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Abstract

We present a novel solution to Catastrophic Overfitting (CO) in fast adversarial1

training based solely on adaptive lp norm selection. Unlike existing methods requir-2

ing noise injection, regularization, or gradient clipping, our approach dynamically3

adjusts training norms based on gradient concentration, preventing the vulnerability4

to multi-step attacks that plagues single-step methods.5

We begin with the empirical observation that, with small perturbations, CO occurs6

predominantly under l∞ rather than l2 norms. Building on this observation, we7

formulate generalized lp attacks as a fixed-point problem and develop lp-FGSM to8

analyze the l2-to-l∞ transition. Our key discovery: CO arises when concentrated9

gradients—with information localized in few dimensions—meet aggressive norm10

constraints.11

We quantify gradient concentration via Participation Ratio from quantum mechanics12

and entropy metrics, yielding an adaptive lp-FGSM that dynamically adjusts the13

training norm based on gradient structure. Experiments show our method achieves14

robust performance without auxiliary regularization or noise injection, offering a15

principled solution to the CO problem.16

1 Introduction17

Deep neural networks have achieved remarkable success across computer vision, NLP, and speech18

recognition [1, 2, 3], yet remain vulnerable to adversarial perturbations—subtle input modifications19

that cause misclassifications [4, 5]. This vulnerability poses important challenges in safety-critical20

applications including autonomous vehicles [6], healthcare [7], and financial systems [8].21

Among defense strategies, adversarial training—incorporating adversarially perturbed examples22

during training—has proven most effective [5, 9]. However, multi-step methods like Projected23

Gradient Descent (PGD) [9] impose significant computational costs that limit their applicability24

in large-scale settings. Fast single-step methods address this efficiency concern but suffer from25

Catastrophic Overfitting (CO), where models maintain single-step robustness while failing against26

multi-step attacks [10].27

Several approaches have been developed to address CO. RS-FGSM [10] adds uniform random28

perturbations within the ϵ-ball before applying FGSM, though effectiveness diminishes with larger29

perturbation radii. GradAlign [11] enforces local linearity by aligning input gradients at clean and30

adversarial points through double backpropagation, improving robustness but doubling computational31

overhead. ZeroGrad [12] zeros out small gradient components below a dynamic threshold, preventing32

overfitting to low-magnitude noise directions with minimal extra cost. N-FGSM [13] removes33

gradient clipping and uses stronger noise, achieving 3× speedup over GradAlign while maintaining34

comparable robustness.35
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Recent work has explored CO from various perspectives. AAER [14] identifies “abnormal adversarial36

examples” where loss decreases during inner maximization and regularizes their occurrence. LAP37

[15] reveals that pseudo-robust shortcuts form in early network layers, applying adaptive weight38

perturbations that decrease from former to latter layers. SKG-FAT [16] addresses class imbalance39

through differentiated class weights and self-knowledge guided label relaxation, achieving 5× speedup40

over PGD-10. ELLE [17] approximates local linearity regularization without expensive double41

backpropagation, adapting regularization strength during training. FGSM-PCO [18] prevents inner42

optimization collapse by generating adversarial examples through adaptive fusion of current and43

historical perturbations.44

While these methods have made important contributions, they typically require auxiliary techniques45

such as noise injection, regularization, double backpropagation, or architectural modifications. This46

observation motivates our investigation into whether CO can be addressed through more direct47

mechanisms.48

Our work begins with an empirical observation: CO exhibits interesting norm-dependent behavior.49

For comparable perturbation amplitudes, l∞-norm training shows pronounced CO while l2-defense50

remains more stable, though with limited cross-norm robustness (Figure 1). This suggests that the51

choice of norm constraint may play a more fundamental role in CO than previously recognized.52
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Figure 1: CO phenomena on CIFAR-10 [19] using WideResNet-28-10 [20]: Left: l∞ training
(ϵ = 8/255) shows accuracy collapse against PGD-50 [9], while l2 (ϵ = 32/255) remains stable.
Right: CO onset correlates with gradient norm increase in l∞ training only.
Building on this observation, we move beyond traditional linear approximations underlying FGSM53

and adopt a local convexity hypothesis. This leads us to reformulate adversarial attack generation as54

a fixed-point problem, naturally yielding the lp-FGSM family of attacks. Initial exploration reveals55

that higher p values (p ≥ 32) delay but do not prevent CO, while lower values avoid CO at the cost56

of reduced robustness (Figure 2).57

To understand this trade-off, we investigate gradient concentration as a potential mechanism underly-58

ing CO. We quantify this through the Participation Ratio (PR) [21, 22]—a measure from quantum59

mechanics that we adapt to adversarial training as PR1. Much like its predecessor PR, the adapted60

metric PR1 captures how many dimensions meaningfully contribute to gradient magnitude and most61

importantly connect naturally to the angular separation between l2 and l∞ bounded perturbations.62

Our key insight is that catastrophic overfitting emerges precisely when concentrated gradients—with63

information localized in few dimensions—meet aggressive norm constraints. This concentration can64

be quantified through participation ratio metrics (detailed in Appendix M), allowing us to adaptively65

select norm constraints that prevent CO without sacrificing robustness. Based on this understanding,66

we develop adaptive lp-FGSM that dynamically adjusts the training norm p based on gradient67

structure. When gradients concentrate (low PR), the method reduces p to maintain better alignment68

with natural l2 geometry; when gradients distribute more uniformly, higher p values can enhance69

robustness.70

This approach achieves competitive performance on standard benchmarks without requiring noise71

injection, regularization, or architectural changes. Unlike previous approaches that focus on loss land-72

scapes or gradient alignment, our method directly addresses the gradient concentration phenomenon73

that precipitates catastrophic overfitting. By providing this connection between gradient geometry74

and CO, our work offers a complementary perspective suggesting that careful norm selection alone75

can serve as an effective tool for improving single-step adversarial training.76
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Figure 2: Impact of lp norm choice on training dynamics and robustness for CIFAR-10 with
WideResNet-28-10. The choice of p reveals a key trade-off: higher values (p ≥ 32) initially
show better robustness but become vulnerable to Catastrophic Overfitting (CO), evident in the l∞

PGD-50 plot (second left). Lower p values prevent CO but with reduced adversarial robustness.
Results shown for ϵ = 8/255 over 30 epochs.

2 Preliminaries77

We consider a classification function c(x; θ) : x 7→ RC that maps input features x to output logits78

for classes in set C. The prediction probability πi(x; θ) for label i is given by the softmax function:79

πi(x; θ) = exp(ci(x; θ))/
∑

j exp(cj(x; θ)), where ci(x; θ) denotes the i-th logit and θ represents80

model parameters [23].81

Adversarial robustness requires that the predicted class remains unchanged under bounded pertur-82

bations. Function c is robust to adversarial perturbations of magnitude ϵ at input x if the class with83

maximum probability for x retains the highest probability for x + δ, where δ is any perturbation84

within the lp ball of radius ϵ [4, 5]:85

argmax
i∈C

πi(x+ δ; θ) = argmax
i∈C

πi(x; θ), ∀δ ∈ Bp(ϵ) (1)

This work considers general lp norms with p ≥ 2, using B(ϵ) to denote Bp(ϵ) for simplicity.86

Standard training employs Empirical Risk Minimization (ERM) [24] over dataset distribution D:87

min
θ

E(x,y)∼D[ℓ(x; y, θ)] (2)

where ℓ represents the loss function, typically cross-entropy ℓ(x; y, θ) = −yT log(π(x; θ)), and y is88

the one-hot encoded label. While ERM achieves satisfactory performance on clean data, networks89

remain vulnerable to adversarial attacks [4, 5], with test accuracy dropping substantially under90

distributional shifts caused by adversarial perturbations.91

Adversarial training [5, 9] addresses this vulnerability by incorporating adversarial examples during92

training, simulating potential distributional shifts to learn features robust to input perturbations:93

min
θ

E(x,y)∼D

[
max
δ∈B(ϵ)

ℓ(x+ δ; y, θ)

]
(3)

The inner maximization maxδ∈B(ϵ) ℓ(x+ δ; y, θ) is typically approximated through gradient-based94

optimization. Projected Gradient Descent (PGD) [9] performs iterative updates:95

δ ← Π(δ − µ∇xℓ(x+ δ; y, θ)) (4)

where projection operator Π ensures perturbations remain within bounds through scaling (l2) or96

clipping (l∞).97

Multi-step methods like PGD incur significant computational costs. The Fast Gradient Sign Method98

(FGSM) [5] provides efficiency through first-order Taylor expansion ℓ(x0 + δ) ≈ ℓ(x0) + δT∇xℓ,99
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using gradient sign to solve the maximization problem:100

δFGSM = argmax
δ∈B∞(ϵ)

(
ℓ(x0) + δT∇xℓ

)
= ϵ sign (∇xℓ) (5)

While FGSM efficiently solves the linearized maximization problem in Eq. (3) under l∞ constraints,101

it suffers from Catastrophic Overfitting (CO). Wong et al. [10] proposed adding random noise102

η ∼ U [−ϵ, ϵ] as remedy:103

δRS-FGSM = ΠB∞(ϵ) (η + ϵ sign (∇xℓ (x0 + η))) (6)

Our work extends beyond first-order approximations by characterizing the inner maximization in104

Eq. (3) under general lp constraints, leading to a fixed-point formulation.105

3 Theoretical Framework106

We develop a theoretical foundation that moves beyond the local linearity assumption underlying107

FGSM by adopting a local convexity framework. This perspective reveals that optimal perturbations108

reside on constraint boundaries, enabling our fixed-point formulation for general lp norms and109

providing the mathematical foundation for preventing catastrophic overfitting through principled110

norm selection.1 2111

Under local convexity, optimal adversarial perturbations are guaranteed to lie on the boundary ∂Bp(ϵ),112

as any interior critical point must be a local minimum when the Hessian ∇2
xℓ is positive definite.113

We demonstrate that this condition emerges naturally during training through Hessian analysis114

and empirical validation (detailed in Appendix A). This enables controlled transitions between the115

catastrophic overfitting-resistant l2 regime and the catastrophic overfitting-prone l∞ regime.116

3.1 l2 Norm-Bounded Adversarial Attacks117

Given that optimal perturbations exist on the boundary under local convexity, we use Lagrange118

multipliers to reformulate the constrained maximization problem in Eq. (3) as an unconstrained119

optimization, leading to a fixed-point characterization.120

Proposition 1. For a training sample x0 with non-null gradient, the optimal perturbation δ⋆ within121

B2(ϵ) exists and solves the fixed-point problem δ⋆ = F (δ⋆), where:122

F (δ) = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥2
(7)

F is Lipschitz continuous around its origin with constant K = 2ϵ∥∇2
xℓ∥/∥∇xℓ(x0)∥2:123

∥F (δ)− F (0)∥ ≤ K∥δ∥ (8)

and the fixed-point problem converges if K < 1.124

Proof. See Appendix B. □125

Equation (7) defines a fixed-point iteration that approximates the optimal perturbation, as illustrated in126

Figure 3. The Lipschitz constant K connects to curvature control techniques: CURE [25] minimizes127

Hessian norms for robustness, while Srinivas et al. [26] introduced gradient norm division for128

scale-invariant curvature. Reducing K accelerates convergence of the inner maximization in Eq. (3).129

Corollary (GradAlign Connection). When ∇xℓ(x0) aligns with ∇xℓ(x0 + ϵ∇xℓ/∥∇xℓ∥), the130

fixed-point converges instantly3:131

∇xℓ(x0 + ϵ∇xℓ/∥∇xℓ∥)
∥∇xℓ(x0 + ϵ∇xℓ/∥∇xℓ∥)∥

=
∇xℓ

∥∇xℓ∥
(9)

GradAlign [11] regularizes gradient alignment, effectively improving the initialization of our fixed-132

point algorithm, explaining its empirical success.133

1If local convexity does not hold, the framework gracefully defaults to the standard local linearity approach.
2For one-step adversarial training, local linearity and convexity lead to identical outcomes.
3In this ideal case, the normalized gradient is already the fixed point.
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Figure 3: Geometric interpretation of lp-FGSM framework. (a,b) Fixed-point algorithm iterations for
optimal perturbation identification under l2 constraint (Eq. 7). (c) Attack geometry under different
lp norms: Left - ideal scenario with aligned gradients; Right - effect of gradient noise showing l∞

sensitivity versus lp stability. (d) Transition function Υp variation across p values, demonstrating
smooth high-pass filtering behavior.

3.2 lp Norm-Bounded Adversarial Attacks134

We extend the fixed-point framework to general lp norms, which serve as smooth interpolations135

between l2 and l∞. This extension enables our approach to catastrophic overfitting through controlled136

norm transitions based on gradient structure.137

Proposition 2. For a training sample x0 with non-null gradient under Bp(ϵ) constraint, the optimal138

perturbation δ⋆ exists and solves the fixed-point equation δ⋆ = Fp(δ
⋆), where:139

Fp(δ) = ϵ sign(∇xℓ(x0 + δ))

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(10)

with lq being the dual norm of lp: 1
p + 1

q = 1. All operations are element-wise.140

Proof. See Appendix C. □141

Unified Attack Spectrum: Equation (10) provides a unified formulation spanning from l2 to l∞.142

For p = q = 2, we recover Eq. (7); as p→∞, we obtain q = 1 and recover FGSM. The transition143

between regimes is governed by:144

Υp(δ) =

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(11)

This function acts as a smooth high-pass filter, approaching unity everywhere except near zero145

(Figure 3d). Unlike discontinuous thresholding in ZeroGrad [12], our approach provides smooth146

gradient filtering that preserves differentiability and training stability.147

Convergence Analysis: For p > 2, global Lipschitz continuity fails due to the discontinuous sign148

function and concave power term (q−1) near zero gradients. However, we ensure local Lipschitzness149

by maintaining gradients bounded away from zero:150

∃m > 0 : ∀i,∀δ ∈ ∂Bp(ϵ), |∇xℓ(x0 + δ)i| > m (12)
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This condition motivates our algorithmic design: adding constant ε to gradient components ensures151

both numerical stability and theoretical convergence guarantees. Under this modification, Fp becomes152

locally Lipschitz with constant K(p,m) (detailed in Appendix D).153

3.3 Gradient-Aware Adaptive Norm Selection154

While fixed p values can balance robustness and stability, our preliminary analysis reveals funda-155

mental limitations. As detailed in Appendix E, higher p values delay catastrophic overfitting but156

eventually succumb to it, while lower p values provide stability at the cost of reduced robustness.157

This fundamental trade-off varies significantly across datasets, with dataset complexity critically158

influencing optimal p selection, motivating our adaptive approach.159

High-Dimensional Perturbation Analysis: The choice of norm becomes increasingly critical as160

dimensionality grows. In Rd, perturbation amplitudes scale directly with dimension:4161

∥δ2∥2 = ϵ, ∥δ∞∥2
a.s.
= ϵ d1/2, max ∥δp∥2 = ϵ d(1/2−1/p) (13)

These relationships, which appear in adversarial PAC-Bayes bounds [27], reveal that l∞-bounded162

perturbations yield vectors dramatically distant from original samples as dimension increases. For163

CIFAR-10 (d = 3, 072) and ImageNet (d ∼ 1.5× 105), this effect becomes particularly significant.164

Our key insight: reducing p effectively constrains the perturbation space from dimension d to an165

effective dimension de, where d(1/2−1/p) ∼ d
1/2
e . This suggests that measuring the intrinsic effective166

dimension of gradients can guide appropriate p selection.167

CO

Figure 4: Evolution of Participation Ratios (PR, PR1)
and entropy gap during training. Sharp declines in these
metrics precisely align with Catastrophic Overfitting
(CO) onset, demonstrating how gradient concentration
directly precedes and triggers adversarial vulnerability.

Participation Ratio for Gradient Con-168

centration: We adapt the Participation169

Ratio from quantum mechanics [21, 22],170

which quantifies electron localization, to171

measure gradient concentration:172

PR(x) =
(
∑

i |xi|2)2∑
i |xi|4

=

(
∥x∥2
∥x∥4

)4

(14)

For adversarial training, we substitute the173

standard ones vector with the gradient’s174

sign vector, yielding:175

PR1 =

(
∥∇xℓ∥1
∥∇xℓ∥2

)2

(15)

This effective dimension varies between 1176

and d for non-null vectors and naturally177

connects to the angular separation between178

δ2 and δ∞ attacks:179

cos(θ2,∞) =
∥∇xℓ∥1
∥∇xℓ∥2d1/2

=

√
PR1

d
(16)

Figure 4 provides empirical validation of180

our theoretical framework. Both participa-181

tion ratios drop sharply at CO onset, with182

corresponding increases in angular separa-183

tion between l2 and l∞ perturbations. This184

confirms gradient concentration’s role in185

triggering catastrophic behavior and vali-186

dates our adaptive norm selection strategy.187

4For p > 2, maximum occurs when all components have equal amplitude.
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Noise-Induced Alignment: Classical CO remedies involve noise injection [10, 13]. Our framework188

shows that noise increases PR1, enhancing alignment between l∞ and l2 attacks:189

Lemma 1 (Noise-Induced Alignment). For normalized gradient g = ∇xℓ/∥∇xℓ∥2 and additive190

zero-mean noise η ∼ U [−M,M ]d, there exists α > 0 such that if M < α∥g∥∞, then:191

E
[
∥g + η∥1
∥g + η∥2

]
≥ ∥g∥1
∥g∥2

(17)

Proof. See Appendix F. □192

Monotonic Angular Relationships: We establish that norm reduction systematically improves193

angular alignment:194

Lemma 2 (Monotonicity of Angular Separation). For any non-null gradient ∇xℓ and p ≥ 3, the195

cosine between l2 and lp perturbations satisfies:196

cos(θ2,∞) ≤ cos(θ2,p) where cos(θ2,p) =
∥∇xℓ∥qq

∥∇xℓ∥2∥∇xℓ∥q−1
2(q−1)

(18)

Proof. See Appendix G. □197

Entropy-Based Norm Selection: Direct computation of optimal p from Eq. (18) proves challenging.198

For q ∈ [1, 2] and moderate increases, first-order Taylor expansion provides computational efficiency199

(details in Appendix H):200

cos(θ2,p) =

√
PR1

d
(1 + (q − 1)∆H) +O((q − 1)2) (19)

where ∆H = Hm − H is the entropy gap between logarithmic mean entropy Hm and Shannon201

entropy H of normalized gradient components:202

H = −
d∑

i=1

ρi log(ρi), Hm = − log

d∏
i=1

(ρi)
1/d, ρi =

|∇xℓi|
∥∇xℓ∥1

(20)

Setting a threshold τ below which cosine alignment should not drop, we derive:203

q∗ ≥ 1 +
(τ
√

d/PR1 − 1)

∆H
, τ ∈ [0, 1] (21)

This formula captures the interplay between gradient geometry and norm selection: when gradients204

concentrate (low PR1) and entropy gap decreases, q increases (lower p) to maintain alignment. For205

practical implementation:206

τ ≡ (1 + α) cos(θ2,∞) ≡ cos((1− β)θ2,∞) (22)

These theoretical insights directly inform our algorithmic design. By dynamically adjusting p based207

on gradient concentration metrics PR1 and entropy gap, we maintain alignment with natural l2208

geometry when gradients concentrate (low PR1) and increase p when gradients distribute uniformly209

(high PR1). This adaptive approach prevents concentrated gradients from meeting aggressive norm210

constraints—precisely the condition triggering CO.211

3.4 lp-FGSM Algorithm212

Our lp-FGSM algorithm performs one fixed-point iteration (δ(1) = Fp(δ
(0))) with zero initialization,213

maintaining computational efficiency while accessing the full spectrum of lp attack geometries.214

The epsilon stabilization step serves dual purposes: ensuring numerical stability and satisfying the215

Lipschitz conditions in Eq. (12).216

The adaptive norm selection mechanism automatically adjusts p based on gradient concentration217

statistics, enabling transitions between attack geometries as training progresses. When gradients218

concentrate (indicating potential CO onset), the algorithm reduces p to maintain alignment with219

natural l2 geometry. When gradients distribute uniformly, higher p values enhance robustness.220

This theoretical framework establishes that adaptive norm selection is mathematically sound, main-221

tains convergence properties, and provides a principled solution to catastrophic overfitting without222

auxiliary techniques like noise injection or regularization.223
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Algorithm 1 lp-FGSM
1: Input: Model θ, data x, labels y, loss ℓ, optimizer, attack amplitude ϵ, norm p (dual q)
2: repeat
3: Sample minibatch (x0, y0)
4: Compute gradient gx ← ∇x0ℓ(x0, y0)
5: Apply stability term: ḡx ← ε+ |gx|
6: if adaptive then Update q via Eq. 21 using PR1, ∆H
7: Compute attack δp ← ϵ · sign(gx) · |ḡx/∥ḡx∥q|q−1

8: Update θ with∇θℓ(x0 + δp, y0) and optimizer
9: until Convergence criteria

10: Output: Robust model θ

4 Experiments and Results224

Our lp-FGSM approach provides computational efficiency over methods requiring double backpropa-225

gation, with overhead limited to gradient norm calculations. We evaluate our method on standard226

datasets, examine norm selection and gradient concentration relationships, and compare against227

state-of-the-art fast adversarial training methods.228

4.1 Comparison with Benchmark Techniques229

To rigorously evaluate the effectiveness of adaptive lp-FGSM, we conducted comprehensive compar-230

isons against several well-established fast adversarial training methods, including RS-FGSM [10],231

ZeroGrad [12], N-FGSM [13], and GradAlign [11]. This diverse subset, representing fundamentally232

different conceptual approaches to addressing CO, provides a robust basis for assessing the capacity233

of adaptive lp norms to mitigate the phenomenon while maintaining adversarial robustness. For234

consistency and fair comparison, we used the recommended hyperparameters for each benchmark235

method as specified in their respective publications.236

Figure 5: Performance benchmarking of adaptive lp norm-based training against single-step and
fast adversarial techniques using PGD-50-10, demonstrating the competitive efficacy of adaptive
lp-FGSM. Results were achieved with an SGD optimizer with a cosine learning rate schedule (30
epochs, minimum 0.001, maximum 0.2), weight decay of 5 · 10−4, and a dropout rate of 0.1. For
CIFAR-10, β = 0.01 was applied, while for CIFAR-100, β = 0.1 was used (Eq. 22). We switched
from ADAM to SGD for these comparisons as it is the standard optimizer in adversarial training
literature and facilitates direct comparison with published results.

Our empirical studies, summarized in Figure 5, demonstrate that adaptive lp-FGSM not only meets237

but often surpasses the robustness benchmarks of leading fast methods [9, 25, 28, 11, 13]. This238

success hinges on the choice of the lp norm, which enhances robustness against l∞ attacks while239

resolving CO without requiring noise injection or expensive regularization. All components of240

lp-FGSM (Alg. 1) are efficient to compute with minimal overhead, making the approach particularly241

attractive for large-scale applications where computational efficiency is a priority.242

The performance advantage of our method is particularly pronounced at higher perturbation mag-243

nitudes (ϵ ≥ 8/255), where many competing approaches suffer from CO or significant robustness244

degradation. This innovative use of norm selection introduces a simple yet effective approach to fast245

adversarial training, offering a novel perspective to advance robust machine learning.246
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4.2 Experiments with ImageNet247

To evaluate adaptive lp-FGSM on high-resolution images representative of real-world applications,248

we conducted extensive experiments on ImageNet-1k [29], training a pre-trained ResNet-50 model249

with ADAM optimizer (lr=10−4, batch size 128) for 15 epochs. We tested our method (β = 0.1,250

ε = 10−12) against PGD-50 attacks across a range of perturbation magnitudes ϵ = (2, 4, 6) /255 and251

compared with established methods including FGSM, RS-FGSM, and N-FGSM.252

As shown in Table 4.2, while FGSM experiences catastrophic overfitting at ϵ = 6/255 (evidenced by253

the near-zero adversarial accuracy), adaptive lp-FGSM achieves superior adversarial robustness across254

all perturbation levels while maintaining competitive clean accuracy. The performance advantage is255

particularly significant at ϵ = 4/255 and ϵ = 6/255, where our method outperforms RS-FGSM by256

3.23% and 3.30% in adversarial accuracy, respectively.257

Table 1: Comparative Analysis of Robustness Against PGD-50-10 on ImageNet-1k. FGSM, RS-
FGSM and N-FGSM results are from [13]. All methods utilize ImageNet-1k pre-trained weights and
undergo 15 epochs of training. Results show clean accuracy (top) and PGD-50 accuracy (bottom).

ImageNet-1k ResNet-50
Method ϵ = 2/255 ϵ = 4/255 ϵ = 6/255
FGSM 54.72% 48.50% 48.55%

38.21% 25.86% 0.08%
RS-FGSM 56.29% 50.81% 47.67%

36.86% 25.12% 16.49%
lp-FGSM 53.18% 48.42% 48.61%

37.94% 28.35% 19.79%
N-FGSM 54.39% 47.56% 47.70%

38.07% 26.28% 17.12%

These results on ImageNet-1k demonstrate the scalability of our approach to large, complex datasets258

and its effectiveness in addressing CO in practical settings. The consistent performance advantages259

across different perturbation magnitudes highlight the robustness of the adaptive norm selection260

strategy in diverse scenarios, reinforcing the potential of lp-FGSM as a general-purpose solution for261

fast adversarial training.262

5 Conclusion263

We presented adaptive lp-FGSM, a principled approach to mitigating catastrophic overfitting in fast264

adversarial training. Our investigation began with the observed discrepancy between l2 and l∞ norms,265

motivating us to explore the full lp spectrum between these extremes. This led to reformulating266

adversarial attack generation as a fixed-point problem, enabling efficient single-step methods while267

providing theoretical insights through Lipschitz continuity analysis. While our approach relies on268

local convexity assumptions, it gracefully defaults to local linearity when these assumptions do not269

hold.270

Our key finding—that catastrophic overfitting emerges when concentrated gradients meet aggressive271

norm constraints—provides a unifying perspective on previous observations. By adapting the272

Participation Ratio from quantum mechanics to measure both gradient concentration and angular273

separation, we established a quantitative connection between gradient geometry and adversarial274

vulnerability. This insight led to dynamically adjusting the training norm p based on gradient275

structure. Although our method avoids double backpropagation, it still requires hyperparameters for276

angle constraints that warrant further optimization across different architectures and datasets.277

This work contributes to understanding fast adversarial training by connecting gradient geometry to278

training dynamics through an information-theoretic lens. By establishing adaptive norm selection as279

a theoretically motivated approach, we hope to inspire further research into geometric perspectives280

on adversarial robustness. Our results suggest that careful consideration of gradient structure may be281

essential in developing efficient and robust training methods. By establishing a theoretical foundation282

for addressing catastrophic overfitting, our work contributes to the broader goal of developing reliable283

machine learning systems that maintain robustness guarantees even under computational constraints.284
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A Local Convexity Analysis385

In this appendix, we provide a detailed analysis of the local convexity framework that underlies our386

lp-FGSM approach. We examine both the theoretical foundations and empirical evidence for local387

convexity emergence during adversarial training.388

A.1 Theoretical Foundation of Local Convexity389

While fast adversarial training traditionally relies on local linearity assumptions through first-order390

Taylor expansions, we examine a more general local convexity framework that emerges from analyz-391

ing the Hessian of the loss function with respect to inputs. When the Hessian∇2
xℓ is positive definite,392

any critical point in the perturbation ball’s interior must be a local minimum, forcing the maximum to393

occur on the boundary ∂Bp(ϵ)—a useful property that enables efficient single-step methods.394

The Hessian structure can be decomposed with respect to the output logits as:395

∇2
xℓ =

(
∂π

∂x0

)
∂2ℓ

∂π2

(
∂π

∂x0

)T

+
∂2π

∂x2
0

∂ℓ

∂π
(23)

This decomposition reveals two distinct components:396

Gauss-Newton Term: The first term
(

∂π
∂x0

)
∂2ℓ
∂π2

(
∂π
∂x0

)T
is positive semi-definite since ∂2ℓ

∂π2 rep-397

resents the Hessian of the cross-entropy loss with respect to predictions, which is always positive398

definite for proper probability distributions.399

Error-Dependent Term: The second term ∂2π
∂x2

0

∂ℓ
∂π involves the prediction errors ∂ℓ

∂π . As training400

progresses and the model’s predictions improve, these error terms diminish, reducing the magnitude401

of the second term relative to the first.402

A.2 Convergence to Local Convexity During Training403

The natural emergence of local convexity during training can be understood through the evolution of404

the Hessian structure in Eq. (23). As the model learns to minimize the training loss, the prediction405

errors ∂ℓ
∂π systematically decrease. This causes the potentially indefinite second term to diminish in406

magnitude relative to the positive semi-definite Gauss-Newton term, leading to an overall positive407

definite Hessian.408

This convergence can be accelerated through architectural choices that control the second-order409

derivatives ∂2π
∂x2

0
:410

Activation Function Selection: Smooth activation functions like SELU [30] or GELU [31] have411

well-behaved second derivatives, leading to more stable convergence to local convexity compared to412

non-smooth activations.413

Network Depth and Width: Deeper networks tend to develop local convexity more readily as the414

composition of smooth functions preserves convexity properties under appropriate conditions.415

However, our empirical analysis demonstrates that even standard ReLU networks, despite their416

non-smooth activation functions, naturally develop local convexity through the training process, as417

visualized in Figure 6.418

A.3 Empirical Evidence for Local Convexity419

Figure 6 provides empirical validation of the local convexity emergence during training. The420

visualization shows the loss landscape around training points at different stages of the training421

process.422

Early Training (Upper Panels): After one epoch, the loss landscapes exhibit irregular, non-convex423

characteristics with multiple local minima and saddle points. The landscapes are complex and do not424

satisfy the local convexity assumption.425
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Figure 6: Empirical evidence for local convexity emergence during training on CIFAR-10. The upper
panels display the loss landscape after one epoch of training, while the lower panels show the same
landscape after ten epochs with lp-FGSM training. Training points are positioned at (0, 0); ε1 and ε2
are eigenvectors corresponding to the extreme eigenvalues of the input Hessian ∇2

xℓ for each sample.
The progressive development of convex loss landscapes validates our theoretical framework and
provides justification for boundary-focused adversarial search strategies.

Later Training (Lower Panels): After ten epochs of training, the same landscapes show clear convex426

structure around the training points. The loss increases monotonically as we move away from the427

training point in any direction within the neighborhood, confirming positive definiteness of the local428

Hessian.429

This empirical observation has several important implications:430

1. Theoretical Validation: The emergence of local convexity validates our theoretical framework431

and justifies the use of boundary-focused optimization strategies.432

2. Practical Robustness: Even when local convexity does not hold initially, the framework can433

gracefully default to local linearity assumptions, ensuring robustness across different training phases.434

3. Efficient Optimization: The development of local convexity enables more efficient single-step435

adversarial example generation, as the optimal perturbations are guaranteed to be on the constraint436

boundary.437
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B Appendix: Demonstration l2 Optimal Attack438

Proposition 1. Consider a training sample x0 with a non-null gradient. The optimal perturbation δ⋆439

within B(ϵ) exists and corresponds to the solution of a fixed-point problem δ⋆ = F (δ⋆), where440

F (δ) = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥2
(24)

The function F exhibits Lipschitzian behavior around its origin, satisfying:441

∥F (δ)− F (0)∥ ≤ 2ϵ
∥∇2

xℓ∥
∥∇xℓ(x0)∥2

∥δ∥ (25)

The fixed-point problem converges if it is contractive:442

K = 2ϵ
∥∇2

xℓ∥
∥∇xℓ(x0)∥2

< 1 (26)

443

Proof. Assuming that the Hessian of the loss function, ∇2
xℓ, is positive definite, any critical point in444

the interior would be a minimum. The implicitly assumed compactness guarantees the existence of445

the maximum on the boundary. The constrained maximization uses the Lagrangian:446

L(δ, λ) = ℓ(x0 + δ)− λ

2
(δT δ − ϵ2) (27)

The derivatives yield the following equations:447 {
∂
∂δL = ∇xℓ(x0 + δ)− λδ = 0 ∂

∂λL = − 1
2 (δ

T δ − ϵ2) = 0 (28)

Since the maximum exists on the boundary, the constraint δT δ = ϵ2 is activated; hence the Lagrange448

multiplier λ is non-null. The gradient at x0 + δ cannot be null (minimum otherwise), therefore449

∥∇xℓ(x0 + δ)∥ > 0.450

Solving the two Lagrangian equations yields:451

δ = ±ϵ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥
(29)

Given the positive Hessian assumption, moving along the gradient (equivalent to choosing the positive452

sign) results in a greater change in the loss function ℓ. Consequently:453

δ = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥
(30)

The maximum δ⋆ is the solution to a fixed-point problem. The existence and uniqueness of the454

solution δ⋆ is guaranteed if F (δ) is contractive, i.e., Lipschitz continuous with a Lipschitz constant455

K < 1.456

To demonstrate this Lipschitz continuity, we consider:457

∥F (δ)− F (0)∥ = ϵ
∥∥∥ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥
− ∇xℓ(x0)

∥∇xℓ(x0)∥

∥∥∥
By introducing a cross term and using the triangle inequality:458

∥F (δ)− F (0)∥ ≤ ϵ
∥∥∥ ∇xℓ(x0)

∥∇xℓ(x0)∥
− ∇xℓ(x0 + δ)

∥∇xℓ(x0)∥

∥∥∥+ ϵ
∥∥∥∇xℓ(x0 + δ)

∥∇xℓ(x0)∥
− ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥

∥∥∥
The first term can be bounded:459

∥F (δ1)− F (0)∥ ≤ ϵ
∥∇2

xℓ(x0)∥∥δ∥
∥∇xℓ(x0)∥

+ ϵ∥∇xℓ(x0 + δ)∥
∣∣∣ 1

∥∇xℓ(x0 + δ)∥
− 1

∥∇xℓ(x0)∥

∣∣∣
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After unifying the denominator:460

∥F (δ)− F (0)∥ ≤ ϵ
∥∇2

xℓ∥∥δ∥
∥∇xℓ(x0)∥

+
ϵ

∥∇xℓ(x0)∥

∣∣∣∥∇xℓ(x0 + δ)∥ − ∥∇xℓ(x0)∥
∣∣∣

Using the triangle inequality again:461 ∣∣∣∥∇xℓ(x0 + δ)∥ − ∥∇xℓ(x0)∥
∣∣∣ ≤ ∥∇xℓ(x0 + δ)−∇xℓ(x0)∥ ≤ ∥∇2

xℓ∥∥δ∥

This leads to:462

∥F (δ)− F (0)∥ ≤ 2ϵ
∥∇2

xℓ(x0)∥∥δ∥
∥∇xℓ(x0)∥

(31)

The Lipschitz constant is:463

K = 2ϵ · ∥∇
2
xℓ(x0)∥

∥∇xℓ(x0)∥
(32)

Assuming K < 1, the fixed point problem converges.464

C Appendix: Demonstration lp Optimal Attack465

Proposition 2. For a training sample x0 exhibiting a non-null gradient and a constraint within466

Bp(ϵ), the optimal perturbation, denoted as δ⋆, exists and corresponds to the solution of a fixed-point467

problem: δ⋆ = Fp(δ
⋆). Specifically, we have:468

Fp(δ) = ϵsign(∇xℓ(x0 + δ))

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(33)

where the lq norm serves as the dual to lp, i.e., 1
p + 1

q = 1. The absolute value and multiplication469

operations are element-wise.470

Proof. Assuming the same hypotheses as in Appendix A, a maximum exists on the boundary of the471

Bp ball. We formulate the Lagrangian with the lp equality constraint:472

Lp(δ, λ) = ℓ(x0 + δ)− λ(∥δ∥p − ϵ) (34)

The lp norm is given by:473

∥δ∥p =

(∑
i

|δi|p
) 1

p

(35)

Hence, its derivative is:474

∂

∂δ
∥δ∥p = sign(δ)

(
|δ|
∥δ∥p

)p−1

(36)

The derivatives of the Lagrangian are:475 {
∂
∂δLp = ∇xℓ(x0 + δ)− λsign(δ)

(
|δ|

∥δ∥p

)p−1

= 0
∂
∂λLp = −(∥δ∥p − ϵ) = 0

(37)

Using the dual norm lq defined with 1
p + 1

q = 1→ q = p
p−1 , we can characterize λ as:476

∥∇xℓ(x0 + δ)∥q =
|λ|
∥δ∥p−1

p

(∥δ∥pp)
1
q = |λ| (38)
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Substituting into the first derivative of the Lagrangian:477

∇xℓ(x0 + δ) = ±∥∇xℓ(x0 + δ)∥q sign(δ)
(
|δ|
∥δ∥p

)p−1

(39)

From this, δ and ∇xℓ(x0 + δ) have the same sign up to a multiplicative coefficient (i.e., ±):478

∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
= ±

∣∣∣∣ δ

∥δ∥p

∣∣∣∣p−1

sign(δ) (40)

Extracting δ and using ∥δ∥p = ϵ yields:479

δ = ±ϵsign(∇xℓ(x0 + δ))×
(
|∇xℓ(x0 + δ)|
∥∇xℓ(x0 + δ)∥q

) 1
p−1

The solution with the negative sign would yield a locally decreasing loss function, so we take the480

positive solution. The Lagrange multiplier for maximization is positive:481

λ = ∥∇xℓ(x0 + δ)∥q (41)

Using p = q
q−1 → p− 1 = 1

q−1 , we get the final result:482

δ = ϵsign(∇xℓ(x0 + δ))×
(
|∇xℓ(x0 + δ)|
∥∇xℓ(x0 + δ)∥q

)q−1

483

D Appendix: Lipschitzness of the lp Fixed-Point Problem484

We assume: ∃m > 0 : ∀δ ∈ ∂Bp(ϵ), |∇θℓ(x0+δ)i| > m, and proceed to demonstrate Lipschitzness485

of the function Fp(δ) verifying the fixed point, defined as:486

Fp(δ) = ϵ sign(∇xℓ(x0 + δ))

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(42)

The sign function can be circumvented by using “one power” of the absolute value of the gradient:487

Fp(δ) = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
×
(
|∇xℓ(x0 + δ)|
∥∇xℓ(x0 + δ)∥q

)q−2

(43)

The term q−2 is negative, which is permissible since we assumed a lower limit m for gradient values.488

Our objective is to prove that Fp(δ) is Lipschitz continuous around δ = 0.489

First, let’s define:490

fq(δ) =
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
(44)

We have:491

Fp(δ) = ϵfq(δ)|fq(δ)|q−2 (45)

Similar to Appendix A, by introducing a cross term we can show that f and |f | are Lipschitz492

continuous, with a constant Kf such that:493

|fq(δ)− fq(0)| ≤ Kf∥δ∥ (46)

The same steps are applied as follows:494

∥|fq(δ)| − |fq(0)|∥ ≤ ∥fq(δ)− fq(0)∥ ≤
∥∥∥ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
− ∇xℓ(x0)

∥∇xℓ(x0)∥q

∥∥∥ (47)
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By further manipulation and using the triangle inequality:495

∥|fq(δ)| − |fq(0)|∥ ≤
∥∥∥ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
− ∇xℓ(x0 + δ)

∥∇xℓ(x0)∥q

∥∥∥+ ∥∥∥ ∇xℓ(x0)

∥∇xℓ(x0)∥q
− ∇xℓ(x0 + δ)

∥∇xℓ(x0)∥q

∥∥∥
(48)

This leads to:496

∥|fq(δ)| − |fq(0)|∥ ≤
(
1 +

∥∇xℓ(x0 + δ)∥
∥∇xℓ(x0 + δ)∥q

)
× ∥∇

2
xℓ(x0)∥

∥∇xℓ(x0)∥q
∥δ∥ (49)

In a finite-dimensional vector space, all norms are equivalent:497

∃C ≥ 0,
∥∇xℓ(x0 + δ)∥
∥∇xℓ(x0 + δ)∥q

≤ C (50)

Next, examining |x|q−2 on the interval [m,+∞) with q − 2 negative:498

∀(x, y) ∈ [m,+∞), ||x|q−2 − |y|q−2| ≤ (2− q)mq−3|x− y| (51)

Using these results for the local Lipschitz continuity of Fp:499

1

ϵ
∥Fp(δ)− Fp(0)∥ = ∥fq(δ)|fq(δ)|q−2 − fq(0)|fq(0)|q−2∥ (52)

Through a series of bounds:500

1

ϵ
∥Fp(δ)− Fp(0)∥ ≤ ∥fq(δ)|fq(δ)|q−2 − fq(δ)|fq(0)|q−2∥

+ ∥fq(δ)|fq(0)|q−2 − fq(0)|fq(0)|q−2∥ (53)

Further simplifying:501

1

ϵ
∥Fp(δ)− Fp(0)∥ ≤

∥∇xℓ(x0 + δ)∥
∥∇xℓ(x0 + δ)∥q

× (2− q)mq−3|fq(δ)− fq(0)|

+

∣∣∣∣ ∇xℓ(x0)

∥∇xℓ(x0)∥q

∣∣∣∣q−2

× ∥fq(δ)− fq(0)∥ (54)

This yields:502

∥Fp(δ)− Fp(0)∥ ≤ K(p,m)ϵ× ∥∇
2
xℓ(x0)∥

∥∇xℓ(x0)∥q
∥δ∥ (55)

where:503

K(p,m) =
(
C(2− q)mq−3 +

(
m

∥∇xℓ(x0)∥q

)q−2
)
(1 + C) (56)

E Preliminary Validation of Fixed lp Norms504

To understand the fundamental limitations of fixed p values and motivate our adaptive approach,505

we conducted systematic evaluation of lp-FGSM across different norm values on standard datasets.506

This preliminary analysis reveals the inherent trade-offs that necessitate adaptive norm selection. All507

experiments were conducted on a single NVIDIA A100 GPU.508

E.1 Experimental Setup509

We evaluate fixed lp-FGSM following the framework of Wong et al. [10] using PGD-50 attacks on510

CIFAR-10, CIFAR-100 [19], and SVHN [32]. Experiments use PreactResNet18 [33] for SVHN and511

WideResNet28-10 [20] for CIFAR datasets, with results averaged over five seeds for reliability.512

This validation deliberately excludes enhancements like weight decay, dropout, or noise injection513

to isolate the effects of norm selection and provide a clear baseline for understanding the impact514

of the lp norm parameter. All experiments use perturbation radius ϵ = 8/255 for both training and515

evaluation attacks.516
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E.2 Key Findings: The Fixed p Dilemma517

Figure 7 presents comprehensive results across all three datasets, revealing several critical insights518

about the fundamental limitations of fixed norm approaches.519

Figure 7: Detailed analysis of clean and adversarial accuracy across CIFAR-10, CIFAR-100, and
SVHN datasets with ϵ = 8/255 for different p values. The results demonstrate the fundamental
limitations of fixed norm approaches: CIFAR-10 shows optimal performance at intermediate p ≈
16− 32 before CO onset, SVHN exhibits remarkable resilience to CO even at higher p values, while
CIFAR-100 displays heightened sensitivity to norm selection with narrow optimal ranges. These
dataset-dependent behaviors highlight the critical need for adaptive norm selection.

The results demonstrate striking dataset-dependent optimal ranges that expose the inadequacy of520

any universal fixed p approach. CIFAR-10 achieves optimal performance at intermediate p values521

around 16-32, demonstrating a clear sweet spot before catastrophic overfitting occurs. In contrast,522

SVHN exhibits remarkable resilience to CO even at higher p values, suggesting that simpler datasets523

can tolerate more aggressive norm constraints for extended periods. CIFAR-100 shows heightened524

sensitivity to norm selection with narrow optimal ranges, indicating that complex datasets require525

more conservative and careful norm tuning.526

Across all datasets, we observe a universal trade-off pattern that reveals the inherent limitations of527

fixed approaches. Lower p values (p ≤ 4) provide excellent stability against catastrophic overfitting528

but at the cost of significantly reduced adversarial robustness. Higher p values (p ≥ 64) initially529

improve robustness but eventually lead to catastrophic overfitting, with the onset timing varying530

dramatically by dataset complexity. Intermediate p values offer the best balance but require careful531

tuning that is fundamentally dataset-dependent.532

The relationship between dataset complexity and optimal norm selection proves particularly striking.533

Simple datasets like SVHN tolerate aggressive norms for longer periods, while complex datasets534
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like CIFAR-100 require more conservative norm choices from the outset. This suggests that gradient535

structure varies significantly across problem domains, with complexity directly influencing the rate at536

which gradient concentration occurs during training.537

E.3 Fundamental Limitations of Fixed Norm Approaches538

These results expose several fundamental limitations of any fixed p approach that render such methods539

inadequate for general-purpose adversarial training. The lack of generalizability is perhaps most540

concerning: no single p value works optimally across all datasets, with configurations that succeed541

for SVHN failing dramatically for CIFAR-100. This dataset dependency makes fixed approaches542

impractical for real-world deployment where diverse data characteristics are encountered.543

The static nature of fixed values conflicts directly with the dynamic nature of adversarial training.544

Gradient structure evolves throughout training, with early phases potentially benefiting from higher p545

values while later stages require lower values to prevent catastrophic overfitting. Fixed approaches546

cannot adapt to these changing conditions, forcing suboptimal compromises throughout the training547

process.548

Even the best fixed p value for each dataset represents a compromise that sacrifices either robustness or549

stability. The narrow optimal ranges, particularly evident in CIFAR-100, make fixed approaches highly550

sensitive to hyperparameter selection and prone to overfitting validation performance. This sensitivity551

creates practical deployment challenges where slight dataset variations can push performance outside552

optimal ranges.553

E.4 Theoretical Alignment and Motivation for Adaptive Approaches554

These empirical observations align perfectly with our gradient concentration hypothesis and provide555

strong motivation for adaptive norm selection. Complex datasets like CIFAR-100 likely exhibit556

more concentrated gradients earlier in training, requiring conservative norm choices to prevent early557

catastrophic overfitting. Simple datasets like SVHN maintain more distributed gradients longer,558

tolerating aggressive norms without immediate vulnerability. Intermediate complexity datasets like559

CIFAR-10 require dynamic adaptation as gradient structure evolves throughout training.560

The clear dataset dependency and fundamental trade-offs exposed in these experiments provide561

compelling evidence that fixed norm approaches are inherently limited. An effective solution must562

automatically adapt to different dataset characteristics without manual tuning, respond to changing563

gradient structure throughout training, base norm selection on measurable gradient properties that564

predict catastrophic overfitting onset, and maintain computational efficiency comparable to fixed565

approaches.566

This preliminary analysis establishes the empirical foundation for our theoretical framework and567

demonstrates why gradient-aware adaptive norm selection is not merely beneficial but necessary for568

robust fast adversarial training across diverse problem domains. The development of our adaptive569

lp-FGSM framework detailed in the main paper directly addresses these limitations through principled570

gradient concentration measurement and automatic norm adaptation.571

F Appendix: Proof of Noise-Induced Alignment572

Lemma 1 (Noise-Induced Alignment). For g ∈ Rd nonzero and η ∼ U [−M,M ]d, ∃α > 0 such573

that if M < α∥g∥∞:574

E
[
∥g + η∥1
∥g + η∥2

]
≥ ∥g∥1
∥g∥2

(57)

575

Proof. Let S+ = {i : |gi| > M} and S− = {i : |gi| ≤M} partition coordinates.576

For i ∈ S+:577 ∑
i∈S+

|gi + ηi| ≥
∑
i∈S+

(|gi| −M) (58)
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For i ∈ S−, direct calculation yields:578

E[|gi + ηi|] =
1

2M

∫ M

−M

|gi + η| dη =
(gi +M)2 + (gi −M)2

4M
=

g2i +M2

2M
(59)

Thus for the l1 norm:579

E[∥g + η∥1] ≥
∑
i∈S+

(|gi| −M) +
∑
i∈S−

g2i +M2

2M
(60)

For the l2 norm, using E[η2i ] = M2

3 and independence:580

E[∥g + η∥22] =
d∑

i=1

(
g2i +

M2

3

)
(61)

By Jensen’s inequality applied to the concave function f(x) =
√
x:581

E[∥g + η∥2] = E


√√√√ d∑

i=1

(gi + ηi)2


≤

√√√√E

[
d∑

i=1

(gi + ηi)2

]

=

√√√√ d∑
i=1

(
g2i +

M2

3

)
(62)

Let E be the event where:582

∥g + η∥2 ≤

√√√√ d∑
i=1

(
g2i +

M2

2

)
(63)

Then:583

E
[
∥g + η∥1
∥g + η∥2

]
≥ P(E) ·

∑
i∈S+

(|gi| −M) +
∑

i∈S−

g2
i+M2

2M√∑d
i=1

(
g2i +

M2

2

) (64)

For M < α∥g∥∞ with α sufficiently small:584

• P(E) approaches 1585

• The gain in S− terms ( g
2
i+M2

2M > |gi|) exceeds the loss in S+ terms586

• The denominator remains close to ∥g∥2587

Therefore, the ratio exceeds ∥g∥1

∥g∥2
.588

G Appendix: Proof of Monotonicity of Angular Separation589

Lemma 2 (Monotonicity of Angular Separation). For any gradient ∇xℓ and 2 ≤ p ≤ ∞, the590

cosine similarity between l2 and lp perturbations satisfies:591

cos(θ2,p) ≥ cos(θ2,∞) =

√
PR1

d
(65)

592
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Proof. Step 1: Express cos(θ2,p) in normalized form.593

Let q = p
p−1 be the dual exponent of p; hence 2 ≤ p ≤ ∞ implies 1 ≤ q ≤ 2. Recall that:594

δp = ϵ sign(∇xℓ(x0))

∣∣∣∣ ∇xℓ(x0)

∥∇xℓ(x0)∥q

∣∣∣∣q−1

(66)

δ∞ = ϵ sign(∇xℓ(x0)) (67)

Then:595

cos(θ2,p) =
⟨δ2, δp⟩
∥δ2∥2∥δp∥2

(68)

which yields:596

cos(θ2,p) =
∥∇xℓ∥qq

∥∇xℓ∥2 ∥∇xℓ∥q−1
2(q−1)

(69)

We introduce the normalized vector:597

g =
∇xℓ

∥∇xℓ∥2
(70)

Then ∥g∥2 = 1, and each coordinate of g satisfies |gi| ≤ 1. Using g, we can rewrite:598

∥∇xℓ∥q = ∥∇xℓ∥2
∥∥∥∥ ∇xℓ

∥∇xℓ∥2

∥∥∥∥
q

= ∥∇xℓ∥2 ∥g∥q (71)

Hence:599

∥∇xℓ∥qq = ∥∇xℓ∥q2 ∥g∥qq (72)

Similarly, we have:600

∥∇xℓ∥q−1
2(q−1) = ∥∇xℓ∥q−1

2 ∥g∥q−1
2(q−1) (73)

So:601

cos(θ2,p) =
∥∇xℓ∥q2 ∥g∥qq

∥∇xℓ∥2 ∥∇xℓ∥q−1
2 ∥g∥q−1

2(q−1)

(74)

=
∥g∥qq

∥g∥q−1
2(q−1)

(75)

Step 2: Show that ∥g∥qq ≥ ∥g∥1 and ∥g∥q−1
2(q−1) ≤ ∥g∥

q−1
2 .602

Since ∥g∥2 = 1, all coordinates |gi| ≤ 1. For q ∈ [1, 2], raising each |gi| from exponent 1 up to q603

increases the value coordinate-wise, hence:604

|gi|q ≥ |gi|1 ⇒ ∥g∥qq =
∑
i

|gi|q ≥
∑
i

|gi|1 = ∥g∥1 (76)

For q ≤ 1.5 (equivalent to p ≥ 3), then 2(q − 1) ≤ 1. In that regime, raising |gi| to a power below 1605

makes sums larger. For 0 < ϵ ≤ 2(q − 1):606

|gi|2(q−1) ≤ |gi|ϵ (77)

⇒ ∥g∥2(q−1)
2(q−1) ≤

∑
i

|gi|ϵ = ∥g∥ϵϵ (78)

As ϵ→ 0, ∥g∥ϵϵ → d, and we get:607

∥g∥q−1
2(q−1) ≤

√
d (79)

Step 3: Combine results.608
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Using the factorization from Step 1 and the inequalities from Step 2:609

cos(θ2,p) =
∥g∥qq

∥g∥q−1
2(q−1)

(80)

≥ ∥g∥1√
d

= cos(θ2,∞) (81)

610

H Appendix: Taylor Expansion of Cosine Similarity611

Proposition 3. For q = 1 + ϵ with small ϵ and normalized gradient components πi =
|∇xℓi|
∥∇xℓ∥1

, the612

cosine similarity between l2 and lp perturbations admits the following first-order expansion:613

cos(θ2,p) =

√
PR1

d
(1 + ϵ(Hm −H)) +O(ϵ2) (82)

where PR1 =
(

∥∇xℓ∥1

∥∇xℓ∥2

)2
is the participation ratio, H is the Shannon entropy, and Hm is the614

logarithmic mean entropy.615

Proof. Starting with the cosine similarity for q = 1 + ϵ:616

cos(θ2,p) =
∥∇xℓ∥qq

∥∇xℓ∥2∥∇xℓ∥q−1
2(q−1)

(83)

The numerator expands directly as:617

∥∇xℓ∥qq =
∑
i

|∇xℓi|1+ϵ = ∥∇xℓ∥1
(
1 + ϵ

∑
i

|∇xℓi|
∥∇xℓ∥1

× log |∇xℓi|+O(ϵ2)
)

(84)

For the denominator term ∥∇xℓ∥ϵ2ϵ:618

∥∇xℓ∥ϵ2ϵ =
(
1 + 2ϵ

∑
i

log |∇xℓi|
d

+O(ϵ2)
) 1

2

= 1 + ϵ
∑
i

log |∇xℓi|
d

+O(ϵ2) (85)

Combining terms with normalized gradient components πi:619

cos(θ2,p) =
∥∇xℓ∥1
∥∇xℓ∥2

√
d

(
1 + ϵ

(∑
i

πi log |∇xℓi| −
∑
i

log |∇xℓi|
d

))
+O(ϵ2) (86)

The sums relate to entropy measures through:620 ∑
i

πi log |∇xℓi| = −H + log ∥∇xℓ∥1 (87)

∑
i

log |∇xℓi|
d

= −Hm + log ∥∇xℓ∥1 (88)

where:621

H = −
∑
i

πi log(πi) (89)

Hm = − log

d∏
i=1

(πi)
1
d (90)

Therefore:622

cos(θ2,p) =

√
PR1

d
(1 + ϵ(Hm −H)) +O(ϵ2) (91)

The entropy gap ∆H = Hm −H is always positive by Jensen’s inequality.623
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I Appendix: AutoAttack Results624

To ensure a comprehensive assessment, we have also included robust accuracy results evaluated625

with AutoAttack (AA) [34]. We present the clean (top) and robust (bottom) accuracies (3 seeds) for626

CIFAR-10 using WRN-28-8, evaluated with AA. The pattern observed is consistent with the results627

from PGD-50, showing a common trend.628

Table 2: CIFAR-10 (WRN-28-8) Clean and AutoAttack Accuracy Evaluation. Results are averaged
over multiple seeds. Clean accuracy (top) and AutoAttack accuracy (bottom).

CIFAR-10 WRN-28-10 AutoAttack
255 · ϵ FGSM RS-FGSM N-FGSM lp-FGSM

2 90.81% ± 0.07 90.64% ± 0.12 89.27% ± 0.21 89.02% ± 0.41
74.72% ± 0.37 71.47% ± 0.44 73.14% ± 0.68 76.14% ± 0.62

4 87.86% ± 0.23 86.58% ± 0.22 86.34% ± 0.36 85.71% ± 0.53
61.58% ± 0.12 54.85% ± 0.16 59.81% ± 0.27 62.12% ± 0.42

8 84.89% ± 1.20 80.14% ± 0.88 74.73% ± 0.46 79.81% ± 0.57
0.00% ± 0.00 35.77% ± 0.24 41.65% ± 0.45 42.43% ± 0.58

12 80.23% ± 0.63 61.65% ± 1.32 62.56% ± 0.73 71.12% ± 0.38
0.00% ± 0.00 0.00% ± 0.00 30.17% ± 1.16 32.13% ± 0.71

16 74.61% ± 0.19 69.20% ± 0.15 52.89% ± 0.27 58.43% ± 0.48
0.00% ± 0.00 0.00% ± 0.00 22.50% ± 0.89 25.89% ± 0.59

The comparison encompasses standard FGSM [5], RS-FGSM [10], N-FGSM with (k=2) [13], and629

our proposed adaptive lp-FGSM (β = 0.01). The experiments reveal a characteristic pattern of630

Catastrophic Overfitting (CO) across various perturbation magnitudes (ϵ) for FGSM and RS-FGSM.631

During CO, models maintain high clean accuracy while their robust accuracy against adversarial632

attacks deteriorates to near zero.

Figure 8: Comparative evaluation using AutoAttack on CIFAR-10 with WideResNet-28-10 across
different perturbation magnitudes. Results demonstrate consistent robustness assessment between
PGD-50 and AutoAttack [34], validating the reliability of our evaluation methodology.

633

The strong agreement between PGD-50 and AutoAttack results strengthens our evaluation methodol-634

ogy, as AutoAttack combines multiple complementary attack strategies [34, 11]. This comprehensive635

assessment validates our findings regarding the effectiveness of norm selection in preventing CO.636
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J Appendix: Long-Term Training Evaluation637

To rigorously assess the durability and stability of the lp-FGSM method under prolonged training638

conditions, we conducted an extended training experiment spanning 200 epochs. This experiment639

utilized the CIFAR-10 dataset with adversarial perturbation norms set at ϵ = 8/255 and ϵ = 16/255,640

using ADAM optimizer with a learning rate of 0.001.641

Figure 9: Extended training performance of lp-FGSM on CIFAR-10. While Catastrophic Overfitting
(CO) was not observed, the experiment highlights the occurrence of robust overfitting over a prolonged
training period.

The results of this long-term training provide insightful observations. Crucially, no instances of642

Catastrophic Overfitting (CO) were detected throughout the training process, underscoring the643

robustness of the lp-FGSM approach. However, a slight decrease in robustness, i.e., robust overfitting,644

occurs. This occurrence warrants early stopping and cyclical learning rates to offset this phenomenon.645
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K Appendix: lp-FGSM Results Tables646

Table 3: Comparative Analysis of Fast Adversarial Training Methods on SVHN Dataset
SVHN PreAct-18 PGD-50-10

ϵ · 255 lp-FGSM RS-FGSM N-FGSM GradAlign ZeroGrad
2 94.20% ±0.52 96.16% ±0.13 96.04% ±0.24 96.01% ±0.25 96.08% ±0.22

86.22% ±0.22 86.17% ±0.17 86.46% ±0.12 86.44% ±0.15 86.47% ±0.17

4 94.16% ±0.64 95.07% ±0.08 94.56% ±0.18 94.57% ±0.24 94.83% ±0.19

77.86% ±0.75 71.25% ±0.43 72.54% ±0.21 72.18% ±0.22 71.64% ±0.24

6 92.26% ±0.65 95.16% ±0.48 92.27% ±0.36 92.55% ±0.26 93.52% ±0.24

64.12% ±1.27 0.00% ±0.00 58.44% ±0.18 57.36% ±0.27 51.77% ±0.58

8 91.06% ±0.69 94.48% ±0.18 89.59% ±0.48 90.16% ±0.36 92.43% ±1.33

56.72% ±0.74 0.00% ±0.00 45.64% ±0.21 43.88% ±0.16 35.96% ±2.78

10 90.76% ±1.21 93.82% ±0.28 86.78% ±0.88 87.26% ±0.73 90.36% ±0.33

45.46% ±1.04 0.00% ±0.00 33.98% ±0.48 32.88% ±0.36 21.36% ±0.37

12 90.02% ±0.38 92.72% ±0.56 81.49% ±1.66 84.12% ±0.44 88.11% ±0.47

36.88% ±1.09 0.00% ±0.00 26.17% ±0.88 23.64% ±0.42 14.16% ±0.38

Table 4: Comparative Analysis of Fast Adversarial Training Methods on CIFAR-10 Dataset
CIFAR-10 WRN-28-10 PGD-50-10

ϵ · 255 lp-FGSM RS-FGSM N-FGSM GradAlign ZeroGrad
2 91.12% ±0.52 92.86% ±0.14 92.49% ±0.14 92.54% ±0.13 92.62% ±0.16

80.84% ±0.25 80.91% ±0.14 81.42% ±0.34 81.32% ±0.43 81.41% ±0.32

4 88.07% ±0.34 90.74% ±0.23 89.64% ±0.23 89.93% ±0.34 90.21% ±0.22

69.62% ±0.84 68.24% ±0.19 69.10% ±0.27 69.80% ±0.48 69.21% ±0.21

6 83.23% ±0.46 88.25% ±0.22 85.74% ±0.32 86.94% ±0.16 86.11% ±0.45

59.24% ±0.51 57.24% ±0.19 58.26% ±0.18 59.14% ±0.16 58.44% ±0.19

8 81.67% ±0.61 83.61% ±1.77 81.64% ±0.35 82.16% ±0.21 84.16% ±0.21

51.31% ±0.59 0.00% ±0.00 49.51% ±0.27 50.12% ±0.17 48.32% ±0.21

10 76.61% ±0.58 82.17% ±1.48 76.94% ±0.12 79.42% ±0.28 81.29% ±0.73

45.87% ±0.68 0.00% ±0.00 42.39% ±0.39 41.42% ±0.52 36.18% ±0.19

12 72.84% ±0.54 78.64% ±0.74 72.18% ±0.17 73.72% ±0.82 79.33% ±0.92

41.09% ±1.24 0.00% ±0.00 36.82% ±0.27 35.16% ±0.77 28.26% ±1.81

14 66.58% ±0.63 73.27% ±2.84 67.86% ±0.46 66.41% ±0.52 78.18% ±0.66

38.65% ±0.81 0.00% ±0.00 31.68% ±0.68 30.85% ±0.34 18.56% ±0.35

16 63.84% ±0.76 68.68% ±2.43 56.75% ±0.44 57.88% ±0.74 75.43% ±0.89

37.16% ±1.22 0.00% ±0.00 25.11% ±0.43 26.24% ±0.43 14.66% ±0.22

Table 5: Comparative Analysis of Fast Adversarial Training Methods on CIFAR-100 Dataset
CIFAR-100 WRN-28-10 PGD-50-10

ϵ · 255 lp-FGSM RS-FGSM N-FGSM GradAlign ZeroGrad
2 66.42% ±0.15 72.62% ±0.24 71.52% ±0.14 71.61% ±0.23 71.64% ±0.22

55.29% ±0.64 51.62% ±0.56 52.24% ±0.35 51.51% ±0.48 52.63% ±0.64

4 61.32% ±0.34 68.27% ±0.21 66.51% ±0.48 67.09% ±0.19 67.21% ±0.18

45.73% ±0.46 39.56% ±0.14 39.96% ±0.31 39.81% ±0.48 39.61% ±0.32

6 58.79% ±0.45 65.62% ±0.66 61.42% ±0.63 62.86% ±0.10 63.65% ±0.12

38.33% ±0.54 26.61% ±2.79 30.99% ±0.27 32.11% ±0.24 30.28% ±0.51

8 53.46% ±0.58 54.28% ±5.92 56.42% ±0.65 58.55% ±0.41 60.78% ±0.24

32.41% ±1.18 0.00% ±0.00 26.71% ±0.68 26.97% ±0.61 23.72% ±0.16

10 50.23% ±0.42 46.18% ±4.88 51.51% ±0.61 53.85% ±0.73 61.11% ±0.39

27.12% ±0.76 0.00% ±0.00 23.11% ±0.49 22.64% ±0.61 15.15% ±0.45

12 47.23% ±0.28 35.86% ±0.27 46.42% ±0.56 46.94% ±0.86 58.36% ±0.15

24.74% ±0.67 0.00% ±0.00 19.32% ±0.51 19.94% ±0.65 11.12% ±0.66

14 43.18% ±0.25 24.42% ±1.38 42.14% ±0.36 42.63% ±0.50 56.24% ±0.16

22.32% ±1.13 0.00% ±0.00 16.62% ±0.44 16.96% ±0.14 8.81% ±0.34

16 40.56% ±1.64 21.47% ±5.21 38.37% ±0.48 36.17% ±0.45 56.42% ±0.29

18.41% ±1.42 0.00% ±0.00 14.29% ±0.38 14.23% ±0.26 4.92% ±0.38
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L Appendix: Effects of ε-Softening and Noise Injection647

We investigate two key components of our lp-FGSM framework: the ε-softening term from Algo-648

rithm 1 and the integration of random noise.649

The ε-softening term, introduced to maintain Lipschitz continuity in our fixed-point formulation, helps650

numerical stability by avoiding zero division. Furthermore, there is a contrast with ZeroGrad [12]651

that nullifies small gradient components, while our softening ensures gradients maintain minimal652

non-zero values.653

The theoretical motivation behind ε-softening stems from the observation that the fixed-point map-654

ping’s contractiveness is particularly sensitive near zero-gradient regions. By introducing a small,655

non-zero floor to gradient magnitudes, we maintain the desirable theoretical properties of our fixed-656

point formulation while improving numerical stability [11, 35].657

For noise integration, following [10], we can employ a dual-purpose strategy where noise can either658

serve as input augmentation or initialization for perturbation crafting:659 {
x0 ← x0 + η, η ∼ U [−ϵ, ϵ]
δ0 ← Π∂Bp(ϵ)(η)

(92)

These two noise placement approaches can be used independently. The random initialization at660

boundary ∂Bp(ϵ) particularly helps when gradient information is near zero. Our implementation661

differs from previous approaches in two key aspects: first, we project the noise onto the lp ball662

boundary rather than using uniform sampling, and second, we reuse the same noise vector for both663

input augmentation and initialization, reducing computational overhead [36].664
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Figure 10: Analysis of ε-softening and noise effects on CIFAR-10 using WideResNet-28-10 against
PGD-50 (ϵ = 8/255). Top: Effect of ε-softening on clean (dashed) and adversarial (solid) accuracy
for various p values. Optimal ε enhances stability against CO. Bottom: Synergistic effects of noise
injection showing improved robustness against CO and enhanced overall accuracy. The results
demonstrate that both components contribute significantly to preventing catastrophic overfitting while
maintaining competitive performance.
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Even though the main paper does not use any noise, the synergistic relationship between ε-softening665

and noise injection becomes apparent in their complementary effects on training stability. While666

ε-softening provides consistent gradient behavior, noise injection helps explore the loss landscape667

more effectively [34]. This combination proves particularly effective in preventing the gradient668

collapse often associated with CO [11].669

Our extensive experiments on CIFAR-10 with WideResNet-28-10 (Figure 10) demonstrate that both670

components contribute meaningfully to the algorithm’s performance. The ε-softening exhibits an671

optimal range where it enhances stability without compromising accuracy, while noise injection672

provides complementary benefits in preventing CO and improving overall robustness.673

Notably, we observe that the combination of these techniques allows for more aggressive training674

schedules than previously possible [10, 37], achieving faster convergence while maintaining ro-675

bustness. These findings suggest promising directions for future research in stabilizing adversarial676

training in conjunction with our adaptive lp-FGSM.677

M Appendix: Entropy Gap and PR1 for l∞ vs lp678
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Figure 11: Evolution of Participation Ratios (PR1) and entropy gap during training with and without
lp-FGSM. Sharp patterns in these metrics align with the onset of Catastrophic Overfitting (CO),
highlighting the link between gradient concentration and adversarial vulnerability. Same experimental
setting as Figure 4.

Our preliminary analysis suggests that gradient concentration metrics (Participation Ratio and entropy679

gap) exhibit notable changes that appear to coincide with the onset of Catastrophic Overfitting. As680

shown in Figure 11, these metrics display an interesting pattern that warrants further investigation: a681

moderate increase, followed by a drop, and then what appears to be a compensatory response. While682

more extensive experimentation is needed to fully validate these observations, the pattern is consistent683

across multiple experimental runs.684
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The adaptation of Participation Ratio (PR) from quantum mechanics [21, 22] to the adversarial685

training context as PR1 represents a novel approach to quantifying gradient behavior. In quantum686

systems, PR measures the effective number of states occupied by an electron; similarly, our PR1687

aims to capture the effective dimensionality of gradient information. The entropy gap metric offers a688

complementary perspective, potentially providing insights into how information is distributed across689

gradient dimensions.690

The observed pattern—initial increase, decline, and subsequent adjustment—may offer preliminary691

insights into the dynamics preceding CO. This behavior could potentially reflect the model’s changing692

gradient geometry as it negotiates the complex loss landscape during adversarial training. The initial693

increase in both PR1 and entropy gap might suggest a temporary distribution of gradient information694

before concentration occurs.695

By leveraging these metrics during training, our adaptive norm selection approach aims to detect696

potential instabilities and adjust accordingly. While our current results are promising, we acknowledge697

that the full relationship between these information-theoretic measures and adversarial robustness698

requires deeper exploration.699

These initial findings provide support for our theoretical framework connecting gradient geometry to700

norm selection, suggesting that the lp-FGSM approach may effectively mitigate CO without requiring701

additional techniques like gradient alignment or noise injection. Future work could explore these702

connections more thoroughly, potentially yielding broader insights into neural network behavior703

under adversarial constraints.704
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