{g}(\mathbf{w}_t)]}_{\text{Term}_1} + \frac{L\eta^2}{2} \underbrace{\mathbb{E}_{\mathbf{v}}[\|\hat{g}(\mathbf{w}_t)\|^2]}_{\text{Term}_2} \quad (86)$$

2237 Solving **Term₁** and **Term₂** separately,
 2238

2239 **Term₁:** From Lemma I.5, we get $\mathbb{E}[g(\mathbf{v})] = \nabla f(\mathbf{w})$, which also gets us
 2240

$$2241 \quad 2242 \quad \mathbb{E}[\hat{g}(\mathbf{w})] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[g(\mathbf{v})] = \nabla f(\mathbf{w})$$

2243 **Term₂:** The error of $\hat{g}(\mathbf{w})$ is measured by δ ,
 2244

$$2245 \quad 2246 \quad \|\hat{g}(\mathbf{w})\|^2 = \|\nabla f(\mathbf{w}) + \delta\|^2 = \|\nabla f(\mathbf{w})\|^2 + 2\nabla f(\mathbf{w})^\top \delta + \|\delta\|^2 \quad (87)$$

2247 Taking expectation and noting that $\mathbb{E}[\delta] = 0$ and $\mathbb{E}[\|\delta\|^2] = \text{Var}[\hat{g}(\mathbf{w})]$,
 2248

$$2249 \quad \mathbb{E}_{\mathbf{v}}[\|\hat{g}(\mathbf{w})\|^2] = \|\nabla f(\mathbf{w})\|^2 + \text{Var}[\hat{g}(\mathbf{w})] \quad (88)$$

2250 Using Lemma I.6 to get the bound of $\text{Var}[\hat{g}(\mathbf{w})]$,
 2251

$$2252 \quad 2253 \quad \mathbb{E}_{\mathbf{v}}[\|\hat{g}(\mathbf{w})\|^2] = \|\nabla f(\mathbf{w})\|^2 + \frac{d+1}{n} \|\nabla f(\mathbf{w})\|^2 \quad (89)$$

2254 **Back to Equation 86, plugging in **Term₁** and **Term₂**:**
 2255

$$2256 \quad 2257 \quad 2258 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \nabla f(\mathbf{w}_t)^\top \nabla f(\mathbf{w}_t) + \frac{L\eta^2}{2} \left(1 + \frac{d+1}{n}\right) \|\nabla f(\mathbf{w})\|^2 \quad (90)$$

$$2259 \quad 2260 \quad f(\mathbf{w}_t) - \eta \|\nabla f(\mathbf{w}_t)\|^2 + \frac{L\eta^2}{2} \left(1 + \frac{d+1}{n}\right) \|\nabla f(\mathbf{w})\|^2 \quad (91)$$

2261 Grouping the terms involving $\|\nabla f(\mathbf{w})\|^2$,
 2262

$$2263 \quad 2264 \quad f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) - \eta \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n}\right)\right] \|\nabla f(\mathbf{w}_t)\|^2 \quad (92)$$

2265 This inequality shows that, provided the step size η is small enough so that,
 2266

$$2267 \quad 1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n}\right) > 0$$

2268 Summing the inequality over epochs $t = 1$ to T :

$$2270 \quad 2271 \quad 2272 \quad f(\mathbf{w}_T) - f(\mathbf{w}_1) \leq -\eta \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) \right] \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \quad (93)$$

2273 Rearranging the terms give us,

$$2274 \quad 2275 \quad 2276 \quad 2277 \quad \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{f(\mathbf{w}_1) - f(\mathbf{w}_T)}{\eta \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) \right]} \quad (94)$$

2278 Dividing by T gives the bound on the average squared gradient norm:

$$2279 \quad 2280 \quad 2281 \quad 2282 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla f(\mathbf{w}_t)\|^2 \leq \frac{f(\mathbf{w}_1) - f(\mathbf{w}_T)}{\eta T \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) \right]} \quad (95)$$

2283 To ensure that $1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) > 0$, the step size η must be chosen so that

$$2284 \quad 2285 \quad 2286 \quad 2287 \quad \eta < \frac{2}{L \left(1 + \frac{d+1}{n} \right)}. \quad (96)$$

2288 As the dimension d increases (or as the number of samples n decreases), the factor

$$2289 \quad 2290 \quad 2291 \quad \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right)$$

2292 increases. This makes

$$2293 \quad 2294 \quad 1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right)$$

2295 smaller, which in turn makes the entire bound larger. In other words – similar to zero-order method –
2296 a larger d (or a smaller n) results in a worse (higher) error bound. This interplay of d and n also puts
2297 limitations on the order of η , keeping the learning rate quite small for stable learning. \square

2298 **Corollary I.10** (Convergence Rate of ZO under Standard Parameter Choices). *Under the assumptions
2299 of Theorem I.8, the zeroth-order method achieves the well-known $\mathcal{O}(d/T)$ convergence rate when the
2300 parameters are chosen according to either of the following equivalent strategies:*

- 2301 *1. Setting the step size to $\eta = \Theta\left(\frac{1}{L(1 + \frac{d+1}{n})}\right)$, which yields the rate by balancing the contraction factor in the denominator term; or*
- 2302 *2. Using the two-point estimator ($n = 1$) with perturbation radius $\epsilon = \mathcal{O}(T^{-1/4})$, so that
2303 $\epsilon^2 = \mathcal{O}(T^{-1/2})$ and the variance term becomes $\mathcal{O}(d/T)$.*

2308 *Both parameterizations recover*

$$2309 \quad 2310 \quad 2311 \quad \min_{t \in [T]} \|\nabla f(w_t)\|^2 = \mathcal{O}\left(\frac{d}{T}\right).$$

2312 *While the first approach modulates the learning rate η , the second adapts the perturbation scale ϵ ; in
2313 practice both routes give consistent rates, though excessively small η (scaling as $1/d$) may be less
2314 practical in high dimensions.*

2316 *Proof.* Start from the bound in Theorem I.8:

$$2317 \quad 2318 \quad 2319 \quad 2320 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla f(w_t)\|^2 \leq \frac{f(w_1) - f(w_T)}{\eta T \left[1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n} \right) \right]} + \frac{Ldn\eta^2}{2n} \mathcal{O}(\epsilon^2).$$

2321 We treat the two parameterizations separately.

2322 **(1) Step-size choice.** Set the denominator factor to a constant by choosing
 2323

$$2324 \quad 1 - \frac{L\eta}{2} \left(1 + \frac{d+1}{n}\right) = \frac{1}{2}, \quad \text{so} \quad \eta = \Theta\left(\frac{1}{L(1 + \frac{d+1}{n})}\right).$$

2326 With this choice the first term scales as
 2327

$$2328 \quad \frac{f(w_1) - f(w_T)}{\eta T [\dots]} = \Theta\left(\frac{1}{\eta T}\right) = \Theta\left(\frac{L(1 + \frac{d+1}{n})}{T}\right).$$

2330 When $d \gg n$ this is $\Theta(d/T)$, so the first term already yields $\mathcal{O}(d/T)$. The second term becomes
 2331

$$2332 \quad \frac{Ldn\eta^2}{2n} \mathcal{O}(\epsilon^2) = \mathcal{O}\left(\frac{Ld}{n} \cdot \frac{1}{L^2(1 + \frac{d+1}{n})^2} \epsilon^2\right) = \mathcal{O}\left(\frac{d}{Ln(1 + \frac{d+1}{n})^2} \epsilon^2\right),$$

2335 which is typically smaller than the first term for reasonable (non-growing) ϵ ; hence the overall rate is
 2336 dominated by $\mathcal{O}(d/T)$.
 2337

2338 **(2) Smoothing-radius choice (two-point / $n = 1$).** Take $n = 1$ and set $\epsilon = \mathcal{O}(T^{-1/4})$, so
 2339 $\epsilon^2 = \mathcal{O}(T^{-1/2})$. Keeping the same η scale as above (or any constant-in- T η satisfying the step-size
 2340 constraint), the first term is again $\mathcal{O}(1/(\eta T))$. With $\eta = \Theta(1/(L(1 + (d+1)/n))) \approx \Theta(1/(Ld))$
 2341 this yields $\mathcal{O}(d/T)$. The second term becomes

$$2342 \quad \frac{Ldn\eta^2}{2} \mathcal{O}(\epsilon^2) = \mathcal{O}\left(Ld \cdot \frac{1}{L^2d^2} \cdot T^{-1/2}\right) = \mathcal{O}\left(\frac{1}{Ld} T^{-1/2}\right),$$

2345 which is negligible compared to $\mathcal{O}(d/T)$ for typical T and moderate L . Thus both choices give the
 2346 stated $\mathcal{O}(d/T)$ rate. \square
 2347

2348 Discussion.

- 2349 **Two equivalent levers.** The corollary emphasizes two ways to recover the classical $\mathcal{O}(d/T)$
 2350 bound: (i) scale down the learning rate η (reviewer’s route), or (ii) scale the perturbation radius ϵ
 2351 with T (the alternate route used in our original derivation). Both are valid theoretically and lead to
 2352 the same asymptotic dependence on d and T .
 2353
- 2354 **Dominant term and constants.** In the parameter regimes of interest the first term (the $1/(\eta T)$ -
 2355 type term) typically dominates and yields the $\Theta(d/T)$ dependency; the variance/truncation term
 2356 involving ϵ^2 is often smaller when ϵ is chosen to decay suitably with T .
 2357
- 2358 **Practicality.** Although setting $\eta = \Theta(1/d)$ recovers the rate, such tiny learning rates become
 2359 impractical as model size grows (since $\eta \rightarrow 0$ with $d \rightarrow \infty$). The alternative of shrinking ϵ
 2360 (e.g., $\epsilon = T^{-1/4}$ gives $\epsilon = 0.1$ at $T = 100$ and $\epsilon = 0.03$ at $T = 1000$) is often more feasible in
 2361 practice, but it reduces signal-to-noise in finite-sample regimes and may require larger sample or
 2362 perturbation budgets to get stable estimates.
 2363

2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375