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ABSTRACT

Forward-mode automatic differentiation (FMAD) and zero-order (ZO) optimization
have been proposed as memory-efficient alternatives to backpropagation (BP)
for gradient computation, especially in low-resource settings. However, their
practical benefits remain unclear due to two key gaps: a lack of comparison
against memory-efficient BP variants, such as activation checkpointing, and a
lack of systematic characterization of tradeoffs between accuracy, memory, and
computation efficiency among these methods. This work presents a comprehensive
comparison of BP, FMAD, and ZO methods. Through theoretical analysis under a
common framework, we present intuition that, while FMAD and ZO can reduce
memory usage, they incur significant costs in accuracy, convergence speed, and
computation compared to BP with checkpointing. These drawbacks worsen with
larger models or constrained perturbation budgets. Through empirical experiments
on large language and vision-language models, we show that BP with checkpointing
outperforms FMAD and ZO variants, including those enhanced with variance
reduction, achieving up to 31.1% higher accuracy, 34.8% faster convergence,
and 3.8 x fewer computations at comparable memory usage. We also investigate
specific failure modes in FMAD and ZO, including instabilities in Jacobian-vector
products that can destabilize training. Our results highlight fundamental limitations
of FMAD and ZO, and the effectiveness of BP with checkpointing for model
training under memory-constrained settings.

1 INTRODUCTION

Backpropagation (BP) (Rumelhart et al.,[1986) is the standard algorithm for gradient computation in
deep learning due to its convergence efficiency and widespread support in automatic differentiation
frameworks such as PyTorch (Paszke et al.,[2019) and JAX (Bradbury et al., 2018). However, BP
incurs high memory overhead in training large models, as it must store intermediate activations
for the backward pass. To address this limitation, recent research has explored alternative gradient
estimation methods such as forward-mode automatic differentiation (FMAD) (Baydin et al.| 2017}
2022; |Panchal et al.||2024) and zero-order (ZO) optimization (Richardson, 1955} Malladi et al.| 2023),
which approximate gradients (using directional derivatives or two forward pass evaluations) based on
randomly perturbed weights. These methods are often promoted as memory-efficient or hardware-
friendly alternatives to BP, especially in resource-constrained or non-differentiable settings (Panchal
et al.,[2024; Malladi et al., 2023} |Xu et al., 2024).

Despite growing interest, prior work on FMAD and ZO suffers from two critical limitations that leave
their practical value inadequately understood. First, the existing comparisons (Gautam et al., [2024;
Zhang et al.,|2024)) often overlook activation checkpointing (Chen et al.,[2016), a widely supported
and effective BP variant that substantially reduces memory usage by recomputing rather than storing
intermediate activations. Second, as shown in Table[I} key considerations such as computational cost
and wall-clock time to convergence are often omitted, leaving even the comparisons against vanilla
BP incomplete. This one-sided narrative of ZO and FMAD as superior to BP motivates our study: we
aim to provide a comprehensive account of these trade-offs, encompassing not only memory usage
but also convergence speed and overall computational efficiency of the gradient estimation methods.

This paper addresses the above-mentioned limitations through a comprehensive study of BP, FMAD,
and ZO approaches. We first outline the expected trade-offs among convergence behavior, memory
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Table 1: While some existing research empirically compares vanilla backpropagation (BP-Vanilla)
across multiple metrics including memory usage, convergence time, and computational cost, they
examine only a subset of these criteria, and notably, none include comparisons with backpropagation
using checkpointing (BP-Checkpointing). We omit accuracy as it is evaluated in all the studies.

CoNv. COMP.

METHODS TIME MEMORY CoST CONTRIBUTION
MEZO X v X ZOuses 12x 1 than Vanilla BP while achievi
(Malladi ot all 2023) uses 12 less memory than Vanilla BP while achieving
accuracy within 5%.
MEZO-SVRG X v X Enhances the convergence accuracy of MEZO through vari-
(Gautam et al., 2024) L .
ance reduction, improving accuracy by up to 20%.
Revisiting ZO X v X Benchmarks ZO optimization in LLM fine-tuning, along
(Zhang et al.; 2024) . . .
with proposing novel techniques that enhance accuracy over
MeZO by up to 3%.
(Zél)l f)l):tl:leZOZS) v X X ZO fine-tuning achieves full ZO accuracy by updating just
-+ 0.1% of sensitive parameters, with up to 2.5x speedup.
SPRY

v v X Distributes trainable parameters across federated clients, im-
proving FMAD’s convergence speed by up to 20x and final
accuracy by up to 13% compared to ZO.

(Panchal et al ., |2024)

FoMoH

(Cobb et al) 2024) X X X Introduces forward-mode second-order optimization; im-

proves accuracy by 1-3% compared to first-order FMAD
on logistic regression and CNN tasks.

This paper v v v/ First to evaluate how BP with checkpointing fares in the three-
way tradeoff vs. variance-reduced ZO and FMAD.

consumption, and computational cost as functions of model dimensionality d and the number of
perturbations per iteration n. These theoretical results suggest that, while FMAD and ZO may
reduce memory under certain regimes (e.g., when perturbations are evaluated sequentially), they face
scalability challenges: higher per-iteration computational cost, O(nd), and slower convergence in
high dimensions or with limited perturbation budgets. In contrast, BP with activation checkpointing
is expected to achieve favorable convergence with comparable memory usage.

We then conduct extensive empirical evaluations 095 @r.escs
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across tasks including text classification, text
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range of FMAD and ZO variants (including
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checkpointing consistently achieves higher accu-

racy and faster convergence, while using mem- Figure 1: The three-way trade-off between accu-
ory on par with FMAD and ZO variants. racy, convergence time, and memory consumption
during training of LLAMA 3.1 (8B) on the AG-
News dataset. The circle radii are proportional to
the memory consumption. BP-CHECKPOINTING
achieves highest accuracy with lowest convergence
time using comparable memory to FMAD and ZO
variants. §E] describes these methods in detail.

Beyond standard performance metrics (accuracy,
memory, and convergence time), we also per-
form a dedicated study of specific failure modes
in FMAD and ZO, focusing on instabilities in
Jacobian-vector products (jvps) that can arise
under adaptive optimizers and hinder conver-
gence. This analysis provides insight into why these gradient estimation methods behave unpre-
dictably in practice and complements our broader evaluation of their scalability and reliability.

These findings lead to a critical insight: despite recent enthusiasm for forward-mode and zero-order
methods (Panchal et al., [2024; Malladi et al.,[2023; |Gautam et al., 2024} |Liu et al.,|2018), they remain
fundamentally constrained by their inability to efficiently scale to large models. Rather than serving
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as alternatives to backpropagation, they operate as inefficient approximations that trade off accuracy
or convergence speed for marginal memory reductions.

This paper’s main contributions are:

* A theoretical analysis of the convergence rates, memory cost, and compute complexity of BP,
FMAD, and ZO under a common theoretical framework, highlighting their three-way trade-offs.

* A comprehensive empirical study of BP, FMAD, and ZO on large-scale models across diverse tasks.
We show that BP with checkpointing consistently achieves 4.5-31.1% higher accuracy, 21.4-34.8%
faster convergence, and 3.2-3.8 x lower computation cost than FMAD and ZO variants, while
using comparable memory.

* The design and benchmarking of two new variance reduction methods for FMAD and ZO. These
methods improve accuracy by 7.5-14.0%, but still fall short of BP’s overall efficiency, and introduce
overheads in either convergence time or memory.

* An analysis of FMAD’s and ZO’s failure modes, including high-dimensional perturbations, noisy
Jacobian-vector products, and optimizer-dependent instabilities (e.g., abrupt jvp spikes under
adaptive optimizers like AdamW) that destabilize training and degrade convergence.

2 BACKGROUND

This section reviews three gradient computation techniques central to our study: (a) reverse-mode
automatic differentiation (RMAD, of which backpropagation is a special case), (b) forward-mode
automatic differentiation (FMAD), and (c) zero-order (ZO) finite-difference methods. For an in-depth
survey of these approaches, we refer readers to [Baydin et al.| (2017). Appendix [A]reviews related
work in detail. Details on signal propagation mechanism of these methods are in Appendix [G]

The three methods described below operate on a function f, which in deep learning corresponds
to a neural network and can be non-convex. This function f is composed of nested functions f;,
i € [p], where p is the number of layers given a neural network. Each nested function produces
intermediate activations y; = f;(w;, y;—1), given weights w; and previous activations y;_1, where

Yo = x is the input. The weights are represented by the vector w = wy,ws, ..., w,, where each
wi,...p € RU™1--mp] The total number of trainable parameter is d = >, m;. The intermediate
activations are y = yi,...,y,. The final outputis y = y, = f(w,z) € RY, where typically

q < m;,Vi € [p]. The loss function £L(y,y) € R measures the difference between the predicted
output y and the true target values .

Reverse-mode Auto Differentiation (RMAD). RMAD computes gradients by propagating sensitivi-
ties (which is the rate at which the output of a function changes with respect to a given intermediate
value) backward through the neural network. RMAD relies on vector-Jacobian product (v jp), where
the Jacobian represents partial derivatives of an intermediate activation y; with respect to weights
w;—1, denoted 5 , and the vector is the activation gradlent . RMAD starts by setting a

1, and propagatmg 88f = gqj: 83‘?11 and aif - = g ?f a‘zyl forz € [2, p], backwards. The ﬁnal

result is the weight gradient , formed from a series of vjp computations.

Backpropagation (Rumelhart et al., |[1986) (BP) is a specific case of RMAD tailored for neural
networks. While RMAD’s backward pass begins by 5 a—f set to 1, BP initializes from the gradient
of the loss function: 3 , which provides a semantically meaningful signal for optimization. The
backward phase is preceded by a forward pass that computes the activations and the loss L.
Forward-mode Auto Differentiation (FMAD). FMAD propagates directional derivatives through
the neural network to compute Jacobian-vector products (jvp). FMAD analyzes how a small

perturbation v in the weights w affects the outputs. Starting from dy; = gill v1, FMAD propagates
changes forward as:

8y¢ 8yi
ow; it OyYi—1

0y = oy;—1, forie [2,p] D

until the final scalar perturbation in the loss 6 £ is computed. Here, the Jacobian term gyl reflects
sensitivity to weight changes, and the perturbation vector is v; € v, where v is typically sampled from
N(0, I). The scalar 0L is referred to as the jvp. Weight gradients (also called forward gradients)
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Table 2: Big O bounds of gradient computation methods on (a) Convergence error, (b) Memory
consumption, and (c) Compute cost (per-iteration). Let ¢ denote the memory required to store
activations for a single layer, c;, the maximum per-layer activation memory, p the total number of
layers, and d the number of trainable parameters. While BP with checkpointing retains the fast
convergence of BP with additional memory savings; both FMAD and ZO methods suffer from worse
convergence and higher compute costs, with parallel variants further increasing memory consumption.

Method Convergence Error Memory  Compute

BP O(ep) 0(d)
O(1/T) withn < +

BP (with checkpointing) O(ey/p)  O(dlogp)

FMAD (Parallel) O(nep) O(nd)

1 . 2
© (—T[If%mwn) withn < 7y oy

n

FMAD (Sequential) O(cn) O(nd)
1 Ldn? 2
ZO (Parallel) (@) (—T[lf%(w%)]) + Z0() O(ncy) O(nd)
ZO (Sequential) with g < @ O(cn) O(nd)
are computed as % = jvp - v;. In contrast to BP, which propagates g—; backward (¢ from p to 1),

FMAD propagates gia forward (¢ from 1 to p, for all j5).

Zero-order (ZO) Finite Differences. ZO optimization estimates gradients using only function f
evaluations, with no first-order derivative information required. These methods, including finite
differences (Richardson, 1955} [Malladi et al., 2023)), perturb the weights and approximate gradients
through changes in the loss values of the perturbed function evaluations. Given a perturbation
direction v ~ N (0, I), the gradient with respect to w; is approximated via:

oL E(f(w+ev,a:),g})—L(f(w—ev,x),g))
— = -V, )
Gwi 2e
where € is a small step size. This symmetric difference estimator requires two sequential forward
passes per perturbation direction.

3 CONVERGENCE, MEMORY, AND COMPUTE TRADE-OFFS

We next review the theoretical characteristics of BP, FMAD, and ZO optimization, focusing on their
convergence, memory, and computational profiles. These methods have been analyzed individually in
prior works (Malladi et al., [2023; |Gautam et al.| 2024} |Guo et al., [2025; |Chen et al., [2019), as well as
in classic results on BP (Bottou et al.,|2018; |Garrigos and Gower}, 2024) and automatic differentiation.
The derivations of convergence bounds on a non-convex function f, for the three gradient computation
approaches studied in this work are shown in Appendix [[} Analysis on computation complexity is
in Appendix [H| Here, we compile the theoretical results into a common comparative framework to
highlight their trade-offs under shared assumptions.

Table [2] shows how convergence behavior is affected by key parameters, including the trainable
parameter dimensionality d and the number of perturbations per iteration n. Although FMAD and
Z0 can achieve memory savings in certain regimes, they incur higher per-iteration compute costs
and slower convergence in high-dimensional or low-perturbation settings. In contrast, BP (especially
when paired with activation checkpointing) retains favorable convergence with competitive memory
efficiency. These theoretical results provide intuitions for our empirical analysis in §4} where we
quantify how these trade-offs manifest in large-scale training. We summarize theoretical comparisons
of BP, FMAD, and ZO along three key axes:

Observation 1: Accuracy. FMAD and ZO introduce approximation noise and discretization effects,
leading to higher convergence error than BP, especially in high-dimensional models or with limited
perturbations. §4.2] empirically demonstrates that ZO suffers greater accuracy degradation than
FMAD due to discretization error, and that both ZO and FMAD achieve lower accuracy than BP
because of additional learning rate constraints, which are detailed in Appendix



Under review as a conference paper at ICLR 2026

Observation 2: Convergence Speed. Both FMAD and ZO require stricter learning-rate constraints
than BP, which slows convergence as dimensionality grows or perturbation budgets shrink. §4.3|
supports this observation by showing that FMAD and ZO converge more slowly and reach lower
accuracy compared to BP.

Observation 3: Memory-compute Trade-offs. While able to reduce activation memory, FMAD and
Z0 incur O(nd) compute cost per iteration, and face a fundamental trade-off: parallel perturbations
reduce runtime but increase memory, whereas sequential perturbations conserve memory but slow
training. §4.4|corroborates these memory bounds and shows a breakdown of the memory consumption.
§4.5empirically validates the computation cost.

A Note on Non-differentiable and Black-box Settings. While it’s claimed that ZO has utility in
settings with non-differentiable objectives (Qiu et al., [2023; Rando et al., 2023)) or limited model
access (Nikolakakis et al.|, 2022} |Lobanov et al., [ 2024), its applicability to large-scale model training
is fundamentally constrained. In true black-box scenarios, it is often infeasible to perturb weights or
query the loss values, making ZO methods impractical. In contrast, first-order methods such as BP
and FMAD require access to model internals and automatic differentiation support, challenges that
are largely engineering in nature and increasingly well-supported by modern frameworks. As such,
the growing trend (Gautam et al., 2024; |Guo et al.| [2025) of applying ZO to train LLMs is misguided:
the computational cost and degraded convergence significantly outweigh the memory gains.

4 EMPIRICAL EVALUATION

This section empirically compares the variants of BP, FMAD, and ZO optimization. We evaluate these
methods across multiple axes, including (a) accuracy, (b) wallclock convergence time, (c) memory
consumption, and (d) computation cost. For each of these dimensions, we also examine how different
variance reduction strategies affect performance. Last but not least, we empirically show that variance
reduction methods and adaptive optimizers fail to make FMAD and ZO converge reliably.

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate gradient computation methods across a diverse set of 5 text-based tasks and
2 vision-based tasks. The 5 text-based tasks are (a) Gsm8K (text generation on math problems/next-
word prediction) (Cobbe et al.| |2021)), (b) MMLU (multiple-choice question-answering covering
various domains of knowledge) (Hendrycks et al., [2021), (c) AGNews (4-class news article text
classification task) (Zhang et al.| 2015), (d) BoolQ (boolean question-answering) (Clark et al.,[2019)),
and (e) MultiRC (closed-book question-answering) (Khashabi et al., 2018). The 2 vision-based tasks
are both based on visual question-answering: (a) VQAv2 (Goyal et al.,2019)), and (b) TextVQA (Singh
et al.| 2019). Appendix [B|describes the datasets in detail, including the train/test splits.

Models. Our evaluation uses 5 models with a varying number of total parameters (listed in paren-
theses). For text-based tasks, on the billion-parameters scale, we use LLAMA 3.1 (8B) (Grattafiori
et al.|[2024) and OPT (1.3B, 6.7B, 13B) (Zhang et al.,|2022). Additionally, we include medium-sized
language models BERT (110M, 340M) (Devlin et al., 2019) and ROBERTA (125M, 355M) (Liu
et al.} 2020) to analyze performance variations across model sizes. For vision-based tasks, we use
QWEN 2 VL (7B) (Qwen et al.} 2025). To finetune these models, we use QLORA (Dettmers et al.}
2023)), where low-rank adapters are trainable while the rest of the weights are frozen and quantized to
4 bits. By default, we set the LORA rank » = 1 and scale o = 1 to minimize the number of trainable
parameters for FMAD and ZO. Appendix [F4]reports results on higher LORA ranks.

Methods for Comparison. We categorize the 16 gradient computation methods our evaluation com-
pares into three groups: (a) Backpropagation Methods: BP-VANILLA (Rumelhart et al., [1986) (the
standard implementation that stores all intermediate activations), BP-CHECKPOINTING (Chen et al.,
2016)) (reduces peak memory consumption by storing only a subset of activations and recomputing the
rest during the backward pass), and BP-ACCUMULATE (uses gradient accumulation). (b) Zero-order
Methods: ZO-VANILLA (Chen et al.| 2019) (use a single perturbation to estimate gradients as in
Equation 2)), MEZO (Malladi et al., 2023) (incorporates a prompt-finetuning approach to convert
classification tasks into next-word prediction with a constrained vocabulary), ZO-ACCUMULATE
(applies gradient accumulation to reduce noise in gradient estimates), ZO-MULTIPLE (Feng et al.|
2024) (averages gradient estimates from multiple perturbations per iteration to improve estimate
stability), ZO- ADAPTIVE (adaptively selects perturbation directions based on prior gradients), ZO-
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Table 3: BP, FMAD, and ZO variant accuracies (higher is better) across models and datasets.
Subscripts show accuracy gaps from BP-VANILLA/CHKPT (CHKPT = CHECKPOINTING). While BP
remains the most accurate, FMAD and ZO variants -ACCUMULATE and -MULTIPLE offer notable
gains over their -VANILLA forms but still lag behind BP, especially on generation tasks, such as
GSMS8K. Appendix [FI] reports variance across runs. Darker shade O = range of high accuracies,
lighter shade O = range of moderate accuracies, unshaded = range of low accuracies.

Model + Dataset | LLAMA 3.1 (8B) | QWEN 2 VL (7B)
Method | AGNews BoolQ ~ MultiRC GSM8K MMLU | VQAV2 TextVQA
No Finetuning ‘ 23.5 51.6 52.8 27.3 51.1 ‘ 73.2 71.1
BP-VANILLA/CHKPT 94.2 88.3 85.2 54.3 60.3 87.1 98.5
BP-ACCUMULATE 93.8(-0,4) 87.9(-0,4) 83.3(.1,9) 33.1(.2”) 53.8(,54) 86.3(.0.7) 97.1(.1,4)
Z0O-VANILLA 73.6(,20,6) 57.1(,31_1) 57~2(—28.0) 36.3(,17_9) 54-7(—5.6) 77.6(,9_4) 729(—25.6)
Z0O-ACCUMULATE 85.8(.3‘4) 60.9(.27,3) 60.3(.24,8) 28.0(.26‘3) 55.2(.51) 79.7(.7,4) 73.1(.25,4)
ZO-MULTIPLE 86.7(74) 60.0282) 61.0c241) 35.8¢185 56.834) | 81.5¢56) 74.7(233)
Z0O-ADAPTIVE 81.5(.12,7) 57.4(.30,9) 59.0(.2()‘1) 30.2(.24‘1) 52.6(.7,6) 79.5(.7,5) 79.1(.19,3)
Z0-SVRG 84.79:5) 62.6(,25,7) 61.2(,23_9) 32. 122 55.9(,4_3) 79.179) 72.9(256)
Z.0O-SPARSE 64.5(.29,6) 53.2(.35,1) 553(-29,8) 29.1(.25‘1) 51-4(-8.9) 78.6(.3,5) 73.8(.24,7)
MEZO 80.5(,]3_7) 58.2(730.1) 60.4(,24_3) — —_— —_ —_
FMAD-VANILLA 80.5¢137) 60.7276) 61.4(238) 37.7¢166) 55.8(45) | 82.3(48) 78.3(202)
FMAD-ACCUMULATE 88.0(.52) 70.3(.17‘9) 71.2(.140) 30.8(.235) 57.1(.34) 83.7(.3,4) 80.9(.17‘6)
FMAD-MULTIPLE 86.2(_3‘0) 64.4(.23,3) 65.4(.]9,7) 40.5(-13,8) 57.7(-2.6) 82.9(.4,2) 79. 1(_|9'4)
FMAD-ADAPTIVE 78.5(.15‘7) 56.4(.31,9) 58.2(.271)) 38.1(.152) 56.3(.39) 82.9(.4,1) 78.2(.20‘3)
FMAD-SVRG 82.5(41.7) 64.6(-23,7) 64.1(_21,0) 35.4(.13,9) 56.1(.4,2) 83.0(.4,0) 79.5(-I9.0)
FMAD-SPARSE 70-4(-23,8) 56.9(.29,4) 53.1(.311) 30.3(.239) 53-4(»68) 80.3(.6_7) 77.0(.21‘5)

SVRG (Liu et al.| 2018) (applies stochastic variance reduction to correct noisy gradients), and
Z0O-SPARSE (Guo et al.} 2025) (only updates top-1% parameters each iteration). (c) Forward-mode
AD Methods: FMAD-VANILLA (Baydin et al.,[2022), FMAD-ACCUMULATE, FMAD-MULTIPLE,
FMAD-ADAPTIVE, FMAD-SVRG, and FMAD-SPARSE. The - VANILLA suffix denotes the original
implementation according to Equation [I] while the other variants mirror the corresponding ZO
method in (b), adapting similar strategies for the forward-mode setting. Appendix [C]describes these
methods and their hyperparameters in detail.

Metrics. We evaluate the efficiency of the gradient computation methods using four metrics. (a) Ac-
curacy at test-time assesses the efficacy of the learned models. (b) Wallclock convergence time (in
minutes) measures the time each approach takes to achieve stable-state accuracy. (c) Peak memory
consumption (in GBs) quantifies the maximum memory consumed during training. (d) Compu-
tation cost for each iteration and until convergence, in Tera Floating-Point Operations per Second
(TFLOPs). Additionally, in our failure mode analysis, for ZO and FMAD approaches, Section 4.6|
reports statistics, such as the mean of effective gradient norms and jvp values across iterations,
capturing the instability of estimated gradients and its impact on optimization dynamics.

Libraries and Hardware. Our codebase is built using PyTorch (Paszke et al.l 2019). Quantization
uses AutoGPTQ (Frantar et al.,|2022). We conducted all experiments involving billion-scale models
across ZO and FMAD variants on a single Nvidia L40 GPU (48GB RAM). For experiments on OPT
(13B) model, we used one Nvidia A100 (0GB RAM). For BERT and ROBERTA models, we used
an Nvidia 2080ti (11GB RAM). We repeated each experiment three times with random seeds set to 0,
1, and 2 to ensure consistency and robustness. Our source code is available for replication [ﬂ

4.2 COMPARISON ON ACCURACY

Accuracy is the primary metric of interest since any gradient computation method that reduces memory
consumption or computational cost is of little practical value if it cannot match the predictive perfor-
mance of BP. Table [3| presents accuracy results and Appendix [F.I|shows variance across 3 executions.

Backpropagation achieves significantly higher accuracy than FMAD-VANILLA and ZO-
VANILLA. Backpropagation, both in its standard form (BP-VANILLA) and with checkpointing
(BP-CHKPT), consistently achieves the highest accuracy across all tasks. Among the alternatives, the

1 . . . .
https://anonymous.4open.science/r/Gradient_Estimation
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-VANILLA forms of FMAD and ZO are most directly comparable to BP. Due to the inherent random-
ness in their perturbation-based gradients (see §3]Obs 1), both FMAD-VANILLA and ZO-VANILLA
lag behind BP by 4.5-27.5% and 5.6-31.1% across datasets, respectively. Further, across all the
datasets, FMAD-VANILLA outperforms ZO-VANILLA, with gains of 1.1-6.9%. This consistent
margin illustrates FMAD’s fundamental advantage: access to analytic first-order Jacobian-vector
products (jvp), over ZO’s reliance on noisy finite-difference estimates.

Variance reduction ap-
proaches improve the accuracy
of FMAD and ZO methods yet
fall short of closing the gap
with BP methods. Both FMAD
and ZO benefit from their
-ACCUMULATE and -MULTIPLE

0.8
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noise by trading off higher

compute or memory. FMAD- (a) Averaging gradients over

ACCUMULATE improves over multiple perturbations per iteration

FMAD-VANILLA by 1.4-9.8% ) . .
across datasets, except on Figure 2: Experiments (on AGNews dataset with LLAMA 3.1 8B

GSMSK (-6.9%), likely due to model) with varying perturbation counts (-MULTIPLE) and accu-
mulation steps (-ACCUMULATE) show that both strategies reduce
Similarly, ZO-ACCUMULATE gradient noise and improve convergence stability for FMAD and
boosts accuracy by 0.2-12.2%, Z0. However, -MULTIPLE increases memory and compute costs,
with an 8.3% drop on GSMSK. while -ACCUMULATE slows down convergence. Furthermore,
FMAD-MULTIPLE improves by 2 shown in (right), BP-CHECKPOINTING achieves the highest,
0.6-5.7%, and ZO-MULTIPLE MOst stable accuracy fastest. FMAD performs moderately but is
by 0.2-13.2%, with only a 0.5% unstable or slow, and ZO (with step size 1) suffers early collapse
drop on GSMSK. and fails to match BP’s accuracy.

To understand the effects of these two variance reduction techniques, we vary the number of pertur-
bations and accumulation steps. Figure [2a] shows that increasing perturbation count (n = 10, 50)
yields 5.7-7.7% (FMAD) and 13.2-14.0% (ZO) accuracy gains on AGNews, consistent with the
observations of §[3] Similarly, Figure 2b|shows that increasing accumulation steps (100, 200) yields
7.5-7.6% (FMAD) and 12.2-14.0% (ZO) gains. These improvements come at the cost of increased
convergence time (sequential implementation of -MULTIPLE), memory (parallel implementation of
-MULTIPLE), or slower updates (-ACCUMULATE). These trade-offs are discussed in §4.3]and 4.4]

(b) Accumulating and averaging
gradients across iterations

its need for smaller batch sizes.

Other variance reduction approaches offer limited or inconsistent accuracy improvements for
FMAD and ZO. -ADAPTIVE often underperforms, with FMAD-ADAPTIVE trailing - VANILLA
on BoolQ (-4.3%) and MultiRC (-3.2%), likely due to biased updates from gradient-informed
perturbation sampling. -SPARSE performs worst overall, lagging - VANILLA by 1.2-10.1% (FMAD)
and 1.9-9.0% (Z0), as random perturbations of early steps mislead saliency-based parameter selection.
-SVRG improves classification accuracy by 4.0-11.1%, but failing on GSM8K (-4.2%) due to
homogenized updates that weaken variance correction (see Appendix[F.5.2). MEZO offers modest
gains (1.0-6.9%) on classification but lacks applicability to generative and vision-language tasks.

Accuracy gaps widen as trainable parameters or model size increases. To further evaluate the
impact of trainable parameter count on FMAD and ZO, we conducted additional experiments on
medium-sized models (110M-350M parametered BERT and ROBERTA) and large-sized models
(OPT 1.3B, 6.7B, with various LORA ranks, and 13B), as detailed in Appendices@]and@ Both
FMAD and ZO still exhibit slower convergence and degraded performance compared to BP, with the
gap widening as model size increases (especially in the case of BERT and ROBERTA). Experiments
on changing the perturbation variance are presented in Appendix [F.3]

4.3 COMPARISON ON WALLCLOCK CONVERGENCE TIME

Convergence time determines how quickly a trained model becomes feasible for practical use.
We contextualize our analysis using Figure [2] which illustrates the time-to-accuracy curve of the
-VANILLA methods. Figure [d]in Appendix [F.I|includes results on the remaining datasets.
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Compared to ZO and FMAD, BP-CHECKPOINTING achieves the fastest convergence speed
and highest accuracy. Figure (AGNews, batch size 40) compares test accuracy against
wall-clock time. Since BP-VANILLA runs out of memory at this batch size, we instead re-
port a smaller batch size (8) for a fair runtime comparison between BP-VANILLA and BP-
CHECKPOINTING. At batch size 8, BP-VANILLA requires 804.4s/iter, while BP-CHECKPOINTING
takes 936.3s/iter (~1.2x slower per iteration). Despite this overhead, BP-CHECKPOINTING
still outperforms FMAD by ~1.2x per iteration and achieves 4.5-27.6% higher accuracy.
At batch size 40, where memory is the lim-

.. BN Parameters B Gradients+Optimizer States+Misc
iting factor, BP-CHECKPOINTING converges

. X ) . Activations

reliably with 1112.8s/iter. In comparison, Liama3. 1.8B OPT-138
FMAD requires 1286.5s/iter, and ZO is the oow AT oom
fastest at 726.7s/iter (~1.5x faster than BP- £ 4| 404
CHECKPOINTING). However, this runtime ad- &__

O v 301 301
vantage does not translate to accuracy: BP- 9o
CHECKPOINTING reaches ~94% accuracy, gg 201 201 . 1575
while FMAD and ZO fall short due to slower OE)V 10 LL66 | 1o — s, I
convergence and instability. Specifically, ZO = pd ==
suffers from approximation errors in gradient N A e e e

Vanilla Chkpt Vanilla Vanilla Vanilla Chkpt Vanilla Vanilla

estimation, leading to accuracy degradation of

5.6-31.1% relative to BP-based methods.
Figure 3: Breakdown of memory consumption

In terms of overall .time-to-accuracy, BP- training (left) LLAMA 3.1 (8B) and (right)
CHECKPOINTING achieves convergence 21.4— OPT (13B) models on AGNews. Although BP-
34.8% faster than alternatives. The gap with  cypckpOINTING is 1.6-1.9x takes more memory
FMAD arises from its computational ineffi- ,,, 70, it takes far fewer iterations to achieve 4.5—

ciency: unlike BP, which reuses downstream 31 ¢, higher accuracy (as shown in Figure [2B).
gradients with a single matrix multiplication per

layer, FMAD requires two matrix multiplications per layer for jvp evaluation (Eq.[I).

Variance reduction improves convergence, but often slows down convergence time. As shown in
Figure 2a] -MULTIPLE variants (e.g., with n = 10, 50) yield smoother training and higher accuracy
than their n = 1 counterparts. However, these gains come with a proportional increase in convergence
time for sequential implementations as the runtime scales linearly with the number of perturbations.
-ACCUMULATE variants (Figure 2b)) improve accuracy without increasing per-iteration cost, as they
amortize single-step estimates over multiple updates. However, the delay in parameter updates slows
down overall convergence: with an accumulation window of 200, training is 14.8x and 10.9x slower
for FMAD and ZO, respectively, than when trained without accumulation.

4.4 COMPARISON ON MEMORY CONSUMPTION

Memory savings from FMAD and ZO come at the cost of accuracy and convergence speed.
Figure [3| shows that both FMAD and ZO reduce memory usage relative to BP-VANILLA, which runs
out of memory (OOM) due to storing all activations. By contrast, FMAD and ZO store only the
previous layer’s activation, yielding a lower memory footprint. However, as seen in Figure 2b] these
savings lead to significantly longer training times and degraded model performance. Meanwhile,
BP-CHECKPOINTING uses 0.6—1.3GB less memory than FMAD, while delivering substantially faster
convergence and 4.5-31.1% higher accuracy. Further, FMAD consumes 3.3—4.3x more activation
memory than ZO. This overhead stems from the need to simultaneously store previous layer’s
intermediate activations for both the primary forward pass and the additional jvp computation.

Variance reduction strategies introduce memory-accuracy trade-offs. The -MULTIPLE variants
improve gradient quality by evaluating multiple perturbations per step, but parallel implementations
require linearly more memory. For instance, if one forward pass needs 1.26GB (ZO) or 5.41GB
(FMAD) for activations, using n perturbations inflates this to 1.26nGB or 5.41nGB, respectively. On
the other hand, - ACCUMULATE amortizes these computations over time and introduces no memory
overhead, though at the cost of slower convergence.

4.5 COMPARISON ON COMPUTATION COST

Computation cost in terms of FLOPS directly impacts energy consumption and determines whether
training large models is feasible under given resources. Table []reports both per-iteration cost and
total cost until convergence. (Table [2| summarized the theoretical bounds.)
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FMAD and ZO methods reduce per-iteration compute costs but incur significantly higher total
compute due to slow convergence. ZO-VANILLA incurs a relatively low per-iteration cost of 288.7
TFLOPs, approximately 0.7 x the cost of BP-CHECKPOINTING, because it only requires two forward
passes per gradient estimate. However, this advantage is misleading: due to slow convergence, its
total computation cost until convergence is 3.8 x higher than that of BP-CHECKPOINTING. FMAD-
VANILLA shows a per-iteration cost nearly identical to BP-CHECKPOINTING, but its convergence is
hindered by gradient estimates with high variance, leading to 3.2 higher total compute costs.

Multiple perturbations per itera- Table 4: Computation cost per iteration and until convergence
tion improves accuracy but linearly (Jower is better) for LLAMA 3.1 (8B) on AGNews dataset.
increases cost. In ZO-MULTIPLE, BP-CHECKPOINTING remains by far the most compute-
using 10 perturbations per iteration efficient; whereas the perturbation-based methods (ZO and
leads to a 9.7x increase in compute, FMAD), even their -ACCUMULATE variants, incur order-of-

showcasing the linear relatioqship be-  magnitude more TFLOPs to reach convergence.
tween the number of perturbations and

cost. In contrast, ZO-ACCUMULATE, TFLOPs TELOPs until
which accumulates gradients across Method
iterations without increasing perturba-

# Iter. until
per Iter. (J.) Convergence () Convergence

tion count, maintains similar cost to BP-CHECKPOINTING ~ 434.4 65.2 x10* 1.5%x10°
ZO-VANILLA but still suffers from 7zo-vaniLLA 288.7 251.2 x10% 8.7 x10°
slow convergence. Similarly, for zo-MurtiPLE 2886.8 24250 x10* 8.4 x10°
FMAD, when we increase the num- Z0O-ACCUMULATE 288.7  2165.1 x10* 75.0 x10°

ber of perturbations by 10x to reduce
gradient variance and improve accu-
racy, the cost increases by 20x that of
BP, as each jvp involves two matrix multiplications.

FMAD-VANILLA 432.0 207.4 x10* 4.8 x10°3
FMAD-MULTIPLE 43203 41475 x10* 9.6 x10°

4.6 FAILURE MODE ANALYSIS

Here, we analyze why variance reduction methods and adaptive optimizers sometimes fail to make
FMAD and ZO converge reliably.

Cascading JVP Amplification with Adaptive Optimizers. A key failure mode in FMAD arises
with adaptive optimizers, such as ADAMW, triggering cascading amplification of Jacobian-vector
products (§vp). On GSM8K, jvp magnitudes remain stable under SGD within [—50, 50], but spike
8-10x under ADAMW (Figure[9). These spikes produce large gradient updates, inflating weights and
further amplifying jvp values, a positive feedback loop that can cause divergence or noisy updates.

Gradient Variance and Magnitude Explains Performance Drops. Effective gradient variance
under ADAMW is 4-6x higher than SGD, with peaks of 200-400 in hidden layers of the LLaMA-
7B subset. This instability correlates with 2-5% lower final accuracy vs. BP with checkpointing,
and some runs yield NaN gradients. Spikes typically appear after 50-100 iterations, indicating
accumulation from the rolling-average mechanism in adaptive optimizers.

Non-Adaptive SGD Maintains Stability. In contrast, SGD keeps jvp bounded and gradients
closely track backpropagation, producing stable convergence (Figures[9al [9b). These results highlight
a critical interaction between optimizer choice and FMAD stability: adaptive optimizers can introduce
harmful gradient artifacts in FMAD and ZO methods. Further details, including additional datasets,
layer-wise analyses, and variance-reduction strategies, are provided in Appendix

5 CONCLUSION

While forward-mode AD (FMAD) and zero-order (ZO) optimization have been proposed as memory-
efficient alternatives to backpropagation (BP), prior work lacked comparison with checkpointed
BP and unified theoretical bounds. Our analysis closes these gaps, revealing that FMAD and ZO
incur higher computational cost, slower convergence, and greater sensitivity to dimensionality and
perturbation budgets. Even with enhancements like variance reduction, they remain less efficient
and robust than BP with activation checkpointing. Empirical results on large models confirm that
checkpointed BP consistently outperforms FMAD and ZO across accuracy, convergence speed, and
compute cost — at comparable memory usage. These findings reaffirm checkpointed BP as the most
practical strategy for memory-constrained training and clarify the limitations of FMAD and ZO.
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A RELATED WORK

Here we review recent works on forward-mode AD and zero-order optimization methods; along with
a discussion on various methods to refine the memory and time efficiency of backpropagation.

A.1 FORWARD-MODE AD

The application of forward-mode automatic differentiation (FMAD) for training deep neural networks
was first introduced in Forward-Gradient Descent (FGD) (Baydin et al.,[2022)), building on an earlier
survey on automatic differentiation (Baydin et al.l 2017). FGD demonstrated FMAD on a small-scale
three-layer fully connected model and a four-layer convolutional network, claiming that FMAD
can outperform backpropagation (BP) in speed and loss reduction per unit time. However, these
claims remain unverifiable, as the implementation was never made publicly available, and subsequent
independent evaluations (Belotti and Angioni} 2023) have found these results difficult to reproduce.

Beyond this initial demonstration, more recent efforts have attempted to improve FMAD’s efficiency.
Can Forward Gradients Match Backpropagation? (Fournier et al.l 2023)) seeks to enhance FMAD by
generating more structured perturbations rather than relying on random sampling. This approach in-
troduces local losses computed via small auxiliary networks to inform perturbation choices. However,
training these auxiliary networks significantly increases memory consumption and computational
overhead, undermining FMAD’s intended efficiency advantage.

Other studies have focused on extending FMAD beyond first-order gradients. Second-order
FmAD (Cobb et al.| 2024) provides a formal framework for computing second-order gradients
with FMAD, demonstrating improved optimization performance. However, this comes at a substan-
tial computational cost, and experiments remain limited to small-scale benchmarks (e.g., a CNN
with only 431K parameters), leaving open the question of whether second-order FMAD can scale
competitively against BP. Similarly, Taylor-mode Auto Differentiation (Bettencourt et al., 2019)
generalizes FMAD to compute higher-order gradients, yet the memory and time-to-convergence
trade-offs compared to BP remain unexplored.

Several other works have proposed variations of FMAD without fundamentally addressing its ineffi-
ciencies. Randomized Forward Gradient-based GD (Shukla and Shin| [2023) provides a convergence
analysis of FMAD using random perturbations but offers no new insights into its computational effi-
ciency. PROJECTED-FG (Rostami and Kia}, 2024) applies FMAD to memory-efficient Frank-Wolfe
optimization but evaluates only small models, making its conclusions inapplicable to large-scale deep
learning. Beyond Backpropagation (Fligel et al., 2024) investigates the use of multiple perturbations
per iteration to improve forward-gradient computation but fails to identify why FMAD remains
inferior to BP in practice.

A more recent large-scale application of FMAD appears in SPRY (Panchal et al.| 2024), which
employs FMAD for fine-tuning large models (ranging from 100K to 13B parameters) in a federated
learning setting. By restricting each client to a small subset of weights, SPRY circumvents FMAD’s
poor performance in high-dimensional perturbations. However, even in this setting, FMAD exhibits
slower convergence and higher variance than BP, further reinforcing its fundamental limitations.

For applications besides LLM training or finetuning, biological plausibility (Schmidt-Hieber, 2023},
X1ao et al.| 2024) has been proposed as a motivating factor for exploring alternative gradient estimation
techniques. FMAD avoids the backward signal transport required by backpropagation and has
therefore been considered more biologically plausible. Though FMAD still relies on first-order
derivatives and engineered automatic differentiation, which limits its direct applicability to biological
systems.

While prior works have demonstrated narrow successes of FMAD in specialized scenarios, none
have systematically analyzed its fundamental computational constraints. Besides, the comparison
of FMAD against a strong baseline of BP-CHECKPOINTING remains uncharted. Unlike these
related studies, our work provides a principled theoretical and empirical investigation into the
scalability bottlenecks of FMAD, explicitly comparing its memory and time complexity against BP-
CHECKPOINTING. We also uncover failure modes of FMAD in deep networks, offering new insights
into why it cannot consistently surpass BP in terms of both time-to-convergence and efficiency.
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A.2 ZERO-ORDER OPTIMIZATION

Zero-order (ZO) optimization has received significant attention, particularly in settings where first-
order gradient information is unavailable or impractical to compute. Unlike FMAD, which has
seen limited large-scale adoption, ZO methods have been actively explored in deep learning due to
their applicability in scenarios such as adversarial attacks, black-box optimization, and gradient-free
fine-tuning. Similar to FMAD, we also note that none of the works discussed below have made a
comparison of their ZO-based variant against BP-CHECKPOINTING, an aspect which is fleshed out
in this work.

MEZO (Malladi et al., [2023)) and its extension MEZO-SVRG (Gautam et al., 2024) introduced
memory-efficient ZO optimization strategies that regenerate random perturbations instead of storing
them, effectively reducing memory overhead. These methods have demonstrated practical advantages
in fine-tuning large language models (LLMs) for classification tasks without requiring explicit
backpropagation. While they address memory constraints, they do not provide insights into the
fundamental efficiency trade-offs between ZO and BP in terms of time-to-convergence, memory
consumption, and attained accuracy; which are the key concerns of our work. A closely related line
of work is HIZOO (Zhao et al.,|2025)), which proposes a forward-only second-order ZO optimizer
that uses Hessian-informed perturbations to accelerate MeZO-style fine-tuning. While HIZOO
successfully demonstrates reduced activation-memory usage relative to MEZO, its evaluation focuses
primarily on memory rather than wall-clock convergence time or total compute cost—metrics that
are central to our analysis. Moreover, the algorithm introduces additional second-order computations
(via Hessian-related estimators), whose overhead is not thoroughly quantified.

Expanding on these efforts, DEEPZERO (Chen et al., [ 2024) proposed a ZO deep learning framework
capable of training deep neural networks from scratch. By leveraging coordinate-wise gradient
estimation (CGE) over randomized vector-wise estimation, DEEPZERO achieves improved accuracy
and computational efficiency. Additionally, the introduction of sparsity-induced training, feature
reuse, and forward parallelization brings ZO training closer to first-order methods, achieving state-
of-the-art results on ResNet-20 trained on CIFAR-10. However, despite these advancements, ZO
remains fundamentally limited by high variance and inefficient gradient estimation, resulting in
slower convergence compared to BP, which is an issue we empirically validate in our benchmarks.

Other works, such as DZOVR (Chen et al.,|2023)) and ZO-SVRG (Liu et al., 2018)), have attempted to
improve ZO efficiency by incorporating Stochastic Variance Reduced Gradients (SVRG) (Johnson and
Zhang|, |2013)). Similarly, research on ZO methods for non-convex and non-smooth optimization (Liu
et al., 2024} [Kornowski and Shamir, 2024; Balasubramanian and Ghadimi, [2018)) has provided
valuable theoretical insights. However, none of these studies systematically compare ZO to BP in
terms of memory consumption, execution time, and scalability, leaving open the question of whether
Z0 can ever be a viable alternative. Our work explicitly addresses this gap by benchmarking these
methods against BP and highlighting their structural inefficiencies.

Further, ZO-ADAMM (Chen et al., 2019) integrates an adaptive optimizer (ADAMM) into ZO,
demonstrating improved stability. However, even with adaptive optimization, ZO struggles to match
the convergence speed of BP, as shown in their experiments on a small-scale CNN. Additionally,
work on ZO optimization in high-dimensional settings (Wang et al., 2018)) has focused primarily on
convergence properties rather than the computational and memory efficiency bottlenecks that limit
Z0O’s practical scalability.

Revisiting ZO (Zhang et al., [2024) benchmarks the performance of large language models trained
using BP, FMAD, and ZO optimization. Our work differs in several key ways: (a) We include
comparisons against a backpropagation with checkpointing baseline, offering new insights into the
memory-efficiency trade-offs among gradient computation methods. (b) Unlike Revisiting ZO, our
study evaluates both time-to-convergence and overall computational cost, which are critical for
understanding practical scalability. (c) We also provide an in-depth failure mode analysis, focusing on
the behavior of Jacobian-vector products and their influence on model updates, an aspect unexplored
in their work.

We note that like ZO with LLMs, ZO for biological systems (Schmidt-Hieber, [2023)) would face
scalability and convergence challenges when applied to high-dimensional models. Our study does
not aim to contest the conceptual motivations behind these techniques; rather, we show their practical
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limitations, in terms of computational cost and optimization performance, for large-scale models like
LLMs.

A.3 OPTIMIZATIONS ON BACKPROPAGATION

Backpropagation (BP) remains the dominant method for training deep neural networks due to its
computational efficiency and well-optimized implementations. However, standard BP incurs high
memory costs, as it requires storing intermediate activations for the entire computational graph during
the forward pass. This limitation has motivated extensive research into memory-efficient variants of
BP that aim to reduce memory consumption without significantly compromising training speed.

Checkpointing-based methods, such as REVERSIBLE RESIDUAL NETWORKS (Gomez et al.,2017)
and ACTIVATION CHECKPOINTING (Chen et al.l 2016), trade memory for recomputation by strategi-
cally discarding and later recomputing activations. These techniques have proven effective in reducing
memory overhead, but they introduce additional computational costs. More recent approaches, such
as EFFICIENT REMATERIALIZATION (Gruslys et al.} 2016) and DYNAMIC PROGRAMMING-BASED
ACTIVATION OFFLOADING (Beaumont et al., 2021), attempt to optimize checkpointing strategies to
minimize recomputation overhead. Despite these advances, BP with checkpointing still follows the
same fundamental backpropagation framework and benefits from computation reuse — an efficiency
advantage that FMAD and ZO methods lack.

B DATASETS

In this section, we provide detailed descriptions of the datasets used in our experiments. For each
dataset, we outline its origin, licensing, the version we have used, and task-specific characteristics,
including the number of samples, sequence lengths and relevant domain or classification details.

AGNews. The AG News dataset (Zhang et al.,|2015) is derived from a corpus of 496,835 labeled
news articles collected from over 2,000 web-based news sources published between 2004 and 2005.
For this work, we use a widely adopted, cleaned, and balanced subset comprising 120,000 training
samples and 7,600 test samples, evenly distributed across four categories: World, Sports, Business,
and Science/Technology. We divide the test data into half to create validation and test splits. The
dataset is primarily used for topic classification, which is also the focus of our study. The maximum
sequence length for our experiments is set to 350 tokens during training. It is released under the
Creative Commons CCO 1.0 Universal license, placing it in the public domain. We obtained the
dataset via the Hugging Face Datasets library (Tunstalll 2022).

BoolQ. The Boolean Questions (BoolQ) dataset (Clark et al.,2019) is a reading comprehension
benchmark consisting of naturally occurring yes/no questions. Each instance includes a question, a
passage (typically a paragraph from Wikipedia), and a binary answer (“yes” or “no”) derived from the
passage content. Unlike synthetic question-generation benchmarks, BoolQ features real user queries
collected from Google search logs, making the task more reflective of real-world comprehension.
The dataset contains approximately 9,427 question-passage training pairs, and 3,270 validation pairs.
We divide the validation data into half to create the validation and test data splits for this work.
The maximum sequence length for our experiments is set to 1200 tokens during training. BoolQ is
released under the Creative Commons Share-Alike 3.0, which allows for flexible use, modification,
and redistribution with appropriate attribution. Once again, Hugging Face Datasets was used to access
BoolQ (del Morall, 2022a).

MultiRC. The Multi-Sentence Reading Comprehension (MultiRC) (Khashabi et al.,2018) dataset
is a benchmark corpus designed to evaluate machine reading comprehension over short paragraphs.
Each example consists of a paragraph followed by one or more questions, with corresponding
candidate answers that must be inferred from the text. In our setup, we frame the task as a binary
classification problem, determining whether a given question-answer pair is correct or incorrect based
on the paragraph content. The dataset contains approximately 6,000 multi-sentence questions drawn
from over 800 distinct paragraphs. The maximum sequence length for our experiments is set to
1500 tokens during training. MultiRC is released under the MIT License, permitting broad use and
redistribution with attribution. We accessed the dataset through Hugging Face (del Morall 2022b).
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GSMS8K. The Grade School Math 8K (GSMS8K) dataset (Cobbe et al., [2021)) is a high-quality
benchmark for evaluating arithmetic reasoning and problem-solving abilities of language models.
Each example consists of a single math word problem followed by a detailed, step-by-step answer.
Designed to emphasize multi-step reasoning, the problems are written in natural language and reflect
concepts typically found in grade school (middle school) curricula. The dataset contains 7,470
training examples and 1,319 test examples, all manually curated for clarity and correctness. The
maximum sequence length for our experiments is set to 800 tokens during training. In this work, we
use GSMB8K as a text-to-text supervised learning task, where the input is the problem statement and
the target is the final answer (without the reasoning steps). The dataset is publicly available under
the MIT License, allowing broad reuse and modification with attribution. The dataset is available on
Hugging Face (del Moral, [2022c)).

MMLU. The Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021)
dataset is a comprehensive benchmark designed to assess general knowledge and reasoning ability
across a wide range of academic and professional subjects. It covers 57 diverse topics, including
mathematics, history, law, medicine, and the sciences, with questions derived from standardized
exams and expert-written materials. Each example is a multiple-choice question with four answer
options, requiring both factual knowledge and reasoning skills. All four answer options are included
in the prompt. The dataset consists of 99.8k training samples, 1.5k validation samples, and 14k test
samples. The maximum sequence length for our experiments is set to 1500 tokens during training.
MMLU is publicly available under the MIT License, allowing free use, modification, and distribution
with appropriate credit. Its breadth and difficulty make it a challenging benchmark for evaluating
finetuned language models. In line with rest of the datasets, we have used the Hugging Face Datasets
version of MMLU (Phanl, [2024)).

VQAv2. The Visual Question Answering v2.0 (VQAv2) (Goyal et al., 2019) dataset is a large-scale
benchmark designed to evaluate a model’s ability to understand and reason over both visual and
textual inputs. Each example consists of an image (sourced primarily from the MS COCO dataset (Lin
et al.,[2014))) paired with a natural language question, and the task is to generate an accurate, typically
short (often single-word), answer based on the visual content of the image.

VQAV2 addresses the language bias issues present in its predecessor (VQAv1) by ensuring that each
question is associated with multiple images, such that the correct answer varies depending on the
visual context. This structure encourages models to genuinely integrate image understanding rather
than relying solely on question priors.

The dataset contains 443,757 training questions, 214,354 validation questions, and 447,793 test
questions, associated with over 200,000 images. Each question has 10 human-provided answers,
allowing for nuanced evaluation metrics such as accuracy based on answer consensus (Goyall, [2017)).
The maximum sequence length for our experiments is set to 100 tokens during training. VQAvV2 is
distributed under the 2-Clause BSD License, allowing for use and adaptation with attribution. We
access the dataset through the VisualQA website (Goyall 2017).

TextVQA. The TextVQA (Text-based Visual Question Answering) dataset (Singh et al., 2019)
is a vision-language benchmark specifically designed to evaluate a model’s ability to read and
reason about text within images. Unlike standard VQA tasks that focus on general object and scene
understanding, TextVQA centers on questions where the answer relies on text present in the image
itself; such as signs, labels, documents, product packaging, and storefronts.

Each example in the dataset includes an image, a natural language question, and a free-form textual
answer. To correctly answer a question, models must integrate visual understanding with OCR
(Optical Character Recognition) capabilities. TextVQA challenges systems to perform multimodal
reasoning that spans spatial, linguistic, and visual modalities.

The dataset consists of approximately 28,408 questions associated with 14,987 images, split into:
21,953 training questions; 3,166 validation questions; and 3,289 test questions. Each question is
annotated with 10 answers from human annotators to support consensus-based evaluation metrics.
The maximum sequence length for our experiments is set to 100 tokens during training. TextVQA is
publicly available under the CC BY 4.0 (Creative Commons Attribution 4.0 International License),
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allowing flexible use, sharing, and adaptation with attribution. The dataset is available for access on
Hugging Face (Preet] 2022).

C BASELINES AND HYPERPARAMETERS

BP-VANILLA. This baseline (Rumelhart et al., 1986)) uses a standard implementation of the training
loop with backpropagation as the gradient computation method, without any modifications or enhance-
ments. Due to out-of-memory (OOM) issues encountered with larger batch sizes, most experiments
involving BP-VANILLA are conducted using smaller batches. Table ] lists the hyperparameters.

Table 5: Hyperparameters related to BP-VANILLA, for all datasets.

AGNews BoolQ MultiRC ~ GSMSK MMLU VQAvV2 TextVQA
Batch Size 8 4 8 4 6 6 8
Learning Rate 1073 1073 1073 107° 1074 1074 1074
Optimizer ADAMW  ADAMW  ADAMW  Apamw  SODNESIerov - gon iy vw

Momentum 0.9

BP-CHECKPOINTING. BP-CHECKPOINTING (Chen et al.L|2016) is identical to BP-VANILLA
with one key difference: it employs activation checkpointing (also known as gradient checkpointing)
to reduce memory consumption, allowing for larger batch sizes without incurring out-of-memory
(OOM) errors. To ensure a fair comparison, the batch sizes used for BP-CHECKPOINTING match
those used for the ZO and FMAD variants. The hyperparameters are given in Table 6]

Table 6: Hyperparameters related to BP-CHECKPOINTING and BP-ACCUMULATE, for all datasets.

AGNews BoolQ MultiRC ~ GSMSK MMLU VQAvV2  TextVQA
Batch Size 40 40 40 6 8 8 8
Learning Rate 1073 1073 1073 107° 107 10~* 107
Optimizer ADAMW  ADAMW ADAMW  ADAMW SGD Nesterov SGD ADAMW

Momentum 0.9

BP-ACCUMULATE. BP-ACCUMULATE follows the same training procedure as BP-
CHECKPOINTING, but incorporates gradient accumulation to simulate larger effective batch sizes
without exceeding memory constraints. Instead of updating model weights after every mini-batch,
gradients are accumulated over multiple smaller batches and the update is performed after a fixed
number of steps. At the end of the accumulation period, the summed gradients are averaged by
dividing them by the number of accumulation steps. The hyperparameters are same as those of
BP-CHECKPOINTING (see Table[6), with accumulation step count being 100 as default.

Z0O-VANILLA. ZO-VANILLA (Chen et al.,|2019) implements a standard zero-order optimization
approach, which estimates gradients using only function evaluations according to Equation 2] without
requiring access to the model’s internal, first-order gradients. Specifically, it perturbs the model
parameters along randomly sampled directions and uses finite differences to approximate the gradient.
We have used the memory-efficient perturbation trick of MEZO for all the ZO- variants, which
includes storing the random seed and regenerating perturbations for forward pass evaluations, instead
of persisting entire perturbations in the memory. For fair comparison, we use the same batch sizes as
in BP-CHECKPOINTING and FMAD baselines. The hyperparameters are given in Table[7]

Z0O-ACCUMULATE. ZO-ACCUMULATE extends the ZO-VANILLA baseline by incorporating
gradient accumulation to simulate larger effective batch sizes without exceeding memory constraints.
Instead of estimating and applying a parameter update after each mini-batch, gradient approximations
(based on finite differences) are accumulated over multiple steps and averaged before updating the
model. This approach results in improved stability due to averaging out the noisy gradient estimates.
The hyperparameters are same as with ZO-VANILLA, given in Table[7] with default accumulation
window of 100.
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Table 7: Hyperparameters related to ZO-VANILLA, for all datasets.

AGNews BoolQ MultiRC GSMS8K MMLU VQAvV2  TextVQA

Batch Size 40 40 40 6 8 8 8
Learning Rate 107* 1073 1073 107° 107° 107* 107*
SGD SGD
Optimizer ADAMW  ADAMW SGD Nesterov Nesterov ADAMW SGD
Mmtm 0.9 Mmtm 0.9
ponurbation 103 1072 1072 1073 10~ 1072 1072
tep Size

ZO-MULTIPLE. ZO-MULTIPLE (also shown in (Panchal et al.,|2024;[Xu et al.||2024; [Feng et al.,
2024)) builds on the ZO-VANILLA method by using multiple random perturbation directions per
iteration, to improve the accuracy of the gradient estimate. Instead of relying on a single direction,
this variant samples several perturbations and averages the resulting finite-difference approximations,
leading to a lower-variance and more stable update. However, this approach increases the number of
function evaluations per step. The hyperparameters are same as with ZO-VANILLA, given in Table[7}
with default perturbation count per iteration of 10.

ZO-ADAPTIVE. ZO-ADAPTIVE enhances zero-order optimization by incorporating an adaptive
perturbation strategy that aligns gradient estimates more closely with the true gradient direction over
time. The optimization proceeds in two phases. In the calibration phase (typically the first iteration),
multiple perturbation directions are sampled, and the one with the highest positive projected gradient
is selected. This direction is assumed to have the smallest angle with the true gradient. This calibrated
perturbation is then used to compute an initial gradient estimate. In the adaptive phase (subsequent
iterations), new perturbations are sampled based on the previously estimated gradient, and a rolling
average is maintained between the new perturbation and the historical gradient direction. This
mechanism biases the search toward more promising directions while still allowing for exploratory
variation. The hyperparameters are same as those of ZO-VANILLA, with the inclusion of sampling 4
perturbations during the calibration phase.

Z0O-SVRG. ZO-SVRG (Liu et al.l 2018])) applies the principles of Stochastic Variance Reduced
Gradient (SVRG) (Johnson and Zhang] 2013) to the zero-order optimization setting, aiming to
improve convergence speed and stability by reducing the variance inherent in gradient estimates. The
method alternates between two types of updates: full gradient estimation at a reference point (called
a snapshot) and subsequent inner-loop updates that correct noisy estimates using control variates. In
the zero-order context, both the snapshot gradient and the inner-loop updates are computed using
finite-difference approximations along random perturbations. The variance reduction comes from
reusing the snapshot gradient to correct each inner-step estimate. Besides the hyperparameters shown
in Table[7] we use interval of 5 epochs to compute full gradients.

Z0O-SPARSE. ZO-SPARSE (Guo et al., [2025) introduces sparsity into zero-order optimization
by restricting gradient estimation and updates to only the top 1% of model parameters, selected
based on their magnitude at each iteration. Unlike structured approaches such as LoRA, this method
dynamically identifies and perturbs the most significant weights, those likely to contribute most to loss
reduction. Hence, ZO-SPARSE focuses the optimization on a small, adaptive subset of parameters.
This sparsity constraint reduces the dimensionality of the optimization problem, leading to fewer
function evaluations. The hyperparameters are exactly the same as those of Table

MEZO. MEZO (Malladi et all 2023)) builds on ZO-VANILLA, but with a key modification
tailored for classification tasks using language models. Instead of relying on a separate classifier
head, MEZO employs the language modeling (LM) head and masks out logits corresponding to
vocabulary tokens that are not class labels. This approach is presented in the prompt-based fine-tuning
strategy introduced by |Gao et al.| (2021). MEZO integrates this prompting technique with zero-order
optimization, enabling effective gradient-free fine-tuning of large language models, although it is
limited to the classification tasks. We use the same hyperparameters as ZO-VANILLA (see Table[7).
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FMAD-VANILLA. FMAD-VANILLA implements the standard forward-mode automatic differ-
entiation (Baydin et al.,[2017;2022) approach for computing gradients, more details are in §[Z} In
this baseline, we use a straightforward implementation of forward-mode AD without any memory-
saving strategies or structural optimizations. The hyperparameters used for FMAD-VANILLA are
summarized in Table[8] Additionally, the variance of the Gaussian distribution used for perturbation
sampling is fixed at 1 across all datasets.

Table 8: Hyperparameters related to FMAD-VANILLA, for all datasets.

AGNews BoolQ MultiRC GSMSK MMLU VQAv2 TextVQA

Batch Size 40 40 40 6 8 8 8

Learning Rate 1073 1074 1074 107° 107° 1074 1074
SGD SGD

Optimizer ADAMW  SGD  ADAMW  Nesterov Nesterov SGD SGD

Mmtm 0.9 Mmtm 0.9

FMAD-ACCUMULATE. FMAD-ACCUMULATE extends the standard forward-mode automatic dif-
ferentiation by incorporating gradient accumulation to simulate larger batch sizes without increasing
memory consumption. The same accumulation strategy is used in corresponding BP-ACCUMULATE
and ZO baselines to maintain fairness in comparison. The hyperparameters are given in Table[§] with
the addition of accumulation window of 100.

FMAD-MULTIPLE. FMAD-MULTIPLE enhances the basic forward-mode AD approach by using
multiple perturbation directions per update to improve the stability and accuracy of gradient estimates.
The setup closely mirrors that of ZO-MULTIPLE, with hyperparameters listed in Table[8] The only
addition is the use of 10 perturbation count per iteration.

FMAD-ADAPTIVE. FMAD-ADAPTIVE mirrors the two-phase procedure described in ZO-
ADAPTIVE, including the calibration phase for selecting an initial perturbation direction and the
adaptive phase that updates this direction using a rolling average of past gradients. For full details,
we refer the reader to the ZO-ADAPTIVE description. All hyperparameters remain consistent with
Table |8} with calibration phase including 4 perturbations just like ZO-ADAPTIVE.

FMAD-SVRG. FMAD-SVRG adopts the same stochastic variance-reduced gradient (SVRG)
framework used in ZO-SVRG, but applies it within the forward-mode AD setting. It alternates be-
tween full-gradient computation on a reference batch and variance-reduced updates on mini-batches,
thereby reducing the noise in gradient estimates while maintaining computational efficiency. For de-
tails on the SVRG formulation, we refer the reader to the description of ZO-SVRG. Hyperparameters
are in Table [§] with full gradients getting computed every 5 epochs (similar to ZO-SVRG).

FMAD-SPARSE. FMAD-SPARSE adopts the same sparsity strategy described in ZO-SPARSE,
where only the top 1% of parameters (by magnitude) are selected for gradient updates during each
iteration. As with the ZO-SPARSE variant, this method avoids techniques like LoRA and instead
relies on direct selection of high-magnitude weights. For complete details on the sparsity mechanism,
we refer the reader to the ZO-SPARSE description. All hyperparameters are in Table|[S]

A Note on the Theoretical vs. Empirical Learning Rate. The theoretical convergence bound
of ZO (Theorem has the condition of n < ﬁ The condition becomes increasingly

conservative as L and d scale, which is especially relevant for large models. This is a standard
limitation of worst-case analysis: the bound is derived under minimal assumptions (e.g., global
L-smoothness, worst-case variance), and thus prioritizes generality over tightness. In practice, we
start with relatively large learning rates (10~% to 10~?) to measure the best-case time to convergence
for ZO and FmAD. With adaptive optimizers like AdamW, the learning rate is automatically scaled
down during training, often yielding stable and effective performance even when theoretical bounds
are violated.

However, in line with the theory, we observe convergence failures (including NaNs or divergence,
see Appendix when using non-adaptive optimizers such as SGD, especially under large d/n
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ratios (typically around 10°) or for FmAD and ZO methods. These failures reinforce that while
the theoretical bound is conservative, it qualitatively predicts instability when learning rates are too
aggressive relative to dimensionality and batch size (see Appendices [F:3]and[E5). That said, we do
observe (especially in the zero-order case) that overly aggressive learning rates can lead to instability
or degraded final performance, in line with the theoretical intuition. Hence, the theoretical rate serves
as a safeguard for convergence analysis rather than a recommended training setting, and that practical
hyperparameters typically benefit from empirical tuning beyond what the theory prescribes. Further
discussion is provided in Corollary [[.T0}

D LIMITATIONS AND FUTURE WORK

While the aim of our work was to provide a comprehensive comparison of backpropagation (BP),
forward-mode automatic differentiation (FMAD), and zero-order (ZO) optimization strategies, several
limitations remain, which can serve as venues for a further exploration.

First, our experiments focus on deep models, and we did not systematically evaluate backpropagation
with checkpointing (BP-CHECKPOINTING) on wider but shallower models. In principle, checkpoint-
ing may offer less benefit for such architectures. However, since wider and shallower models are
relatively uncommon in practice, we chose not to extend our evaluations in that direction. Further, our
checkpointing implementation operates at only one granularity (where which activations to checkpoint
is not controlled by us) due to current Hugging Face library support, which limits finer control over
which activations are saved or recomputed. Finer-grained checkpointing could reduce memory usage
further and potentially narrow the memory efficiency gap between BP-CHECKPOINTING and ZO
methods. However, this would come at the cost of increased runtime, introducing a different trade-off.
Finally, while we focused on tuning and training LORA layers, an important future direction would
be to extend our comparison framework to full model finetuning. Such an extension would allow
for a more complete characterization of the trade-offs between memory, time-to-convergence, and
accuracy across different gradient computation strategies.

E BROADER IMPACT

Training deep learning models already carries a high environmental cost due to significant energy
consumption. Our study shows that forward-mode AD and zero-order optimization, despite saving
memory in some cases, require much longer training times and compute compared to backpropagation
with checkpointing. This inefficiency leads to greater carbon emissions overall. Therefore, we show
that optimizing for true computational efficiency (time-to-convergence and compute; along with
memory consumption) is crucial for reducing the environmental footprint of large-scale training.

We also acknowledge that misinterpreting our results could lead to the premature dismissal of
forward-mode AD or zero-order methods altogether. While they are not scalable replacements for
backpropagation in large-scale training, they may still be uniquely suited for small models, non-
differentiable tasks, or privacy-preserving settings where explicit gradients are inaccessible. Careful
contextual understanding is necessary when applying our conclusions.

F ADDITIONAL RESULTS

F.1 EXPERIMENTAL VARIANCE AND L0OSS CURVES

Table 0] shows variance in reported accuracy numbers of Table[3] For each experiment, we performed
three independent runs on seeds 0, 1, and 2. For each run, we computed the steady-state accuracy
(averaged over the final evaluation steps). We then reported the mean (in Table [3)) and variance (in
Table[J) computed across these three steady-state accuracies. Furthermore, Figure d]illustrates the
training loss curves with respect to the training time, highlighting the convergence behavior. We have
only showed the best-performing baselines to maintain clarity.

Figure 5| reports the mean gradient norm across all trainable parameters for all the datasets on LLAMA
3.1 (8B) model. These curves closely mirror the loss trajectories reported in Figure ] exhibiting
similar convergence tendencies across all methods. Specifically, BP-CHECKPOINTING shows the
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Figure 4: Training loss vs. training time (in minutes) for (fop) training LLAMA 3.1 (8B) on three text
classification datasets (AGNews, BoolQ, and MultiRC), and (middle) two text generation datasets
(GSMS8K and MMLU). (bottom) VQAV2 and TextVQA are used to train QWEN 2 VL (7B) on visual
question-answering task.
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Table 9: Experimental variance (£) of test accuracy across three runs with seeds 0, 1, and 2.

Model + Dataset | LLAMA 3.1 (8B) | QWEN2VL(7B)
Method \ AGNews BoolQ MultiRC GSM8K MMLU \ VQAv2 TextVQA
BP-VANILLA 0.46 0.54 0.59 0.41 0.63 1.49 0.78
BP-CHECKPOINTING 0.45 0.56 0.62 0.39 0.61 1.52 0.77
BP-ACCUMULATE 0.67 0.78 0.84 0.79 0.69 1.71 0.98
ZO-VANILLA 0.98 0.76 0.8 0.55 0.95 1.22 0.89
Z0-ACCUMULATE 0.84 0.72 0.76 0.53 0.84 1.16 0.85
ZO-MULTIPLE 0.79 0.64 0.67 0.53 0.86 1.13 0.86
Z0O-ADAPTIVE 1.02 0.95 1.13 0.84 0.83 0.95 0.78
Z0O-SVRG 0.94 1.03 0.92 0.82 0.46 1.02 1.13
Z0O-SPARSE 0.53 0.67 0.62 0.34 1.03 0.89 0.9
MEZO 0.86 0.73 0.73 — — — —
FMAD-VANILLA 0.81 0.72 0.64 0.73 0.86 1.34 0.92
FMAD-ACCUMULATE 0.69 0.73 0.80 0.62 0.78 0.91 0.95
FMAD-MULTIPLE 0.85 0.77 0.89 1.04 0.96 0.74 0.83
FMAD-ADAPTIVE 1.63 1.25 1.34 0.95 1.52 1.11 1.31
FMAD-SVRG 1.42 0.96 0.89 1.02 1.44 1.05 1.29
FMAD-SPARSE 0.93 0.75 1.10 0.54 0.67 1.24 0.93

steepest and most stable decay in gradient norm, aligning with its superior convergence behavior
in loss and accuracy. This strengthens the consistency between the theoretical observations of § 3]
(which centers on the gradient norm) and our empirical findings of § 4
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Figure 5: Gradient norm vs. training time (in minutes) for (fop) training LLAMA 3.1 (8B) on three
text classification datasets (AGNews, BoolQ, and MultiRC), and (middle) two text generation datasets
(GSMS8K and MMLU). (bottom) VQAV2 and TextVQA are used to train QWEN 2 VL (7B) on visual
question-answering task.
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F.2 EXPERIMENTS WITH MEDIUM-SIZED MODELS

The goal of these experiments was to investigate whether forward-mode automatic differentiation
(FMAD) and zero-order (ZO) optimization could perform competitively when applied to medium-
sized models, specifically BERT Base (110M), BERT Large (340M), ROBERTA Base (125M), and
ROBERTA Large (350M). While FMAD and ZO have shown some promise on very small-scale
problems in prior work (Cobb et al, 2024} [Chen et all,[2019; [Rostami and Kial, 2024), it remained an
open question whether the convergence speed could scale reasonably with model sizes.

Figure |6 highlights a clear and consistent trend: backpropagation (with checkpointing) achieves
superior convergence speed and final test accuracy, even for medium-sized models, compared to
FMAD and ZO methods. Even for BERT Base (110M weights), FMAD and ZO lag significantly
behind backpropagation in terms of convergence rate. While FMAD and ZO eventually approach
a comparable final accuracy (with a gap of 0.74-1.66%) for BERT Base, they require substantially
more training time to do so.
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Figure 6: Accuracy versus training time comparison across Backpropagation (with checkpointing),
Zero-order (ZO), and Forward-mode AD (FMAD) on BERT (Base and Large) and ROBERTA (Base
and Large). Even at a smaller scale of trainable parameter count, ZO and FMAD either fail to reach
to the accuracy of backpropagation (in case of ROBERTA), or takes longer to reach to the desired
accuracy (in case of BERT).

As we scale to larger models, BERT Large and ROBERTA variants, the performance of FMAD
and ZO deteriorates further. Both methods experience slower convergence, greater instability, and
often plateau at lower final accuracies (with a drop of 1.19-6.71% for BERT Large, 6.76-7.62% for
ROBERTA Base, 9.33-12.98% for ROBERTA Large) despite extensive training. ZO, in particular,
struggles to reach acceptable performance, while FMAD shows increasingly volatile learning curves.

In summary, our experiments confirm that FMAD and ZO are fundamentally limited in their ability
to compete with backpropagation in realistic settings. Their inefficiency becomes increasingly
pronounced as we evaluate accuracy, along side memory consumption and time-to-convergence.
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Table 10: Accuracy of BP, ZO, and FMAD under Table 11: Accuracy as the LORA rank increases
model size scaling: Only BP-CHECKPOINTING for OPT 6.7B: BP-CHECKPOINTING remains ro-
(abbreviated as BP-CHKPT) maintains high accu- bust, while FMAD becomes unstable and ZO

racy as model size increases. shows minimal gains.

OPT Variants | Variant Size | Accuracy (1) OPT 6.7B | LORA Rank | Accuracy (1)

1.3B 94.08 1 94.35

BP-CHKPT 6.7B 94.35 BP-CHKPT 16 88.44

13.0B 94.51 32 85.54

1.3B 73.16 1 65.75

ZO-VANILLA 6.7B 65.75 ZO-VANILLA 16 68.07

13.0B 71.00 32 68.97

1.3B 88.28 1 87.50
FMAD-VANILLA 6.7B 87.50 FMAD-VANILLA 16 jvp = NaN
13.0B 77.07 32 jvp = NaN

F.3 CHANGING VARIANCE OF RANDOM PERTURBATION SAMPLING

We examine the effect of variance o2 of random perturbations which are sampled from Gaussian
distribution A/(0, o) on the accuracy performance of FMAD and ZO. Figurepresents test accuracy
over time for different values of o2, ranging from 1 to 10~2 for FMAD and from 102 to 10~ for ZO.

The results reveal a strong sensitivity to the choice of

variance: small variances reduce the diversity of pertur- 081 ’m
. . . . . . -\ A
bations, while large variances introduce excessive noise ,/é"" <R, \,\

in high-dimensions, destabilizing training. Both FMAD 0.61 | 1IN

and ZO achieve their best performance at intermediate 2 | 1 W
values, 02 = 1 for FMAD and 02 = 1073 for ZO, which g [ \

balance signal strength and noise. For ZO, reducing the £ %47 | \|
variance from 1072 to 10~ results in a sharp accuracy ~ § w LU

drop of 13.75%. In contrast, FMAD shows a more gradual
decline of 0.94% and 2.27% as o2 decreases from 1 to

<
[N}
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10~ and 1072, respectively. The lower optimal variance (o 213 mAD (7~ 1)
for ZO arises from its gradient estimator, which includes —_—
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an explicit division by the perturbation variance to scale Time (in minutes)

the update magnitude (Equation [2). These findings sug-

gest that simply reducing variance of the distribution from Figure 7: Changing variance o2 of ran-

which perturbations are sampled does not result in better  dom sampling of perturbations. Directly

gradient estimates, nor does it improve convergence. reducing randomness variance does not
lead to reduced noise in the gradients.

F.4 REDUCING TRAINABLE PARAMETER COUNT

We investigate how increasing the number of trainable parameters affects performance under BP,
Z0 and FMAD. Tables [10] and [LT] present results across varying model sizes and LORA ranks,
respectively. Further comparison of convergence time is available in Figure 8]

In Table we evaluate BP-CHECKPOINTING, ZO-VANILLA, and FMAD-VANILLA on OPT
model variants of size 1.3B, 6.7B, and 13B. As the model size increases, BP-CHECKPOINTING
consistently maintains high accuracy of ~94%. In contrast, ZO and FMAD exhibit noticeable
drops in accuracy at larger model scales. Notably, FMAD achieves 88.28% accuracy on the 1.3B
model but declines to 77.07% on the 13B model, showing degradation from scaling the count of
trainable parameters. This result are consistent with our theoretical findings of convergence er-
ror bounded by the trainable parameter count (§3). Table [T1] explores accuracy as a function of
LORA rank for OPT 6.7B. While BP-CHECKPOINTING degrades gracefully as rank increases
(likely due to overfitting), FMAD becomes unstable and fails to converge beyond rank 1, yielding
NaN outputs for higher ranks. FMAD’s instability at higher LORA ranks is due to inherent insta-
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bility of perturbation-based gradient estimations, which we discuss in Appendix [£5] ZO, while
stable, shows limited improvement with increased rank, reaching only 68.97% accuracy at rank 32.

F.5 FAILURE MODE ANALYSIS 0.8 r.

In order to understand why variance reduction methods or 061

adaptive optimizers sometimes fail to make FMAD and  ¢.41
ZO converge, or converge at a suboptimal accuracy; we
present failure mode analysis with different optimizers and 0.21
SVRG. 0.01

=== BP-Checkpointing
= Z0-Vanilla
= FmAD-Vanilla

0 2000 4000 6000 800010002000
Time (in minutes)

F.5.1 CHALLENGES WITH OPTIMIZER CHOICE

Figure 8: Comparison of convergence
time among BP-CHECKPOINTING,
FMAD-VANILLA, and ZO-VANILLA
with OPT(13B) on AGNews dataset.

Here we discuss a distinct failure mode of FMAD which
has been frequently observed in our preliminary exper-
iments: the computed Jacobian-vector products (Jjvp)
abruptly spike in magnitude. These sudden surges lead
to disproportionately large gradient updates, destabilizing
training and hindering convergence. A similar failure mode has been observed in zero-order (ZO)
methods, where the projected gradients, mathematically equivalent to FMAD’s jvp values, exhibit
comparable instability.
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Figure 9: Effect of ADAMW and Figure 10: Mean of effective gradients of Backpropagation
SGD optimizers on jvp values in  and Forward-mode AD with ADAMW and SGD optimizers on
FMAD on GSM&8K dataset. GSMSK dataset.

Figure [9]illustrates the impact of optimizer choice, specifically ADAMW (adaptive) versus SGD
(non-adaptive), on jvp values in FMAD. Under SGD, jvp values remain bounded within a stable
range of [—50, 50] for the case of GSM8K dataset. However, with ADAMW, these values exhibit a
gradual increase followed by sharp spikes for certain datasets including GSM8K. In some cases, the
spikes reach 8-10x higher magnitudes than the stable baseline observed with SGD.

Figures [9aand [Ob| further illustrate the implications of these spikes. Under ADAMW, the effective
gradient magnitudes produced by FMAD exhibit substantially higher variance than those from
backpropagation, indicating instability and less reliable gradient directions. These inflated updates
also increase weight magnitudes, which in turn amplify subsequent jvp evaluations, since these
depend on both the current weights and their perturbations. This positive feedback loop can lead
to divergence and, eventually, NaN values in jvp computations, as observed in several FMAD
runs in Table [TT] Even when divergence does not occur, the resulting gradient updates can be
excessively noisy or of high magnitude, leading to suboptimal convergence. In contrast, under SGD,
the effective gradients computed by FMAD closely mirror those from backpropagation across most
iterations, with stable behavior and no evidence of runaway magnitudes. We posit that this cascading
rise in magnitude for the case of ADAMW is due to its adaptive nature, where a rolling average
of historical and current gradients is computed each iteration, leading to amplification of higher
magnitude gradients. In contrast, the impact of jvp spikes is diminished with non-adaptive SGD
since the previous iteration’s gradients would have limited effect (to only one iteration’s gradient
updates).
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Figure 11: Impact of incorporating SVRG into FMAD on (a) jvp values and the mean of effective
full-batch and (b) mini-batch gradients, evaluated on the GSMS8K dataset.

This stark contrast highlights a critical interaction between optimizer choice and the numerical
stability of FMAD. While ADAMW is widely favored for its adaptive learning rates and regularization
capabilities, its use with FMAD (and by extension ZO) can introduce harmful gradient artifacts which
are driven by uncontrolled jvp amplification. These results underscore the specific vulnerabilities in
gradient estimation methods and point to a need for further study into stabilizing FMAD and ZO for
more reliable deployment in large-scale training regimes.

F.5.2 CHALLENGES WITH SVRG

In this section, we discuss a failure mode of SVRG observed in the context of text generation tasks.
While SVRG improves performance for both ZO-VANILLA and FMAD-VANILLA baselines by
4.04-11.13 and 1.97-3.86, respectively, in many settings, it leads to performance degradation in
certain sequence modeling tasks like GSM8K. Figure [IT] illustrates the behavior of jvp values
and the corresponding gradients when SVRG is applied to FMAD on the GSMS8K dataset. In
Figure[ITa] we observe that the difference between the jvp computed on the current model weights
and the one computed on the snapshot weights is minimal. Consequently, the control variate, the
difference between mini-batch gradients at current and snapshot weights, has little impact relative to
the magnitude of the full gradient.

This hypothesis is supported by Figure[TTb] which shows that the mean of the effective full gradi-
ents remains consistently large, while the mini-batch gradient magnitudes are significantly smaller.
Because the full gradients are updated only at periodic intervals (every 5 epochs in our case), their
inflated magnitude dominates the update direction across multiple steps. This inflation stems from
the accumulation of large jvp values during the summation of per-batch gradients, occasionally
resulting in outlier gradients with extremely high norms. As a result, the SVRG mechanism fails
to provide meaningful variance reduction and instead perpetuates overly large updates, ultimately
degrading model performance.

A similar performance degradation was observed in ZO-SVRG (Liu et al.| [2018)), albeit on a smaller
model with approximately 852K parameters. However, that work does not address the scalability
challenges of SVRG-based methods in the context of zeroth-order optimization.

F.5.3 IMPROVING STABILITY VIA MULTIPLE-PERTURBATION AND
ACCUMULATED-GRADIENT

We further extend our analysis of jvp magnitudes and mean gradient values to the variance-reducing
baselines -MULTIPLE (which samples multiple perturbations per iteration and averages the resulting
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Figure 12: Effect of ADAMW and SGD optimizers on jvp values in FMAD-MULTIPLE and
FMAD-ACCUMULATE on GSM8K dataset.

gradients) and -ACCUMULATE (which uses a single perturbation per iteration but accumulates
gradients over several steps before applying an update).

Figure [I2] reports the corresponding jvp trajectories. Note that the SGD baseline contains fewer
plotted steps because it converged substantially earlier than the other configurations, and the experi-
ment was therefore terminated once convergence was reached. In contrast to the instability observed
for FMAD-VANILLA in Figure[9] both baselines exhibit stable jvp magnitudes even under ADAMW.
This stability, in turn, yields lower error and more reliable convergence. This behavior can be at-
tributed to the inherent variance-reduction mechanisms in these baselines. In -MULTIPLE, averaging
multiple jvp-induced gradient estimates suppresses the high-variance noise that otherwise interacts
negatively with ADAMW s adaptive accumulators. Similarly, -ACCUMULATE delays updates and
aggregates gradient signals across several steps, effectively smoothing out perturbation-induced
fluctuations before the optimizer sees them. In both cases, the optimizer receives a more stable and
lower-variance gradient stream, preventing the cascading amplification effects that cause jvp spikes
in FMAD-VANILLA. As a result, these variance-reduction strategies mitigate the optimizer—noise
interaction responsible for divergence, leading to substantially more stable training dynamics.

Figure [[3]reports the mean gradient magnitudes. The curves for Backpropagation and FMAD are
identical to those shown previously in Figure [I0} In addition, we include the results for FMAD-
MULTIPLE and FMAD-ACCUMULATE. Unlike the pronounced gradient-magnitude spikes observed
in FMAD, both -MULTIPLE and -ACCUMULATE exhibit markedly steadier behavior under both
optimizers ADAMW and SGD. Notably, ACCUMULATE displays the greatest stability. This is
expected: accumulating gradients over several iterations before applying an update effectively
averages out the perturbation-induced noise and prevents high-variance signals from being directly
fed into the optimizer’s adaptive state. As a result, ADAMW receives smoother, lower-variance
updates, which suppresses the positive feedback loop responsible for the divergence in FMAD. In
contrast, MULTIPLE exhibits a slight upward drift near the end of training when used with ADAMW.
This behavior is consistent with the fact that, although multiple perturbations are averaged per
iteration, the optimizer still processes an update at every step; thus, residual noise (especially as
weights grow in magnitude) can accumulate in the adaptive moments and produce a mild increase
in gradient scale. Nevertheless, this increase remains small relative to the uncontrolled spikes
in FMAD-VANILLA, confirming that perturbation-level averaging substantially reduces variance.
Finally, note that ACCUMULATE has fewer points plotted because it performs fewer parameter-update
steps; gradients are accumulated locally and applied only periodically, resulting in a lower number of
optimizer interactions reflected in the visualization.

F.6 EFFECT OF PERTURBATION DISTRIBUTIONS AND NORMALIZATION STRATEGIES

We additionally experimented with perturbation sampling strategies: (a) Sampling from a normal
distribution and using the perturbations as-is (unnormalized), (b) Sampling from a normal distri-
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Figure 13: Mean of effective gradients of Backpropagation, FMAD, FMAD-MULTIPLE (n = 10),
and FMAD-ACCUMULATE (Step Count=100) with ADAMW and SGD optimizers on GSM8K
dataset.

bution and normalizing the perturbations, (c) Sampling from a uniform distribution and using the
perturbations as-is (unnormalized), and (d) Sampling from a uniform distribution and normalizing
the perturbations.

Our findings are as follows. Normalization con-
sistently reduces accuracy for both the normal

0.8 and uniform variants. This degradation arises
0.7 because normalization forces every perturbation
0.61 to have identical magnitude, eliminating natural
o variability in scale that carries useful informa-
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Figure 14: Finetuning LLAMA 3.1 (8B) on the AG-
News dataset using FMAD, comparing perturba-
tions drawn from normal vs. uniform distributions,
with both normalized and unnormalized variants.

Among the unnormalized variants, sampling
from a normal distribution yields the strongest
performance, with the unnormalized uniform
distribution performing comparably closely, be-
fore both resulting in overfitting. The slight
advantage of the normal distribution can be attributed to its heavier tails, which naturally introduce a
broader range of perturbation magnitudes. This diversity more closely mimics the statistical struc-
ture of true gradients in large neural networks, allowing the estimator to explore directions of both
small and moderately large curvature. In contrast, the unnormalized uniform distribution produces
perturbations bounded within a fixed interval, limiting the range of effective step sizes and resulting
in marginally less efficient gradient estimation.

F.7 COMPARISON AGAINST SIGNZO

Table [T2]shows a comparison of accuracy, memory usage, compute cost, and convergence time for
BP-CHECKPOINTING, ZO, SIGNZO, ZO-ACCUMULATE, and ZO-MULTIPLE when finetuning
LrLAMA-3.1 (8B) on AGNews.

30



Under review as a conference paper at ICLR 2026

Table 12: Performance, memory, and efficiency trade-offs across BP-CHECKPOINTING, ZO baselines,
and SIGNZO for finetuning LLAMA-3.1 (8B) on AGNews.

Accuracy Colzl/[seunrgt}ilon Compute Cost Wallclgck Convergence

(in GB) (in FLOPs) Time (in seconds)
BP-CHECKPOINTING 93.8% 11.66 65.2x 10% 16,691
70O 73.6% 5.99 251.2 x 10* 21,074
SIGNZO 82.6% 5.99 251.9 x 10* 56,892
Z0O-ACCUMULATE 85.8% 5.99 2165.1 x 10* 181,510
Z0O-MULTIPLE 86.7% 5.99 2425 x 10% 201,747

Accuracy Comparison: Although SIGNZO improves stability relative to vanilla ZO (as
reflected in its smoother learning trajectory in the Figure [I3) its overall accuracy per-
formance remains significantly below the backpropagation baseline. On AGNews with
LLAMA3.1 (8B), SIGNZO reaches 82.6% accuracy, which is a noticeable improvement over
the 73.6% achieved by standard ZO but still far from the 93.8% obtained via backpropa-
gation. This gap indicates that the sign-based estimator, while stabilizing the update direc-
tion, does not provide sufficient gradient resolution to match the fidelity of true gradients.
SIGNZO also underperforms compared to the
variance-reducing methods (ZO-MULTIPLE and
Z0O-ACCUMULATE). ZO-MULTIPLE and ZO-
ACCUMULATE reach 86-87% accuracy, and al-
though they require larger FLOPs and longer
runtimes, they converge to higher-quality solu-
tions.

o
o

o
o

Memory, Computation cost, and Conver-
gence Time Comparison: SIGNZO matches

Test Accuracy
o
N

the memory footprint of other ZO baselines 0.2

(5.99 GB) and maintains similar FLOP-level —_— 70
compute costs. However, its wall-clock conver- 0.0 — SignZ0
gence time is substantially longer (=56.9k sec- 0 200 2400 600 800 1000 1200 1400
onds), more than 2.7 x slower than ZO and 3.4 x Time (in minutes)

slower than BP-Checkpointing. The longer con-
vergence time stems from the fact that stabiliz-
ing noisy ZO directions via sign compression
requires more optimization steps to make mean-
ingful progress. Although Table[I2|reports only
wall-clock time, SIGNZO and ZO have identical
per-iteration runtime, the only difference between them is that SIGNZO applies a sign-compressed
update during optimizer.step (), which does not affect iteration cost. Consequently, time on
the x-axis is effectively proportional to the number of optimization steps, allowing us to conclude that
the longer wall-clock time directly reflects the larger number of iterations required for convergence.

Figure 15: SignZO against ZO for training LLAMA
3.1 (8B) on AGNews dataset.

Overall, SIGNZO improves upon naive ZO in terms of final accuracy (82.6% vs. 73.6%), but
does so by requiring substantially more computation: although its per-iteration FLOPs are nearly
identical to ZO, its wall-clock convergence time is 2.7 x longer (56.9k s vs. 21.1k s). Compared to
BP-Checkpointing, SIGNZO achieves a markedly smaller memory footprint (5.99 GB vs. 11.66 GB),
but only by trading off both efficiency and performance, requiring /3.4 x longer time to converge,
~3.9x more compute, and yielding 11.2 percentage points lower accuracy. Furthermore, while
SIGNZO converges faster than the variance-reduced ZO-Accumulate and ZO-Multiple baselines,
those methods achieve higher accuracies (85.8% and 86.7%), reinforcing the broader trend observed
in our paper: stability alone is not sufficient, effective ZO training at scale also requires variance-
reduction mechanisms to improve both accuracy and efficiency.
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F.8 SENSITIVITY TO PERTURBATION BUDGET FOR OPT13B
Figure[I6]shows the training of the OPT (13B) model on the AGNews dataset using ZO with varying
perturbation budgets n.

For n = 1, convergence occurs around 5000
minutes, reaching an accuracy of 71%. With

n = 10, convergence also occurs near 5000 min- 0.81
utes, with a slight improvement in accuracy to 0.71 ~
72%. Increasing the budget further to n = 50 0.61
improves the final accuracy to 75.5%, but con- g 051

vergence is delayed until approximately 6500 5
minutes. This behavior can be explained by §°'4'
the trade-off between gradient estimate quality = ; 0.31

and computational overhead: larger perturba- F g/

tion budgets reduce the variance of the jvp es- 01l _ Z; io

timates, leading to more accurate gradients and n=50
0.04

higher final accuracy, but in this case, the pertur-
bations are applied sequentially due to hardware
limitations, which increases wall-clock time per
iteration. Additionally, small increases in n (e.g.,
from 1 to 10) yield only modest accuracy gains Figure 16: Training the OPT (13B) model on the
because even a few perturbations are sufficient AGNews dataset using ZO with varying perturba-
to capture enough directional information for tion budgets n. Larger budgets reduce variance
effective early-stage training. Overall, these re- in the jvp estimates, improving final accuracy,
sults highlight a trade-off between perturbation but sequential application of perturbations under
budget, convergence speed, and final accuracy: Iesource constraints increases wallclock conver-
larger budgets improve the quality of gradient gence time.

estimates at the cost of increased computation

time, particularly when sequential execution is required.

0 1000 2000 3000 4000 5000 6000 7000
Time (in minutes)

G SIGNAL PROPAGATION FOR GRADIENT COMPUTATION

A key difference between BP and FMAD/ZO methods lies in how they propagate the loss signal to
compute weight updates. BP computes the derivative of the loss £ with respect to each weight w;,
effectively mapping changes in the loss to precise updates in the parameter space. The gradients of
the intermediate activations, computed during the backward pass, are also derived from J £, allowing
the loss signal to guide every stage of the update. This direct path from the loss to the parameters
makes BP a loss-to-weights approach, where the signal flows backward through the network in a
structured and deterministic way.

In contrast, both FMAD and ZO adopt a weights-to-loss perspective: they estimate how perturbations
in the weights, dw = v; affect the loss, d L. The forward-mode Jacobian-vector product (jvp) and
the ZO projected gradient scalar both incorporate the resulting change in the loss, but they do so
indirectly. Specifically, they multiply d£ by the perturbation direction v to approximate weight
gradients (as detailed in §. However, in these approaches, the intermediate changes dy, (which
influence §£) are driven by the initial perturbations dw, ~ N(0, I); not by the loss. As a result,
the variance introduced at the input level through the perturbations propagates forward through the
network, ultimately contaminating the gradient signal. This lack of an explicit loss-driven mechanism
for shaping activation gradients leads to noisier gradient updates. Consequently, FMAD and ZO
require stricter step size constraints (see Theorems [[.§] and [.9) and exhibit degraded convergence
behavior.

Moreover, both FMAD and ZO optimization methods incur additional noise and estimation error
compared to backpropagation. This noise is not just a side effect, it is an inherent consequence
of using random perturbations to estimate gradients. In both FMAD and ZO, the injection of
perturbations dw ~ N (0, I) is core to the algorithmic process, and the resulting activation (dy;) and
loss variations (L) carry this randomness forward. Therefore, the gradient estimates vary depending
on the sampled perturbation, making noise a deterministic outcome of the method itself.

32



Under review as a conference paper at ICLR 2026

In essence, while BP precisely channels loss information to guide weight updates, FMAD and ZO
rely on stochastic approximations that make their updates fundamentally noisy and less targeted.

H COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of different methods used to compute
gradients in a neural network setting. We begin with a one-layer neural network, providing a
detailed breakdown of the computational cost for the forward pass, backpropagation, zero-order
optimization, and forward-mode automatic differentiation. Understanding these complexities is
essential for evaluating the efficiency of gradient computation methods, especially in resource-
constrained environments. Empirical computational cost of the gradient computation methods is

shown in §4.3]

H.1 BASICS

In this section, we analyze the computational complexity of a one-layer neural network f with weight
matrix w € R4*™. The network takes an input z € R? and produces an output y € R™. While we
focus on a single-layer setting for clarity, the analysis naturally extends to a deep neural network with
L layers, each with weight matrix wy for £ € [L].

Forward Pass. Since all three gradient computation methods share the same forward pass, we
first establish its computational complexity. The forward pass consists of a matrix multiplication
y = zw, where z has dimensions 1 x d and w has dimensions d x m. This results in a computational
complexity of O(dm).

H.2 BACKPROPAGATION

Backpropagation requires computing the gradient of the loss £ with respect to the weights, given by
oL _ oL oy
ow Oy Ow’

The first term, %, involves differentiating the loss with respect to the output, which has a computa-

tional complexity of O(m). The second term, a—z, follows from the linear transformation y = xw,
contributing a complexity of O(dm). The final gradient computation involves the multiplication of a
1 X m matrix with an m X d matrix, resulting in an additional complexity of O(dm).

Although activation functions introduce constant factors, 3 for the last layer and 5 for intermediate
layers, these constants do not affect the asymptotic complexity. Hence, the overall computational
complexity of backpropagation remains O(dm,).

H.3 BACKPROPAGATION WITH CHECKPOINTING

Checkpointing builds on standard backpropagation by trading memory for additional computation.
Instead of storing all intermediate activations, only selected layers are checkpointed, and discarded
activations are recomputed as needed during the backward pass.

This recomputation introduces an overhead, resulting in a total compute complexity of O(dm log p)
for a network with p layers|Griewank and Walther| (2000). Here, the log p factor reflects the optimal
checkpointing schedule, capturing the additional cost of recomputing intermediate activations while
still reducing peak memory usage compared to standard backpropagation. In this way, checkpointing
offers a controlled trade-off between memory efficiency and computational overhead, extending the
base O(dm) cost of standard backpropagation.

H.4 ZERO-ORDER OPTIMIZATION
The zero-order optimization method with central finite differences involves perturbing the weights

twice, evaluating at (w + ev) and (w — ev), where v € R¥*™ is a randomly sampled perturbation
and € € R is a small step size. The element-wise multiplication ev incurs a computational cost of
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O(dm), as does the addition and subtraction with w. Since each perturbation requires evaluating the
function at the perturbed points, the function evaluations f(w = ev) also contribute a complexity of
O(dm).

With n such perturbations per iteration, the total computational cost sums to O(ndm), where n is the
number of perturbations used in each iteration.

Compared to the forward pass on the original weights w, zero-order adds a constant of 4, which gets
absorbed in O(ndm).

H.5 FORWARD-MODE AD

The jvp (Jacobian-vector product) computation incurs a complexity of O(dm), as it partially

computes %. The resulting jvp is then multiplied with the perturbation vector v to obtain the
weight gradient for w. Since v has dimensions d x m, this multiplication also has a computational
complexity of O(dm).

Repeating this process n times for n perturbations per iteration leads to a total computational cost of
O(ndm).

I PROOFS OF CONVERGENCE BOUNDS

This section includes the details on upper error bounds of all three gradient computation methods:
Backpropagation, Zero-order optimization, and Forward-mode Auto Differentiation.

I.1 BASICS

All examples of gradient computation methods are based on a function f, which, in the context of
machine learning, corresponds to a neural network. This function f is composed of nested functions f;,
i € [p]; where each function corresponds to an intermediate output (or activation) y; = f;(w;, ¥i—1),
generated from the input weights w; and previous activation y;_1. g is set to x, which can be data
points in ML. We assume that x is fixed, for the ease of exposition. The input weights are represented
by the vector w = wy,we, ..., wy, where each wyy,. ) € RI™1:ms]  The intermediate outputs,
or activations, are denoted by y = y1,...,¥,. The final outputis y = y, = f(w,z) € R", where
typically n << my; for all ¢ € [p]. The loss function L(y,§) € R is then computed to measure the
difference between the predicted output y and the true target values g.

With gradient descent, one update to the weights w looks like this,

’U.Jt+1 — we — an('wt), (3)
where t is the iteration count, and 7 is the learning rate.
The objective is to minimize f(w): mingcgra f(w).

Definition I.1 (Optimality Gap). The optimality gap at iteration ¢ is defined as the difference between
the function value at the current iterate w; and the function value at an optimal solution w*:

A = f(w) — f(w") “

The optimality gap quantifies how far the current function value is from the optimal value. In
convergence analysis, the goal is to show that this gap decreases over iterations.

1.2 ASSUMPTIONS

Assumption L2 (Smoothness). Let f : R? — R be L-smooth, meaning that its gradient is Lipschitz
continuous with constant L > 0. That is, for all w,w’ € R?, the function f satisfies,

[IVf(w') = Vf(w)]| < Lljw" —wl|. S
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1.3 LEMMAS

Lemma 1.3 (Bias of Gradient Estimate of the Central Finite Difference). Let g(v) be the gradient
estimate obtained using the central finite difference method with a perturbation vector v ~ N (0, I).
Then, the expectation of the estimator satisfies

Ey[g(v)] = V f(w), ©)

implying that the central finite difference gradient estimator is unbiased up to first-order error terms.
Furthermore, the second moment of the estimator satisfies

Ey [lg@)IIP] = [V f()*(d +2) + O(e*)d. ™

Proof. We start with one evaluation of the central finite difference, for a perturbation v € R<. The
full derivation is given in Theorem[[.§]

g) = (" Vf(w)) + O(e)) . (8)

In order to measure the bias of the above gradient estimate, we take expectation with respect to the
randomness of v,

Ey [9(v)] = E, [(v " Vf(w))v + O(e)v ] )
=Vf(w)E [ v| + O(e)E (10)
=Vfw)l;+O()-0 (smce’u ~ N(0,14)) (11)

2By [g(v)] = Vf(w). (12)

This shows that the estimator is unbiased.

Now, we analyze the second moment of the estimator:

Ey [l90)[12] = By [0V @) + O(e)o]”] (13)
=By [(0" VW) [[v]*] + O(*)Ey [|lv]] - (14)
Using the known expectation property of Gaussian vectors:
E [vv' |v|?] = (d+2)14, (15)
we obtain:
Ey [l9@)[I”] = Ey [Te((w0 ")V f(w)V f(w) o0 )] + O(e*)d (16)
=Te(Vf(w)Vf(w)")(d+2) + O()d (17)
= [IVfw)[*(d+2) + O(*)d. (18)
O
Lemma L4 (Variance of Gradient Estimate of the Central Finite Difference). Let §(v) be the central
finite difference gradient estimator using n perturbations vy, . .., v, ~ N (0, I4), given by
N 1 2 w+ ev;) — [(w — ev;
g(w) = - Zg(vi), where g(v;) = i )2€f( )vi. (19)
i=1
Assuming the finite-difference step €, the variance of the estimator satisfies:
. 1
Varlg(w)] = — (IVf@)[*(d+1) + O(e*)d) - (20)

This result shows that the variance of the gradient estimator scales as O((d+ 1) /n), which quantifies
how the dimension d and the number of samples n influence the estimator’s variance.
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Proof. We can derive the variance of the estimator

Zg , with g(v;) = f(w+€vi)2—€f(w_wi)

v;

by computing
Var[g(w)] = Ey[|g(w)[]*] - |[Eo[g(w)][*. 21

For clarity, in the following we assume that the finite-difference step is chosen so that the bias is
negligible (i.e. the estimator is unbiased according to Lemmal|[.3] so that E, [g(v;)] = V f(w) and
Ey[§(w)] = Vf(w). (We can add the higher-order remainder later.)

We write the second moment (squared norm) of g as

ngz

We split the sum into diagonal and off-diagonal parts:

Eu[9()1? = B Y g0 e | @

i=1 j=1

Ey[||§(w) ZEHWHI+ZE1u v)] | - (23)
i#£]
Since the g; are independent,
Ey[9(v:) " g(v))] = By [g(v:)] ' Ey[g(v))] = Vf(w) 'V f(w) = ||Vf(w)|[* forij (24)
Thus,

Ey[l|g(w)[]’] = (n]E [lg@)I1?] + n(n = DIV fw)]?). (25)

Plugging the above result, along w1th the result derived from Lemma on ||Ey[g(w)]|]> =
[IVf (w)]||2. in Equation 21]

Var[g(w)] % (nEu[[lg(@)[]’] + n(n = DIV @)[]*) — |V f(w)]? (26)

= L @ lls@IP) - IV @) o

The second moment of the estimator was derived in Lemma|[.3] in Equation[T8] We use that result in
the above equation as follows,

Var(g(w)]

| = 3|~

(IVf@)I*(d +2) + O(e*)d — IV f (w)]|*) (28)

~ (IVf)|*(d+1) + O(e*)d) (29)

This leads us to a variance bound that scales as “L times ||V f(6)||? (plus a O(€?) contribution),
which exhibits the dependence of variance of the estimator §(w) on the dimension d and the number
of samples n. O

The key difference between the above two lemmas and the next two lemmas is that the central
finite difference estimator introduces a small O(e) bias due to numerical approximation,
whereas the forward-mode AD estimator is exactly unbiased. Additionally, the second
moment of the central finite difference estimator includes an extra O(e?)d term, which is
absent in forward-mode AD, making the latter more precise.

Lemma L5 (Bias of Gradient Estimate of Forward-mode Auto Differentiation). Let g(v) be the
gradient estimate obtained using the central finite difference method with a perturbation vector
v ~ N(0, I;). Then, the expectation of the estimator satisfies

Ey[g(v)] = Vf(w), (30)

implying that the central finite difference gradient estimator is unbiased. Furthermore, the second
moment of the estimator satisfies

o [lg@)1?] = [V f(w)]*(d + 2). 31
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Proof. We start with one evaluation of forward-mode auto differentiation, for a perturbation v € R4,
The full derivation is given in Theorem [[.9]

gw) = (v Vf(w))wv. (32)

In order to measure the bias of the above gradient estimate, we take expectation with respect to the
randomness of v,

Ey [g()] =Ey [(v Vf(w))] (33)
= Vf(W)Ey [v'v] = Vf(w)ly (34)
2By [g(v)] = Vf(w). (35)

This shows that the estimator is unbiased.

Now, we analyze the second moment of the estimator:

Ey [lg@)?] = By [[| @7V f@)w]’] = By [(07 9 £ ()% 0]*]. (36)
Using the known expectation property of Gaussian vectors:
E [vo! |lv]|*] = (d +2)1a, (37)
We obtain:
Ey [lg@)[I*] = Ey [Te((w0 ")V f(w)V f(w) "vvT)] (38)
=Te(V(w)Vf(w) ")(d+2) = [|Vf(w)[*(d+2). (39)
O
Lemma 1.6 (Variance of Gradient Estimate of Forward-mode Auto Differentiation). Let §(v) be the
central finite difference gradient estimator using n perturbations v1, . .., v, ~ N (0, 1), given by
1
g(w) = - ;g(vi), where  g(v;) = (v] Vf(w))v;. (40)

Assuming the finite-difference step €, the variance of the estimator satisfies:

Varlgw)] = - (|9 f(w)|(d +1)) . @

This result shows that the variance of the gradient estimator scales as O((d+ 1) /n), which quantifies
how the dimension d and the number of samples n influence the estimator’s variance.

Proof. We can derive the variance of the estimator

n

dw) = 3 g(vs). with g(v7) = (0] V1 (w)o
by computing
Var[g(w)] = Ey[||g(w)[]*] = [|Eo [g(w)][|*. (42)

The estimator is unbiased according to Lemma|[L5} so that E,[g(v;)] = V f(w) and E,[§(w)] =
Vf(w).

We write the second moment (squared norm) of § as

‘TllZg('vi)’ :%]E,, N ICONCOIR (43)

i=1 i=1 j=1

Ey[l[g(w)|?] =

We split the sum into diagonal and off-diagonal parts:

n

1
Ey[[[g(w) ] = — ZE g1+ Elgw:) "g;)] | - (44)

i#]
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Since the g; are independent,

Ey[g(vi) T 9(v;)] = By[g(vi)] " Eo[g(v;)] = Vf(w) 'V f(w) = ||V f(w)|[* forizj (45
Thus,
1

(B [llg@)|"] + n(n = DIV F(w)[]*). (46)

Ey[l|g(w)[]’] =

Plugging the above result, along with the result derived from Lemma [1.3| on ||E,[g(w)]||?> =

||V f(w)]|?, in Equation[42]
Varlg(w)] = — (nBy [lg(@)I7] + n(n ~ DIV F@)I) - 19 w) @7)
= ®lllg@)I] ~ IV F@)|P). 48)

The second moment of the estimator was derived in Lemma|[[.3] in Equation[39] We use that result in
the above equation as follows,

Var[g(w)] = ~ ([|[Vf(w)[*(d +2) - [V (w)|*) (49)

3|~

=~ (IVf@)[*(d+1)) (50)
This leads us to a variance bound that scales as <1 times ||V f(6)||2, which exhibits the dependence
of variance of the estimator §(w) on the dimension d and the number of samples 7. O

1.4 THEOREMS

The given analysis for all gradient computation methods is for a non-convex objective f.
We begin by reiterating the descent lemma applied to gradients computed by backpropagation.

Theorem 1.7 (Error Bound of Backpropagation). Let f : RY — R be a differentiable, L-smooth
function. Consider the gradient descent update rule:

Wiy = Wy — va(wt)7

where 1 is the step size (learning rate). Suppose 0 < n < % Then, after T iterations, the minimum
gradient norm satisfies the following bound:

i [ f(w)|[* < 5 (fwn)  fwr).

te

This bound shows that gradient descent achieves an (’)(%) convergence rate in terms of gradient
norm, which is the optimal rate for first-order methods in smooth optimization.

Proof. Using Assumption [[.2] we apply the smoothness condition, which gives the following
quadratic upper bound:

L
flwitr) < flwe) + Vf(wt)T(le —wy) + §||wt+1 —w|? D
Substituting the gradient descent update rule Equation [3] we obtain,
L
cfi) < fwe) =l V@)ll? + 50? ||V £ (w)]]? (52)
Rearranging the above terms,

2 2
) = flw) < -l V£l + SV )P == (0= 5 ) 95wl 63

To ensure progress in minimizing f(w), we need the term (1 — %) to be positive. Hence we assume
n < 4+, along with 0 < 7,

o F i)~ fw) < 5219 5w (54)
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Summing overt = 1tot =T,
T

T
(fwin) — flw) < —5 319 st (59)

t=1

The left-hand side forms a telescoping sum, resulting in

T
fwrsn) — flw) < - iLZHVf(wt)H? (56)
t=1
1 < , 2L
- ; IVfw)l* < =5 (Fwn) = flwri) (57)
Using the definition of optimality gap from Equation[L.1]
min |V (w)|[P < 5 (fwi) - flwr) 58)
Thus, the optimality gap reduces at a rate of O(%) given n < % O

Next, we will give a similar treatment to the gradients derived from zero-order finite differences,

Theorem L8 (Error Bound of Zero-Order Optimization). Consider a function f : R — R that
is L-smooth. Let the central finite-difference gradient estimator with n perturbations per iteration,
where each perturbation vector v; is sampled independently from N (0, I;) and step size 1 be

g(wt) _ %Zn: (f(wt + 6'”1') - f(wt - E'Ui),vi> )

- 2¢
=1

Then, the expected average squared gradient norm is bounded by

T
1 - Ldn?
LIV < S Swr) 2O ) (59)
=1 UT[ —%(H%)} "
To ensure convergence, the step size must satisfy
2
n<7L(1+@)' (60)

This result highlights how the convergence rate depends on the dimension d, the number of perturba-
tions n, and the perturbation magnitude . Specifically, a larger d or a smaller n increases the bound,
implying slower convergence.

Proof. The central finite-difference gradient estimator for n perturbations per iteration is
R 1 & w; + ev;) — f(wy — ev;

n 2e
where each v; € R? is a perturbation drawn from a Gaussian distribution A/(0, 1).

=1

Assuming that f is sufficiently smooth so that the following Taylor expansions are valid,

fw + ew) = f(w) + ev' Vf(w) + O(e*), and (62)
flw—ev) = f(w) — v Vf(w) + O(e?) (63)

Subtracting the above two expansions yields:
fw+ ew) — f(w — ew) = 2e0 " Vf(w) + O(e?) (64)

Plugging the above result in Equation [61]
§w) = -3 (0] V)i + O(e)w:) (©5)
i=1
g(vi)
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Now we will use the derived §(w;) in the descent lemma:

Similar to Theorem[[.7] using the Assumption we apply the smoothness on f:

Flwesn) < flw) + V5 (w0) ers —w0) + G llwess — i

For the gradient descent update with central finite differences, we set the model update rule as

wy

1 =w — ng(wy).

Plugging the model update rule into the smoothness inequality,

flwiyr) <

fw:) —

0V £ ()T <wt>+L—\|g< DI?

Taking expectation conditioned on v ~ N(0, 1),

fwigr) < flwe)

Solving Term; and Term, separately,

2
0V ) Bolafw)] + Ty o)
—— —

Termy Termo

Term;: From Lemmal[l.3] we get E[g(v)] = V f(w), which also gets us

= Y El)] = Vi(w)

Termy:  The error of §(w) is measured by 6,
19(w)[[* = |V f(w) +6|* = IV f(w)||* + 2V f(w) "6 + [|6]]?
Taking expectation and noting that E[§] = 0 and E[||]|?] = Var[g(w)],

Ey[||g(w)|[*] = |V f (w)[|* + Var[g(w)]
Using Lemma|[L.4]to get the bound of Var[g(w)],

d+1

B [l3w)|P) = 195 )|? + 19 s))? + Lo)

Back to Equation |69} plugging in Term; and Term:

Flwenn) < flw) ¥ fwn) s + 55 (1450 195w >||2+Z<9<e2>>

= flws) = nl|Vf(wo)|* +

Grouping the terms involving ||V f(w)]|?

—a[1= 2 (1 B v swie + S o

flwiyr) < flwy)

2

B2 (1 28 o + 5

2

This inequality shows that, provided the step size 7 is small enough so that,

L d+1
12"<1+ + )>0

n

Summing the inequality over epochs t = 1to 1"

flawr) — flwy) < —n [

L
LI,
2

(1+ dHﬂZIIVf w)lP +

40

]

=, 0(€)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)
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Rearranging the terms give us,

T 2
> stwol < - {f “";),f(lff"ffl)} 1T o an

Dividing by T gives the bound on the average squared gradient norm:

T

1 wy) — f(w Ldn?

LI < — LT L 2 )
t=1 nT [1 -2 (1 + T)}

To ensure that 1 — % (1 + %) > (, the step size 7 must be chosen so that

2

(79
As the dimension d increases (or as the number of samples n decreases), the factor
L d+1
7(+57)
2 n

1Ln<1+d+1)
2 n

increases. This makes

smaller, which in turn makes the entire bound larger. In other words, a larger d (or a smaller n) results
in a worse (higher) error bound. This interplay of d and n also puts limitations on the order of 7,
keeping the learning rate quite small for stable learning. O

Moving on, we will get the convergence bound of the gradients derived from forward-mode auto
differentiation.

The key difference between the two theorems is that the error bound for zero-order op-
timization includes an additional O(€?) term due to the finite-difference approximation,
whereas the bound for forward-mode AD is exact and free from such errors. This makes
forward-mode AD theoretically more efficient, as it avoids the additional error introduced
by numerical differentiation while maintaining the same dependency on dimension d and
number of perturbations n.

Theorem 1.9 (Error Bound of Forward-mode Auto Differentiation). Consider a function f : R* — R
that is L-smooth. Let the forward-mode AD gradient estimator with n perturbations per iteration,
where each perturbation vector v; is sampled independently from N (0, 1) and step size 1 be

_1 Z TVf (we)) v;) .
=1

Then, the expected average squared gradient norm is bounded by

3

T
1 _
L3 Vs < — L) =) (50)
T Ln d+1
=1 nT{ — S (1+ 4L )]
To ensure convergence, the step size must satisfy
2
TS Tt ey

This result highlights how the convergence rate depends on the dimension d, the number of perturba-
tions n, and the perturbation magnitude . Specifically, a larger d or a smaller n increases the bound,
implying slower convergence.
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Proof. The forward-mode AD gradient estimator for n perturbations per iteration is

n

g(w,) = % > (Vo] f(w))v:) (82)

i=1
where each v; € R? is a perturbation drawn from a Gaussian distribution NV(0, 1).

We will use §(w,) in the descent lemma. Similar to Theorem|[L.8] using the Assumption[L.2} we apply
the smoothness on f:

L
flwsn) < flwe) + Vf(we) " (Wi —wy) + 5 llwees — w || (83)
For the gradient descent update with forward-mode AD, we set the model update rule as
wt+1 = Wi — nﬁ(wt) (84)
Plugging the model update rule into the smoothness inequality,
Ln? 9
fwiy) < f(w) =0V fw) glw;) + THQ(wt)H (85)
Taking expectation conditioned on v ~ N(0, I),
T N L772 A 2
Flwerr) < flwe) =0V fwe) " Eolg(we)] +—= Eolllgw:)[|7] (86)
—— —
Termq Termso

Solving Term; and Term, separately,

Term;: From LemmalL.5] we get E[g(v)] = V f(w), which also gets us
1 n
= S Elg)) = Vi(w)
i=1

Termy:  The error of §(w) is measured by 6,
19(w)|[* = ||V £(w) +6][* = |V f(w)]|* + 2V f(w) "6 + |4]|* (87)
Taking expectation and noting that E[§] = 0 and E[||6]|?] = Var[§(w)],
Eo[[|g(w)]1?] = |V f (w)[|* + Var[g(w)] (88)
Using Lemma|L6|to get the bound of Var[g(w)],

d
Ey[l1g(w)[]*] = ||V £( )||2+iIIVf w)||* (89)

Back to Equation 86} plugging in Term; and Term.:

Fwen) < flan) =910 Vw0 + 25 (14 2 jws@ir oo
= Flwn) | ) 2+ 2 <1+d+1>llvf(w)ll2 o1)

Grouping the terms involving ||V f (w))||?
Fwin) < flwn) —n 1= 51 (14 S0 9 w2 ©2)

This inequality shows that, provided the step size 7 is small enough so that,

L 1
1—”(1+d+)>0
2 n
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Summing the inequality over epochs t = 1to 1"

L d+1
swr) s < 1= 5 (1+ 2|3 an w)|P 93)
Rearranging the terms give us,
T
wy) — f(w
DIV )| < 1 1L) H dT)l (94)
t=1 77[1*717(1+T+L)}
Dividing by T" gives the bound on the average squared gradient norm:
T
1 _
L3 IV P < — L) = ) ©5)
= T|:1_7(1+d+1):|
To ensure that 1 — £ (1 + 2£1) > 0, the step size 1) must be chosen so that
< 2 (96)
TS

As the dimension d increases (or as the number of samples n decreases), the factor
L d+1
7 (57
2 n

1 Ln <1+d+1)
2 n

increases. This makes

smaller, which in turn makes the entire bound larger. In other words — similar to zero-order method —
a larger d (or a smaller n) results in a worse (higher) error bound. This interplay of d and n also puts
limitations on the order of 7, keeping the learning rate quite small for stable learning. O

Corollary I.10 (Convergence Rate of ZO under Standard Parameter Choices). Under the assumptions
of Theorem the zeroth-order method achieves the well-known O(d/T) convergence rate when the
parameters are chosen according to either of the following equivalent strategies:

1. Setting the step size ton = © <d+1)> which yields the rate by balancing the contrac-

L1+
tion factor in the denominator term, or

2. Using the two-point estimator (n = 1) with perturbation radius € = O(T71/4), so that
€2 = O(T~'/?) and the variance term becomes O(d/T).

Both parameterizations recover

d
2 JR—
trgljr}] IV f (wy)]| O(T) )

While the first approach modulates the learning rate 1, the second adapts the perturbation scale €; in
practice both routes give consistent rates, though excessively small n (scaling as 1/d) may be less
practical in high dimensions.

Proof. Start from the bound in Theorem .8}

1 < flwy) —
= Vi (w)|? <
T;II fwe) | oL

We treat the two parameterizations separately.
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(1) Step-size choice. Set the denominator factor to a constant by choosing

1—%(1+d—£1):%, © 77:9([1(1—:'11:1)).

With this choice the first term scales as

wy) — f(w %
A o) o)

When d >> n this is ©(d/T), so the first term already yields O(d/T'). The second term becomes

Ldn? 2y _ o Ld 1 ?) = ! i
20 )= ) = Ay =)

which is typically smaller than the first term for reasonable (non-growing) e€; hence the overall rate is
dominated by O(d/T).

(2) Smoothing-radius choice (two-point / n = 1). Take n = 1 and set e = O(T~/4), so
€2 = O(T~'/?). Keeping the same 7 scale as above (or any constant-in-T" 7 satisfying the step-size
constraint), the first term is again O(1/(nT)). Withn = O(1/(L(1 + (d + 1)/n))) = ©(1/(Ld))
this yields O(d/T'). The second term becomes

Ldn* . , 1 1
O() = O(Ld+ 15 - T72) = O T712),
(<) L2 Ld
which is negligible compared to O(d/T) for typical T and moderate L. Thus both choices give the
stated O(d/T) rate. O
Discussion.

» Two equivalent levers. The corollary emphasizes two ways to recover the classical O(d/T)
bound: (i) scale down the learning rate 1 (reviewer’s route), or (ii) scale the perturbation radius €
with 7' (the alternate route used in our original derivation). Both are valid theoretically and lead to
the same asymptotic dependence on d and 7T'.

* Dominant term and constants. In the parameter regimes of interest the first term (the 1/(nT)-
type term) typically dominates and yields the ©(d/T") dependency; the variance/truncation term
involving €2 is often smaller when € is chosen to decay suitably with T'.

* Practicality. Although setting = ©(1/d) recovers the rate, such tiny learning rates become
impractical as model size grows (since 7 — 0 with d — oc0). The alternative of shrinking e
(e.g., e=T""*gives e=0.1 at T = 100 and € = 0.03 at 7" = 1000) is often more feasible in
practice, but it reduces signal-to-noise in finite-sample regimes and may require larger sample or
perturbation budgets to get stable estimates.
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