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Abstract

Large vision-language models (LVLMs), which integrate a vision encoder (VE)
with a large language model, have achieved remarkable success across various
tasks. However, there are still crucial challenges in LVLMs such as object halluci-
nation, generating descriptions of objects that are not in the input image. Here, we
argue that uncertain visual tokens within the VE is a key factor that contributes
to object hallucination. Our statistical analysis found that there are positive corre-
lations between visual tokens with high epistemic uncertainty and the occurrence
of hallucinations. Furthermore, we show theoretically and empirically that visual
tokens in early VE layers that exhibit large representation deviations under small
adversarial perturbations indicate high epistemic uncertainty. Based on these find-
ings, we propose a simple yet effective strategy to mitigate object hallucination by
modifying the VE only. Our method comprises a proxy method with adversarial
perturbations for identifying uncertain visual tokens efficiently and a method to
mask these uncertain visual tokens during the self-attention process in the middle
layers of the VE, suppressing their influence on visual encoding and thus alleviating
hallucinations. Extensive experiments show that our method significantly reduces
object hallucinations in LVLMs and can synergistically work with other prior arts.

1 Introduction

Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities across a range
of multi-modal tasks, including image captioning [1, 10, 30, 33, 63], visual-question answering
(VQA) [10, 43, 58], and multi-modal dialogue systems [14, 28, 35, 36, 69]. Despite these notable ad-
vancements, recent studies [19, 31, 47, 57] have reported that LVLMs are susceptible to hallucination,
generating textual descriptions that do not align with the input image. In particular, object hallucina-
tion, where the model describes objects not present in the input image, significantly undermines the
reliability and thus the practical utility of LVLMs [20, 24, 25, 27].

To mitigate object hallucination in LVLMs, recent works [2, 8, 20, 24, 25, 27, 37] have explored
training-free approaches including modifying the decoding strategy of the language model [2, 20, 27,
37], modulating attention mechanisms [24, 25, 37], or altering the input image [2] during inference.
While these methods have shown effectiveness in reducing object hallucination, they often suffer
limitations such as requiring multiple inferences of the large language model, which is the most
computationally expensive component of LVLMs, or yielding relatively small performance gains. In
contrast, approaches for object hallucination mitigation that directly target the vision encoder, a core
component responsible for visual perception, have been relatively underexplored.
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In this work, we investigate how visual information contributes to object hallucination in LVLMs,
with a particular focus on the uncertainty of visual tokens introduced by the pre-trained vision encoder
(i.e., epistemic uncertainty). Estimating this uncertainty typically requires intensive computation,
such as Monte Carlo (MC) dropout [44], which involves thousands of forward passes. To provide a
more efficient alternative, we present a theoretical analysis showing that the deviation of visual token
representations under adversarial perturbations is monotonically related to an upper bound of uncer-
tainty for each visual token, particularly in the early layers of the vision encoder. Empirically, we find
that the norm of representation deviation in visual tokens caused by adversarial perturbations closely
aligns with uncertainty estimates obtained via MC dropout, enabling a more efficient approximation
of visual token uncertainty. Furthermore, we empirically demonstrate a strong positive correlation
between visual token uncertainty and the occurrence of object hallucination of LVLMs.

Motivated by this observation, we propose a simple yet effective method to mitigate hallucination
by intervening only in the vision encoder during inference. Specifically, we first identify uncertain
visual tokens, defined as those whose representations exhibit significant deviation under PGD-based
adversarial perturbations [40] which reflect high epistemic uncertainty. We then suppress their
influence by masking these uncertain tokens in the self-attention layers of intermediate vision encoder
blocks. This approach reduces the model’s dependence on uncertain visual features while preserving
the global semantic structure of the image representation.

Extensive experiments demonstrate that our method effectively reduces object hallucination on
benchmark datasets such as CHAIR [47], POPE [31], and AMBER [56]. We validate our approach
across a range of LVLM architectures [9, 35, 69], incorporating diverse vision encoders, language
models, and training regimes to ensure generalizability. Notably, because our method exclusively
modifies the vision encoder, it can be seamlessly combined with existing methods that adjust decoding
strategies or attention mechanisms within the language model.

Our contribution can be summarized as follows.

• We theoretically and empirically demonstrate that the visual tokens exhibiting the representa-
tion deviations under adversarial perturbations indicate upper bound of epistemic uncertainty,
which is strongly correlated with object hallucination in LVLMs.

• Motivated by this insight, we propose an efficient and effective method that mitigates
hallucination by identifying uncertain visual tokens via adversarial perturbation and masking
them in the self-attention layers of intermediate vision encoder blocks.

• Our method is validated across multiple benchmarks and LVLM architectures, and is easily
compatible with existing mitigation methods, enabling synergistic gains in performance.

2 Related Works

Large Vision-Language Models. Large Vision-Language Models (LVLMs) integrate visual and
textual inputs for multi-modal reasoning and generation. Modern LVLMs typically consist of a vision
encoder [15, 17, 22, 46, 65], a connector, and a language model [3, 11, 54, 62]. Some use linear
projections to align visual features with the language embedding space [9, 36], while others adopt
Q-Former modules [14, 30, 69] that use learnable queries to extract and compress visual information.
Despite their remarkable performance on multi-modal tasks, LVLMs exhibit hallucination, generating
output misaligned with visual content, raising concerns about their reliability in real-world usage.

Mitigating hallucinations in LVLMs. Hallucination in LVLMs refers to the phenomenon in
which the output contradicts the visual input by fabricating visual information [5, 34]. Mitigation
strategies fall into training-based and training-free categories. Training-based methods optimize the
LVLMs [23, 64] or incorporate auxiliary modules for output guidance [16, 39, 68], but are often
computationally expensive. Training-free approaches modify logits of language models to suppress
hallucination-prone text tokens [2, 20, 21, 27, 29, 37, 55, 70], adjust attention process [24, 25, 29,
37, 60], or modify inputs [2, 42, 66]. However, the approaches overlook deficiencies in the vision
encoder. We instead propose an orthogonal and training-free strategy: leverage adversarial attacks to
identify uncertain visual tokens and suppress them, complementing language-level approaches.

Adversarial attack on LVLMs. Adversarial attack [18, 40, 53] introduces imperceptible pertur-
bations in images to induce incorrect predictions by a model. While early efforts focused on tasks
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Figure 1: Overall illustration of the adversarial attack and uncertainty mask generation process.
(a) The original image is processed by the vision encoder (VE) to obtain features forig. An adversarial
image is created by adding optimizable noise, which is then encoded to produce fattk. The noise is
optimized using Projected Gradient Descent (PGD) to maximize the mean squared error between
forig and fattk, as described in Eq. 1. (b) From layers i to j − 1, we extract feature sets Forig =

{f i
orig, . . . , f

j−1
orig } and Fattk = {f i

attk, . . . , f
j−1
attk }. The norm differences of corresponding features

form layer-wise uncertainty maps U = {ui, . . . , uj−1}. These maps are min-max normalized,
aggregated, and standardized to produce the final binary uncertainty mask M using a threshold σth.

such as classification [18, 41] and object detection [6, 32, 61], recent work has extended attacks to
LVLMs [7, 45, 49, 50, 67] to improve the robustness of the models. In image-targeted attacks, where
input is in a discrete pixel space, Projected Gradient Descent (PGD) [40] remains a dominant strategy
due to its effectiveness. The optimization process of PGD is formalized as follows.

x̂i+1 = Π
(
x̂i + α · sign

(
∇x̂i

L(F (x̂i), F (x))
))

, (1)

where α ∈ N is the learning rate, F is a target neural network, x is the original image, x̂i denotes
the perturbed image at iteration i, and Π projects onto the constraint set ∥x̂i+1 − x∥∞ ≤ k. LVLMs
show strong multi-modal capabilities but remain vulnerable to adversarial attacks [7, 45, 59, 67],
which can target the entire model [7, 45, 67] or specifically the vision encoder [59].

3 Method

In this section, we present our approach for identifying uncertain visual tokens within the vision
encoder using adversarial perturbations, as detailed in Sec.3.1. We demonstrate that these tokens
significantly contribute to object hallucination in LVLMs through statistical analysis. Based on these
findings, we propose a masking strategy within the vision encoder to suppress the influence of
uncertain tokens, resulting in a notable reduction in hallucinations, as described in Sec.3.2.

3.1 Adversarial Attack to Vision Encoder Reveals Uncertain Visual Tokens

3.1.1 Efficient uncertainty approximation of visual token with adversarial attack

Estimating uncertainty induced by deep neural networks (i.e. epistemic uncertainty) is commonly
approached by approximating Bayesian inference using Monte Carlo (MC) dropout [26, 44]. However,
the approximation process introduces substantial overhead as a result of thousands of forward passes.
In this work, we find that the epistemic uncertainty of individual visual tokens differs from each
other, as perceived by the vision encoder for a given image, and their upper bound can be efficiently
estimated via adversarial attacks. To support this claim, we first introduce the following lemma.
Lemma 3.1 (Approximate local Gaussianity under small perturbation). Let f = {ft}Lt=1 be a smooth
L-layer neural network parameterized by θ. For an input x ∈ RN×3, define the hidden state at layer
t as z(t) = ft ◦ · · · ◦ f1(x). For a perturbed input x+ ϵ, with ∥ϵ∥∞ ≤ k for sufficiently small k > 0,
define the perturbed hidden state as Z(t) = ft ◦ · · · ◦ f1(x+ ϵ). Then, under the assumption that the
perturbation is small and f ∈ C2, Z(t) can be locally approximated by a Gaussian centered at z(t),
with a third-order remainder in the log-density.
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Figure 2: Visual comparison of estimated uncertainty from MC dropout [44] and our method.
Our uncertainty map U identifies uncertain regions similar to the uncertainty map obtained via MC
dropout. MC dropout was applied to the residuals of the LLaVA-1.5 vision encoder with a dropout
rate of p = 0.5 and the variance of each token was estimated over 1,000 forward passes. For the
adversarial attack, we applied 100 iterations of PGD with k = 3. The MC-based uncertainty values
were log-scaled for visualization clarity. The runtime for each example is shown in the top-left corner.

The proof of Lemma 3.1 can be found in the Appendix Sec. A.1. The lemma implies that the hidden
states exhibit Gaussianity under small perturbation, which allows us to prove the following theorem.
Theorem 3.2 (Upper bound of differential entropy increases as hidden state deviation increases under
adversarial attack). Let x be an input image, and let ϵ be a small adversarial perturbation. Define the
perturbed input as X := x+ ϵ. Let f = {ft}Lt=1 be a smooth L-block transformer that processes a
sequence of N input tokens. Let z(t) := ft◦· · ·◦f1(x) ∈ RN×d and Z(t) := ft◦· · ·◦f1(X) ∈ RN×d

be the hidden states at layer t for the clean and perturbed inputs, respectively. Denote the i-th token
representation at layer t as z(t)i ∈ Rd and Z

(t)
i ∈ Rd. If Z(t)

i changes smoothly with small ϵ, then the
upper bound of the differential entropy of Z(t)

i increases as Eϵ[∥Z(t)
i − z

(t)
i ∥22] increases.

The proof of Theorem 3.2, provided in Appendix Sec. A.2, shows that under adversarial attack, the
norm of hidden state deviation efficiently approximates the upper bound of visual token’s entropy.

Leveraging this insight from Theorem 3.2, we aim to obtain a mask that identifies uncertain visual
tokens with an adversarial attack. Specifically, given an image x and a vision encoder FV , we first
obtain the feature forig. = FV (x) ∈ RN×d, where N denotes the number of image tokens. We then
generate an adversarially perturbed image x̂0 by adding small noise ϵ to x such that ∥ϵ∥∞ ≤ k. We
then extract feature of perturbed image with fattk. = FV (x̂0). We define the adversarial objective as
the mean squared error between forig. and fattk., and optimize ϵ with PGD for I iterations as specified
in Eq. 1 to obtain the final attacked image x̂ := x̂I . This attack process is illustrated in Fig. 1a.

Next, we extract the hidden states from each layer of the FV within the consecutive layer index set
S = {i, . . . , j − 1} for both the original image x and the perturbed image x̂. This results in two
hidden states sets: Forig = {f i

orig, . . . , f
j−1
orig } from x and Fattk = {f i

attk, . . . , f
j−1
attk } from x̂. For each

layer l ∈ S, we compute the norm of deviation between the corresponding hidden states defined as
ul = ∥f l

attk − f l
orig∥2, resulting in a set of layer-wise uncertainty maps U = {ui, . . . , uj−1|∀l ∈ S}.

We then aggregate the layer-wise uncertainty maps in U to produce the aggregated uncertainty map
U by applying min-max normalization to each ul and averaging across layers, as defined below:

U =
1

j − i

j−1∑
l=i

ul − ul
min

ul
max − ul

min
. (2)

Finally, we normalize the uncertainty map U using its mean µU and standard deviation σU , and
binarize it with a threshold parameter σth to obtain the binary uncertainty mask M as follows:

M = 1− 1

2

⌊
sign

((U − µU

σU

)
− σth

)
+ 1

⌋
∈ {0, 1}N . (3)

Here, a value of 0 in the mask M indicates an “uncertain” visual token, while 1 denotes a relatively
“certain” one. Figure 1b illustrates the mask generation process, and examples of M are shown in
Appendix Sec.G.3. In Sec 3.2, we describe how M is used to mitigate object hallucination.
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3.1.2 Empirical study on extracting uncertainty with adversarial attack

Selected range (𝓢)

Figure 3: Relative deviation between attacked
and original features. We used 500 images from
the MS-COCO [33] with LLaVA-1.5 vision en-
coder [35]. Perturbations introduced through the
vision encoder remain minimal in early layers but
intensify in later ones. We extract the mask from
early layers where feature deviations are compara-
tively small. Error bars denote the 2σ range.

Comparison with uncertainty via MC
dropout. We compare our uncertainty map U
with MC dropout [44] to assess how well U ap-
proximates epistemic uncertainty. As shown in
Fig.2, the results indicate that U closely aligns
with the uncertainty estimated via MC dropout,
demonstrating that U serves as an efficient ap-
proximation. On average, it is approximately 5
times faster than MC dropout in practice. Addi-
tional qualitative and computational cost com-
parisons are provided in Appendix Sec.E.1.

The range of layer indices set S of vision en-
coder. As described in Sec. 3.1.1, we extract
hidden states from the consecutive layer index
set S . Our Lemma 3.1 and Theorem 3.2 rely on
the assumption that adversarially induced norm
of visual feature deviations are small, requiring
that perturbations remain limited. Fig.3 shows
these deviations are minor in early layers but
increase in later ones. To ensure consistency with both the theoretical assumptions and empirical
observations, we construct S from early layers of vision encoder. Further analyses on S , provided in
Sec.4.3, additionally support this theoretical and empirical alignment.

3.2 Mitigating Object Hallucination of LVLMs via Uncertain Visual Tokens

Building on the identification of uncertain visual tokens through adversarial perturbations in Sec. 3.1,
we now investigate how these tokens can be utilized to reduce object hallucination in LVLMs.

3.2.1 Uncertain visual tokens contribute to object hallucination
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Figure 4: Relationship between uncertain vi-
sual tokens and object hallucination. The x-axis
represents the average variance within each bin,
while the y-axis shows the corresponding met-
ric scores. The results indicate that higher uncer-
tainty is associated with more object hallucina-
tion, with p-value < 0.05. The trend line was fitted
with quadratic function. Note that higher values of
CHAIRs and CHAIRi, and lower F1 score indicate
more severe object hallucinations.

To assess the practical relevance of uncertain
visual tokens in object hallucination, we con-
ducted a preliminary study using LLaVA-1.5-
7B [35] on 1,000 randomly sampled images
from MS-COCO [33]. We estimate the uncer-
tainty map of each visual token via Monte Carlo
(MC) dropout, by computing the token-level
variance. Using Eq. 3 and a threshold of σth = 1,
we generate an uncertainty mask and calculate
the average variance across the uncertain visual
tokens in each image. The resulting averaged
variances are grouped into 10 bins, and for each
bin, we evaluate the severity of hallucination
using the CHAIR [47] benchmark.

The experimental results are presented in Fig. 4.
Fig. 4 shows that higher average uncertainty of
visual tokens corresponds to more severe object
hallucination. To statistically validate this mono-
tonic trend, we performed Spearman’s rank cor-
relation analysis between the average uncer-
tainty (measured via token-level variance) and
each hallucination metric. The resulting corre-
lation coefficients were ρ = 0.794 (p-value = 0.006) for CHAIRs, ρ = 0.733 (p-value = 0.016)
for CHAIRi, and ρ = −0.745 (p-value = 0.013) for the F1 score, all statistically significant at
p-value < 0.05, and indicating strong monotonic relationships [48] (|ρ| > 0.7). Through this
statistical analysis, we confirm that uncertain visual tokens contribute to hallucination of LVLMs.
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3.2.2 Masking uncertain visual tokens for training-free hallucination mitigation

Building on the findings in Sec. 3.2.1, we propose a method to reduce object hallucination by
leveraging the uncertainty mask M , which highlights uncertain visual tokens identified through
adversarial perturbation. Instead of completely removing these tokens, we attenuate their influence
during the self-attention process in the intermediate layers of the vision encoder. The intermediate
layers of vision encoder was selected on the basis of empirical evidence that indicates its superior
effectiveness in mitigating object hallucination.

Let Q,K, V ∈ RN×d′
be the query, key, and value matrices in a self-attention layer, where N denotes

the number of tokens and d′ the dimensionality of the hidden states within self-attention process.
Let M ∈ {0, 1}N be the binary uncertainty mask obtained from Eq. 3. Then, our masking strategy
modifies the attention computation as follows:

Attention(Q,K, V,M) =

(
Softmax

(
QK⊤
√
d′

)
V

)
⊙M (4)

VE

Original

LLM

USER: Please describe 
the image in detail.

Tokenizer
… …

The image depicts some shoes …

𝐾!

𝑄

𝑉
𝑀

⨀

MHSA Block

: Token-wise product⨀
: Softmax operation

Figure 5: Illustration of our attention masking method
during inference. In the intermediate multi-head self-
attention layers of the vision encoder, we apply a binary
uncertainty mask M to the attention outputs. This token-
wise masking reduces the influence of uncertain visual to-
kens, while preserving the meaningful visual representation.

Here, ⊙ denotes token-wise multipli-
cation. This operation reduces the in-
fluence of uncertain tokens in the at-
tention output while keeping the at-
tention weights and other token in-
teractions intact. Since the masking
is applied within the residual connec-
tion structure, the model retains sta-
ble and meaningful visual representa-
tions while suppressing the contribu-
tion from uncertain visual tokens. We
illustrate this masking strategy within
the self-attention process of the vision
encoder within LVLMs in Fig. 5.

Compared to masking strategies ap-
plied at the input or output of the vi-
sion encoder, intervening during self-
attention computation in intermediate
layers of the vision encoder offers a more balanced approach to reduce the effect of uncertain tokens
without discarding potentially useful visual information, as shown in the ablation study in Sec. 4.3.

3.2.3 Does our method reduce uncertainty and mitigate object hallucination? Yes.

Figure 6: Impact of the proposed masking strat-
egy on visual token uncertainty. Average token-
level variance estimated via MC dropout decreases
after applying our method, indicating reduced un-
certainty. This reduction correlates with improved
performance on object hallucination metrics. The
trend line was fitted with quadratic function.

Based on the relationship between uncertainty of
visual tokens and object hallucination discussed
in Sec. 3.2.1, we mitigate object hallucination
using the method introduced in Sec. 3.2.2. To
evaluate the effectiveness of our method in re-
ducing visual token uncertainty, we conducted
the same experiment as shown in Fig. 4.

The results in Fig. 6 show that the average vari-
ance in the bin with the highest uncertainty de-
creases from 6.04 to 4.98, CHAIRs drops from
1.00 to 0.33, CHAIRi from 0.27 to 0.09, and
the F1 score increases from 0.47 to 0.77. To
evaluate statistical significance, we performed
the Wilcoxon signed rank test [13], which con-
firmed significant reductions in average vari-
ance (p = 0.002), CHAIRs (p = 0.002), and
CHAIRi (p = 0.004), all statistically significant
at p < 0.05. The F1 score was preserved. These
results demonstrate that the uncertainty of visual tokens contributes to object hallucination, and that
our method effectively suppresses this uncertainty, thereby mitigating hallucinations in LVLMs.
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Table 1: Quantitative results on CHAIR and POPE benchmarks. Object hallucination is evaluated
on the CHAIR and POPE benchmarks using three LVLMs and five decoding strategies, both with and
without our method. POPE results are reported on three splits: Random, Popular, and Adversarial.
The maximum token length is set to 512. ∆% denotes the relative difference in performance. ↑ / ↓
indicate that higher/lower values are better. We highlight the best scores in bold.

Method
Greedy OPERA VCD PAI Devils

Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆%

L
L

aV
A

-1
.5

-7
B Cs ↓ 47.4 29.2 ↓38.4% 47.8 29.4 ↓38.5% 53.8 35.2 ↓34.6% 33.2 26.0 ↓21.7% 27.0 23.0 ↓14.8%

Ci ↓ 12.2 9.3 ↓23.8% 12.8 9.5 ↓25.8% 15.2 10.7 ↓29.6% 8.5 7.9 ↓7.1% 6.6 5.6 ↓15.2%
F1 ↑ 77.9 78.2 ↑0.4% 77.7 78.4 ↑0.9% 75.2 75.2 ↑0.0% 78.3 77.2 ↓1.4% 78.3 78.0 ↓0.4%

Rand. ↑ 89.3 89.3 ↑0.0% 89.2 88.6 ↓0.7% 84.6 86.2 ↑1.9% 89.4 89.2 ↓0.2% 89.6 90.0 ↑0.4%
Pop. ↑ 85.8 85.8 ↑0.0% 85.8 85.2 ↓0.7% 82.4 82.9 ↑0.6% 86.0 86.4 ↑0.5% 86.4 87.2 ↑0.9%
Adv. ↑ 79.3 80.0 ↑0.9% 80.3 79.6 ↓0.9% 77.0 78.1 ↑1.4% 79.5 79.9 ↑0.5% 78.6 79.6 ↑1.3%

Sh
ik

ra
-7

B

Cs ↓ 58.0 43.2 ↓25.5% 34.8 28.8 ↓17.2% 56.2 47.2 ↓16.0% 32.4 22.2 ↓31.5% 24.4 20.6 ↓15.6%
Ci ↓ 15.6 11.7 ↓25.0% 11.1 9.6 ↓13.5% 16.1 12.8 ↓20.5% 7.8 6.1 ↓21.8% 7.6 6.8 ↓10.5%
F1 ↑ 74.7 76.9 ↑2.9% 74.2 74.2 ↑0.0% 74.4 75.2 ↑1.1% 76.7 75.1 ↓2.1% 73.3 72.2 ↓1.5%

Rand. ↑ 83.2 85.1 ↑2.3% 84.8 85.4 ↑0.7% 82.1 82.7 ↑0.7% 83.9 84.0 ↑0.1% 83.8 82.5 ↓1.6%
Pop. ↑ 82.3 82.6 ↑0.4% 82.8 82.1 ↓0.8% 79.7 80.7 ↑1.3% 83.1 80.7 ↓2.9% 79.9 78.2 ↓2.1%
Adv. ↑ 78.2 78.8 ↑0.8% 79.2 79.7 ↑0.6% 77.3 77.1 ↓0.3% 78.8 77.4 ↓1.8% 77.7 76.7 ↓1.3%

M
in

iG
PT

-4

Cs ↓ 28.6 27.4 ↓4.2% 23.8 22.6 ↓5.0% 32.0 30.6 ↓4.4% 19.6 17.8 ↓9.2% 21.6 20.8 ↓3.7%
Ci ↓ 8.5 8.3 ↓2.4% 8.8 8.5 ↓3.4% 9.7 9.1 ↓6.2% 6.2 6.0 ↓3.2% 7.5 7.0 ↓6.7%
F1 ↑ 71.5 71.3 ↓0.3% 69.8 70.0 ↑0.3% 70.2 71.3 ↑1.7% 71.7 71.7 ↑0.0% 70.1 70.4 ↑0.4%

Rand. ↑ 82.8 82.5 ↓0.4% 74.2 74.4 ↑0.3% 59.2 59.3 ↑0.2% 82.1 82.0 ↓0.1% 77.4 77.8 ↑0.5%
Pop. ↑ 75.1 74.6 ↓0.7% 71.3 71.8 ↑0.7% 54.9 55.0 ↑0.2% 75.8 75.2 ↓0.8% 68.4 68.6 ↑0.3%
Adv. ↑ 71.8 71.2 ↓0.8% 69.7 69.4 ↓0.4% 53.8 54.2 ↑1.1% 72.1 71.6 ↓0.7% 65.2 65.3 ↑0.2%

4 Experiments

4.1 Experimental Setup

Baselines and implementation details. We evaluate our method on diverse LVLMs differing in
size, architecture, and vision encoders: LLaVA-1.5-7B [35] with CLIP-L/336px [46], Shikra-7B [9]
with CLIP-L, and MiniGPT-4 using EVACLIP-g [51] and a Q-Former for image-text alignment.
To assess compatibility, we integrate our method with hallucination mitigation methods including
OPERA[20], VCD [27], PAI [37], and Devils [24]. Adversarial attacks are run with k = 3 and
200 PGD steps. The uncertainty masks M are extracted from layers S = {1, . . . , 10} of the vision
encoder, with masking applied to layers 13–17 for LLaVA-1.5 and Shikra, and 9–16 for MiniGPT-4.
σths are tuned per baseline-method pair. Further details are provided in Appendix Sec. C, and D.3.

Benchmarks. To measure object hallucination, we use three standard benchmarks. CHAIR [47]
measures sentence-level (Cs := CHAIRs) and instance-level (Ci := CHAIRi) hallucinations from
generated descriptions with 500 prompts randomly sampled from COCO [33]:

CHAIRs =
|{sentences with hallucinated objects}|

|{all sentences}|
, CHAIRi =

|{hallucinated objects}|
|{all mentioned objects}|

. (5)

POPE [31] evaluates hallucination through binary object presence queries across three splits (Random,
Popular, Adversarial), total 9,000 prompts, reporting accuracy. AMBER [56] comprehensively
evaluates hallucination in two settings: a generative approach (Gen.) that assesses hallucination
through image captioning and a discriminative approach (Disc.) that uses yes/no choices. To measure
object hallucination with AMBER, we adopted the full set of Gen. and the ‘Existence’ subset of Disc.,
conducting with a total of 5,928 prompts. See Appendix D.1 and G.2 for more details and results.

4.2 Experimental results

Quantitative Results. We evaluate the effectiveness of our method in mitigating object halluci-
nations in multiple LVLM using CHAIR [47] and POPE [31] benchmarks. As shown in Table 1,
our method consistently reduces hallucination rates (Cs, Ci) across LLaVA-1.5-7B, Shikra-7B, and
MiniGPT-4, while preserving caption quality (F1). For example, on LLaVA-1.5-7B, Cs drops from
47.4 to 29.2 and Ci from 12.2 to 9.3. Although the improvement on MiniGPT-4 is smaller, this is
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Table 2: Quantitative results on AMBER benchmark for LLaVA-1.5-7B. We evaluate object hal-
lucination using the AMBER benchmark under various mitigation methods, including combinations
with our approach. AMBER measures hallucination in generative (Gen.) and discriminative (Disc.)
settings, with its score offering a comprehensive assessment across both. The maximum token length
is set to 512 for generative task. ∆% denotes the relative difference in performance.

Method
Greedy OPERA VCD PAI Devils

Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆%

G
en

. CHAIR ↓ 6.7 5.1 ↓23.9% 7.4 5.8 ↓21.6% 8.5 6.1 ↓28.2% 5.1 4.7 ↓7.8% 4.1 3.9 ↓4.9%
Hal ↓ 30.2 24.2 ↓19.9% 33.0 23.3 ↓29.4% 38.4 28.6 ↓25.5% 25.1 22.5 ↓10.4% 21.0 20.9 ↓0.5%
Cog ↓ 3.8 2.3 ↓39.5% 3.7 2.1 ↓43.2% 4.4 2.3 ↓47.7% 1.9 1.9 ↓0.0% 1.4 1.5 ↑7.1%

D
is

c. Pre. ↑ 100.0 100.0 ↑0.0% 100.0 100.0 ↑0.0% 100.0 100.0 ↑0.0% 100.0 100.0 ↑0.0% 100.0 100.0 ↑0.0%
Rec. ↑ 71.2 78.0 ↑9.6% 74.9 81.0 ↑7.5% 67.3 75.7 ↑12.5% 71.9 74.1 ↑3.1% 72.5 75.2 ↑3.7%
F1 ↑ 83.2 87.6 ↑5.3% 85.6 89.5 ↑4.6% 80.4 86.2 ↑7.2% 83.6 85.1 ↑1.8% 84.1 85.8 ↑2.0%

AMBER↑ 88.2 91.2 ↑3.4% 89.1 91.8 ↑3.0% 86.0 90.1 ↑4.8% 89.2 90.2 ↑1.1% 90.0 91.0 ↑1.1%

The image features a train station with two trains on the tracks. The red train is positioned closer to the
left side of the image, while the white and blue train is situated further back. There are several people in
the scene, with some standing near the trains and others scattered throughout the station. A bench can be
seen in the middle of the station, providing a place for passengers to sit. Additionally, there is a handbag
placed on the ground near the center of the scene, possibly belonging to one of the passengers.

LLaVA

The image features a red train traveling down the tracks, with another train visible in the background. The 
red train is positioned in the middle of the scene, while the other train is located towards the right side of 
the image. The trains are both moving along the tracks, creating a sense of motion and activity.LLaVA

+ Ours Input image

Please describe the image in detail.

USER

The image features a one-way street sign prominently placed next to a white brick building. A bench is 
situated close to the street sign, providing a place for pedestrians to sit and observe the surroundings. The 
scene also includes a few cars parked along the street, with one car closer to the left side of the image, 
another car further back, and a third car on the right side of the scene. Additionally, there is a fire 
hydrant visible on the right side of the image, near the edge of the frame.

Shikra

The image features a one-way street sign positioned in front of a building. The sign is pointing to the left, 
indicating that vehicles should travel in one direction on this particular street. Beside the sign, a bench can 
be seen, providing a place for pedestrians to sit and observe the surroundings. The overall scene suggests a 
view of a street corner with some graffiti on the wall behind the sign.

Shikra
+ Ours

Input image

Please describe the image in detail.

USER

Figure 7: Qualitative results of our method on LLaVA-1.5-7B and Shikra-7B. Greedy decoding
leads to object hallucinations by describing non-existent objects in the image (e.g., ‘several people’,
‘bench’, ‘handbag’, ‘passengers’ in LLaVA; ‘a few cars’, ‘ car’, ‘a fire hydrant’ in Shikra). In contrast,
our method, which modifies only the vision encoder, substantially reduces such hallucinations.

likely due to its Q-Former module between the vision encoder and LLM, which limits the effect of
our method modifying the vision encoder. In POPE, our method yields comparable or slightly im-
proved performance across all models, indicating robustness under discriminative evaluation settings.
Furthermore, it integrates well with existing mitigation methods such as OPERA, VCD, PAI, and
Devils, providing additional gains without compromising caption quality. We also present results
on newer models (DeepSeek-VL [38], Qwen2.5-VL [4]), and larger models (LLaVA-1.5-13B) are
provided in Appendix Sec. G.2.

We further evaluate our method on the AMBER benchmark [56] using LLaVA-1.5-7B across five
strategies as depicted in Table 2. Our approach substantially reduces object hallucinations in both
generative and discriminative tasks, achieving up to a 28.2% reduction in CHAIR and a 7.2%
improvement in F1, resulting in consistently higher AMBER scores across all settings.

Qualitative results. We provide qualitative examples to demonstrate the effectiveness of our method.
As shown in Fig. 7, greedy decoding with vanilla LVLMs leads to object hallucinations, generating
descriptions that mention non-existent objects such as several people, bench, car, or a fire hydrant.
In contrast, our method substantially reduces such hallucinations in the generated outputs. Notably,
in the case of Shikra integrated with our method, the model is able to correctly identify previously
overlooked objects like graffiti, reflecting improved visual grounding and descriptiveness. We provide
further qualitative results for various combinations of models and methods in the Appendix Sec. G.3.
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Table 3: Impact of vision encoder layers on
generating the uncertainty mask M . Using
early layers of vision encoder (1–10) to compute
M yields the most effective object hallucination
mitigation performance.

Mask Source Layer Cs↓ Ci ↓ F1 ↑
Greedy 47.4 12.2 77.9
Layers 1–10 29.2 9.3 78.2
Layers 11–20 44.2 12.7 77.4
Layers 21–22 41.8 12.1 77.9

Table 4: Effect of applying the uncertainty mask
M to different layers in the vision encoder. Ap-
plying the mask at middle layers of vision encoder
(13–17) results in the most effective performance.

Masking Layer Range Cs ↓ Ci ↓ F1 ↑
Greedy 47.4 12.2 77.9
Layers 1–8 45.0 12.6 77.9
Layers 8–12 55.8 15.5 75.7
Layers 13–17 29.2 9.3 78.2
Layers 18–22 45.8 13.0 77.7

Table 5: Comparison of masking strategies for uncertain visual tokens. We compare our attention-
level masking method with alternatives applied at different stages of the vision encoder (VE). S.M.
denotes soft masking, which attenuates uncertain tokens by a small factor (e.g., 0.1 or 0.2).

Strategy Greedy Input of VE Output of VE MLP Layer S.M. (0.1 / 0.2) Ours

Cs ↓ 47.4 47.4 34.4 51.0 35.0 / 40.0 29.2
Ci ↓ 12.2 12.5 10.0 13.5 10.4 / 11.5 9.3
F1 ↑ 77.9 77.5 74.7 77.9 78.3 / 78.1 78.2

4.3 Ablation Study and Analysis

To assess the impact of each component on reducing object hallucination, we perform ablation studies
on the LLaVA-1.5-7B [35] model. We examine two key factors in the vision encoder: (1) uncertain
visual token estimation and (2) a training-free masking strategy. Each experiment isolates one variable
to ensure fair comparison. Limitations of our method are discussed in Appendix J.

Uncertainty estimation of visual tokens from early layers of vision encoder. We examine which
layers of vision encoder are most effective for generating the binary uncertainty mask M using
PGD-based adversarial attacks. As shown in Table 3, extracting uncertainty from early layers (1 to
10) leads to the largest reduction in hallucinations (Cs, Ci) and the highest F1 score, outperforming
intermediate or deeper layers. This result aligns with Sec.3.1.2 and Fig.3, where early layers exhibit
smaller adversarial feature shifts, making them more suitable for uncertainty estimation.

Masking uncertain visual tokens in intermediate layers of vision encoder. We investigate the
effect of applying the binary uncertainty mask M to different layers of self-attention process within
the vision encoder. As shown in Table 4, masking at intermediate layers (13 to 17) yields the best
performance, significantly reducing hallucination (Cs, Ci) and achieving the highest F1 score. In
contrast, masking in earlier layers shows limited benefit, and deeper layers provide minimal gains.

Comparative analysis of masking strategies for uncertain visual tokens. We compare several
masking strategies using the binary uncertainty mask M , including masking at the input image, the
output of the vision encoder, the MLP layer before the residual connection in the transformer block,
and soft masking applied to the self-attention that attenuates uncertain visual tokens by a small factor.
As shown in Table 5, our method, which applies hard masking within the self-attention mechanism
using M , achieves the best hallucination scores while maintaining a competitive F1 score.

5 Conclusion

We present a simple yet effective approach for mitigating object hallucination in Large Vision-
Language Models (LVLMs) by identifying uncertain visual tokens within the vision encoder and
reducing their influence through masking these tokens in their self-attention layers. Our theoretical
and empirical analyses show that adversarial perturbations efficiently approximate an upper bound of
epistemic uncertainty, which we confirm to be strongly correlated with object hallucination in LVLMs.
Extensive experiments demonstrate that our approach consistently reduces object hallucination across
diverse models and integrates seamlessly with other prior arts to improve performance.

9



Acknowledgement

This work was supported in part by Institute of Information & communications Technology Planning
& Evaluation (IITP) grants funded by the Korea government(MSIT) [NO.RS-2021-II211343, Artifi-
cial Intelligence Graduate School Program (Seoul National University)], (No.RS-2025-02314125,
Effective Human-Machine Teaming With Multimodal Hazy Oracle Models) and by the National
Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2025-
02263628). Also, the authors acknowledged the financial support from the BK21 FOUR program of
the Education and Research Program for Future ICT Pioneers, Seoul National University.

References
[1] Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi

Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In ICCV, pages
8948–8957, 2019.

[2] Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Haonan Lin, QianYing Wang, Guang Dai, Ping Chen,
and Shijian Lu. Agla: Mitigating object hallucinations in large vision-language models with assembly of
global and local attention. arXiv preprint arXiv:2406.12718, 2024.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

[5] Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
Hallucination of multimodal large language models: A survey. arXiv preprint arXiv:2404.18930, 2024.

[6] Zikui Cai, Yaoteng Tan, and M Salman Asif. Ensemble-based blackbox attacks on dense prediction. In
CVPR, pages 4045–4055, 2023.

[7] Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Pang Wei W
Koh, Daphne Ippolito, Florian Tramer, and Ludwig Schmidt. Are aligned neural networks adversarially
aligned? NeurIPS, 36:61478–61500, 2023.

[8] Liwei Che, Tony Qingze Liu, Jing Jia, Weiyi Qin, Ruixiang Tang, and Vladimir Pavlovic. Eazy: Eliminating
hallucinations in lvlms by zeroing out hallucinatory image tokens. arXiv preprint arXiv:2503.07772, 2025.

[9] Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023.

[10] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual language-
image model. In ICLR, 2023.

[11] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

[12] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. In ICLR, 2024.

[13] William Jay Conover. Practical nonparametric statistics. john wiley & sons, 1999.

[14] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. InstructBLIP: Towards general-purpose vision-language models with instruction
tuning. In NeurIPS, 2023.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

10



[16] Jinhao Duan, Fei Kong, Hao Cheng, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Xiaofeng Zhu,
Xiaoshuang Shi, and Kaidi Xu. Truthprint: Mitigating lvlm object hallucination via latent truthful-guided
pre-intervention. arXiv preprint arXiv:2503.10602, 2025.

[17] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang,
and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale. In CVPR, pages
19358–19369, 2023.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
ICLR, 2015.

[19] Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vision language
models. In AAAI, volume 38, pages 18135–18143, 2024.

[20] Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang,
and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models via over-trust
penalty and retrospection-allocation. In CVPR, pages 13418–13427, 2024.

[21] Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang, Zhicheng Chen, and Peilin Zhao. Self-
introspective decoding: Alleviating hallucinations for large vision-language models. arXiv preprint
arXiv:2408.02032, 2024.

[22] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig
Schmidt. Openclip, July 2021. If you use this software, please cite it as below.

[23] Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing Chen, Wei Ye, Ming Yan, Qinghao Ye, Ji Zhang, Fei
Huang, and Shikun Zhang. Hallucination augmented contrastive learning for multimodal large language
model. In CVPR, pages 27036–27046, 2024.

[24] Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun Shen, and Xu Yang. Devils in middle layers
of large vision-language models: Interpreting, detecting and mitigating object hallucinations via attention
lens. arXiv preprint arXiv:2411.16724, 2024.

[25] Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual attention
sink in large multimodal models. In ICLR, 2025.

[26] Max-Heinrich Laves, Sontje Ihler, Karl-Philipp Kortmann, and Tobias Ortmaier. Calibration of model
uncertainty for dropout variational inference. arXiv preprint arXiv:2006.11584, 2020.

[27] Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
Mitigating object hallucinations in large vision-language models through visual contrastive decoding. In
CVPR, pages 13872–13882, 2024.

[28] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang,
Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint arXiv:2408.03326,
2024.

[29] Jiaming Li, Jiacheng Zhang, Zequn Jie, Lin Ma, and Guanbin Li. Mitigating hallucination for large vision
language model by inter-modality correlation calibration decoding. arXiv preprint arXiv:2501.01926,
2025.

[30] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. In ICML, pages 19730–19742. PMLR, 2023.

[31] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination
in large vision-language models. In EMNLP, 2023.

[32] Siyuan Liang, Baoyuan Wu, Yanbo Fan, Xingxing Wei, and Xiaochun Cao. Parallel rectangle flip attack:
A query-based black-box attack against object detection. In ICCV, pages 7677–7687. IEEE Computer
Society, 2021.

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740–755. Springer,
2014.

[34] Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li,
and Wei Peng. A survey on hallucination in large vision-language models. arXiv preprint arXiv:2402.00253,
2024.

11



[35] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In CVPR, pages 26296–26306, 2024.

[36] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. NeurIPS,
36:34892–34916, 2023.

[37] Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method for
alleviating hallucination in lvlms. In ECCV, pages 125–140. Springer, 2024.

[38] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding. arXiv
preprint arXiv:2403.05525, 2024.

[39] Xinyu Lyu, Beitao Chen, Lianli Gao, Hengtao Shen, and Jingkuan Song. Alleviating hallucinations in large
vision-language models through hallucination-induced optimization. NeurIPS, 37:122811–122832, 2024.

[40] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In ICLR, 2018.

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In ICLR, 2018.

[42] Shunqi Mao, Chaoyi Zhang, and Weidong Cai. Through the magnifying glass: Adaptive perception
magnification for hallucination-free vlm decoding. arXiv preprint arXiv:2503.10183, 2025.

[43] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question
answering benchmark requiring external knowledge. In CVPR, pages 3195–3204, 2019.

[44] Jishnu Mukhoti and Yarin Gal. Evaluating bayesian deep learning methods for semantic segmentation.
arXiv preprint arXiv:1811.12709, 2018.

[45] Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal. Visual
adversarial examples jailbreak aligned large language models. In AAAI, volume 38, pages 21527–21536,
2024.

[46] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, pages 8748–8763. PMLR, 2021.

[47] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallucination
in image captioning. In EMNLP, pages 4035–4045, 2018.

[48] Alfred P Rovai, Jason D Baker, and Michael K Ponton. Social science research design and statistics: A
practitioner’s guide to research methods and IBM SPSS. Watertree Press LLC, 2013.

[49] Christian Schlarmann and Matthias Hein. On the adversarial robustness of multi-modal foundation models.
In ICCV, pages 3677–3685, 2023.

[50] Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. Jailbreak in pieces: Compositional adversarial
attacks on multi-modal language models. In ICLR, 2024.

[51] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training techniques
for clip at scale. arXiv preprint arXiv:2303.15389, 2023.

[52] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[54] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[55] Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and Huajun Chen.
Mllm can see? dynamic correction decoding for hallucination mitigation. arXiv preprint arXiv:2410.11779,
2024.

[56] Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and
Jitao Sang. An llm-free multi-dimensional benchmark for mllms hallucination evaluation. CoRR, 2023.

12



[57] Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye, Ming
Yan, Ji Zhang, Jihua Zhu, et al. Evaluation and analysis of hallucination in large vision-language models.
arXiv preprint arXiv:2308.15126, 2023.

[58] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan
Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: Beit pretraining for
vision and vision-language tasks. In CVPR, pages 19175–19186, 2023.

[59] Yubo Wang, Chaohu Liu, Yanqiu Qu, Haoyu Cao, Deqiang Jiang, and Linli Xu. Break the visual perception:
Adversarial attacks targeting encoded visual tokens of large vision-language models. In ACM MM, pages
1072–1081, 2024.

[60] Chunzhao Xie, Tongxuan Liu, Lei Jiang, Yuting Zeng, Yunheng Shen, Weizhe Huang, Jing Li, Xiaohua Xu,
et al. Tarac: Mitigating hallucination in lvlms via temporal attention real-time accumulative connection.
arXiv preprint arXiv:2504.04099, 2025.

[61] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial examples
for semantic segmentation and object detection. In ICCV, pages 1369–1378, 2017.

[62] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin,
Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang,
Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei,
Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui,
Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

[63] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with
multimodality. arXiv preprint arXiv:2304.14178, 2023.

[64] Zihao Yue, Liang Zhang, and Qin Jin. Less is more: Mitigating multimodal hallucination from an eos
decision perspective. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11766–11781, 2024.

[65] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
pre-training. In ICCV, pages 11975–11986, 2023.

[66] Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. Mllms know where to look:
Training-free perception of small visual details with multimodal llms. arXiv preprint arXiv:2502.17422,
2025.

[67] Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min Lin.
On evaluating adversarial robustness of large vision-language models. NeurIPS, 36:54111–54138, 2023.

[68] Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and
Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language models. In ICLR,
2024.

[69] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-
language understanding with advanced large language models. In ICLR, 2024.

[70] Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping Ye, and Jun Liu. Ibd: Alleviating hallucinations in
large vision-language models via image-biased decoding. arXiv preprint arXiv:2402.18476, 2024.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduced our approach to mitigate object hallucination in title, abstract,
and introduction. Also, we summarized our contributions explicitly in Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed limitation of our work in Appendix Sec J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the complete set of assumptions and full proofs for Lemma 3.1
and Theorem 3.2, with appropriate references to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide code for reproducibility and detailed implementation details in
Appendix Sec. C, benchmarks and baseline models in Appendix Sec. D, along with the
corresponding GitHub link.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our code implementation in supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental setting and details in Appendix Sec. C and Sec. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars on our experimental results in Fig. 3, and report our
results’ statistical significance of Fig. 4 in Sec. 3.1.2 and Sec. 3.2.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We specify in Appendix Sec. C that all main experiments were conducted
using an NVIDIA A100 GPU with 80GB of memory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We comply with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both the potential positive and negative societal impacts of our
work in Appendix Sec. I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not involve releasing any models or datasets that pose a high
risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all utilized code, benchmark datasets, and models, and provide
the corresponding GitHub links in Appendix Sec. D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will provide a README file alongside the released code in the supple-
mentary materials, which includes usage instructions, details of the benchmark datasets, and
descriptions of the models used in our experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not incorporate large
language models as any essential, novel, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof of Lemma 3.1

Lemma 3.1 (Approximate local Gaussianity under small perturbation). Let f = {ft}Lt=1 be a smooth
L-layer neural network parameterized by θ. For an input x ∈ RN×3, define the hidden state at layer
t as z(t) = ft ◦ · · · ◦ f1(x). For a perturbed input x+ ϵ, with ∥ϵ∥∞ ≤ k for sufficiently small k > 0,
define the perturbed hidden state as Z(t) = ft ◦ · · · ◦ f1(x+ ϵ). Then, under the assumption that the
perturbation is small and f ∈ C2, Z(t) can be locally approximated by a Gaussian centered at z(t),
with a third-order remainder in the log-density.

Proof. Let f = {ft}Lt=1 be a smooth L-layer neural network parameterized by θ, and let z(t) :=
ft ◦ · · · ◦ f1(x) denote the hidden state at layer t for a clean input x ∈ RN×3. For a perturbed input
x+ϵ, with ∥ϵ∥∞ ≤ k for small k > 0, define the perturbed hidden state as Z(t) := ft ◦· · ·◦f1(x+ϵ).

For the clean and perturbed inputs, define

y∗ := f(x; θ) = f (t)(z(t); θ(t)), y := f(x+ ϵ; θ) = f (t)(z(t) + ϵ′; θ(t)), (A1)

where f (t) = fL ◦ · · · ◦ ft+1, θ(t) are its parameters, and ϵ′ is the residual vector at layer t induced
by the input perturbation ϵ. The perturbation ϵ is chosen to maximize the adversarial objective
C∥y − y∗∥22, or equivalently minimize exp(−C∥y − y∗∥22), under ∥ϵ∥∞ ≤ k.

Motivated by this, we approximate the conditional distribution of hidden states near z(t) using a local
energy-based form,

pθ(z | y∗) ∝ exp
(
− C ∥f (t)(z; θ(t))− f (t)(z(t); θ(t))∥22

)
, (A2)

for z in a neighborhood of z(t). Since f is twice continuously differentiable, the conditional log-
density admits a second-order Taylor expansion around z(t):

log pθ(z | y∗) = log pθ(z
(t) | y∗) + (z − z(t))⊤∇z log pθ(z | y∗)

∣∣
z=z(t)

+ 1
2 (z − z(t))⊤H(t)(z − z(t)) +R(z),

(A3)

where H(t) := ∇2
z log pθ(z | y∗)|z=z(t) is the Hessian and R(z) = O(∥z − z(t)∥3).

The first-order term vanishes as follows:

∇z log pθ(z | y∗)
∣∣
z=z(t) = −2C ·Jf(t)(z; θ(t))⊤

(
f (t)(z; θ(t))−f (t)(z(t); θ(t))

)∣∣
z=z(t) = 0. (A4)

Therefore,

log pθ(z | y∗) = log pθ(z
(t) | y∗) + 1

2 (z − z(t))⊤H(t)(z − z(t)) +R(z). (A5)

The quadratic term coincides with the log-density of a Gaussian centered at z(t) with covariance
(−H(t))−1, while the remainder R(z) is of order O(∥z − z(t)∥3).

Therefore, the perturbed hidden state Z(t) under small input perturbations can be locally approximated
by a Gaussian centered at z(t), with approximation error of third order in the log-density.

A.2 Proof of Theorem 3.2

Theorem 3.2 (Upper bound of differential entropy increases as hidden state deviation increases under
adversarial attack). Let x be an input image, and let ϵ be a small adversarial perturbation. Define the
perturbed input as X := x+ ϵ. Let f = {ft}Lt=1 be a smooth L-block transformer that processes a
sequence of N input tokens. Let z(t) := ft◦· · ·◦f1(x) ∈ RN×d and Z(t) := ft◦· · ·◦f1(X) ∈ RN×d

be the hidden states at layer t for the clean and perturbed inputs, respectively. Denote the i-th token
representation at layer t as z(t)i ∈ Rd and Z

(t)
i ∈ Rd. If Z(t)

i changes smoothly with small ϵ, then the
upper bound of the differential entropy of Z(t)

i increases as Eϵ[∥Z(t)
i − z

(t)
i ∥22] increases.
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Proof. Let x be an input image and ϵ a small perturbation satisfying ∥ϵ∥∞ ≤ k, where k is sufficiently
small for a first-order Taylor expansion. Define

z
(t)
i := f

(t)
i (x), Z

(t)
i := f

(t)
i (x+ ϵ), (A6)

where f (t)
i denotes the hidden state of token i at layer t, and f = ft ◦ · · · ◦ f1 is assumed to be twice

continuously differentiable.

By the multivariate Taylor expansion of f (t)
i (x+ ϵ) around x, we have

Z
(t)
i = z

(t)
i + J

(t)
i ϵ+R

(t)
i (ϵ), (A7)

where J
(t)
i :=

∂z
(t)
i

∂x

∣∣∣∣
x

∈ Rd×D is the Jacobian matrix, and ∥R(t)
i (ϵ)∥ = O(∥ϵ∥2).

With the assumption of the perturbation upper bound k, the remainder R(t)
i (ϵ) is negligible compared

to the linear term. Under this assumption, we define the deviation:

∆Z
(t)
i := Z

(t)
i − z

(t)
i = J

(t)
i ϵ. (A8)

Let Σϵ := E[ϵϵ⊤]. Then the covariance of ∆Z
(t)
i is

Σ
∆Z

(t)
i

:= Cov[∆Z
(t)
i ] = J

(t)
i Σϵ(J

(t)
i )⊤. (A9)

By the local Gaussianity assumption (Lemma 3.1), Z(t)
i can be approximated as a multivariate

Gaussian. Hence, by the entropy formula for multivariate Gaussians, the differential entropy is

h(Z
(t)
i ) =

1

2
log

(
(2πe)d · det(Σ

∆Z
(t)
i
)
)
. (A10)

Applying the AM–GM inequality to the eigenvalues of Σ
∆Z

(t)
i

, we obtain

det(Σ
∆Z

(t)
i
)1/d ≤ 1

d
tr(Σ

∆Z
(t)
i
) =

1

d
E[∥∆Z

(t)
i ∥22]. (A11)

Thus, the entropy is bounded as:

h(Z
(t)
i ) ≤ d

2
log

(
1

d
E[∥∆Z

(t)
i ∥22]

)
+ C, (A12)

where C = d
2 log(2πe) is a constant.

Hence, the upper bound of the entropy increases as E[∥∆Z
(t)
i ∥22] increases, which completes the

proof.

A.3 On practicality of the proved upper bound

Assuming that the deviation of hidden states follows a Gaussian distribution, the differential entropy
of each token is proportional to the determinant of the covariance matrix Σ∆Z . However, our empirical
analysis reveals that this covariance matrix is highly low-rank. By decomposing the covariance matrix
obtained from 2048 adversarial attacks on the visual tokens of 100 images with LLaVA-1.5-7B [28]
using PCA, we found that the top 8 components (8/1024 = 0.8% of the total dimension) account for
94.2% (±0.4%) of the total variance, with most eigenvalues close to zero. Under such conditions,
computing det(Σ∆Z) for entropy estimation becomes numerically unstable, as values underflow to
zero, making direct entropy comparison infeasible. In contrast, using tr(Σ∆Z) provides a numerically
stable alternative that is theoretically well-grounded under anisotropy and preserves token-wise
uncertainty ordering. This trace-based measure also aligns with the qualitative uncertainty maps in
Fig. 2, further supporting its practical validity.
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B Code

To support reproducibility, we include the implementation of our method in the supplementary
material. Detailed instructions for running the code and setting up the environment are provided in
the accompanying README.md file.

C Implementation Details

As our method is designed to work in conjunction with various LVLMs and existing mitigation
methods such as OPERA, VCD, PAI and Devils, we set the value of σth individually for each combi-
nation, as shown in Table A1. The selected σth values are used consistently to evaluate hallucination
performance throughout all experiments in the main paper. As described in Section 4.1, PGD-based
adversarial attacks are performed with k = 3 and 200 iterations. For uncertainty estimation, masks M
are extracted from layers S = {1, . . . , 10} of the vision encoder. The masking operation is applied
within the self-attention mechanism of the vision encoder, targeting layers 13–17 for LLaVA-1.5 and
Shikra, and layers 9–16 for MiniGPT-4. All experiments in the main paper were conducted on an
NVIDIA A100 GPU with 80GB of memory.

Table A1: Values of σth for each model and method combination. We determine σth individually
for each combination and use the selected value consistently across all evaluations to ensure fair and
robust comparisons.

Model Greedy OPERA VCD PAI Devils

LLaVA-1.5-7B 1.1 1.1 1.0 1.8 1.9
LLaVA-1.5-13B 1.2 1.2 1.1 1.6 1.6
Shikra-7B 1.0 1.0 1.0 1.5 1.9
MiniGPT-4 0.0 2.0 0.0 1.1 -0.1

D Experimental Details

D.1 Benchmarks

CHAIR. To evaluate the robustness of image captioning models against object hallucination, we
adopt the CHAIR [47] metric (Caption Hallucination Assessment with Image Relevance). This bench-
mark quantifies hallucination by comparing generated captions with ground truth object annotations
and sentence descriptions in the MSCOCO dataset. Two variants, CHAIRi and CHAIRs, measure
hallucination at the object and sentence levels, respectively, as shown in Eq. 5.

This metric enables a systematic comparison of hallucination severity across models and offers
insights into the alignment between visual input and generated language beyond standard evaluation
metrics. We use the prompt “Please describe this image in detail.”.

POPE. To obtain a more reliable and instruction-agnostic assessment of object hallucination in large
vision-language models (LVLMs), we adopt the POPE (Polling-based Object Probing Evaluation)
framework [31]. Unlike traditional caption-based metrics that are sensitive to prompt phrasing and rely
on manual parsing, POPE probes a model’s visual grounding through binary yes/no questions about
object presence. This enables stable and scalable evaluation across both annotated and unannotated
datasets. POPE constructs evaluation sets using three sampling strategies: Random, Popular, and
Adversarial. Each strategy targets a different source of hallucination, allowing us to test whether
models tend to hallucinate arbitrary objects, frequently occurring objects, or objects that often co-
occur with those actually present in the image. We use the prompt “Is there a/an [object] in the
image?”.

AMBER. To evaluate object hallucination comprehensively in large vision-language models
(LVLMs), we adopt the AMBER benchmark [56]. AMBER assesses hallucinations across both
generative and discriminative tasks, focusing on three primary types: existence, attribute, and relation.
In the generative setting, it employs metrics such as CHAIR, Hal, and Cog to measure hallucination
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frequency, object coverage, and cognitive tendencies. For discriminative tasks, standard binary classi-
fication metrics are used, and the AMBER Score integrates CHAIR from the generative setting with
the F1 score from the discriminative setting. Notably, we focus exclusively on ‘existence’ subset to
assess object hallucination, which involves generating descriptions of objects that are not present in
the input image. We use the prompt “Describe this image.” for generative task and “Is there a [object]
in this image?” for discriminative task.

D.2 Base models

LLaVA-1.5. In our experiments, we employed LLaVA-1.5 [35], a versatile multimodal model de-
veloped for visual instruction tuning. LLaVA-1.5 builds upon the original LLaVA [36] architecture by
integrating a two-layer MLP as a vision-language connector, leveraging the CLIP-ViT-L-336px [46]
vision encoder, and incorporating academic task-oriented VQA data with response formatting prompts.
These modifications significantly enhance the model’s capability for both visual reasoning and instruc-
tion following, while retaining strong data efficiency. LLaVA-1.5 achieves competitive performance
across a broad set of multimodal benchmarks using only publicly available data and modest com-
putational resources. To investigate the robustness of our method across different model scales,
we conducted experiments using both the 7B and 13B versions of LLaVA-1.5. This enabled us to
evaluate whether our approach maintains performance consistency under varying model capacities.
For the experiments, we utilized the official implementation 1 along with the provided code and
model weights.

Shikra. In our experiments, we adopt the Shikra-7B [9] model, a LVLM specifically designed for
referential dialogue. Shikra-7B integrates a CLIP-ViT-L/14 [46] vision encoder with a Vicuna-7B
language model via a simple alignment layer, allowing end-to-end processing without the need for
additional vocabularies, position encoders, detection modules, or external plug-ins. A key feature
of Shikra is its ability to represent spatial information directly in natural language using numerical
coordinates, allowing it to handle both inputs and outputs involving region references seamlessly. This
architecture supports a broad range of vision-language tasks, including Visual Question Answering
(VQA), image captioning, referring expression comprehension (REC), and PointQA, all within a uni-
fied framework and without task-specific fine-tuning. Its strong performance across both conventional
and location-sensitive tasks makes it a compelling choice for measuring object hallucination. For
the experiments, we utilized the official implementation 2 along with the provided code and model
weights.

MiniGPT-4. In our experiments, we employed MiniGPT-4 [69] as a vision-language model to
evaluate effectiveness of our method. MiniGPT-4 combines a frozen vision encoder from BLIP-
2 [30] (EVA-CLIP-ViT-G/14 [51] with Q-Former) and a large frozen language model, Vicuna,
using a single trainable linear projection layer to align visual features with the input space of the
language model. The model is pre-trained on approximately 5 million image-text pairs to establish
initial multimodal capabilities. To address issues such as repetitive or fragmented outputs observed
after pretraining, a second stage fine-tuning is applied using a curated set of 3,500 detailed image-
description pairs, formatted with a conversational prompt template. This two-stage training strategy
improves the fluency and relevance of the model’s responses, enabling it to handle a variety of vision-
language tasks more effectively. When applying our methodology to MiniGPT-4, we conducted the
adversarial attack on the features prior to their input into the Q-Former. For the experiments, we
utilized the official implementation 3 along with the provided code and model weights.

D.3 Baselines

Greedy. Greedy decoding is one of the most basic decoding strategies for generative language
models, where the token with the highest prediction probability is selected at each step. This approach
is fast and straightforward to implement. Among various decoding strategies for LVLMs, we adopt
the naïve and fundamental greedy decoding method as one of our baselines to evaluate the object
hallucination mitigation performance of our method.

1https://github.com/haotian-liu/LLaVA
2https://github.com/shikras/shikra
3https://github.com/Vision-CAIR/MiniGPT-4
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Table A2: Runtime comparison between MC dropout and our method using PGD-based adver-
sarial attack. When comparing the mean runtime, our method is ×5.1 faster. The symbol ± denotes
the 1σ interval.

Method MC dropout Adversarial attack (Ours)

Time (s) 12.4 (±0.12) 2.43 (±0.08)

OPERA. The authors of OPERA [20] identify that object hallucination in LVLMs is closely linked
to specific knowledge aggregation patterns within the model’s self-attention matrix. It defines tokens
that induce such attention patterns as summary tokens and mitigates hallucination by detecting
excessive attention toward these tokens and preventing their influence on next-token prediction.
Specifically, OPERA extracts a local window from the self-attention map, quantifies the degree
of aggregation via column-wise multiplication, and applies a logit penalty during beam search to
suppress over-confident candidates. While effective, OPERA relies on beam search, which introduces
significant additional computational cost. For comparison and integration with our method, we used
the official implementation 4 provided by the authors.

Visual Constrastive Decoding. The authors of Visual Contrastive Decoding (VCD) [45] attribute
object hallucination to statistical biases, such as object cooccurrence frequencies in training data,
and language priors inherent to large language models. By injecting Gaussian noise into the input
image, the LVLM’s reliance on visual information is reduced, causing it to lean more heavily on
these language priors. To counteract this, VCD introduces both the original image v and a distorted
version v′ as input, computes their respective output probability distributions, and then extrapolates
a contrastive probability distribution that suppresses language-driven biases. For comparison and
integration with our method, we use the official implementation 5. When applying our method to
VCD, we performed uncertain token suppression only on the original image v.

PAI. The authors of Paying more Attention to Image (PAI) [37] argue that object hallucination
arises when visual information is ignored and propose a training-free method to enhance the influence
of images during inference. Specifically, they manipulate the self-attention matrix to amplify attention
toward visual tokens and selectively strengthen particular attention heads to guide the model toward
more trustworthy directions. To avoid excessive attention toward the beginning-of-sentence (BOS)
token, they introduce a layer prior that excludes shallow layers from modulation. Additionally, they
compare outputs with and without the input image to attenuate language model biases. Since PAI
does not modify the vision encoder, our method can be additionally applied. For comparison, we
utilized the official implementation 6.

Devils in the middle layers. In Devils in the Middle Layers (Devils) [24], the authors find that in
large vision-language models (LVLMs), visual information is strongly processed in the middle layers
of the language model. They observe that inactive attention can induce hallucinations, and that during
such instances, attention heads tend to focus inconsistently on unrelated objects. To address this, the
authors propose integrating information across attention heads during inference to encourage focus
on more consistent visual regions. They achieve this by reweighting the attention scores to emphasize
coherent areas. Since this is an intervention on the LLM component, their methodology is applicable
in our setting as well. To implement it, we adopted their official codebase 7.

E Additional Analysis

E.1 Monte Carlo vs. Adversarial attack

In the main paper, we verify the similarity between the uncertainty map U obtained via adversarial
attacks and the one derived from the Monte Carlo (MC) dropout using pre-trained vision encoder. To

4https://github.com/shikiw/OPERA
5https://github.com/DAMO-NLP-SG/VCD
6https://github.com/LALBJ/PAI
7https://github.com/ZhangqiJiang07/middle_layers_indicating_hallucinations
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Table A3: Object hallucination benchmark results under varying attack strengths (∥ϵ∥∞). To
investigate the effect of adversarial perturbations on the image encoder, we applied PGD attacks
of different magnitudes for 200 iterations to LLaVA-1.5-7B and evaluated performance using the
CHAIR benchmark. Adversarial attacks on the image encoder increase the likelihood of hallucinated
outputs, with the severity of hallucination correlating positively with the attack strength.

∥ϵ∥∞ CHAIRs ↓ CHAIRi ↓ Recall↑ Precision↑ F1↑
0 47.4 12.2 78.9 76.9 77.9
1 53.0 16.2 76.9 72.9 74.8
3 64.0 25.5 63.0 62.4 62.7
5 65.6 25.9 55.9 60.1 57.9
7 61.6 26.6 50.5 59.6 54.7

further confirm this similarity, we provide an additional qualitative comparison in Fig. A1. Although
our method tends to slightly overestimate the uncertainty, it consistently identifies high-uncertainty
regions that closely align with those highlighted by MC dropout. To assess the computational effi-
ciency of our approach, we compare the runtime of uncertainty estimation using Monte Carlo dropout
and our adversarial-based method. Specifically, we apply both techniques to the vision encoder from
LLaVA-1.5-7B. The adversarial attack is performed 100 times with k = 3 top perturbations, while
the Monte Carlo dropout requires 1,000 forward passes, both executed on a single NVIDIA RTX
4090 GPU. The results, presented in Table A2, demonstrate that our method enables significantly
more efficient extraction of uncertainty masks, highlighting its practical advantage in identifying
visually uncertain tokens.

E.2 Effect of adversarial attacks on LVLM outputs

We conducted PGD-based adversarial attacks on the vision encoder to identify the uncertain visual
tokens. To evaluate whether such attacks effectively influence the output of LVLMs, we applied
adversarial perturbations with varying magnitudes of ϵ and performed both quantitative and qualitative
analyses.

As shown in Fig. A2, the responses generated from the attacked images often exhibited hallucinations
or failed to produce correct answers. As demonstrated in Table A3, we also observe that higher
attack intensities lead to increased severity of hallucinations. These experimental results highlight
that the visual features extracted by the vision encoder play a crucial role in LVLMs’ performance of
downstream task, emphasizing that enhancing visual perception is critical for reducing hallucination
and improving overall reliability.

E.3 Consistency and robustness of uncertainty masks from adversarial attacks

We identify uncertain visual tokens by applying PGD-based adversarial attacks to the features of the
vision encoder. In our implementation, the attack is initialized from the original image without added
noise. To evaluate the consistency and robustness of the resulting uncertainty masks M , we also
perform attacks with different initial noise seeds, generating diverse adversarial perturbations. From
each perturbed image, we extract a mask and compute the mean Intersection over Union (mIoU)
between the masks M generated from different seeds.

As shown in Table A4, the uncertainty masks M remain highly consistent across different initializa-
tions. Qualitative examples in Fig. A3 further demonstrate that the uncertainty maps U and masks
M maintain stable and coherent structures. These results confirm the reliability of our method in
consistently identifying uncertain tokens under varying adversarial conditions.

F Additional Ablation Studies

Masking Threshold Hyperparameter σth. To construct the binary uncertainty mask M , we
introduce a threshold hyperparameter σth. Its optimal value depends on the characteristics of each
model and method combination, and is determined through grid search. Table A5 presents an ablation
study conducted on the LLaVA-1.5-7B model using six different threshold values. Considering the
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Table A4: Mask consistency measured by mean Intersection over Union (mIoU). We applied
adversarial attacks to the LLaVA-1.5-7B image encoder on 500 images across five different seeds and
measured the mIoU to verify mask consistency. The results indicate that the masks obtained through
adversarial attack are robust and consistent. The threshold σth was set to 1.1.

Seed pair (0, 1) (0, 2) (0, 3) (0, 4) (1, 2)

mIoU 0.899 (±0.034) 0.898 (±0.035) 0.898 (±0.036) 0.899 (±0.036) 0.899(±0.035)

Seed pair (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

mIoU 0.898 (±0.036) 0.898 (±0.035) 0.897 (±0.036) 0.897 (±0.036) 0.897 (±0.036)

Table A5: Ablation study of the thresholding parameter σth for generating the uncertainty mask
M . We use LLaVA-1.5-7B with greedy decoding and evaluate hallucination performance while
varying the threshold σth.

σth Greedy 0.8 0.9 1.0 1.1 1.2 1.3

Cs↓ 47.4 27.0 27.0 30.0 29.2 33.6 36.4
Ci↓ 12.2 8.4 8.2 9.0 9.3 9.7 10.3
F1↑ 77.9 76.7 77.7 77.6 78.2 78.0 78.5

trade-offs among Cs, Ci, and F1 score, we select σth = 1.1 as it yields the best overall performance.
Based on this analysis, we apply the optimal σth for each configuration in our experiments.

G Additional Quantitative and Qualitative Results

G.1 Computational Cost

Our method identifies uncertain tokens via PGD-based adversarial attacks implemented through
backpropagation, which naturally introduces additional computational overhead compared to standard
greedy decoding. To quantify this cost, we measure the extra inference time and compare it with
existing hallucination mitigation methods. As shown in Table A6, while our method does incur
some additional overhead, it offers comparable or even lower inference time than several baselines,
achieving a favorable balance between performance and efficiency.

G.2 Additional quantitative results

Applicability of our method to larger model. We assess the scalability and generalizability of
our method using the larger LLaVA-1.5-13B model. As shown in Table A7, our method delivers
substantial improvements over the greedy decoding baseline, reducing Cs by 15.2 and Ci by 2.9. It
also integrates effectively with a variety of existing approaches, achieving the best performance when
combined with Devils (Cs = 20.4, Ci = 6.0). These results demonstrate that our method generalizes
well across model scales and enhances a wide range of existing hallucination mitigation strategies.

Table A6: Additional inference time introduced by each method compared to standard greedy
decoding. We performed text generation with request of image description with max 32 tokens. All
experiments were conducted using LLaVA-1.5-7B on an NVIDIA A100 GPU. We report the mean
and standard deviation over 30 samples. Although our method introduces some overhead due to
backpropagation from PGD attacks, it remains comparable to or even faster than existing approaches.

Method Additional inference time (s)

OPERA 9.518±0.011
VCD 1.646±0.001
PAI 1.567±0.021

Devils 0.014±0.001
Ours 2.469±0.004
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Table A7: Quantitative results on CHAIR benchmark for LLaVA-1.5-13B. We report object
hallucination (Cs, Ci) for various mitigation methods and their combination with our method. The
maximum token length is set to 512. ∆% denotes the relative improvement in performance.

Method
Greedy OPERA VCD PAI Devils

Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆% Orig. +Ours ∆%

Cs ↓ 45.4 30.2 ↑33.4% 40.2 30.4 ↑24.4% 49.0 35.4 ↑27.8% 38.6 32.4 ↑16.1% 28.2 20.4 ↑26.2%
Ci ↓ 11.2 8.3 ↑25.9% 10.9 8.9 ↑18.3% 13.4 10.3 ↑23.1% 9.9 8.4 ↑15.2% 8.7 6.0 ↑31.0%
F1 ↑ 79.1 78.9 ↓0.2% 78.0 76.9 ↓1.4% 77.3 76.3 ↓1.3% 78.7 79.1 ↑0.3% 78.4 78.0 ↓0.5%

Table A8: Quantitative results of our method on state-of-the-art LVLMs. We apply our approach
to two SOTA models, DeepSeek-VL and Qwen2.5-VL, and compare performance against greedy
decoding. For DeepSeek-VL we set σth = 1.0, while for Qwen2.5-VL we use σth = 0.0. These
results demonstrate that our method is applicable to a wide range of LVLMs, including the most
recent architectures.

Method CHAIR POPE

Cs↓ Ci ↓ F1 ↑ Rand. Pop. Adv.

DeepSeek-VL (Greedy) 25.8 6.6 72.7 88.7 88.0 84.9
+Ours 22.4 5.5 72.6 88.8 88.0 85.1
Qwen2.5-VL (Greedy) 29.6 7.8 76.0 84.2 83.7 83.3
+Ours 28.6 7.0 76.8 84.3 83.8 83.4

Table A9: Additional quantitative results for an alternative adversarial attack on a Q-
Former–based LVLM architecture. MiniGPT-4 uses a Q-Former to effectively compress image
tokens, which confers robustness to image-only perturbations. By jointly perturbing the Q-Former’s
learnable query vectors together with the image, we enable a stronger attack and observe additional
gains in attack effectiveness.

Method Cs↓ Ci ↓ F1 ↑
Greedy (MiniGPT-4) 31.0 11.4 67.3
+Ours (Image only) 29.0 10.6 67.5
+Ours (Image + Query) 27.0 9.3 68.1

Applicability of our method to the state-of-the-art models. In the main paper, we conducted
extensive experiments on LLaVA-1.5, Shikra, and MiniGPT, which are commonly used as target
models in object hallucination mitigation studies and therefore served as our primary evaluation
benchmarks. To further validate the applicability of our approach, we additionally evaluated state-of-
the-art models such as DeepSeek-VL [38] and Qwen2.5-VL [4]. These models not only demonstrate
strong performance, but also involve joint fine-tuning of the vision encoder during vision-language
alignment training, making them suitable indicators of the scalability of our method. The results
presented in table A8 confirm that our approach effectively reduces object hallucination even in these
latest models.

Alternative attack methods on Q-Former design architecture. We observed that adversarial
attacks applied solely to the image have limited effectiveness in Q-Former based architectures (e.g.,
MiniGPT-4). This appears to stem from the robustness introduced by the architectural design that
relies on learnable queries. To validate this hypothesis, we additionally optimized the input queries
during adversarial attacks to examine whether our approach provides further advantages. Unlike
images, the query vectors are continuous, and thus we imposed a noise constraint on the query vector
q such that the perturbation scale matches that applied to the image.

∥ϵq∥∞ =
∥ϵ∥∞
255

· (max (q)−min(q))

2
, (A13)

where ϵq is the adversarial noise injected to query vectors q, ϵ is the noise added to the victim image.
The results are presented in table A9, which report the outcomes of adversarial attacks jointly applied
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Table A10: Average length of generated text with standard deviation. We report the average length
of generated texts across different models and hallucination mitigation methods, with and without our
approach. Values are presented as mean ± standard deviation. Our method slightly reduces output
length, which has been linked to lower hallucination rates in LVLMs.

Model Greedy OPERA VCD PAI Devils

Orig. +Ours Orig. +Ours Orig. +Ours Orig. +Ours Orig. +Ours

LLaVA-7B 491±104 426±105 473±107 406±118 517±114 420±121 514±118 487±120 504±206 448±173
LLaVA-13B 495±101 440±114 452±136 402±142 515±108 436±126 510±122 468±115 406±141 381±124
Shikra-7B 514±110 475±108 370±120 354±109 524±113 487±113 493±195 427±213 383±202 368±265
MiniGPT-4 408±206 418±202 301±135 304±110 404±167 404±172 284±126 282±130 415±444 391±389

Table A11: Effectiveness of our method ap-
plied to different decoding baselines. We eval-
uate our method on LLaVA-1.5-7B using vari-
ous decoding strategies, including greedy decod-
ing, beam search, DoLa and VAR. We set the
Nbeam = 5. Across all settings, our method con-
sistently reduces hallucination metrics (Cs, Ci)
while maintaining or improving F1 score.

Method Cs↓ Ci ↓ F1 ↑
Greedy 47.4 12.2 77.9
+Ours 29.2 9.3 78.2

Beam search 47.2 12.7 77.8
+Ours 28.2 8.6 78.5

DoLa 46.0 12.2 78.5
+Ours 30.4 9.5 78.2

VAR 46.8 12.5 77.9
+Ours 29.4 9.1 78.1

Table A12: Comparison of uncertainty estima-
tion methods for generating mask M . We eval-
uate the effectiveness of our adversarial attack-
based uncertainty estimation method against MC
dropout on LLaVA-1.5-7B using the CHAIR
dataset.

Method Cs↓ Ci ↓ F1 ↑
Greedy 47.4 12.2 77.9
+Ours (w/Adv. attack) 29.2 9.3 78.2
+Ours (w/MC dropout) 32.6 10.5 77.8

to both the image and the Q-Former queries. The evaluation on the CHAIR benchmark demonstrates
that our method can achieve further performance improvements when combined with additional
architectural considerations. However, for methodological consistency, the main paper focuses only
on adversarial perturbations applied to the image.

Length of generated text. [64] highlights that overly long outputs from LVLMs often lead to
object hallucinations, as the generated content exceeds the model’s visual perception. As shown in
Table A10, our method consistently and slightly reduces the length of image descriptions across
various models and hallucination mitigation methods. However, in the case of MiniGPT-4, due to its
Q-Former architecture, masking uncertain visual tokens within the vision encoder is less effective.
As a result, the generated text length may occasionally remain unchanged or even slightly increase.

Application of our method to other baselines. To validate the generalizability of our method
for mitigating object hallucination in LLaVA-1.5-7B, we apply it to alternative decoding strategies,
including beam search decoding [52], DoLa [12] and VAR [25], using the CHAIR dataset. As
shown in Table A11, our method consistently reduces hallucination rates while maintaining or even
improving the F1 score.

Comparison of uncertainty estimation of visual token: Our Method vs. MC Dropout. Epistemic
uncertainty of visual tokens introduced by a pre-trained vision encoder can be estimated using MC
Dropout. However, this approach often requires intensive computation due to thousands of forward
passes. As an efficient alternative, we propose a method that estimates uncertainty of visual tokens
using PGD-based adversarial attacks.

We perform experiments on LLaVA-1.5-7B using the CHAIR dataset and compare the uncertainty
masks M for visual tokens, generated using Eq.3, between our method and MC Dropout. As shown
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in Table A12, our approach achieves comparable or better performance while being more compu-
tationally efficient. These results highlight that our PGD-based uncertainty estimation effectively
captures the epistemic uncertainty of the pre-trained vision encoder and reliably identifies uncertain
visual tokens.

Regarding the lower performance of MC dropout compared to our method, we conjecture that
although MC dropout is widely used for uncertainty quantification, it remains only one estimation
technique. In contrast, our approach provides a more conservative estimate of uncertainty through an
upper bound, which we believe accounts for its superior performance.

G.3 Additional qualitative results

Qualitative examples of binary uncertainty masks M . Fig. A4 presents additional examples of
binary uncertainty masks M generated for various input images under PGD-based adversarial attacks
applied to the vision encoder of LLaVA-1.5-7B.

Qualitative examples of our method on various LVLMs with different mitigation methods. We
present additional qualitative examples of our method applied to different combinations of LVLMs
(LLaVA-1.5-7B and Shikra-7B) and hallucination mitigation techniques, including greedy decoding,
OPERA, VCD, PAI, and Devils. Our method integrates well with these approaches and effectively
reduces object hallucinations by preventing the generation of non-existent objects. Fig. A5–A24
illustrate qualitative examples on the CHAIR and POPE datasets using LLaVA-1.5-7B and Shikra-7B
across various hallucination mitigation methods.

Qualitative examples of failure cases. Fig. A25 presents qualitative examples of failure cases
from our proposed method. Although our method consistently mitigates hallucinated responses, it
occasionally fails to prevent all hallucinations.

H Discussion

We statistically demonstrate that epistemic uncertainty within the vision encoder contributes to
object hallucination and address this issue through self-attention masking at intermediate layers. To
understand how LVLMs change their integration of visual information after applying our method, we
measured the entropy of the LLM’s attention distribution over image tokens across all layers and
heads. Entropy serves as an indicator of whether the model attends broadly or narrowly, with higher
entropy reflecting the use of a wider range of visual evidence rather than reliance on a small subset of
tokens. Using 500 images, we found that the average entropy of LLaVA increased from 1.5746 in
the original model to 1.9717 with our method. This increase suggests that our approach encourages
broader and more balanced attention over reliable visual tokens, enabling the model to integrate
visual information more effectively while reducing over-reliance on uncertain inputs, consistent with
findings from prior work [37].

I Broader Impacts

We proposed a method to improve the reliability of Large Vision-Language Models (LVLMs)
by identifying and masking uncertain visual tokens in the vision encoder, a key source of object
hallucination. In contrast to existing approaches that intervene at the language model level, our
method operates solely on the vision encoder and demonstrates effectiveness across a variety of
models and settings.

Our method offers significant societal benefits by improving safety and reliability in critical applica-
tions such as medical imaging, assistive technologies, and autonomous systems. However, it may
also inadvertently suppress valid but ambiguous visual information, which could disproportionately
affect underrepresented groups and reinforce existing dataset biases, raising important concerns about
potential negative societal impacts.
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J Limitations

Despite its advantages, our method has several limitations. First, while it effectively reduces hallucina-
tions, the proposed masking strategy within self-attention process of vision encoder may result in the
loss of visual information, leading to slight performance degradation in certain perception-oriented
tasks. Second, the reliance on PGD-based adversarial attacks to estimate uncertainty increases in-
ference time. Third, the masking strategy lacks a formal theoretical foundation, instead relying on a
trace-based approximation of uncertainty as a surrogate for the determinant of the covariance matrix.
Finally, the method is less effective for models like MiniGPT-4, which utilize a Q-Former to abstract
visual information before integrating it with language. In these cases, masking at the vision encoder
has limited downstream impact. Addressing these issues is a promising direction for future research.
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Original image Map 𝑈 (Ours)MC Dropout Original image Map 𝑈 (Ours)MC Dropout

Figure A1: Additional visual comparison of estimated uncertainty from MC dropout and our
method. Our uncertainty map U identifies uncertain regions similar to the uncertainty map obtained
via MC dropout. MC dropout was applied to the self-attention and MLP residuals of the LLaVA-1.5
vision encoder with a dropout rate of p = 0.5. Layers i = 5 to j = 8 were used, and the variance
of each token was estimated over 1,000 forward passes. For the adversarial attack, we applied 100
iterations of PGD with k = 3. The MC-based uncertainty values were log-scaled for visualization
clarity.
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Please describe the image in detail.

The image features a dog lying on a shelf, surrounded
by various shoes. the dog is positioned in the middle
of the shelf, with its head resting on a pair of shoes.
the shelf is filled with numerous shoes, some of which
are placed close to the dog, while others are scattered
around the shelf. The scene creates a cozy and
comfortable atmosphere for the dog.

USER

LVLM

Please describe the image in detail.

The image features a small, fluffy dog sitting on a pair,
possibly-s-sized pair of headphones. The dog is
positioned in the center, and the headphones are
placed on the dog's head. The dog is wearing a pair of
headphones, and the dog is a cute. The dog is sitting
in the background.

USER

LVLM

Original Attacked

Please describe the image in detail.

The image features two giraffes in a zoo enclosure.
one giraffe is standing on the left side of the enclosure,
while the other is on the right side. They are both
eating from a feeder, which is placed in the middle of
the enclosure. The giraffes are positioned close to
each other, creating a sense of companionship.

USER

LVLM

Please describe the image in detail.

The image features a giraffe with a baby giraffe on its
back, standing in a bathroom. The baby giraffe is
being hugged by the adult giraffe, creating a
heartwarming scene. the bathroom is equipped with a
sink and a mirror, which reflects the giraffes' presence
in the room.

USER

LVLM

Original Attacked

Please describe the image in detail.

The image features a group of birds perched on a tree
branch. There are nine birds in total, with some sitting
closer to the top of the branch and others positioned
further down. The birds are of various sizes,
indicating a diverse group of species. the scene
captures the beauty of nature and the harmony
between the birds and their environment.

USER

LVLM

Please describe the image in detail.

The image features a group of five monkeys sitting on
a tree branch. They are all facing the same direction,
possibly looking at something off-camera. The
monkeys are positioned at various heights on the
branch, with some closer to the top and others near
the bottom. The scene captures the monkeys' natural
habitat and their social behavior.

USER

LVLM

Original Attacked

Figure A2: Qualitative comparison of LVLM outputs when using the original image versus the
adversarially attacked image as input. When conditioned on the attacked image (right column), the
model generates descriptions involving non-existent objects or scenes, indicating a more severe object
hallucination effect compared to the original image (left column). This experiment was conducted on
the LLaVA-1.5-7B model using the CHAIR dataset, with k = 3 and 200 PGD iterations.
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Figure A3: Uncertainty maps U and masks M generated from different initial noises using
PGD-based adversarial attacks. We qualitatively demonstrate the consistency of the uncertainty
maps U and corresponding masks M (σth = 1.1), generated using PGD-based adversarial attacks
with five different random seeds for initializing noise. Despite variations in the initial noise, the
resulting uncertainty maps U and masks M remain highly similar, highlighting the robustness and
stability of the attack-based uncertainty estimation in LLaVA-1.5-7B vision encoder.
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Figure A4: Additional qualitative examples of uncertainty maps U and masks M using PGD-
based adversarial attacks. We visualize the uncertainty maps U and the corresponding masks M
(with σth = 1.1) generated from adversarially perturbed inputs across various samples. All examples
were obtained using the LLaVA-1.5-7B vision encoder.
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The image features a large white and green bus driving down a city street. The bus is positioned in the 

middle of the street, and it appears to be a public transit bus. There are several people walking along the 

sidewalk, with some of them carrying handbags. In addition to the bus, there are two bicycles parked on 

the sidewalk, one closer to the left side of the image and the other further to the right. A traffic light can 

be seen on the left side of the street, and a fire hydrant is located near the center of the scene.

LLaVA

The image shows a large white bus driving down a street. The bus is a public transit bus, and it is driving 

down the road. The bus is in the middle of the street, and it is surrounded by buildings. The bus is also 

driving past a bus stop, which is located on the left side of the street. The bus is the main focus of the 

image, and it is driving down the road, providing transportation services to the people in the area.

LLaVA

+ Ours
Input image

Please describe the image in detail.

USER

The image features a red bicycle parked in a room, possibly a bedroom. The bicycle is leaning against a 

bed, which is covered with blankets and sheets. The room appears to be cluttered, with various items 

scattered around. There are several sports balls in the room, with one located near the left side of the bed, 

another in the middle, and a third one on the right side. Additionally, there are two bottles, one near the 

top left corner and the other on the right side of the room. A chair can be seen in the background, and a 

cup is placed on a surface in the middle of the room.

LLaVA

The image features a red bicycle parked next to a bed. The bicycle is leaning against the bed, and it 

appears to be an old-fashioned model. The bed is covered with a blanket, and there are several sports balls 

scattered around the bed. The sports balls are of various sizes and are placed in different positions on the 

bed. The scene gives off a casual and relaxed atmosphere.

LLaVA

+ Ours

Input image

Please describe the image in detail.

USER

The image features a small, white, square toilet with a hole in the middle, located on a tiled floor. The 

toilet is positioned in the middle of the room, surrounded by tiles. The floor appears to be dirty, and there 

is a person standing next to the toilet, possibly using it. In the scene, there are also two bottles, one 

located near the top left corner and the other near the top right corner of the image. Additionally, there is a 

cup placed on the floor, closer to the center of the scene.

LLaVA

The image features a dirty, white toilet with a hole in the middle, located in a bathroom. The toilet is 

surrounded by tiled walls, giving it a somewhat old and worn appearance. The toilet is situated in the 

corner of the bathroom, and the tiles are visible on the walls and floor. The overall scene gives off a sense 

of disrepair and neglect.

LLaVA

+ Ours
Input image

Please describe the image in detail.

USER

The image features a man sitting on a couch in a living room, holding a Wii remote in his hand. He 

appears to be playing a video game, possibly on a Nintendo Wii console. The couch is positioned against 

a wall, and there is a chair located near the left side of the room. In the background, there are several 

books scattered around, possibly indicating a reading or relaxation area. A dining table can be seen in the 

room, with a cup placed on it. Additionally, there is a cell phone resting on the table, and a bottle is 

located near the edge of the table.

LLaVA

The image features a man sitting on a couch, holding a Wii remote in his hand. He is wearing a gray shirt 

and appears to be enjoying some leisure time. The couch is positioned in a living room, and there are 

several books scattered around the area. Some books are placed on a shelf. A chair is also visible in the 

room, situated far away from the couch.

LLaVA

+ Ours

Input image

Please describe the image in detail.

USER

The image features a bathroom with a white sink and a mirror above it. The sink is situated next to a 

shower, which is covered in newspaper pages. The walls of the bathroom are adorned with a unique 

design, featuring a combination of newspaper and tile. There are several towels in the bathroom, with one 

placed on the sink and another on the floor. Additionally, there are two bottles, one near the sink and the 

other on the floor. A cup can also be seen on the sink, and a book is placed on the floor.

LLaVA

The image features a bathroom with a sink and a mirror. The sink is located on the left side of the 

bathroom, while the mirror is positioned above it. The bathroom also has a shower, which is situated on 

the right side of the room. The walls of the bathroom are adorned with a unique and interesting design, 

featuring a collage of newspaper clippings. This artistic choice adds a touch of personality and character 

to the space.

LLaVA

+ Ours
Input image

Please describe the image in detail.

USER

Figure A5: Additional qualitative results of our method on LLaVA-1.5-7B with greedy decoding.
On the CHAIR dataset, our method effectively reduces object hallucinations, preventing the model
from generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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The image depicts a small bathroom with a white toilet positioned in the center of the room. Next to the 

toilet, there is a sink with a mirror above it. Above the sink, there is a soap dispenser, and a towel rack is 

also present in the bathroom. In addition to the main fixtures, there are two cups placed on the floor, one 

near the left side of the toilet and the other closer to the right side. A bottle can also be seen on the left 

side of the toilet. The bathroom appears to be clean and well-maintained.

LLaVA

+OPERA

The image depicts a small bathroom with a white toilet and a sink. The toilet is positioned towards the left 

side of the bathroom, while the sink is located on the right side. The bathroom appears to be tiled, giving it 

a clean and well-maintained appearance. Additionally, there is a toilet brush placed near the toilet, ready 

for use.

LLaVA

+OPERA

+ Ours

Input image

Please describe the image in detail.

USER

The image features a woman sitting on the edge of a bed in a bedroom. She is wearing a black shirt and 

appears to be enjoying her time in the room. The bed occupies a significant portion of the scene, 

extending from the left to the right side of the image. There are two couches in the room, one located on 

the left side of the bed and the other on the right side. A potted plant can be seen on the left side of the 

room, adding a touch of greenery to the space. Additionally, there is a cup placed near the right side of the 

bed, possibly belonging to the woman or someone else in the room.

The image features a woman sitting on a bed in a bedroom. She is positioned near the center of the bed, 

which is covered with a white comforter. The bed is adorned with a colorful quilt, adding a vibrant touch 

to the room. The woman appears to be relaxed and enjoying her time in the bedroom.

Input image

Please describe the image in detail.

USER

LLaVA

+OPERA

+ Ours

LLaVA

+OPERA

The image features a cozy bedroom with a neatly made bed situated in the center of the room. The bed is 

adorned with a blue comforter and a blue blanket, creating a warm and inviting atmosphere. In addition 

to the bed, there is a large window in the room, allowing natural light to fill the space. A potted plant is 

placed near the window, adding a touch of greenery and life to the room. The room also contains a 

bookshelf filled with numerous books, showcasing a variety of reading materials for the occupant. A 

chair is positioned near the bed, providing a comfortable seating area for relaxation or reading. Other 

items in the room include a vase, a bottle, and a clock, adding to the overall decor and functionality of 

the space.

The image depicts a cozy bedroom scene with a bed positioned under a large window. The bed is covered 

with a blue comforter, and there are several books scattered around the room. A potted plant is placed 

near the window, adding a touch of greenery to the space. In addition to the bed, there is a dresser and a 

chair in the room. The dresser is located on the left side of the bed. A mirror is also present in the room, 

positioned on the left side of the bed. Overall, the room appears to be a comfortable and inviting space for 

relaxation and reading.

Input image

Please describe the image in detail.

USER

LLaVA

+OPERA

+ Ours

LLaVA

+OPERA

The image features a black cat standing on a bed, curiously looking at a cup placed on the bed. The cat 

appears to be sniffing the cup, possibly intrigued by its contents. In the room, there is a dining table with a 

few items on it. A bottle can be seen on the table, as well as a bowl and a spoon. Additionally, there are 

two books placed on the table, one closer to the left side and the other near the center. A remote control is 

also present on the table, slightly to the left of the center.

The image features a black cat standing on a bed, with its head inside a cup. The cat appears to be drinking 

from the cup, which is placed near the bed. The cat is positioned in the middle of the bed, and the cup is 

located towards the left side of the bed. The scene captures the cat's curiosity and playfulness as it 

interacts with the cup.

Input image

Please describe the image in detail.

USER

LLaVA

+OPERA

+ Ours

LLaVA

+OPERA

Figure A6: Additional qualitative results of our method on LLaVA-1.5-7B with OPERA. On the
CHAIR dataset, our method effectively reduces object hallucinations, preventing the model from
generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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The image features a small wooden boat, possibly a canoe or sailboat, floating on a body of water near a 

dock. The boat is positioned towards the center of the scene, surrounded by calm waters. There is a pier 

visible nearby, with several benches located around the area. In addition to the boat and benches, there 

are two dining tables and two chairs placed on the pier, likely for people to enjoy their meals or 

gatherings. The scene suggests a leisurely, peaceful setting, where people can enjoy spending time.

LLaVA

+VCD

The image shows a small white boat sitting in a large body of water. The boat appears to be floating near a 

dock and is surrounded by other boats in the water. Some of these other boats are positioned closer to the 

shore, while others are further out in the water. The scene captures a serene and peaceful atmosphere with 

the boat calmly resting in the water.

LLaVA

+ VCD

+ Ours

Input image

Please describe the image in detail.

USER

The image features a girl wearing a purple scarf eating a hot dog with mustard on it. She is biting into the 

hot dog while holding the bun in her hand, taking a big bite. There are a couple of bottles placed near the 

edge of the frame, and a dining table can be seen in the background. Another person is visible in the 

background, but they are not the main focus of the image. Overall, the scene captures a casual and 

enjoyable moment of someone savoring a delicious hot dog.

The image features a young girl wearing a red jacket and a hat, standing next to a hot dog that she is about 

to take a bite out of. She is holding the hot dog in her hand, which appears to be wrapped in a bun and 

covered with mustard. The girl is smiling as she gets ready to enjoy her meal.

Input image

Please describe the image in detail.

USER

LLaVA

+ VCD

+ Ours

LLaVA

+ VCD

The image depicts a silver and red commuter train traveling above ground on a curved bridge or elevated 

railway. The train is long, with several cars visible, carrying passengers through the city. It is moving 

under a cloudy sky, creating a moody atmosphere. Apart from the train, there is a traffic light visible on 

the left side of the scene, and a stop sign can be seen on the right side, indicating a road crossing beneath 

the elevated railway. The overall scene captures the essence of urban transportation, as the train continues 

to provide efficient travel for the city's residents.

A train on a train track is moving along the track. The train is traveling across a bridge, giving a clear view 

of its journey. The train is in motion, capturing its movement through a long stretch of the track. The train 

appears to be an urban transportation vehicle, and is an interesting sight to behold.

Input image

Please describe the image in detail.

USER

LLaVA

+ VCD

+ Ours

LLaVA

+ VCD

The image displays a plate filled with a delicious sandwich and a fresh salad. The sandwich is served on a 

toasted bun and features meat, possibly turkey, and cheese, creating a mouth-watering combination. The 

salad consists of red cabbage, adding a colorful and crunchy element to the dish. There are numerous 

pieces of broccoli visible in the salad, scattered across the plate, making it a nutritious and appetizing 

meal. In addition to the sandwich, the plate also includes a small portion of a donut, providing a sweet 

touch to the meal.

The image displays a sandwich and salad on a white plate. The sandwich appears to be a burger or a 

panini, with a slice of cheese in the center. The salad consists of a variety of leafy greens and a pickle, 

making for a visually appealing and healthy meal. The dish is ready to be enjoyed, offering a combination 

of flavors and textures for a delicious dining experience.

Input image

Please describe the image in detail.

USER

LLaVA

+ VCD

+ Ours

LLaVA

+ VCD

Figure A7: Additional qualitative results of our method on LLaVA-1.5-7B with VCD. On the
CHAIR dataset, our method effectively reduces object hallucinations, preventing the model from
generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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The image features a woman standing in front of a display of cupcakes, possibly at a bakery or a fair. She 

is smiling and appears to be enjoying the event. The woman is wearing an apron and is surrounded by 

various cupcakes. There are several cupcakes in the scene, with some placed on a stand and others on a 

table. The woman is standing in front of the cupcakes, and she seems to be enjoying the event. The scene 

is set in a room with a dining table and chairs nearby.

LLaVA

+PAI

The image features a woman standing in front of a display of cupcakes. She is wearing an apron and 

appears to be a baker or a worker at a bakery. The woman is standing in front of a display of cupcakes, 

which are arranged in a tower-like formation. There are several cupcakes on display, with various flavors 

and toppings. The woman is standing in front of the display, possibly admiring the cupcakes or possibly 

preparing them. The scene is set in a bakery or a similar environment, with a variety of cupcakes and a 

woman wearing an apron.

LLaVA

+ PAI

+ Ours

Input image

Please describe the image in detail.

USER

The image captures a skateboarder performing a trick in the air, with a crowd of people watching the 

impressive stunt. The skateboarder is in the middle of the scene, with his skateboard in the air. There are 

several people in the scene, with some standing closer to the skateboarder and others further away. A 

woman is standing near the skateboarder, while other people are watching the performance. The 

onlookers are spread out across the scene, with some standing closer to the skateboarder and others 

further away. In the background, there is a dining table, and a chair is visible in the scene. The 

skateboarder's impressive trick has captured the attention of the onlookers, making it a memorable 

moment in the image.

The image captures a skateboarder performing a trick in the air, with a crowd of people watching the 

impressive stunt. The skateboarder is in the middle of the scene, and the spectators are spread out around 

him, with some standing closer to the skateboarder and others further away. There are several people in 

the scene, with some standing closer to the skateboarder and others further away. A person is holding a 

skateboard, and the skateboarder is in the air, performing a trick. The scene is filled with excitement and 

anticipation as the skateboarder showcases his skills.

Input image

Please describe the image in detail.

USER

LLaVA

+ PAI

+ Ours

LLaVA

+ PAI

The image features a cozy living room with a television sitting on top of a wooden stand. The room is 

furnished with a couch, a chair, and a television. The couch is placed in the middle of the room, while the 

chair is situated on the left side of the room. The television is placed on the wooden stand, and it is turned 

on. In the room, there is also a dining table with a vase on it, and a cup on the table. The vase is placed 

on the table, and the cup is situated nearby. The room appears to be a comfortable and inviting space for 

relaxation and entertainment.

The image features a cozy living room with a television, a couch, and a chair. The television is placed on a 

wooden stand, and it is turned on. The room also contains a chair and a couch, creating a comfortable and 

inviting atmosphere. In the room, there is a TV on a wooden stand, and a chair is situated nearby. The 

couch is placed in the room, and the chair is situated close to it. The room appears to be a comfortable 

space for relaxation and entertainment.

Input image

Please describe the image in detail.

USER

LLaVA

+ PAI

+ Ours

LLaVA

+ PAI

The image shows a man in a brown shirt cutting a large sub sandwich on a cutting board in a kitchen. He 

is using a knife to cut the sandwich, which is placed on a cutting board. The man is focused on his task, 

and the kitchen appears to be well-equipped with various kitchen items. In the kitchen, there is a 

refrigerator, a microwave, a sink, and a knife. A bottle is also visible in the scene. A person is standing 

nearby, possibly observing the man's actions or waiting for their turn to cut the sandwich. The kitchen is 

well-equipped, and the man appears to be the main focus of the scene.

The image shows a man standing in a kitchen, preparing a sandwich on a cutting board. He is using a 

knife to cut the sandwich, which is placed on a cutting board. The man is focused on his task, and he is 

wearing a brown shirt. In the kitchen, there are various items, such as a bottle of soda, a cup, and a knife. 

The cup is placed on the counter, while the knife is located near the sandwich. The man is surrounded by 

these items, indicating a busy kitchen environment.

Input image

Please describe the image in detail.

USER

LLaVA

+ PAI

+ Ours

LLaVA

+ PAI

Figure A8: Additional qualitative results of our method on LLaVA-1.5-7B with PAI. On the
CHAIR dataset, our method effectively reduces object hallucinations, preventing the model from
generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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The image features a man standing in a kitchen, posing with a smile and holding his hands out. He is 

surrounded by various kitchen utensils, including a microwave, a toaster, and a stove. The man is 

standing in front of a microwave oven, which is located on the left side of the kitchen. There are multiple 

knives and spoons in the kitchen, with some of them placed on a countertop. The knives are scattered 

around the kitchen, with some of them being placed on the countertop and others on the microwave. The 

man appears to be enjoying his time in the kitchen, surrounded by various utensils and appliances.

LLaVA

+Devils

A man is standing in front of a wall with pots and pans on it. He is holding his hand out to the side, and he 

is posing for a picture. The man is wearing a gray shirt and is standing in front of a wall with pots and 

pans on it. The pots and pans are arranged in a way that makes it easy for the man to pose with them. The 

man is also holding a spoon in his hand, which is placed on the wall.

LLaVA

+ Devils

+ Ours

Input image

Please describe the image in detail.

USER

The image shows a small kitchen with a white refrigerator and a white oven. The refrigerator is located on 

the right side of the kitchen, while the oven is on the left side. The kitchen is equipped with a sink, a 

microwave, and a toaster oven, which is placed on the counter. The kitchen also features a toaster oven, a 

sink, and a refrigerator. The refrigerator is positioned next to the oven, and the sink is located on the 

counter. The kitchen is well-equipped with various appliances, making it a functional and efficient space.

The image shows a small kitchen with a white refrigerator, a white stove, and a wooden cabinet. The 

refrigerator is white, and the stove is white and black. The kitchen is small and compact, with a white 

refrigerator and a wooden cabinet. The refrigerator is positioned next to the stove, and the cabinet is 

placed in front of it. The kitchen is well-organized, with a white refrigerator and a wooden cabinet.

Input image

Please describe the image in detail.

USER

LLaVA

+ Devils

+ Ours

LLaVA

+ Devils

The image features two cats sitting in a suitcase, likely on a bed or a chair. The cats are comfortably 

resting in the suitcase, which is placed on a table. The cats are positioned next to each other, with one cat 

on the left side and the other on the right side of the suitcase. The suitcase is placed on a table, and the 

cats seem to be enjoying their time together in the suitcase. The table is surrounded by chairs, with one 

chair on the left side and another on the right side. The cats are positioned in such a way that they are both 

sitting in the suitcase, creating a cozy and comfortable environment for them.

The image features two cats sitting on top of a suitcase, which is placed on a chair. The cats are both grey 

and white, and they appear to be sleeping or resting comfortably. The suitcase is black in color, and the 

cats are positioned in such a way that they are almost completely covered by the suitcase. The cats are 

sitting on the chair, and their positioning suggests that they are enjoying a cozy spot.

Input image

Please describe the image in detail.

USER

LLaVA

+ Devils

+ Ours

LLaVA

+ Devils

The image features a motorcycle parked on the side of a road, with a beautiful mountain in the 

background. The motorcycle is parked on the side of the road, and the rider is likely taking a break from 

their journey. The motorcycle is parked on the side of the road, and the rider is likely enjoying the scenic 

view of the White Mountain National Forest. The motorcycle is parked on the side of the road, and the 

rider is taking a break from their journey.

The image features a red motorcycle parked on the side of a road, with a beautiful mountain in the 

background. The motorcycle is parked on the side of the road, and the surrounding area is filled with 

greenery, including trees and grass. The motorcycle is positioned on the side of the road, and the mountain 

can be seen in the distance. The scene is set in a picturesque location, with the motorcycle parked on the 

side of the road, and the mountain in the background.

Input image

Please describe the image in detail.

USER

LLaVA

+ Devils

+ Ours

LLaVA

+ Devils

Figure A9: Additional qualitative results of our method on LLaVA-1.5-7B with Devils. On the
CHAIR dataset, our method effectively reduces object hallucinations, preventing the model from
generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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Figure A10: Additional qualitative results of our method on LLaVA-1.5-7B with greedy decoding.
On the POPE dataset, our method correctly identifies objects present in the image. Correct and
incorrect answers are highlighted in blue and red, respectively.
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Figure A11: Additional qualitative results of our method on LLaVA-1.5-7B with OPERA. On
the POPE dataset, our method correctly identifies objects present in the image. Correct and incorrect
answers are highlighted in blue and red, respectively.
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Figure A12: Additional qualitative results of our method on LLaVA-1.5-7B with VCD. On the
POPE dataset, our method correctly identifies objects present in the image. Correct and incorrect
answers are highlighted in blue and red, respectively.
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Figure A13: Additional qualitative results of our method on LLaVA-1.5-7B with PAI. On the
POPE dataset, our method correctly identifies objects present in the image. Correct and incorrect
answers are highlighted in blue and red, respectively.
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Figure A14: Additional qualitative results of our method on LLaVA-1.5-7B with Devils. On the
POPE dataset, our method correctly identifies objects present in the image. Correct and incorrect
answers are highlighted in blue and red, respectively.
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The image shows a man standing in a grassy field, swinging a baseball bat with a baseball glove on the 

other hand. He appears to be enjoying his time outdoors, actively engaged in a game of baseball. The field 

is illuminated by a light in the background, creating a warm and inviting atmosphere for the game. Around 

the field, there are a few cars parked at a distance, suggesting that the field is located in a public area 

where people can gather and play sports.

Shikra

The image features a young man playing frisbee on a grassy field. He is in a throwing motion, holding the 

frisbee with his right hand while his left hand is positioned behind him. There are several other people in 

the background, possibly enjoying the outdoors or participating in the game. The scene appears to be set 

during the evening or night, with the grassy field being illuminated, creating a lively atmosphere.

Shikra

+ Ours
Input image

Please describe the image in detail.

USER

The image features a woman sitting on a chair with a tennis racket in her hand. She is in the process of 

looking at a cell phone, which she is holding in her other hand. The chair is positioned in a way that 

allows her to comfortably check her phone while relaxing. Additionally, there are a few books placed 

nearby, suggesting that the woman might be in a casual and comfortable setting, possibly at home or a 

public space with a bookshelf. The scene captures a moment of leisure or relaxation for the woman.

Shikra

The image features a woman sitting in a chair with a tennis racket in her hand. She appears to be wearing 

glasses and is likely dressed in a casual outfit. The woman is holding the tennis racket up in front of her, 

possibly in anticipation of playing or warming up for a game.
Shikra

+ Ours
Input image

Please describe the image in detail.

USER

The image features an aerial view of a large truck driving down a street. The truck is filled with various 

items, including a cow, a trailer full of containers, and numerous garbage-filled barrels. The cow can be 

seen occupying a significant portion of the back of the truck, while the barrels are scattered throughout the 

truck bed. A person is visible near the truck, possibly observing the scene or involved in the 

transportation process. The image captures the essence of a busy street with a truck carrying a diverse load.

Shikra

The image depicts a large truck driving down a street, its cargo compartment filled with various items. In 

the back of the truck, a cow can be seen, likely being transported to a farm or another location. The truck's 

side displays a mix of different materials, including two large reels of rope and a crushed can. 

Additionally, there is a blue barrel on the truck, which contributes to the diverse load it carries. The truck 

appears to be moving at a moderate speed, and its cargo compartment is quite full, showcasing the diverse 

items it carries.

Shikra

+ Ours
Input image

Please describe the image in detail.

USER

The image features a group of men in uniform, working together in a navy ship's control room. They are 

wearing headphones and sunglasses, focusing on their tasks as they operate various communication 

equipment. There are at least five individuals in the room, with some sitting at a table and others standing 

near the windows. A laptop is placed on the table in front of the men, and one of the individuals is using a 

handheld radio on his shoulder. The room is equipped with a TV, which is visible in the background. 

Additionally, a book can be seen on the table, possibly a reference material or guide for the tasks they are 

performing.

Shikra

The image features a group of men in navy uniforms, working together in a control room. They are using 

headphones and a microphone to communicate with each other, with some of them also wearing 

sunglasses. There is a laptop in the scene, one placed on the left side of the room. The men are working 

diligently, likely engaged in their tasks, as they navigate the control room and communicate with one 

another.

Shikra

+ Ours

Input image

Please describe the image in detail.

USER

The image features a man sitting on the floor in front of a mirror, taking a picture of himself. He is 

wearing a green shirt and appears to be comfortable as he captures the moment. The man is using a cell 

phone to take the picture, and there is a handbag nearby on the floor. In the room, a couch can be seen in 

the background, occupying a significant portion of the space. There are also two vases placed at different 

spots in the room, adding decorative elements to the scene.

Shikra

The image features a man sitting on the floor in front of a mirror. He is taking a picture of himself using a 

cell phone, capturing the reflection in the mirror. The man is wearing a green shirt and shorts, which can 

be seen clearly in the mirror. The primary focus is the man taking a picture of himself through the mirror.
Shikra

+ Ours
Input image

Please describe the image in detail.

USER

Figure A15: Additional qualitative results of our method on Shikra-7B with greedy decoding.
On the CHAIR dataset, our method effectively reduces object hallucinations, preventing the model
from generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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Figure A16: Additional qualitative results of our method on Shikra-7B with OPERA. On the
CHAIR dataset, our method effectively reduces object hallucinations, preventing the model from
generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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Figure A17: Additional qualitative results of our method on Shikra-7B with VCD. On the CHAIR
dataset, our method effectively reduces object hallucinations, preventing the model from generating
non-existent objects in the image. Hallucinated object words are highlighted in red.
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Figure A18: Additional qualitative results of our method on Shikra-7B with PAI. On the CHAIR
dataset, our method effectively reduces object hallucinations, preventing the model from generating
non-existent objects in the image. Hallucinated object words are highlighted in red.
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Figure A19: Additional qualitative results of our method on Shikra-7B with Devils. On the
CHAIR dataset, our method effectively reduces object hallucinations, preventing the model from
generating non-existent objects in the image. Hallucinated object words are highlighted in red.
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Figure A20: Additional qualitative results of our method on Shikra-7B with greedy decoding. On
the POPE dataset, our method correctly identifies objects present in the image. Correct and incorrect
answers are highlighted in blue and red, respectively.
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Figure A21: Additional qualitative results of our method on Shikra-7B with OPERA. On the
POPE dataset, our method correctly identifies objects present in the image. Correct and incorrect
answers are highlighted in blue and red, respectively.
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Figure A22: Additional qualitative results of our method on Shikra-7B with VCD. On the POPE
dataset, our method correctly identifies objects present in the image. Correct and incorrect answers
are highlighted in blue and red, respectively.
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Figure A23: Additional qualitative results of our method on Shikra-7B with PAI. On the POPE
dataset, our method correctly identifies objects present in the image. Correct and incorrect answers
are highlighted in blue and red, respectively.
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Figure A24: Additional qualitative results of our method on Shikra-7B with Devils. On the POPE
dataset, our method correctly identifies objects present in the image. Correct and incorrect answers
are highlighted in blue and red, respectively.
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Figure A25: Failure cases of our method on LLaVA-1.5-7B with greedy decoding. On the CHAIR
dataset, our method effectively reduces object hallucinations but fails to completely prevent the
generation of non-existent objects. Hallucinated object words are highlighted in red.
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