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Abstract

We present a novel solution to Catastrophic Overfitting (CO) in fast adversarial
training based solely on adaptive lp norm selection. Unlike existing methods requir-
ing noise injection, regularization, or gradient clipping, our approach dynamically
adjusts training norms based on gradient concentration, preventing the vulnerability
to multi-step attacks that plagues single-step methods.
We begin with the empirical observation that, with small perturbations, CO occurs
predominantly under l∞ rather than l2 norms. Building on this observation, we
formulate generalized lp attacks as a fixed-point problem and develop lp-FGSM to
analyze the l2-to-l∞ transition. Our key discovery: CO arises when concentrated
gradients—with information localized in few dimensions—meet aggressive norm
constraints.
We quantify gradient concentration via Participation Ratio from quantum mechanics
and entropy metrics, yielding an adaptive lp-FGSM that dynamically adjusts the
training norm based on gradient structure. Experiments show our method achieves
robust performance without auxiliary regularization or noise injection, offering a
principled solution to the CO problem.

1 Introduction

Deep neural networks have achieved remarkable success across computer vision, NLP, and speech
recognition [1, 2, 3], yet remain vulnerable to adversarial perturbations—subtle input modifications
that cause misclassifications [4, 5]. This vulnerability poses important challenges in safety-critical
applications including autonomous vehicles [6], healthcare [7], and financial systems [8].

Among defense strategies, adversarial training—incorporating adversarially perturbed examples
during training—has proven most effective [5, 9]. However, multi-step methods like Projected
Gradient Descent (PGD) [9] impose significant computational costs that limit their applicability
in large-scale settings. Fast single-step methods address this efficiency concern but suffer from
Catastrophic Overfitting (CO), where models maintain single-step robustness while failing against
multi-step attacks [10].

Several approaches have been developed to address CO. RS-FGSM [10] adds uniform random
perturbations within the ϵ-ball before applying FGSM, though effectiveness diminishes with larger
perturbation radii. GradAlign [11] enforces local linearity by aligning input gradients at clean and
adversarial points through double backpropagation, improving robustness but doubling computational
overhead. ZeroGrad [12] zeros out small gradient components below a dynamic threshold, preventing
overfitting to low-magnitude noise directions with minimal extra cost. N-FGSM [13] removes
gradient clipping and uses stronger noise, achieving 3× speedup over GradAlign while maintaining
comparable robustness.
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Recent work has explored CO from various perspectives. AAER [14] identifies “abnormal adversarial
examples” where loss decreases during inner maximization and regularizes their occurrence. LAP
[15] reveals that pseudo-robust shortcuts form in early network layers, applying adaptive weight
perturbations that decrease from former to latter layers. SKG-FAT [16] addresses class imbalance
through differentiated class weights and self-knowledge guided label relaxation, achieving 5× speedup
over PGD-10. ELLE [17] approximates local linearity regularization without expensive double
backpropagation, adapting regularization strength during training. FGSM-PCO [18] prevents inner
optimization collapse by generating adversarial examples through adaptive fusion of current and
historical perturbations.

While these methods have made important contributions, they typically require auxiliary techniques
such as noise injection, regularization, double backpropagation, or architectural modifications. This
observation motivates our investigation into whether CO can be addressed through more direct
mechanisms.

Our work begins with an empirical observation: CO exhibits interesting norm-dependent behavior.
For comparable perturbation amplitudes, l∞-norm training shows pronounced CO while l2-defense
remains more stable, though with limited cross-norm robustness (Figure 1). This suggests that the
choice of norm constraint may play a more fundamental role in CO than previously recognized.
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Figure 1: CO phenomena on CIFAR-10 [19] using WideResNet-28-10 [20]: Left: l∞ training
(ϵ = 8/255) shows accuracy collapse against PGD-50 [9], while l2 (ϵ = 32/255) remains stable.
Legend shows training norm vs attack norm. Right: CO onset correlates with gradient norm increase
in l∞ training only.
Building on this observation, we move beyond traditional linear approximations underlying FGSM
and adopt a local convexity hypothesis. This leads us to reformulate adversarial attack generation as
a fixed-point problem, naturally yielding the lp-FGSM family of attacks. Initial exploration reveals
that higher p values (p ≥ 32) delay but do not prevent CO, while lower values avoid CO at the cost
of reduced robustness (Figure 2).

To understand this trade-off, we investigate gradient concentration as a potential mechanism underly-
ing CO. We quantify this through the Participation Ratio (PR) [21, 22]—a measure from quantum
mechanics that we adapt to adversarial training as PR1. Much like its predecessor PR, the adapted
metric PR1 captures how many dimensions meaningfully contribute to gradient magnitude and most
importantly connect naturally to the angular separation between l2 and l∞ bounded perturbations.

Our key insight is that CO emerges when concentrated gradients—with information localized in
few dimensions—meet aggressive norm constraints. This concentration can be quantified through
participation ratio metrics (detailed in Appendix M), allowing us to adaptively select norm constraints
that prevent CO without sacrificing robustness. Based on this understanding, we develop adaptive
lp-FGSM that dynamically adjusts the training norm p based on gradient structure. When gradients
concentrate (low PR), the method reduces p to maintain better alignment with natural l2 geometry;
when gradients distribute more uniformly, higher p values can enhance robustness.

This approach achieves competitive performance on standard benchmarks without requiring noise
injection, regularization, or architectural changes. Unlike previous approaches that focus on loss land-
scapes or gradient alignment, our method directly addresses the gradient concentration phenomenon
that precipitates catastrophic overfitting. By providing this connection between gradient geometry
and CO, our work offers a complementary perspective suggesting that careful norm selection alone
can serve as an effective tool for improving single-step adversarial training.
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Figure 2: Impact of lp norm choice on training dynamics and robustness for CIFAR-10 with
WideResNet-28-10. The choice of p reveals a key trade-off: higher values (p ≥ 32) initially
show better robustness but become vulnerable to Catastrophic Overfitting (CO), evident in the l∞

PGD-50 plot (second left). Lower p values prevent CO but with reduced adversarial robustness.
Results shown for ϵ = 8/255 over 30 epochs.

2 Preliminaries

We consider a classification function c(x; θ) : x 7→ RC that maps input features x to output logits
for classes in set C. The prediction probability πi(x; θ) for label i is given by the softmax function:
πi(x; θ) = exp(ci(x; θ))/

∑
j exp(cj(x; θ)), where ci(x; θ) denotes the i-th logit and θ represents

model parameters [23].

Adversarial robustness requires that the predicted class remains unchanged under bounded pertur-
bations. Function c is robust to adversarial perturbations of magnitude ϵ at input x if the class with
maximum probability for x retains the highest probability for x + δ, where δ is any perturbation
within the lp ball of radius ϵ [4, 5]:

argmax
i∈C

πi(x+ δ; θ) = argmax
i∈C

πi(x; θ), ∀δ ∈ Bp(ϵ) (1)

This work considers general lp norms with p ≥ 2, using B(ϵ) to denote Bp(ϵ) for simplicity.

Standard training employs Empirical Risk Minimization (ERM) [24] over dataset distribution D:

min
θ

E(x,y)∼D[ℓ(x; y, θ)] (2)

where ℓ represents the loss function, typically cross-entropy ℓ(x; y, θ) = −yT log(π(x; θ)), and y is
the one-hot encoded label. While ERM achieves satisfactory performance on clean data, networks
remain vulnerable to adversarial attacks [4, 5], with test accuracy dropping substantially under
distributional shifts caused by adversarial perturbations.

Adversarial training [5, 9] addresses this vulnerability by incorporating adversarial examples during
training, simulating potential distributional shifts to learn features robust to input perturbations:

min
θ

E(x,y)∼D

[
max
δ∈B(ϵ)

ℓ(x+ δ; y, θ)

]
(3)

The inner maximization maxδ∈B(ϵ) ℓ(x+ δ; y, θ) is typically approximated through gradient-based
optimization. Projected Gradient Descent (PGD) [9] performs iterative updates:

δ ← Π(δ − µ∇xℓ(x+ δ; y, θ)) (4)

where projection operator Π ensures perturbations remain within bounds through scaling (l2) or
clipping (l∞).

Multi-step methods like PGD incur significant computational costs. The Fast Gradient Sign Method
(FGSM) [5] provides efficiency through first-order Taylor expansion ℓ(x0 + δ) ≈ ℓ(x0) + δT∇xℓ,
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using gradient sign to solve the maximization problem:

δFGSM = argmax
δ∈B∞(ϵ)

(
ℓ(x0) + δT∇xℓ

)
= ϵ sign (∇xℓ) (5)

While FGSM efficiently solves the linearized maximization problem in Eq. (3) under l∞ constraints,
it suffers from Catastrophic Overfitting (CO). Wong et al. [10] proposed adding random noise
η ∼ U [−ϵ, ϵ] as remedy:

δRS-FGSM = ΠB∞(ϵ) (η + ϵ sign (∇xℓ (x0 + η))) (6)

Our work extends beyond first-order approximations by characterizing the inner maximization in
Eq. (3) under general lp constraints, leading to a fixed-point formulation.

3 Theoretical Framework

We develop a theoretical foundation that moves beyond the local linearity assumption underlying
FGSM by adopting a local convexity framework. This perspective reveals that optimal perturbations
reside on constraint boundaries, enabling our fixed-point formulation for general lp norms and
providing the mathematical foundation for preventing catastrophic overfitting through principled
norm selection.1 2

Under local convexity, optimal adversarial perturbations are guaranteed to lie on the boundary ∂Bp(ϵ),
as any interior critical point must be a local minimum when the Hessian ∇2

xℓ is positive definite.
We demonstrate that this condition emerges naturally during training through Hessian analysis
and empirical validation (detailed in Appendix A). This enables controlled transitions between the
catastrophic overfitting-resistant l2 regime and the catastrophic overfitting-prone l∞ regime.

3.1 l2 Norm-Bounded Adversarial Attacks

Given that optimal perturbations exist on the boundary under local convexity, we use Lagrange
multipliers to reformulate the constrained maximization problem in Eq. (3) as an unconstrained
optimization, leading to a fixed-point characterization.

Proposition 1. For a training sample x0 with non-null gradient, the optimal perturbation δ⋆ within
B2(ϵ) exists and solves the fixed-point problem δ⋆ = F (δ⋆), where:

F (δ) = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥2
(7)

F is Lipschitz continuous around its origin with constant K = 2ϵ∥∇2
xℓ∥/∥∇xℓ(x0)∥2:

∥F (δ)− F (0)∥ ≤ K∥δ∥ (8)

and the fixed-point problem converges if K < 1.

Proof. See Appendix B. □

Equation (7) defines a fixed-point iteration that approximates the optimal perturbation, as illustrated in
Figure 3. The Lipschitz constant K connects to curvature control techniques: CURE [25] minimizes
Hessian norms for robustness, while Srinivas et al. [26] introduced gradient norm division for
scale-invariant curvature. Reducing K accelerates convergence of the inner maximization in Eq. (3).

Corollary (GradAlign Connection). When ∇xℓ(x0) aligns with ∇xℓ(x0 + ϵ∇xℓ/∥∇xℓ∥), the
fixed-point converges instantly3:

∇xℓ(x0 + ϵ∇xℓ/∥∇xℓ∥)
∥∇xℓ(x0 + ϵ∇xℓ/∥∇xℓ∥)∥

=
∇xℓ

∥∇xℓ∥
(9)

GradAlign [11] regularizes gradient alignment, effectively improving the initialization of our fixed-
point algorithm, explaining its empirical success.

1If local convexity does not hold, the framework gracefully defaults to the standard local linearity approach.
2For one-step adversarial training, local linearity and convexity lead to identical outcomes.
3In this ideal case, the normalized gradient is already the fixed point.
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Figure 3: Geometric interpretation of lp-FGSM framework. (a,b) Fixed-point algorithm iterations for
optimal perturbation identification under l2 constraint (Eq. 7). (c) Attack geometry under different
lp norms: Left - ideal scenario with aligned gradients; Right - effect of gradient noise showing l∞

sensitivity versus lp stability. (d) Transition function Υp variation across p values, demonstrating
smooth high-pass filtering behavior.

3.2 lp Norm-Bounded Adversarial Attacks

We extend the fixed-point framework to general lp norms, which serve as smooth interpolations
between l2 and l∞. This extension enables our approach to catastrophic overfitting through controlled
norm transitions based on gradient structure.

Proposition 2. For a training sample x0 with non-null gradient under Bp(ϵ) constraint, the optimal
perturbation δ⋆ exists and solves the fixed-point equation δ⋆ = Fp(δ

⋆), where:

Fp(δ) = ϵ sign(∇xℓ(x0 + δ))

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(10)

with lq being the dual norm of lp: 1
p + 1

q = 1. All operations are element-wise.

Proof. See Appendix C. □

Unified Attack Spectrum: Equation (10) provides a unified formulation spanning from l2 to l∞.
For p = q = 2, we recover Eq. (7); as p→∞, we obtain q = 1 and recover FGSM. The transition
between regimes is governed by:

Υp(δ) =

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(11)

This function acts as a smooth high-pass filter, approaching unity everywhere except near zero
(Figure 3d). Unlike discontinuous thresholding in ZeroGrad [12], our approach provides smooth
gradient filtering that preserves differentiability and training stability.

Convergence Analysis: For p > 2, global Lipschitz continuity fails due to the discontinuous sign
function and concave power term (q−1) near zero gradients. However, we ensure local Lipschitzness
by maintaining gradients bounded away from zero:

∃m > 0 : ∀i,∀δ ∈ ∂Bp(ϵ), |∇xℓ(x0 + δ)i| > m (12)
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This condition motivates our algorithmic design: adding constant ε to gradient components ensures
both numerical stability and theoretical convergence guarantees. Under this modification, Fp becomes
locally Lipschitz with constant K(p,m) (detailed in Appendix D).

3.3 Gradient-Aware Adaptive Norm Selection

While fixed p values can balance robustness and stability, our preliminary analysis reveals funda-
mental limitations. As detailed in Appendix E, higher p values delay catastrophic overfitting but
eventually succumb to it, while lower p values provide stability at the cost of reduced robustness.
This fundamental trade-off varies significantly across datasets, with dataset complexity critically
influencing optimal p selection, motivating our adaptive approach.

High-Dimensional Perturbation Analysis: The choice of norm becomes increasingly critical as
dimensionality grows. In Rd, perturbation amplitudes scale directly with dimension:4

∥δ2∥2 = ϵ, ∥δ∞∥2
a.s.
= ϵ d1/2, max ∥δp∥2 = ϵ d(1/2−1/p) (13)

These relationships, which appear in adversarial PAC-Bayes bounds [27], reveal that l∞-bounded
perturbations yield vectors dramatically distant from original samples as dimension increases. For
CIFAR-10 (d = 3, 072) and ImageNet (d ∼ 1.5× 105), this effect becomes particularly significant.

Our key insight: reducing p effectively constrains the perturbation space from dimension d to an
effective dimension de, where d(1/2−1/p) ∼ d

1/2
e . This suggests that measuring the intrinsic effective

dimension of gradients can guide appropriate p selection.

CO

Figure 4: Evolution of Participation Ratios (PR, PR1)
and entropy gap during training. Sharp declines in these
metrics precisely align with Catastrophic Overfitting
(CO) onset, demonstrating how gradient concentration
directly precedes and triggers adversarial vulnerability.

Participation Ratio for Gradient Con-
centration: We adapt the Participation
Ratio from quantum mechanics [21, 22],
which quantifies electron localization, to
measure gradient concentration:

PR(x) =
(
∑

i |xi|2)2∑
i |xi|4

=

(
∥x∥2
∥x∥4

)4

(14)

For adversarial training, we substitute the
standard ones vector with the gradient’s
sign vector, yielding:

PR1 =

(
∥∇xℓ∥1
∥∇xℓ∥2

)2

(15)

This effective dimension varies between 1
and d for non-null vectors and naturally
connects to the angular separation between
δ2 and δ∞ attacks:

cos(θ2,∞) =
∥∇xℓ∥1
∥∇xℓ∥2d1/2

=

√
PR1

d
(16)

Figure 4 provides empirical validation of
our theoretical framework. Both participa-
tion ratios drop sharply at CO onset, with
corresponding increases in angular separa-
tion between l2 and l∞ perturbations. This
confirms gradient concentration’s role in
triggering catastrophic behavior and vali-
dates our adaptive norm selection strategy.

4For p > 2, maximum occurs when all components have equal amplitude.
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Noise-Induced Alignment: Classical CO remedies involve noise injection [10, 13]. Our framework
shows that noise increases PR1, enhancing alignment between l∞ and l2 attacks:

Lemma 1 (Noise-Induced Alignment). For normalized gradient g = ∇xℓ/∥∇xℓ∥2 and additive
zero-mean noise η ∼ U [−M,M ]d, there exists α > 0 such that if M < α∥g∥∞, then:

E
[
∥g + η∥1
∥g + η∥2

]
≥ ∥g∥1
∥g∥2

(17)

Proof. See Appendix F. □

Monotonic Angular Relationships: We establish that norm reduction systematically improves
angular alignment:

Lemma 2 (Monotonicity of Angular Separation). For any non-null gradient ∇xℓ and p ≥ 2, the
cosine between l2 and lp perturbations satisfies:

cos(θ2,∞) ≤ cos(θ2,p) where cos(θ2,p) =
∥∇xℓ∥qq

∥∇xℓ∥2∥∇xℓ∥q−1
2(q−1)

(18)

Proof. See Appendix G. □

Entropy-Based Norm Selection: Direct computation of optimal p from Eq. (18) proves challenging.
For q ∈ [1, 2] and moderate increases, first-order Taylor expansion provides computational efficiency
(details in Appendix H):

cos(θ2,p) =

√
PR1

d
(1 + (q − 1)∆H) +O((q − 1)2) (19)

where ∆H = Hm − H is the entropy gap between logarithmic mean entropy Hm and Shannon
entropy H of normalized gradient components:

H = −
d∑

i=1

ρi log(ρi), Hm = − log

d∏
i=1

(ρi)
1/d, ρi =

|∇xℓi|
∥∇xℓ∥1

(20)

Setting a threshold τ below which cosine alignment should not drop, we derive:

q∗ ≥ 1 +
(τ
√

d/PR1 − 1)

∆H
, τ ∈ [0, 1] (21)

This formula captures the interplay between gradient geometry and norm selection: when gradients
concentrate (low PR1) and entropy gap decreases, q increases (lower p) to maintain alignment. For
practical implementation:

τ ≡ (1 + α) cos(θ2,∞) ≡ cos((1− β)θ2,∞) (22)

These theoretical insights directly inform our algorithmic design. By dynamically adjusting p based
on gradient concentration metrics PR1 and entropy gap, we maintain alignment with natural l2
geometry when gradients concentrate (low PR1) and increase p when gradients distribute uniformly
(high PR1). This adaptive approach prevents concentrated gradients from meeting aggressive norm
constraints—precisely the condition triggering CO.

3.4 lp-FGSM Algorithm

Our lp-FGSM algorithm performs one fixed-point iteration (δ(1) = Fp(δ
(0))) with zero initialization,

maintaining computational efficiency while accessing the full spectrum of lp attack geometries.
The epsilon stabilization step serves dual purposes: ensuring numerical stability and satisfying the
Lipschitz conditions in Eq. (12).

The adaptive norm selection mechanism automatically adjusts p based on gradient concentration
statistics, enabling transitions between attack geometries as training progresses. When gradients
concentrate (indicating potential CO onset), the algorithm reduces p to maintain alignment with
natural l2 geometry. When gradients distribute uniformly, higher p values enhance robustness.

This theoretical framework establishes that adaptive norm selection is mathematically sound, main-
tains convergence properties, and provides a principled solution to catastrophic overfitting without
auxiliary techniques like noise injection or regularization.
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Algorithm 1 lp-FGSM
1: Input: Model θ, data x, labels y, loss ℓ, optimizer, attack amplitude ϵ, norm p (dual q)
2: repeat
3: Sample minibatch (x0, y0)
4: Compute gradient gx ← ∇x0ℓ(x0, y0)
5: Apply stability term: ḡx ← ε+ |gx|
6: if adaptive then Update q via Eq. 21 using PR1, ∆H
7: Compute attack δp ← ϵ · sign(gx) · |ḡx/∥ḡx∥q|q−1

8: Update θ with∇θℓ(x0 + δp, y0) and optimizer
9: until Convergence criteria

10: Output: Robust model θ

4 Experiments and Results

Our lp-FGSM approach provides computational efficiency over methods requiring double backpropa-
gation, with overhead limited to gradient norm calculations. We evaluate our method on standard
datasets, examine norm selection and gradient concentration relationships, and compare against
state-of-the-art fast adversarial training methods.

4.1 Comparison with Benchmark Techniques

To rigorously evaluate the effectiveness of adaptive lp-FGSM, we conducted comprehensive compar-
isons against several well-established fast adversarial training methods, including RS-FGSM [10],
ZeroGrad [12], N-FGSM [13], and GradAlign [11]. This diverse subset, representing fundamentally
different conceptual approaches to addressing CO, provides a robust basis for assessing the capacity
of adaptive lp norms to mitigate the phenomenon while maintaining adversarial robustness. For
consistency and fair comparison, we used the recommended hyperparameters for each benchmark
method as specified in their respective publications.

Figure 5: Performance benchmarking of adaptive lp norm-based training against single-step and
fast adversarial techniques using PGD-50-10, demonstrating the competitive efficacy of adaptive
lp-FGSM. Results were achieved with an SGD optimizer with a cosine learning rate schedule (30
epochs, minimum 0.001, maximum 0.2), weight decay of 5 · 10−4, and a dropout rate of 0.1. For
CIFAR-10, β = 0.01 was applied, while for CIFAR-100, β = 0.1 was used (Eq. 22). We switched
from ADAM to SGD for these comparisons as it is the standard optimizer in adversarial training
literature and facilitates direct comparison with published results.

Our empirical studies, summarized in Figure 5, demonstrate that adaptive lp-FGSM not only meets
but often surpasses the robustness benchmarks of leading fast methods [9, 25, 28, 11, 13]. This
success hinges on the choice of the lp norm, which enhances robustness against l∞ attacks while
resolving CO without requiring noise injection or expensive regularization. All components of
lp-FGSM (Alg. 1) are efficient to compute with minimal overhead, making the approach particularly
attractive for large-scale applications where computational efficiency is a priority.

The performance advantage of our method is particularly pronounced at higher perturbation mag-
nitudes (ϵ ≥ 8/255), where many competing approaches suffer from CO or significant robustness
degradation. This innovative use of norm selection introduces a simple yet effective approach to fast
adversarial training, offering a novel perspective to advance robust machine learning.
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4.2 Experiments with ImageNet

To evaluate adaptive lp-FGSM on high-resolution images representative of real-world applications,
we conducted extensive experiments on ImageNet-1k [29], training a pre-trained ResNet-50 model
with ADAM optimizer (lr=10−4, batch size 128) for 15 epochs. We tested our method (β = 0.1,
ε = 10−12) against PGD-50 attacks across a range of perturbation magnitudes ϵ = (2, 4, 6) /255 and
compared with established methods including FGSM, RS-FGSM, and N-FGSM.

As shown in Table 1, while FGSM experiences catastrophic overfitting at ϵ = 6/255 (evidenced by
the near-zero adversarial accuracy), adaptive lp-FGSM achieves superior adversarial robustness across
all perturbation levels while maintaining competitive clean accuracy. The performance advantage is
particularly significant at ϵ = 4/255 and ϵ = 6/255, where our method outperforms RS-FGSM by
3.23% and 3.30% in adversarial accuracy, respectively.
Table 1: Comparative Analysis of Robustness Against PGD-50-10 on ImageNet-1k. FGSM, RS-
FGSM and N-FGSM results are from [13]. All methods utilize ImageNet-1k pre-trained weights and
undergo 15 epochs of training. Results show clean accuracy (top) and PGD-50 accuracy (bottom).

ImageNet-1k ResNet-50
Method ϵ = 2/255 ϵ = 4/255 ϵ = 6/255
FGSM 54.72% 48.50% 48.55%

38.21% 25.86% 0.08%
RS-FGSM 56.29% 50.81% 47.67%

36.86% 25.12% 16.49%
lp-FGSM 53.18% 48.42% 48.61%

37.94% 28.35% 19.79%
N-FGSM 54.39% 47.56% 47.70%

38.07% 26.28% 17.12%

These results on ImageNet-1k demonstrate the scalability of our approach to large, complex datasets
and its effectiveness in addressing CO in practical settings. The consistent performance advantages
across different perturbation magnitudes highlight the robustness of the adaptive norm selection
strategy in diverse scenarios, reinforcing the potential of lp-FGSM as a general-purpose solution for
fast adversarial training.

5 Conclusion

We presented adaptive lp-FGSM, a principled approach to mitigating catastrophic overfitting in fast
adversarial training. Our investigation began with the observed discrepancy between l2 and l∞ norms,
motivating us to explore the full lp spectrum between these extremes. This led to reformulating
adversarial attack generation as a fixed-point problem, enabling efficient single-step methods while
providing theoretical insights through Lipschitz continuity analysis. While our approach relies on
local convexity assumptions, it gracefully defaults to local linearity when these assumptions do not
hold.

Our key finding—that catastrophic overfitting emerges when concentrated gradients meet aggressive
norm constraints—provides a unifying perspective on previous observations. By adapting the
Participation Ratio from quantum mechanics to measure both gradient concentration and angular
separation, we established a quantitative connection between gradient geometry and adversarial
vulnerability. This insight led to dynamically adjusting the training norm p based on gradient
structure. Although our method avoids double backpropagation, it still requires hyperparameters for
angle constraints that warrant further optimization across different architectures and datasets. Future
work could explore extending our adaptive framework to defend against mixed-norm attacks that
combine multiple lp constraints.

This work contributes to understanding fast adversarial training by connecting gradient geometry to
training dynamics through an information-theoretic lens. By establishing adaptive norm selection as
a theoretically motivated approach, we hope to inspire further research into geometric perspectives
on adversarial robustness. Our results suggest that careful consideration of gradient structure may be
essential in developing efficient and robust training methods. By establishing a theoretical foundation
for addressing catastrophic overfitting, our work contributes to the broader goal of developing reliable
machine learning systems that maintain robustness guarantees even under computational constraints.
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Code Availability

The code for lp-FGSM is available at https://github.com/FaresBMehouachi/lpfgsm. The
authors declare no competing interests.
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A Local Convexity Analysis

In this appendix, we provide a detailed analysis of the local convexity framework that underlies our
lp-FGSM approach. We examine both the theoretical foundations and empirical evidence for local
convexity emergence during adversarial training.

A.1 Theoretical Foundation of Local Convexity

While fast adversarial training traditionally relies on local linearity assumptions through first-order
Taylor expansions, we examine a more general local convexity framework that emerges from analyz-
ing the Hessian of the loss function with respect to inputs. When the Hessian∇2

xℓ is positive definite,
any critical point in the perturbation ball’s interior must be a local minimum, forcing the maximum to
occur on the boundary ∂Bp(ϵ)—a useful property that enables efficient single-step methods.

The Hessian structure can be decomposed with respect to the output logits as:

∇2
xℓ =

(
∂π

∂x0

)
∂2ℓ

∂π2

(
∂π

∂x0

)T

+
∂2π

∂x2
0

∂ℓ

∂π
(23)

This decomposition reveals two distinct components:

Gauss-Newton Term: The first term
(

∂π
∂x0

)
∂2ℓ
∂π2

(
∂π
∂x0

)T
is positive semi-definite since ∂2ℓ

∂π2 rep-
resents the Hessian of the cross-entropy loss with respect to predictions, which is always positive
definite for proper probability distributions.

Error-Dependent Term: The second term ∂2π
∂x2

0

∂ℓ
∂π involves the prediction errors ∂ℓ

∂π . As training
progresses and the model’s predictions improve, these error terms diminish, reducing the magnitude
of the second term relative to the first.

A.2 Convergence to Local Convexity During Training

The natural emergence of local convexity during training can be understood through the evolution of
the Hessian structure in Eq. (23). As the model learns to minimize the training loss, the prediction
errors ∂ℓ

∂π systematically decrease. This causes the potentially indefinite second term to diminish in
magnitude relative to the positive semi-definite Gauss-Newton term, leading to an overall positive
definite Hessian.

This convergence can be accelerated through architectural choices that control the second-order
derivatives ∂2π

∂x2
0

:

Activation Function Selection: Smooth activation functions like SELU [30] or GELU [31] have
well-behaved second derivatives, leading to more stable convergence to local convexity compared to
non-smooth activations.

Network Depth and Width: Deeper networks tend to develop local convexity more readily as the
composition of smooth functions preserves convexity properties under appropriate conditions.

However, our empirical analysis demonstrates that even standard ReLU networks, despite their
non-smooth activation functions, naturally develop local convexity through the training process, as
visualized in Figure 6.

A.3 Empirical Evidence for Local Convexity

Figure 6 provides empirical validation of the local convexity emergence during training. The
visualization shows the loss landscape around training points at different stages of the training
process.

Early Training (Upper Panels): After one epoch, the loss landscapes exhibit irregular, non-convex
characteristics with multiple local minima and saddle points. The landscapes are complex and do not
satisfy the local convexity assumption.
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Figure 6: Empirical evidence for local convexity emergence during training on CIFAR-10. The upper
panels display the loss landscape after one epoch of training, while the lower panels show the same
landscape after ten epochs with lp-FGSM training. Training points are positioned at (0, 0); ε1 and ε2
are eigenvectors corresponding to the extreme eigenvalues of the input Hessian ∇2

xℓ for each sample.
The progressive development of convex loss landscapes validates our theoretical framework and
provides justification for boundary-focused adversarial search strategies.

Later Training (Lower Panels): After ten epochs of training, the same landscapes show clear convex
structure around the training points. The loss increases monotonically as we move away from the
training point in any direction within the neighborhood, confirming positive definiteness of the local
Hessian.

This empirical observation has several important implications:

1. Theoretical Validation: The emergence of local convexity validates our theoretical framework
and justifies the use of boundary-focused optimization strategies.

2. Practical Robustness: Even when local convexity does not hold initially, the framework can
gracefully default to local linearity assumptions, ensuring robustness across different training phases.

3. Efficient Optimization: The development of local convexity enables more efficient single-step
adversarial example generation, as the optimal perturbations are guaranteed to be on the constraint
boundary.
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B Appendix: Demonstration l2 Optimal Attack

Proposition 1. Consider a training sample x0 with a non-null gradient. The optimal perturbation δ⋆

within B(ϵ) exists and corresponds to the solution of a fixed-point problem δ⋆ = F (δ⋆), where

F (δ) = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥2
(24)

The function F exhibits Lipschitzian behavior around its origin, satisfying:

∥F (δ)− F (0)∥ ≤ 2ϵ
∥∇2

xℓ∥
∥∇xℓ(x0)∥2

∥δ∥ (25)

The fixed-point problem converges if it is contractive:

K = 2ϵ
∥∇2

xℓ∥
∥∇xℓ(x0)∥2

< 1 (26)

Proof. Assuming that the Hessian of the loss function, ∇2
xℓ, is positive definite, any critical point in

the interior would be a minimum. The implicitly assumed compactness guarantees the existence of
the maximum on the boundary. The constrained maximization uses the Lagrangian:

L(δ, λ) = ℓ(x0 + δ)− λ

2
(δT δ − ϵ2) (27)

The derivatives yield the following equations:{
∂
∂δL = ∇xℓ(x0 + δ)− λδ = 0 ∂

∂λL = − 1
2 (δ

T δ − ϵ2) = 0 (28)

Since the maximum exists on the boundary, the constraint δT δ = ϵ2 is activated; hence the Lagrange
multiplier λ is non-null. The gradient at x0 + δ cannot be null (minimum otherwise), therefore
∥∇xℓ(x0 + δ)∥ > 0.

Solving the two Lagrangian equations yields:

δ = ±ϵ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥
(29)

Given the positive Hessian assumption, moving along the gradient (equivalent to choosing the positive
sign) results in a greater change in the loss function ℓ. Consequently:

δ = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥
(30)

The maximum δ⋆ is the solution to a fixed-point problem. The existence and uniqueness of the
solution δ⋆ is guaranteed if F (δ) is contractive, i.e., Lipschitz continuous with a Lipschitz constant
K < 1.

To demonstrate this Lipschitz continuity, we consider:

∥F (δ)− F (0)∥ = ϵ
∥∥∥ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥
− ∇xℓ(x0)

∥∇xℓ(x0)∥

∥∥∥
By introducing a cross term and using the triangle inequality:

∥F (δ)− F (0)∥ ≤ ϵ
∥∥∥ ∇xℓ(x0)

∥∇xℓ(x0)∥
− ∇xℓ(x0 + δ)

∥∇xℓ(x0)∥

∥∥∥+ ϵ
∥∥∥∇xℓ(x0 + δ)

∥∇xℓ(x0)∥
− ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥

∥∥∥
The first term can be bounded:

∥F (δ1)− F (0)∥ ≤ ϵ
∥∇2

xℓ(x0)∥∥δ∥
∥∇xℓ(x0)∥

+ ϵ∥∇xℓ(x0 + δ)∥
∣∣∣ 1

∥∇xℓ(x0 + δ)∥
− 1

∥∇xℓ(x0)∥

∣∣∣
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After unifying the denominator:

∥F (δ)− F (0)∥ ≤ ϵ
∥∇2

xℓ∥∥δ∥
∥∇xℓ(x0)∥

+
ϵ

∥∇xℓ(x0)∥

∣∣∣∥∇xℓ(x0 + δ)∥ − ∥∇xℓ(x0)∥
∣∣∣

Using the triangle inequality again:∣∣∣∥∇xℓ(x0 + δ)∥ − ∥∇xℓ(x0)∥
∣∣∣ ≤ ∥∇xℓ(x0 + δ)−∇xℓ(x0)∥ ≤ ∥∇2

xℓ∥∥δ∥

This leads to:

∥F (δ)− F (0)∥ ≤ 2ϵ
∥∇2

xℓ(x0)∥∥δ∥
∥∇xℓ(x0)∥

(31)

The Lipschitz constant is:

K = 2ϵ · ∥∇
2
xℓ(x0)∥

∥∇xℓ(x0)∥
(32)

Assuming K < 1, the fixed point problem converges.

C Appendix: Demonstration lp Optimal Attack

Proposition 2. For a training sample x0 exhibiting a non-null gradient and a constraint within
Bp(ϵ), the optimal perturbation, denoted as δ⋆, exists and corresponds to the solution of a fixed-point
problem: δ⋆ = Fp(δ

⋆). Specifically, we have:

Fp(δ) = ϵsign(∇xℓ(x0 + δ))

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(33)

where the lq norm serves as the dual to lp, i.e., 1
p + 1

q = 1. The absolute value and multiplication
operations are element-wise.

Proof. Assuming the same hypotheses as in Appendix A, a maximum exists on the boundary of the
Bp ball. We formulate the Lagrangian with the lp equality constraint:

Lp(δ, λ) = ℓ(x0 + δ)− λ(∥δ∥p − ϵ) (34)

The lp norm is given by:

∥δ∥p =

(∑
i

|δi|p
) 1

p

(35)

Hence, its derivative is:
∂

∂δ
∥δ∥p = sign(δ)

(
|δ|
∥δ∥p

)p−1

(36)

The derivatives of the Lagrangian are:{
∂
∂δLp = ∇xℓ(x0 + δ)− λsign(δ)

(
|δ|

∥δ∥p

)p−1

= 0
∂
∂λLp = −(∥δ∥p − ϵ) = 0

(37)

Using the dual norm lq defined with 1
p + 1

q = 1→ q = p
p−1 , we can characterize λ as:

∥∇xℓ(x0 + δ)∥q =
|λ|
∥δ∥p−1

p

(∥δ∥pp)
1
q = |λ| (38)
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Substituting into the first derivative of the Lagrangian:

∇xℓ(x0 + δ) = ±∥∇xℓ(x0 + δ)∥q sign(δ)
(
|δ|
∥δ∥p

)p−1

(39)

From this, δ and ∇xℓ(x0 + δ) have the same sign up to a multiplicative coefficient (i.e., ±):

∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
= ±

∣∣∣∣ δ

∥δ∥p

∣∣∣∣p−1

sign(δ) (40)

Extracting δ and using ∥δ∥p = ϵ yields:

δ = ±ϵsign(∇xℓ(x0 + δ))×
(
|∇xℓ(x0 + δ)|
∥∇xℓ(x0 + δ)∥q

) 1
p−1

The solution with the negative sign would yield a locally decreasing loss function, so we take the
positive solution. The Lagrange multiplier for maximization is positive:

λ = ∥∇xℓ(x0 + δ)∥q (41)

Using p = q
q−1 → p− 1 = 1

q−1 , we get the final result:

δ = ϵsign(∇xℓ(x0 + δ))×
(
|∇xℓ(x0 + δ)|
∥∇xℓ(x0 + δ)∥q

)q−1

D Appendix: Lipschitzness of the lp Fixed-Point Problem

We assume: ∃m > 0 : ∀δ ∈ ∂Bp(ϵ), |∇θℓ(x0+δ)i| > m, and proceed to demonstrate Lipschitzness
of the function Fp(δ) verifying the fixed point, defined as:

Fp(δ) = ϵ sign(∇xℓ(x0 + δ))

∣∣∣∣ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q

∣∣∣∣q−1

(42)

The sign function can be circumvented by using “one power” of the absolute value of the gradient:

Fp(δ) = ϵ
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
×
(
|∇xℓ(x0 + δ)|
∥∇xℓ(x0 + δ)∥q

)q−2

(43)

The term q−2 is negative, which is permissible since we assumed a lower limit m for gradient values.
Our objective is to prove that Fp(δ) is Lipschitz continuous around δ = 0.

First, let’s define:

fq(δ) =
∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
(44)

We have:
Fp(δ) = ϵfq(δ)|fq(δ)|q−2 (45)

Similar to Appendix A, by introducing a cross term we can show that f and |f | are Lipschitz
continuous, with a constant Kf such that:

|fq(δ)− fq(0)| ≤ Kf∥δ∥ (46)

The same steps are applied as follows:

∥|fq(δ)| − |fq(0)|∥ ≤ ∥fq(δ)− fq(0)∥ ≤
∥∥∥ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
− ∇xℓ(x0)

∥∇xℓ(x0)∥q

∥∥∥ (47)
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By further manipulation and using the triangle inequality:

∥|fq(δ)| − |fq(0)|∥ ≤
∥∥∥ ∇xℓ(x0 + δ)

∥∇xℓ(x0 + δ)∥q
− ∇xℓ(x0 + δ)

∥∇xℓ(x0)∥q

∥∥∥+ ∥∥∥ ∇xℓ(x0)

∥∇xℓ(x0)∥q
− ∇xℓ(x0 + δ)

∥∇xℓ(x0)∥q

∥∥∥
(48)

This leads to:

∥|fq(δ)| − |fq(0)|∥ ≤
(
1 +

∥∇xℓ(x0 + δ)∥
∥∇xℓ(x0 + δ)∥q

)
× ∥∇

2
xℓ(x0)∥

∥∇xℓ(x0)∥q
∥δ∥ (49)

In a finite-dimensional vector space, all norms are equivalent:

∃C ≥ 0,
∥∇xℓ(x0 + δ)∥
∥∇xℓ(x0 + δ)∥q

≤ C (50)

Next, examining |x|q−2 on the interval [m,+∞) with q − 2 negative:

∀(x, y) ∈ [m,+∞), ||x|q−2 − |y|q−2| ≤ (2− q)mq−3|x− y| (51)

Using these results for the local Lipschitz continuity of Fp:
1

ϵ
∥Fp(δ)− Fp(0)∥ = ∥fq(δ)|fq(δ)|q−2 − fq(0)|fq(0)|q−2∥ (52)

Through a series of bounds:
1

ϵ
∥Fp(δ)− Fp(0)∥ ≤ ∥fq(δ)|fq(δ)|q−2 − fq(δ)|fq(0)|q−2∥

+ ∥fq(δ)|fq(0)|q−2 − fq(0)|fq(0)|q−2∥ (53)

Further simplifying:
1

ϵ
∥Fp(δ)− Fp(0)∥ ≤

∥∇xℓ(x0 + δ)∥
∥∇xℓ(x0 + δ)∥q

× (2− q)mq−3|fq(δ)− fq(0)|

+

∣∣∣∣ ∇xℓ(x0)

∥∇xℓ(x0)∥q

∣∣∣∣q−2

× ∥fq(δ)− fq(0)∥ (54)

This yields:

∥Fp(δ)− Fp(0)∥ ≤ K(p,m)ϵ× ∥∇
2
xℓ(x0)∥

∥∇xℓ(x0)∥q
∥δ∥ (55)

where:

K(p,m) =
(
C(2− q)mq−3 +

(
m

∥∇xℓ(x0)∥q

)q−2
)
(1 + C) (56)

E Preliminary Validation of Fixed lp Norms

To understand the fundamental limitations of fixed p values and motivate our adaptive approach,
we conducted systematic evaluation of lp-FGSM across different norm values on standard datasets.
This preliminary analysis reveals the inherent trade-offs that necessitate adaptive norm selection. All
experiments were conducted on a single NVIDIA A100 GPU.

E.1 Experimental Setup

We evaluate fixed lp-FGSM following the framework of Wong et al. [10] using PGD-50 attacks on
CIFAR-10, CIFAR-100 [19], and SVHN [32]. Experiments use PreactResNet18 [33] for SVHN and
WideResNet28-10 [20] for CIFAR datasets, with results averaged over five seeds for reliability.

This validation deliberately excludes enhancements like weight decay, dropout, or noise injection
to isolate the effects of norm selection and provide a clear baseline for understanding the impact
of the lp norm parameter. All experiments use perturbation radius ϵ = 8/255 for both training and
evaluation attacks.
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E.2 Key Findings: The Fixed p Dilemma

Figure 7 presents comprehensive results across all three datasets, revealing several critical insights
about the fundamental limitations of fixed norm approaches.

Figure 7: Detailed analysis of clean and adversarial accuracy across CIFAR-10, CIFAR-100, and
SVHN datasets with ϵ = 8/255 for different p values. The results demonstrate the fundamental
limitations of fixed norm approaches: CIFAR-10 shows optimal performance at intermediate p ≈
16− 32 before CO onset, SVHN exhibits remarkable resilience to CO even at higher p values, while
CIFAR-100 displays heightened sensitivity to norm selection with narrow optimal ranges. These
dataset-dependent behaviors highlight the critical need for adaptive norm selection.

The results demonstrate striking dataset-dependent optimal ranges that expose the inadequacy of
any universal fixed p approach. CIFAR-10 achieves optimal performance at intermediate p values
around 16-32, demonstrating a clear sweet spot before catastrophic overfitting occurs. In contrast,
SVHN exhibits remarkable resilience to CO even at higher p values, suggesting that simpler datasets
can tolerate more aggressive norm constraints for extended periods. CIFAR-100 shows heightened
sensitivity to norm selection with narrow optimal ranges, indicating that complex datasets require
more conservative and careful norm tuning.

Across all datasets, we observe a universal trade-off pattern that reveals the inherent limitations of
fixed approaches. Lower p values (p ≤ 4) provide excellent stability against catastrophic overfitting
but at the cost of significantly reduced adversarial robustness. Higher p values (p ≥ 64) initially
improve robustness but eventually lead to catastrophic overfitting, with the onset timing varying
dramatically by dataset complexity. Intermediate p values offer the best balance but require careful
tuning that is fundamentally dataset-dependent.

The relationship between dataset complexity and optimal norm selection proves particularly striking.
Simple datasets like SVHN tolerate aggressive norms for longer periods, while complex datasets
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like CIFAR-100 require more conservative norm choices from the outset. This suggests that gradient
structure varies significantly across problem domains, with complexity directly influencing the rate at
which gradient concentration occurs during training.

E.3 Fundamental Limitations of Fixed Norm Approaches

These results expose several fundamental limitations of any fixed p approach that render such methods
inadequate for general-purpose adversarial training. The lack of generalizability is perhaps most
concerning: no single p value works optimally across all datasets, with configurations that succeed
for SVHN failing dramatically for CIFAR-100. This dataset dependency makes fixed approaches
impractical for real-world deployment where diverse data characteristics are encountered.

The static nature of fixed values conflicts directly with the dynamic nature of adversarial training.
Gradient structure evolves throughout training, with early phases potentially benefiting from higher p
values while later stages require lower values to prevent catastrophic overfitting. Fixed approaches
cannot adapt to these changing conditions, forcing suboptimal compromises throughout the training
process.

Even the best fixed p value for each dataset represents a compromise that sacrifices either robustness or
stability. The narrow optimal ranges, particularly evident in CIFAR-100, make fixed approaches highly
sensitive to hyperparameter selection and prone to overfitting validation performance. This sensitivity
creates practical deployment challenges where slight dataset variations can push performance outside
optimal ranges.

E.4 Theoretical Alignment and Motivation for Adaptive Approaches

These empirical observations align perfectly with our gradient concentration hypothesis and provide
strong motivation for adaptive norm selection. Complex datasets like CIFAR-100 likely exhibit
more concentrated gradients earlier in training, requiring conservative norm choices to prevent early
catastrophic overfitting. Simple datasets like SVHN maintain more distributed gradients longer,
tolerating aggressive norms without immediate vulnerability. Intermediate complexity datasets like
CIFAR-10 require dynamic adaptation as gradient structure evolves throughout training.

The clear dataset dependency and fundamental trade-offs exposed in these experiments provide
compelling evidence that fixed norm approaches are inherently limited. An effective solution must
automatically adapt to different dataset characteristics without manual tuning, respond to changing
gradient structure throughout training, base norm selection on measurable gradient properties that
predict catastrophic overfitting onset, and maintain computational efficiency comparable to fixed
approaches.

This preliminary analysis establishes the empirical foundation for our theoretical framework and
demonstrates why gradient-aware adaptive norm selection is not merely beneficial but necessary for
robust fast adversarial training across diverse problem domains. The development of our adaptive
lp-FGSM framework detailed in the main paper directly addresses these limitations through principled
gradient concentration measurement and automatic norm adaptation.

F Appendix: Proof of Noise-Induced Alignment

Lemma 1 (Noise-Induced Alignment). For g ∈ Rd nonzero and η ∼ U [−M,M ]d, ∃α > 0 such
that if M < α∥g∥∞:

E
[
∥g + η∥1
∥g + η∥2

]
≥ ∥g∥1
∥g∥2

(57)

Proof. Let S+ = {i : |gi| > M} and S− = {i : |gi| ≤M} partition coordinates.

For i ∈ S+: ∑
i∈S+

|gi + ηi| ≥
∑
i∈S+

(|gi| −M) (58)
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For i ∈ S−, direct calculation yields:

E[|gi + ηi|] =
1

2M

∫ M

−M

|gi + η| dη =
(gi +M)2 + (gi −M)2

4M
=

g2i +M2

2M
(59)

Thus for the l1 norm:

E[∥g + η∥1] ≥
∑
i∈S+

(|gi| −M) +
∑
i∈S−

g2i +M2

2M
(60)

For the l2 norm, using E[η2i ] = M2

3 and independence:

E[∥g + η∥22] =
d∑

i=1

(
g2i +

M2

3

)
(61)

By Jensen’s inequality applied to the concave function f(x) =
√
x:

E[∥g + η∥2] = E


√√√√ d∑

i=1

(gi + ηi)2


≤

√√√√E

[
d∑

i=1

(gi + ηi)2

]

=

√√√√ d∑
i=1

(
g2i +

M2

3

)
(62)

Let E be the event where:

∥g + η∥2 ≤

√√√√ d∑
i=1

(
g2i +

M2

2

)
(63)

Then:

E
[
∥g + η∥1
∥g + η∥2

]
≥ P(E) ·

∑
i∈S+

(|gi| −M) +
∑

i∈S−

g2
i+M2

2M√∑d
i=1

(
g2i +

M2

2

) (64)

For M < α∥g∥∞ with α sufficiently small:

• P(E) approaches 1

• The gain in S− terms ( g
2
i+M2

2M > |gi|) exceeds the loss in S+ terms

• The denominator remains close to ∥g∥2

Therefore, the ratio exceeds ∥g∥1

∥g∥2
.

G Appendix: Proof of Monotonicity of Angular Separation

Lemma 2 (Monotonicity of Angular Separation). For any gradient ∇xℓ and 2 ≤ p ≤ ∞, the
cosine similarity between l2 and lp perturbations satisfies:

cos(θ2,p) ≥ cos(θ2,∞) =

√
PR1

d
(65)
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Proof. Step 1: Express cos(θ2,p) in normalized form.

Let q = p
p−1 be the dual exponent of p; hence 2 ≤ p ≤ ∞ implies 1 ≤ q ≤ 2. Recall that:

δp = ϵ sign(∇xℓ(x0))

∣∣∣∣ ∇xℓ(x0)

∥∇xℓ(x0)∥q

∣∣∣∣q−1

(66)

δ∞ = ϵ sign(∇xℓ(x0)) (67)

The cosine similarity between the two perturbations is:

cos(θ2,p) =
⟨δ2, δp⟩
∥δ2∥2∥δp∥2

(68)

After computing the inner product and norms, this yields:

cos(θ2,p) =
∥∇xℓ∥qq

∥∇xℓ∥2 ∥∇xℓ∥q−1
2(q−1)

(69)

We introduce the normalized vector:
g =

∇xℓ

∥∇xℓ∥2
(70)

Note that ∥g∥2 = 1, and each coordinate satisfies |gi| ≤ 1. Using g:

∥∇xℓ∥q = ∥∇xℓ∥2 ∥g∥q (71)

∥∇xℓ∥qq = ∥∇xℓ∥q2 ∥g∥qq (72)

∥∇xℓ∥q−1
2(q−1) = ∥∇xℓ∥q−1

2 ∥g∥q−1
2(q−1) (73)

Substituting these into our expression for cos(θ2,p):

cos(θ2,p) =
∥∇xℓ∥q2 ∥g∥qq

∥∇xℓ∥2 ∥∇xℓ∥q−1
2 ∥g∥q−1

2(q−1)

(74)

=
∥g∥qq

∥g∥q−1
2(q−1)

=
∥g∥qq√
∥g∥2(q−1)

2(q−1)

(75)

Step 2: Show monotonicity via logarithmic derivative.

Define:

f(q) = cos(θ2,p) =
∥g∥qq√
∥g∥2(q−1)

2(q−1)

(76)

Taking logarithms:
ln f(q) = q ln ∥g∥q − (q − 1) ln ∥g∥2(q−1) (77)

For any lr norm, the derivative with respect to r is:

d

dr
ln ∥g∥r =

1

r

(∑
i |gi|r ln |gi|∑

i |gi|r
− ln ∥g∥r

)
(78)

Applying this formula to compute d ln f
dq , after simplification (the ln ∥g∥ terms cancel):

d ln f

dq
=

∑
i |gi|q ln |gi|∑

i |gi|q
−
∑

i |gi|2(q−1) ln |gi|∑
i |gi|2(q−1)

(79)
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Now we show this derivative is non-negative via convexity. Consider the function:

ϕ(r) = ln ∥g∥rr = ln
∑
i

|gi|r (80)

Its first derivative is precisely the weighted average that appears above:

ϕ′(r) =

∑
i |gi|r ln |gi|∑

i |gi|r
(81)

The second derivative, using the quotient rule, is:

ϕ′′(r) =

∑
i |gi|r(ln |gi|)2∑

i |gi|r
−
(∑

i |gi|r ln |gi|∑
i |gi|r

)2

(82)

= Varw(r) [ln |g|] ≥ 0 (83)

where w
(r)
i = |gi|r/

∑
j |gj |r. Since variance is always non-negative, ϕ is convex, hence ϕ′ is

monotonically increasing.

Observe that d ln f
dq = ϕ′(q)− ϕ′(2(q − 1)).

For q ∈ (1, 2], we have 2(q − 1) ≤ q (since 2(q − 1) = 2q − 2 ≤ q when q ≤ 2).
Since ϕ′ is monotonically increasing and 2(q − 1) ≤ q:

ϕ′(2(q − 1)) ≤ ϕ′(q)⇒ d ln f

dq
= ϕ′(q)− ϕ′(2(q − 1)) ≥ 0 (84)

This proves that cos(θ2,p) is monotonically increasing in q (equivalently, decreasing in p).

Step 3: Establish the boundary values using limits.

At q = 2 (corresponding to p = 2):

cos(θ2,2) =
∥g∥22
∥g∥22

= 1 (85)

For the limit as q → 1+ (corresponding to p→∞):

lim
q→1+

cos(θ2,p) = lim
q→1+

∥g∥qq√
∥g∥2(q−1)

2(q−1)

(86)

As q → 1+: the numerator approaches ∥g∥1, and 2(q − 1) → 0+. For the denominator,

limr→0+ ∥g∥rr = d (the number of non-zero components). Therefore:

cos(θ2,∞) = lim
q→1+

cos(θ2,p) =
∥g∥1√

d
(87)

Since cos(θ2,p) is monotonically increasing in q (decreasing in p), and using:

∥g∥1 =
∥∇xℓ∥1
∥∇xℓ∥2

=
√
PR1 (88)

we conclude:

∥g∥1√
d

=

√
PR1

d
= cos(θ2,∞) ≤ cos(θ2,p) (89)
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H Appendix: Taylor Expansion of Cosine Similarity

Proposition 3. For q = 1 + ϵ with small ϵ and normalized gradient components πi =
|∇xℓi|
∥∇xℓ∥1

, the
cosine similarity between l2 and lp perturbations admits the following first-order expansion:

cos(θ2,p) =

√
PR1

d
(1 + ϵ(Hm −H)) +O(ϵ2) (90)

where PR1 =
(

∥∇xℓ∥1

∥∇xℓ∥2

)2
is the participation ratio, H is the Shannon entropy, and Hm is the

logarithmic mean entropy.

Proof. Starting with the cosine similarity for q = 1 + ϵ:

cos(θ2,p) =
∥∇xℓ∥qq

∥∇xℓ∥2∥∇xℓ∥q−1
2(q−1)

(91)

The numerator expands directly as:

∥∇xℓ∥qq =
∑
i

|∇xℓi|1+ϵ = ∥∇xℓ∥1
(
1 + ϵ

∑
i

|∇xℓi|
∥∇xℓ∥1

× log |∇xℓi|+O(ϵ2)
)

(92)

For the denominator term ∥∇xℓ∥ϵ2ϵ:

∥∇xℓ∥ϵ2ϵ =
(
1 + 2ϵ

∑
i

log |∇xℓi|
d

+O(ϵ2)
) 1

2

= 1 + ϵ
∑
i

log |∇xℓi|
d

+O(ϵ2) (93)

Combining terms with normalized gradient components πi:

cos(θ2,p) =
∥∇xℓ∥1
∥∇xℓ∥2

√
d

(
1 + ϵ

(∑
i

πi log |∇xℓi| −
∑
i

log |∇xℓi|
d

))
+O(ϵ2) (94)

The sums relate to entropy measures through:∑
i

πi log |∇xℓi| = −H + log ∥∇xℓ∥1 (95)

∑
i

log |∇xℓi|
d

= −Hm + log ∥∇xℓ∥1 (96)

where:

H = −
∑
i

πi log(πi) (97)

Hm = − log

d∏
i=1

(πi)
1
d (98)

Therefore:

cos(θ2,p) =

√
PR1

d
(1 + ϵ(Hm −H)) +O(ϵ2) (99)

The entropy gap ∆H = Hm −H is always positive by Jensen’s inequality.
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Table 2: CIFAR-10 (WRN-28-8) Clean and AutoAttack Accuracy Evaluation. Results are averaged
over multiple seeds. Clean accuracy (top) and AutoAttack accuracy (bottom).

CIFAR-10 WRN-28-10 AutoAttack
255 · ϵ FGSM RS-FGSM N-FGSM lp-FGSM

2 90.81% ± 0.07 90.64% ± 0.12 89.27% ± 0.21 89.02% ± 0.41
74.72% ± 0.37 71.47% ± 0.44 73.14% ± 0.68 76.14% ± 0.62

4 87.86% ± 0.23 86.58% ± 0.22 86.34% ± 0.36 85.71% ± 0.53
61.58% ± 0.12 54.85% ± 0.16 59.81% ± 0.27 62.12% ± 0.42

8 84.89% ± 1.20 80.14% ± 0.88 74.73% ± 0.46 79.81% ± 0.57
0.00% ± 0.00 35.77% ± 0.24 41.65% ± 0.45 42.43% ± 0.58

12 80.23% ± 0.63 61.65% ± 1.32 62.56% ± 0.73 71.12% ± 0.38
0.00% ± 0.00 0.00% ± 0.00 30.17% ± 1.16 32.13% ± 0.71

16 74.61% ± 0.19 69.20% ± 0.15 52.89% ± 0.27 58.43% ± 0.48
0.00% ± 0.00 0.00% ± 0.00 22.50% ± 0.89 25.89% ± 0.59

I Appendix: AutoAttack Results

To ensure a comprehensive assessment, we have also included robust accuracy results evaluated
with AutoAttack (AA) [34]. We present the clean (top) and robust (bottom) accuracies (3 seeds) for
CIFAR-10 using WRN-28-8, evaluated with AA. The pattern observed is consistent with the results
from PGD-50, showing a common trend.

The comparison encompasses standard FGSM [5], RS-FGSM [10], N-FGSM with (k=2) [13], and
our proposed adaptive lp-FGSM (β = 0.01). The experiments reveal a characteristic pattern of
Catastrophic Overfitting (CO) across various perturbation magnitudes (ϵ) for FGSM and RS-FGSM.
During CO, models maintain high clean accuracy while their robust accuracy against adversarial
attacks deteriorates to near zero.

Figure 8: Comparative evaluation using AutoAttack on CIFAR-10 with WideResNet-28-10 across
different perturbation magnitudes. Results demonstrate consistent robustness assessment between
PGD-50 and AutoAttack [34], validating the reliability of our evaluation methodology.

The strong agreement between PGD-50 and AutoAttack results strengthens our evaluation methodol-
ogy, as AutoAttack combines multiple complementary attack strategies [34, 11]. This comprehensive
assessment validates our findings regarding the effectiveness of norm selection in preventing CO.
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J Appendix: Long-Term Training Evaluation

To rigorously assess the durability and stability of the lp-FGSM method under prolonged training
conditions, we conducted an extended training experiment spanning 200 epochs. This experiment
utilized the CIFAR-10 dataset with adversarial perturbation norms set at ϵ = 8/255 and ϵ = 16/255,
using ADAM optimizer with a learning rate of 0.001.

Figure 9: Extended training performance of lp-FGSM on CIFAR-10. While Catastrophic Overfitting
(CO) was not observed, the experiment highlights the occurrence of robust overfitting over a prolonged
training period.

The results of this long-term training provide insightful observations. Crucially, no instances of
Catastrophic Overfitting (CO) were detected throughout the training process, underscoring the
robustness of the lp-FGSM approach. However, a slight decrease in robustness, i.e., robust overfitting,
occurs. This occurrence warrants early stopping and cyclical learning rates to offset this phenomenon.
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K Appendix: lp-FGSM Results Tables

Table 3: Comparative Analysis of Fast Adversarial Training Methods on SVHN Dataset
SVHN PreAct-18 PGD-50-10

ϵ · 255 lp-FGSM RS-FGSM N-FGSM GradAlign ZeroGrad
2 94.20% ±0.52 96.16% ±0.13 96.04% ±0.24 96.01% ±0.25 96.08% ±0.22

86.22% ±0.22 86.17% ±0.17 86.46% ±0.12 86.44% ±0.15 86.47% ±0.17

4 94.16% ±0.64 95.07% ±0.08 94.56% ±0.18 94.57% ±0.24 94.83% ±0.19

77.86% ±0.75 71.25% ±0.43 72.54% ±0.21 72.18% ±0.22 71.64% ±0.24

6 92.26% ±0.65 95.16% ±0.48 92.27% ±0.36 92.55% ±0.26 93.52% ±0.24

64.12% ±1.27 0.00% ±0.00 58.44% ±0.18 57.36% ±0.27 51.77% ±0.58

8 91.06% ±0.69 94.48% ±0.18 89.59% ±0.48 90.16% ±0.36 92.43% ±1.33

56.72% ±0.74 0.00% ±0.00 45.64% ±0.21 43.88% ±0.16 35.96% ±2.78

10 90.76% ±1.21 93.82% ±0.28 86.78% ±0.88 87.26% ±0.73 90.36% ±0.33

45.46% ±1.04 0.00% ±0.00 33.98% ±0.48 32.88% ±0.36 21.36% ±0.37

12 90.02% ±0.38 92.72% ±0.56 81.49% ±1.66 84.12% ±0.44 88.11% ±0.47

36.88% ±1.09 0.00% ±0.00 26.17% ±0.88 23.64% ±0.42 14.16% ±0.38

Table 4: Comparative Analysis of Fast Adversarial Training Methods on CIFAR-10 Dataset
CIFAR-10 WRN-28-10 PGD-50-10

ϵ · 255 lp-FGSM RS-FGSM N-FGSM GradAlign ZeroGrad
2 91.12% ±0.52 92.86% ±0.14 92.49% ±0.14 92.54% ±0.13 92.62% ±0.16

80.84% ±0.25 80.91% ±0.14 81.42% ±0.34 81.32% ±0.43 81.41% ±0.32

4 88.07% ±0.34 90.74% ±0.23 89.64% ±0.23 89.93% ±0.34 90.21% ±0.22

69.62% ±0.84 68.24% ±0.19 69.10% ±0.27 69.80% ±0.48 69.21% ±0.21

6 83.23% ±0.46 88.25% ±0.22 85.74% ±0.32 86.94% ±0.16 86.11% ±0.45

59.24% ±0.51 57.24% ±0.19 58.26% ±0.18 59.14% ±0.16 58.44% ±0.19

8 81.67% ±0.61 83.61% ±1.77 81.64% ±0.35 82.16% ±0.21 84.16% ±0.21

51.31% ±0.59 0.00% ±0.00 49.51% ±0.27 50.12% ±0.17 48.32% ±0.21

10 76.61% ±0.58 82.17% ±1.48 76.94% ±0.12 79.42% ±0.28 81.29% ±0.73

45.87% ±0.68 0.00% ±0.00 42.39% ±0.39 41.42% ±0.52 36.18% ±0.19

12 72.84% ±0.54 78.64% ±0.74 72.18% ±0.17 73.72% ±0.82 79.33% ±0.92

41.09% ±1.24 0.00% ±0.00 36.82% ±0.27 35.16% ±0.77 28.26% ±1.81

14 66.58% ±0.63 73.27% ±2.84 67.86% ±0.46 66.41% ±0.52 78.18% ±0.66

38.65% ±0.81 0.00% ±0.00 31.68% ±0.68 30.85% ±0.34 18.56% ±0.35

16 63.84% ±0.76 68.68% ±2.43 56.75% ±0.44 57.88% ±0.74 75.43% ±0.89

37.16% ±1.22 0.00% ±0.00 25.11% ±0.43 26.24% ±0.43 14.66% ±0.22

Table 5: Comparative Analysis of Fast Adversarial Training Methods on CIFAR-100 Dataset
CIFAR-100 WRN-28-10 PGD-50-10

ϵ · 255 lp-FGSM RS-FGSM N-FGSM GradAlign ZeroGrad
2 66.42% ±0.15 72.62% ±0.24 71.52% ±0.14 71.61% ±0.23 71.64% ±0.22

55.29% ±0.64 51.62% ±0.56 52.24% ±0.35 51.51% ±0.48 52.63% ±0.64

4 61.32% ±0.34 68.27% ±0.21 66.51% ±0.48 67.09% ±0.19 67.21% ±0.18

45.73% ±0.46 39.56% ±0.14 39.96% ±0.31 39.81% ±0.48 39.61% ±0.32

6 58.79% ±0.45 65.62% ±0.66 61.42% ±0.63 62.86% ±0.10 63.65% ±0.12

38.33% ±0.54 26.61% ±2.79 30.99% ±0.27 32.11% ±0.24 30.28% ±0.51

8 53.46% ±0.58 54.28% ±5.92 56.42% ±0.65 58.55% ±0.41 60.78% ±0.24

32.41% ±1.18 0.00% ±0.00 26.71% ±0.68 26.97% ±0.61 23.72% ±0.16

10 50.23% ±0.42 46.18% ±4.88 51.51% ±0.61 53.85% ±0.73 61.11% ±0.39

27.12% ±0.76 0.00% ±0.00 23.11% ±0.49 22.64% ±0.61 15.15% ±0.45

12 47.23% ±0.28 35.86% ±0.27 46.42% ±0.56 46.94% ±0.86 58.36% ±0.15

24.74% ±0.67 0.00% ±0.00 19.32% ±0.51 19.94% ±0.65 11.12% ±0.66

14 43.18% ±0.25 24.42% ±1.38 42.14% ±0.36 42.63% ±0.50 56.24% ±0.16

22.32% ±1.13 0.00% ±0.00 16.62% ±0.44 16.96% ±0.14 8.81% ±0.34

16 40.56% ±1.64 21.47% ±5.21 38.37% ±0.48 36.17% ±0.45 56.42% ±0.29

18.41% ±1.42 0.00% ±0.00 14.29% ±0.38 14.23% ±0.26 4.92% ±0.38
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L Appendix: Effects of ε-Softening and Noise Injection

We investigate two key components of our lp-FGSM framework: the ε-softening term from Algo-
rithm 1 and the integration of random noise.

The ε-softening term, introduced to maintain Lipschitz continuity in our fixed-point formulation, helps
numerical stability by avoiding zero division. Furthermore, there is a contrast with ZeroGrad [12]
that nullifies small gradient components, while our softening ensures gradients maintain minimal
non-zero values.

The theoretical motivation behind ε-softening stems from the observation that the fixed-point map-
ping’s contractiveness is particularly sensitive near zero-gradient regions. By introducing a small,
non-zero floor to gradient magnitudes, we maintain the desirable theoretical properties of our fixed-
point formulation while improving numerical stability [11, 35].

For noise integration, following [10], we can employ a dual-purpose strategy where noise can either
serve as input augmentation or initialization for perturbation crafting:{

x0 ← x0 + η, η ∼ U [−ϵ, ϵ]
δ0 ← Π∂Bp(ϵ)(η)

(100)

These two noise placement approaches can be used independently. The random initialization at
boundary ∂Bp(ϵ) particularly helps when gradient information is near zero. Our implementation
differs from previous approaches in two key aspects: first, we project the noise onto the lp ball
boundary rather than using uniform sampling, and second, we reuse the same noise vector for both
input augmentation and initialization, reducing computational overhead [36].
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Figure 10: Analysis of ε-softening and noise effects on CIFAR-10 using WideResNet-28-10 against
PGD-50 (ϵ = 8/255). Top: Effect of ε-softening on clean (dashed) and adversarial (solid) accuracy
for various p values. Optimal ε enhances stability against CO. Bottom: Synergistic effects of noise
injection showing improved robustness against CO and enhanced overall accuracy. The results
demonstrate that both components contribute significantly to preventing catastrophic overfitting while
maintaining competitive performance.
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Even though the main paper does not use any noise, the synergistic relationship between ε-softening
and noise injection becomes apparent in their complementary effects on training stability. While
ε-softening provides consistent gradient behavior, noise injection helps explore the loss landscape
more effectively [34]. This combination proves particularly effective in preventing the gradient
collapse often associated with CO [11].

Our extensive experiments on CIFAR-10 with WideResNet-28-10 (Figure 10) demonstrate that both
components contribute meaningfully to the algorithm’s performance. The ε-softening exhibits an
optimal range where it enhances stability without compromising accuracy, while noise injection
provides complementary benefits in preventing CO and improving overall robustness.

Notably, we observe that the combination of these techniques allows for more aggressive training
schedules than previously possible [10, 37], achieving faster convergence while maintaining ro-
bustness. These findings suggest promising directions for future research in stabilizing adversarial
training in conjunction with our adaptive lp-FGSM.

M Appendix: Entropy Gap and PR1 for l∞ vs lp

�����������������������

������
����
����


�����	
�����


�����	�����

����������������

Figure 11: Evolution of Participation Ratios (PR1) and entropy gap during training with and without
lp-FGSM. Sharp patterns in these metrics align with the onset of Catastrophic Overfitting (CO),
highlighting the link between gradient concentration and adversarial vulnerability. Same experimental
setting as Figure 4.

Our preliminary analysis suggests that gradient concentration metrics (Participation Ratio and entropy
gap) exhibit notable changes that appear to coincide with the onset of Catastrophic Overfitting. As
shown in Figure 11, these metrics display an interesting pattern that warrants further investigation: a
moderate increase, followed by a drop, and then what appears to be a compensatory response. While
more extensive experimentation is needed to fully validate these observations, the pattern is consistent
across multiple experimental runs.
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The adaptation of Participation Ratio (PR) from quantum mechanics [21, 22] to the adversarial
training context as PR1 represents a novel approach to quantifying gradient behavior. In quantum
systems, PR measures the effective number of states occupied by an electron; similarly, our PR1
aims to capture the effective dimensionality of gradient information. The entropy gap metric offers a
complementary perspective, potentially providing insights into how information is distributed across
gradient dimensions.

The observed pattern—initial increase, decline, and subsequent adjustment—may offer preliminary
insights into the dynamics preceding CO. This behavior could potentially reflect the model’s changing
gradient geometry as it negotiates the complex loss landscape during adversarial training. The initial
increase in both PR1 and entropy gap might suggest a temporary distribution of gradient information
before concentration occurs.

By leveraging these metrics during training, our adaptive norm selection approach aims to detect
potential instabilities and adjust accordingly. While our current results are promising, we acknowledge
that the full relationship between these information-theoretic measures and adversarial robustness
requires deeper exploration.

These initial findings provide support for our theoretical framework connecting gradient geometry to
norm selection, suggesting that the lp-FGSM approach may effectively mitigate CO without requiring
additional techniques like gradient alignment or noise injection. Future work could explore these
connections more thoroughly, potentially yielding broader insights into neural network behavior
under adversarial constraints.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our main claim that adaptive lp-
FGSM prevents catastrophic overfitting through dynamic norm selection based on gradient
concentration, which is supported by our theoretical analysis and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations including the local convexity assumption (Appendix A),
convergence conditions (Section 3), and the need for broader evaluation across architectures
in future work (conclusion).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results (Propositions 1-2, Lemmas 1-2) include complete
assumptions and proofs in Appendices B-H, with the local convexity assumption clearly
stated in Section 3 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings including architectures, optimiz-
ers, learning rates, perturbation radii, and hyperparameters (Figure 5 caption, Section 4,
Appendices). Algorithm 1 provides the complete implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: While we plan to release our implementation publicly upon acceptance, we
are unable to attach code with the current submission. Our algorithm is fully specified in
Algorithm 1 with all hyperparameters detailed in Section 4 and appendices. All datasets
used (CIFAR-10/100, SVHN, ImageNet) are standard publicly available benchmarks. The
paper provides sufficient mathematical detail and pseudocode to enable implementation by
other researchers.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are provided including optimizers (SGD/ADAM),
learning rates, architectures, perturbation radii, and dataset-specific hyperparameters in
Section 4 and throughout the appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: All experimental results in Tables 1-5 and throughout appendices report mean
and standard deviation over multiple seeds (3-5 seeds as specified).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on a single NVIDIA A100 GPU. Training
times range from approximately 2-4 hours for CIFAR experiments (30 epochs) to 8-10 hours
for ImageNet experiments (15 epochs).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work on adversarial robustness aims to improve the security and reliability
of machine learning systems, conforming to ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Adversarial robustness research has positive impacts for security-critical
applications (mentioned in introduction) but could potentially be misused to develop stronger
attacks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper focuses on a training algorithm for adversarial robustness and does
not release pre-trained models or new datasets that could be misused.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: All datasets (CIFAR-10/100, SVHN, ImageNet) and architectures (WideRes-
Net, ResNet) are properly cited with references to original papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new datasets or release pre-trained models; we only
propose a new training algorithm.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or human subjects research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used only for writing and editing assistance, not as part of the core
methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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