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ABSTRACT

Training on real-world data is challenging due to its complex nature, where data
is often noisy and may require understanding diverse domains. Methods focused
on Learning with Noisy Labels (LNL) may help with noise, but they often assume
no domain shifts. In contrast, approaches for Domain Generalization (DG) could
help with domain shifts, but these methods either consider label noise but prioritize
out-of-domain (OOD) gains at the cost of in-domain (ID) performance, or they try
to balance ID and OOD performance, but do not consider label noise at all. Thus,
no work explores the combined challenge of balancing ID and OOD performance
in the presence of label noise, limiting their impact. We refer to this challenging
task as Noise-Aware Generalization, and this work provides the first exploration of
its unique properties. We find that combining the settings explored in LNL and DG
poses new challenges not present in either task alone, and thus, requires direct study.
Our findings are based on a study comprised of three real-world datasets and one
synthesized noise dataset, where we benchmark a dozen unique methods along with
many combinations that are sampled from both the LNL and DG literature. We find
that the best method for each setting varies, with older DG and LNL methods often
beating the SOTA. A significant challenge we identified stems from unbalanced
noise sources and domain-specific sensitivities, which makes using traditional LNL
sample selection strategies that often perform well on LNL benchmarks a challenge.
While we show this can be mitigated when domain labels are available, we find
that LNL and DG regularization methods often perform better.

1 INTRODUCTION

As deep learning models grow in complexity, the need for extensive training datasets has increased.
However, real-world data collection often introduces noise and aggregates samples from multiple
sources, creating challenges for training. To effectively address these issues, it is essential to consider
three critical perspectives: in-domain performance, out-of-domain performance, and robustness to
label noise, as illustrated in Fig. 1-(a).

Learning with Noisy Labels (LNL) addresses the intersection of in-domain performance and noise
robustness, aiming to mitigate the impact of incorrect labels in real-world datasets (Natarajan et al.,
2013; Arpit et al., 2017; Song et al., 2022; Xia et al., 2021; 2023; Wei et al., 2022; Liu et al., 2021;
Song et al., 2024; Cordeiro et al., 2023; Shen & Sanghavi, 2019). However, these methods often
assume a single data distribution, having issues with distinct feature distributions when noisy labels
coincide with domain shifts, as shown in Fig. 1-(b). Domain Generalization (DG) aims to train
models that generalize to unseen target domains after learning from multiple source domains (Cha
et al., 2022; 2021; Wang et al., 2023; Bui et al., 2021; Arjovsky et al., 2019; Kamath et al., 2021;
Chen et al., 2022; 2024a; Rame et al., 2022; Lin et al., 2022; Zhang et al., 2024). While many DG
methods focus primarily on out-of-domain performance, a subset also evaluates both source and target
domains—termed as Domain-Aware Optimization methods (Wortsman et al., 2022; Zhang et al.,
2024). However, this group often overlooks the impact of noise and tends to overfit when faced with
noisy labels (Qiao & Low, 2024). Additionally, some DG methods show implicit OOD-robustness
under noise (Rame et al., 2022; Sagawa et al., 2019; Krueger et al., 2021; Qiao & Low, 2024;
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Figure 1: Comparison to prior work. (a) The relationship between our task and related works,
illustrated by three overlapping circles representing In-Domain Performance, Out-of-Domain Per-
formance (Teterwak et al., 2023; Cha et al., 2022; 2021; Wang et al., 2023), and Robustness to
Noise. LNL (Liu et al., 2020; Li et al., 2023; Karim et al., 2022; Zhao et al., 2024), Domain-Aware
Optimization (Zhang et al., 2024; Wortsman et al., 2022), and OOD-Robustness (Sagawa et al., 2019;
Rame et al., 2022; Krueger et al., 2021) correspond to the intersections between areas (corresponding
methods are listed below), with our work at the center, addressing all three aspects. (b) The challenges
of Noise-Aware Generalization: Noisy label samples and those from varying (minority) distributions
can mislead the model, resulting in inaccurate decision boundaries.

Humblot-Renaux et al., 2024), but often place more emphasis on out-of-domain performance while
neglecting the in-domain performance in noisy environments.

By examining related work, as visualized in Fig. 1-(a), we observe that previous research addresses
only portions of this problem space. Notably, the intersection where all three aspects—in-domain
performance, out-of-domain generalization, and noise robustness—overlap is missing.

To bridge this gap, we introduce Noise-Aware Generalization, a novel task designed to capture the
complex challenges of training on noisy, multi-domain datasets. In practice, training data is often
collected under the assumption that the test data will originate from a similar distribution, making
in-domain performance crucial. Meanwhile, real-world applications frequently require models to
generalize across diverse domains, highlighting the importance of out-of-domain generalization as
well. Additionally, handling label noise is unavoidable, necessitating a focus on robustness to noise.
Noise-Aware Generalization emphasizes the intersection of these three critical considerations.

Surprisingly, even the combinations of state-of-the-art LNL and DG methods do not perform well
in this setting, indicating that challenges arise when integrating these approaches. We expand our
analysis by exploring the effects of multi-distribution data on LNL methods, the sensitivity to noise
across different domains, and the balance between domain distribution and label cleanliness. Our
study also provides insights into how LNL regularizers can complement DG methods and highlights
the potential of leveraging domain labels to enhance sample selection in LNL tasks.

Our contributions are summarized below:
• We propose a new task, Noise-Aware Generalization, which contains both noisy labels with domain

shifts and evaluates both on in-domain and out-of-domain performance. We find that combining
the best performing LNL+DG from prior work does not generalize well to our setting, suggesting
that they have overfit to their respective task assumptions.

• We present a unified framework that integrates DG with LNL methods. Additionally, we provide a
rough noise estimation for three real-world datasets with multi-domain data from diverse fields:
web/user (Fang et al., 2013), e-commerce (Xiao et al., 2015), and biological images (Chen et al.,
2024b). This framework and noise estimation can support future studies on noise robustness and
the intersection of DG methods.

• We perform a critical analysis of twenty older and state-of-the-art (SOTA) methods in DG and
LNL, along with their combinations. Our experimental settings on Noise-Aware Generalization
provide valuable insights for future research in this area.
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2 NOISE-AWARE GENERALIZATION STUDY

In this section, we begin by formally defining the Noise-Aware Generalization task and presenting a
unified framework that integrates both LNL and DG perspectives. We then analyze real-world datasets
to demonstrate the existence of Noise-Aware Generalization in practical training scenarios. This
section forms the foundational components necessary for conducting comprehensive experiments and
analysis in the subsequent sections.

2.1 NOISE-AWARE GENERALIZATION FRAMEWORK

Consider a multi-domain dataset D with m source domains: D = {D1,D2, . . . ,Dm}, where each
Di = {(xi,j , yi,j)}ni

j=1 represents samples from domain i with xi,j as the input and yi,j as the label,
potentially noisy. During the test, an unseen target domain Dtarget will be used for OOD-evaluation.
The goal is to learn a model fθ(x) parameterized by θ that performs well across all source domains
{Di}mi=1 and generalized to Dtarget, despite the presence of label noise.

LNL objectives. The typical loss function for LNL seeks to minimize the impact of label noise,
with methods broadly categorized into non-separating and separating. Non-separating methods,
such as learning noise transitions (Scott, 2015; Liu & Tao, 2015; Menon et al., 2015; Patrini et al.,
2017; Li et al., 2021; Zhang et al., 2021; Kye et al., 2022; Cheng et al., 2022; Liu et al., 2023; Li
et al., 2022b; Vapnik et al., 2013; Yong et al., 2022; Zhao et al., 2024), adjust the label with noise
transition matrices (Xia et al., 2019; Yao et al., 2020; Yang et al., 2022). Separating methods split the
training set into subgroups and employ semi-supervised learning (SSL) techniques (Hu et al., 2021;
Torkzadehmahani et al., 2022; Nguyen et al., 2019; Tanaka et al., 2018; Li et al., 2022a; Feng et al.,
2021). Detecting clean samples include loss-based methods that assume samples with large losses
are noisy (Jiang et al., 2018; Li et al., 2020; Arazo et al., 2019), similarity-based methods identify
clean-sample clusters within each class (Mirzasoleiman et al., 2020; Kim et al., 2021). and data
augmentation (Li et al., 2023; Karim et al., 2022) methods that select clean samples with consistent
predictions across different augmentation strengths. After splitting the data into clean and noisy,
some methods remove noisy samples from training (Xia et al., 2021; 2023; Wei et al., 2022; Liu
et al., 2021; Song et al., 2024; Cordeiro et al., 2023; Shen & Sanghavi, 2019), while others apply
SSL (Sohn et al., 2020; Tarvainen & Valpola, 2017; Li et al., 2020; Karim et al., 2022; Li et al., 2023).

More formally, for domain i the weighted empirical risk with noisy labels can be written as:

L(i)
LNL =

1

|Di|
∑

(xi,j ,yi,j)∈Di

ω(yi,j)l(fθ(xi,j), τ(yi,j)). (1)

This single equation highlights the key aspects across LNL methods. l(·, ·) is a loss function such
as cross-entropy, and ω(yi,j) is a weight that adjusts the impact of potentially noisy labels, often
determined via clean label detection techniques. For example, for non-separating methods like
ELR (Liu et al., 2020) and PLM (Zhao et al., 2024), ω(yi,j) = 1 for all the samples. While for
separating methods, such as UNICON (Karim et al., 2022) and DISC (Li et al., 2023), ω(yi,j) varies
for clean and noisy subgroups. τ(·) denotes a label transformation, such as a corrected version of the
original label. For example, PLM use the estimated noise transition matrix to transform the noisy
labels, UNICON and DISC apply mixup on the noisy subset, where τ(yi,j) is the mixup label.

DG objectives. The goal of LDG is to capture domain-level variations and learn domain-invariant
representations, ensuring that the model isn’t overly biased toward any single domain during train-
ing (Gulrajani & Lopez-Paz, 2021; Li et al., 2017a;b; 2019; 2018a;b; Muandet et al., 2013). By
examining differences across domains, it attempts to generalize better to unseen data.

LDG =

m∑
i=1

∑
j ̸=i

Var(gj(θ))

 . (2)

where gj(θ) represents domain j’s contribution from the parameterized model fθ(·). The objective
function aims to minimize domain-wise variations by evaluating how the representations differ across
domains, thereby learning features that are consistent and robust across different domains. For
example, MIRO (Cha et al., 2022) maximizes the mutual information between representations from
an oracle model and a trained model, which ensures that the learned representations are consistent
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Figure 2: Real-world datasets with in-domain noise and multi-domain distribution. VLCS
(web/user data) (Fang et al., 2013), Clothing1M (e-commerce) (Xiao et al., 2015), and CHAMMI-
CP (biomedical images) (Chen et al., 2024b). VLCS and Clothing1M face label noise from poor
annotations and domain shifts from varying data sources, while CHAMMI-CP deals with ambiguous
features and varying experimental environments.
across domains, effectively reducing gj(θ)’s domain-specific variations and thereby achieving better
generalization to unseen domains.

Regularization terms. Non-separating LNL methods often incorporate regularization to prevent
the model from memorizing noisy labels, guiding it toward more reliable target probabilities (Liu
et al., 2020; 2022a). The regularization term operates on the predicted logits, and a unified form
of LNL regularization can be expressed as: R(i)

LNL =
∑n

j=1 ϕ (pi,j , τ(yi,j)), where pi,j is the
predicted probability logits for the j−th sample. ϕ(·, ·) is a function to enforce regularization, e.g.,
ϕ(pi,j , τ(yi,j) = log(1− < pi,j , τ(yi,j >) in ELR (Liu et al., 2020).

In Domain Generalization (DG), regularization serves as a key component to enhance robust-
ness (Foret et al., 2020), aiming to minimize the worst-case loss in a neighborhood around the
model parameters (Cha et al., 2021; Wang et al., 2023; Zhang et al., 2024). This regularization is
formulated as: RDG = max∥ϵ∥≤ρ L(θ + ϵ), where ρ controls the perturbation radius.

Final objective. The final objective function for Noise-Aware Generalization is:

LNG = α
1

m

m∑
i=1

L(i)
LNL + βLDG + λRLNL ++γRDG. (3)

where α, β, λ, and γ are hyperparameters that balance the contributions from the LNL loss, DG
loss, LNL regularization, and SAM regularization respectively. Our Noise-Aware Generalization
integration methods follow the unified framework and detailed algorithms for the methods used in
our experiments are provided in Appendix C.2.

2.2 NOISE-AWARE GENERALIZATION CHALLENGE IN REAL-WORLD DATASETS

VLCS (Fang et al., 2013) is a well-known benchmark used for domain generalization. It consists
of images drawn from four distinct datasets: VOC2007 (V) (Everingham et al., 2010), LabelMe
(L) (Russell et al., 2008), Caltech101 (C) (Fei-Fei et al., 2004), and SUN09 (S) (Choi et al., 2010).
Each dataset represents a different domain with its unique distribution. The primary challenge with
VLCS lies in its inherent domain shifts. It also involves the presence of noisy labels, which is
overlooked by the prior work. A thorough manual inspection reveals an unbalanced noise distribution
across domains. Caltech101 is the cleanest and easiest domain, featuring clear backgrounds and
salient objects. However, LabelMe exhibits substantial noise, with over 80% of the "person" images
being incorrectly labeled, often depicting cars or street scenes. Similar noise issues are observed
in VOC2007 and SUN09, where numerous "car" images are mislabeled as persons, and a majority
of "chair" images contain people. Further examples can be seen in Fig. 2, with additional details
provided in the Appendix B.
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Clothing1M. (Xiao et al., 2015) is a benchmark for learning noisy labels. It contains approximately
1 million images of clothing items and 14 clothing categories, where the noise is estimated to affect
around 40% of the labels. However, what’s overlooked in this dataset, is the domain shift within
the training samples, the images in Clothing1M are collected from three distinct online shopping
websites, which can be treated as three different data sources. As shown in Fig. 2, the domain shift
does exist in the data.

CHAMMI-CP (Chen et al., 2024b) is from a collection of approximately 8 million single-cell
images, which utilized the Cell Painting assay (Bray et al., 2016),an advanced imaging technique
that stains eight cellular compartments using six fluorescent markers, which are then captured in
five imaging channels. This dataset plays a crucial role in quantifying cellular responses to various
treatments or perturbations, a fundamental process in drug discovery research. The challenges in
this dataset involve both noisy labels related to control images and domain shifts under different
technical variations in the experiment settings. For control cells, also referred to as the "do-nothing"
group, there can be confusion with weak-treatment cells. When the treatment effect is minimal,
weak-treatment cells may visually resemble control cells (Bray et al., 2016). In such cases, despite
being labeled as weak treatment, their visual features align more closely with control cells. Thus,
for treatment classification tasks, these cells should use control as the correct label. Regarding the
domain shift observed in these cell images, the cells undergo treatment in various environments
(plates), leading to technical variations that introduce domain-specific features.

3 EXPERIMENTS

We conduct two types of experiments. First, we evaluate ID and OOD performance on real-world
datasets. ID performance is tested on datasets from the training domains. For OOD performance, we
follow the "leave-one-out" protocol, leaving one domain out as the test domain and training with the
remaining domains. The results reported are the average performance across all test domains. The
second type of experiment focused on analyzing the challenges of combining LNL and DG tasks. For
this, we include DomainNet (Peng et al., 2019) with synthesized noise to facilitate analysis.

3.1 EVALUATION METRICS AND DATASETS

Since the goal of Noise-Aware Generalization is to achieve high accuracy on both ID and OOD data,
we report classification accuracy on two test sets for each trained model: an ID-test set with the same
distribution as the training set and an OOD-test set from a different domain.

Datasets. We use three real-world datasets (shown in Fig. 2) and one synthetic noise dataset. These
real-world datasets contain both noisy labels and distribution shifts. For Clothing1M (Xiao et al.,
2015), domain labels aren’t available, so we can’t split it for OOD testing. Instead, we introduce
Fashion-MNIST (Xiao et al., 2017) as an OOD test set to evaluate domain generalization. Fashion-
MNIST contains 70,000 grayscale images of 10 fashion item categories, each 28x28 pixels, similar
to MNIST. We refer to this combination as Noise-Aware Generalization -Fashion, using 7 classes
from Clothing1M and 5 classes from Fashion-MNIST, all shared between the two datasets.

DomainNet-SN is an additional synthetic noise dataset to complement our real-world datasets.
DomainNet (Peng et al., 2019) features over six million images across 6 domains (real photos,
sketches, paintings, clipart, infographics, and quickdraw) spanning 345 classes. It provides a diverse
range of visual data, enriching our analysis by examining how noise interacts with domain shifts.
DomainNet-SN incorporates asymmetric noise, where noisy label pairs are derived from the training
confusion matrix. For each class, the target class with the second-highest prediction probability is
chosen as the noisy label source. Details about the synthetic noise are provided in appendix A.

3.2 RESULTS ON REAL-WORLD DATASETS

Tab. 1 presents the performance of various methods on three different datasets: VLCS (Fang et al.,
2013), Noise-Aware Generalization-Fashion (Xiao et al., 2015; 2017), and CHAMMI-CP (Chen et al.,
2024b). For implementation details and per-domain results, please refer to the Appendix C.

Among all the DG methods, SWAD performs well across all datasets with strong OOD scores,
MIRO+SWAD combination improves results in general, particularly for Noise-Aware Generalization-
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Table 1: Results on real-world datasets. Six groups of methods are presented: baseline (ERM (Gul-
rajani & Lopez-Paz, 2020)), DG methods (SWAD (Cha et al., 2021), MIRO (Cha et al., 2022),
ERM++ (Teterwak et al., 2023), SAGM (Wang et al., 2023)), Robust-OOD methods (VREx (Krueger
et al., 2021), Fishr (Rame et al., 2022)), Domain-aware optimization method (DISAM (Zhang et al.,
2024)), LNL methods (ELR (Liu et al., 2020), UNICON (Karim et al., 2022), DISC (Li et al., 2023),
PLM (Zhao et al., 2024)), and LNL+DG combination methods. For each dataset, both ID and OOD
performance are reported. The combination methods show promising results in both ID and OOD
tasks. Refer to Sec. 3.3 for more discussions.

Method Group VLCS NAG-Fashion CHAMMI-CP

ID OOD ID OOD ID OOD

ERM Baseline 83.97 77.10 87.00 33.11 79.22 41.08

SWAD DG 86.93 79.07 90.62 59.10 73.91 43.66
MIRO DG 85.96 77.06 90.91 54.10 65.47 46.55
ERM++ DG 79.15 77.68 83.30 38.22 72.49 44.55
SAGM DG 86.78 78.75 91.85 34.40 77.11 41.19
MIRO+SWAD DG 86.83 77.86 91.02 60.87 67.31 45.82
SAGM+SWAD DG 86.63 79.41 91.43 38.59 78.27 41.45

VREx Robust-OOD 83.65 76.02 87.10 49.92 74.78 44.81
Fishr Robust-OOD 84.50 75.85 86.51 41.90 73.90 44.03

DISAM Domain Opt 84.40 77.23 87.92 48.87 72.36 44.83

ELR LNL 86.31 76.16 87.40 35.15 82.63 43.63
UNICON LNL 84.85 77.39 87.31 53.85 76.72 42.02
DISC LNL 83.79 76.65 87.25 47.01 43.28 41.28
PLM LNL 82.85 75.60 87.43 27.06 70.47 44.44

ERM++ + ELR NAG 84.83 78.11 83.73 35.84 75.72 42.04
MIRO+UNICON NAG 84.95 76.21 87.74 52.98 84.52 43.44
MIRO+SWAD+UNICON NAG 83.82 76.73 86.09 57.18 76.17 45.65
MIRO+ELR NAG 85.04 77.51 91.11 31.52 74.54 41.28
SWAD+ELR NAG 86.84 80.01 91.19 59.08 73.49 44.66
MIRO+SWAD+ELR NAG 86.78 79.86 91.48 63.53 70.73 44.82

Fashion. For all the LNL methods, ELR performs consistently well. For the combination methods,
SWAD+ELR shows the best OOD performance in VLCS. MIRO+SWAD+ELR achieves the highest
scores in Noise-Aware Generalization-Fashion.

Methods combining multiple strategies (e.g., MIRO, SWAD, and ELR) generally perform better, es-
pecially in challenging OOD scenarios. Simple ERM struggles with OOD performance, highlighting
the need for advanced techniques in handling domain generalization and noisy labels. Regularization
techniques (ELR) and domain generalization methods (SWAD, MIRO) are effective in improving
robustness across datasets.

Moreover, there are some unexpected outcomes. First, the ranking of LNL methods differs from other
LNL benchmark datasets. Although UNICON is a newer state-of-the-art method and is expected to
outperform ELR, its in-domain performance is consistently lower in the Noise-Aware Generalization
benchmarks. Second, combining methods might negatively impact performance, as seen with the
MIRO and UNICON+MIRO combination. We delve into these unusual results in Sec. 3.3.

3.3 ANALYSIS

Since NAG is a composite task that integrates two interrelated challenges, LNL and DG, our analysis
begins by examining how introducing another factor affects the traditional task. Specifically, we
investigate: How does multi-distribution data impact LNL methods? and How does noisy data impact
DG methods? These questions address the core issue of why NAG cannot be effectively solved
using a single LNL or DG method alone. Following this, we explore LNL and DG’s interaction by
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Figure 3: ID accuracy comparisons for LNL
methods when training with varying numbers of
source domains on the VLCS (Fang et al., 2013).
"1 domain" refers to training on Caltech101 (Fei-
Fei et al., 2004). "2 domains" is the average
accuracy when training on Caltech101 plus one
other domain from [LabelMe (Russell et al., 2008),
VOC2007 (Everingham et al., 2010), SUN09 (Choi
et al., 2010)]. "3 domains" is the average accuracy
when training on Caltech101 plus two domains
from the same set. ELR (Liu et al., 2020) consis-
tently outperforms UNICON (Karim et al., 2022),
with the performance gap widening as the number
of training domains increases. See Sec. 3.3.1 for
more discussions.

examining the trade-off between prioritizing cleaner samples or maintaining balanced distributions.
Finally, we conclude by offering insights and recommendations for addressing NAG effectively.

3.3.1 HOW DOES MULTI-DISTRIBUTION TRAINING DATA IMPACT LNL METHODS?

The performance of LNL methods declines when additional data sources with diverse distributions
are introduced, with sample-selection methods being particularly impacted. Fig. 3 shows the ID
performance when training with varying numbers of source domains. Starting with a single, relatively
simple domain like Caltech101 (Fei-Fei et al., 2004), the ID accuracy approaches nearly 100%.
However, as the number of training domains increases, the task becomes more challenging for the
model, leading to a decline in ID performance across all methods.

A key observation from the figure is the widening performance gap between ELR (Liu et al., 2020)
and UNICON (Karim et al., 2022) as the number of training domains increases, contrary to their
ranking on other LNL datasets (Karim et al., 2022). This suggests that sample selection methods
like UNICON struggle more with noisy data when domain shifts are present. Specifically, it becomes
increasingly difficult for UNICON to distinguish between samples from minority distributions and
noisy samples as the diversity of the training data grows. This challenge is evident in Fig.4, where
domains with fewer samples are selected less frequently. For instance, in the “person” class, the
representation of Caltech data decreases significantly from 25.87% to 11.92% in the selected samples.
In contrast, ELR maintains a relatively better performance, indicating its robustness in handling the

complexities introduced by multiple, noisy domains.

3.3.2 HOW DOES NOISY TRAINING DATA IMPACT DG METHODS?

Performance across domains shows varying levels of decline under noisy conditions, highlighting
the sensitivity of DG methods to noise. SWAD+MIRO demonstrates exceptional resilience to noise.
Fig. 5-(a) shows the noise-sensitivity on different domains in DomainNet-SN (Peng et al., 2019)
dataset. This variability means that methods effective in one domain may not necessarily perform
well in another, underscoring the need for adaptable approaches that can handle diverse conditions.
Fig. 5-(b) shows the comparison of DG methods on DomainNet with different degrees of asymmetric
noise. The first observation is a consistent outperformance of SWAD over MIRO, which implies
that SWAD’s strategy of utilizing averages exhibits greater robustness compared to MIRO. Another
point to highlight is the increasing performance gap as the noise ratio increases. This suggests that
SWAD’s robustness is advantageous when noise ratios are high.

Noise sample selection skews domain distribution. In Fig. 4, the sample selection process has
substantially modified the original domain distribution. Models trained on this altered sample
distribution might tend to overfit to the more prominently represented domains while potentially
underperforming on the less represented ones. Consequently, DG methods striving for generalization
across domains might encounter diminished effectiveness due to the disproportionate representation
of domains in the training data. The difference between the original and selected-sample distributions
highlights the importance of considering domain balance during sample selection.
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Figure 4: Changes in domain distribution after the UNICON sample selection process on
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These two cases illustrate a risk of skewing domain distributions from the LNL selection process.
See Sec. 3.3.4 for more details.
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Figure 5: OOD accuracy comparisons for DG methods with synthesized asymmetric noise on
DomainNet-SN (Peng et al., 2019). (a) Different domains exhibit varying sensitivity to asymmetric
noise. The plot shows the degree of decrease in OOD performance for ERM applied to six domains
as the noise ratio increases. (b) Comparisons of DG methods with increasing noise ratios. The results
demonstrate that noise negatively impacts performance, but SWAD is more robust than MIRO and
ERM, with a noticeable performance gap and SWAD+MIRO shows the best resilience to noise. Refer
to Sec. 3.3.2 for more details.

3.3.3 CLEANER VS. BALANCED: WHICH ENHANCES ID AND OOD PERFORMANCE?

Quality outweighs quantity in enhancing robustness.As highlighted in earlier sections, imbalanced
domain distributions pose additional challenges for LNL methods, while noise introduces difficulties
for DG methods. This raises the question: how can we strike a balance between cleanliness and
distributional balance?

Fig. 6 illustrates the relationship between domain balance, clean sample count, and ID/OOD per-
formance in experiments on the "person" class from the VLCS dataset, which includes real-world
noise. As labels have been manually verified, the total and clean sample distributions across four
domains are known. The "person" class is chosen due to the originally balanced data distribution,
despite varying numbers of clean samples.

In Fig. 6 (c), the x-axis shows the percentage of selected samples, using the JSD metric from
UNICON (Karim et al., 2022) to identify the top r samples with minimal JSD distance as "clean."
The left y-axis shows the total sample count (dark bars: true clean samples; light bars: false clean),
while the right y-axis shows ID and OOD accuracy.

At lower selection ratios (r), the distribution becomes less balanced, as more samples are drawn
from the cleaner VOC2007 domain. At higher ratios, balance is maintained but with increased noise.
Results in (c) indicate that OOD performance isn’t improved by merely balancing distributions; added
noise reduces accuracy. With the best results at r = 0.2, suggesting "quality" is more crucial than
"quantity" for robustness enhancement.
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Figure 6: Balance, Number of Clean Samples, and ID/OOD Performance on the VLCS Dataset
"Person" Class. (a) Sample distribution across four domains (dark color: clean, light color: noisy).
While total sample counts are similar, clean sample counts vary. (b) Testing on the Caltech101 domain
with training on the remaining domains. The x-axis shows the variation in sample selection ratio per
class, while the ratios for each domain are shown at the top of the bars. The observed decrease in
both ID and OOD performance, as the distribution becomes more balanced and sample size increases,
suggests that a more balanced distribution does not necessarily enhance OOD accuracy and that
increased noise adversely affects both ID and OOD performance. See Sec. 3.3.3 for discussions.
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Figure 7: Changes in LNL and DG losses over time on VLCS (Fang et al., 2013). Each subplot
represents a time step in the training process, divided into three blocks showing samples from three
specific domains. MIRO maintains a consistent range across the domains, whereas ELR demonstrates
a clear convergence pattern for different domains. Refer to Sec. 3.3.4 for more details.

3.3.4 WHAT ARE THE INSIGHTS FOR COMBINING LNL AND DG METHODS?

Regularization-based techniques are more effective. Table 1 shows an interesting pattern: datasets
where domain shifts are more significant (VLCS and NAG-Fashion) regularization-based methods
from the DG literature are generally more effective, whereas on CHAMMI-CP where label noise
is more of an issue, LNL regularization is more effective (e.g., ELR). Combining these generally
improves performance. Other LNL methods that try to correct labels, e.g., UNICON, can be effective
in the low domain shift setting when combined with regularization techniques Table 1 or when
domain labels are available to minimize domain shift Table 2, discussed below.

Combining with disjoint losses. Fig. 7 contains scatter plots tracking the loss over training steps for
two different loss functions: ELR (Liu et al., 2020) (blue dots) and MIRO (Cha et al., 2022) (red dots).
Each subplot represents the distribution of loss values at a specific training step: 200, 500, 1000, and
5000. The green dotted lines separate the three training domains at each step: Caltech101 (Fei-Fei
et al., 2004) (left), LabelMe (Russell et al., 2008) (middle), SUN09 (Choi et al., 2010) (right).

ELR forms two distinct loss groups during training: one with low loss, indicating strong convergence
on certain batches, and another fluctuating near zero, reflecting challenging or under-learned batches.
Caltech101 reaches low loss first, aligning with its higher test accuracy, highlighting ELR’s efficiency
in learning specific data. In contrast, MIRO shows steadier but slower convergence, demonstrating
stability and robustness across batches. This figure showcases how ELR and MIRO’s complementary
behaviors can enhance performance when combined.
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Table 2: Results of training with domain labels. Adding domain labels to preserve the distribution
during sample selection shows promising enhancements. Refer to Sec. 3.3.4 for details.

VLCS CHAMMI-CP
Method Fang et al. (2013) Chen et al. (2024b)

ID OOD ID OOD

UNICON (Karim et al., 2022) 84.85 77.39 76.72 42.02
UNICON + domain label 85.78 78.16 77.60 43.37
MIRO+UNICON (Cha et al., 2022) 84.95 76.21 84.52 43.44
MIRO+UNICON+ domain label 86.00 78.57 78.44 45.24
MIRO+SWAD+UNICON (Cha et al., 2021) 83.82 76.73 76.17 45.65
MIRO+SWAD+UNICON+ domain label 85.63 78.26 76.49 43.56

Adapting LNL methods when domain labels are available. Tab. 2 presents the results of training
with domain labels on the VLCS and CHAMMI-CP datasets, where the domain labels are available.
The evaluation metrics include performance on in-domain noise (ID) and out-of-domain (OOD)
data. As discussed above, the sample selection may skew the domain distribution, so the following
results show our exploration of whether utilizing the domain label to maintain the domain distribution
would be beneficial. the methods compared in the table are UNICON, MIRO+UNICON, and
MIRO+SWAD+UNICON, both with and without the inclusion of domain labels. For methods with
domain labels, clean samples are selected per class and per domain.

Adding domain labels for the LNL SOTA method UNICON improved both ID and OOD data
performance for both datasets. For MIRO+UNICON and MIRO+SWAD+UNICON, adding domain
labels enhanced performance on both metrics on VLCS dataset. The inclusion of domain labels
generally improves model performance, indicating that domain-specific information can enhance
robustness and generalization.

4 CONCLUSION AND DISCUSSION

This work tackles the challenges of noisy, diverse real-world data by introducing Noise-Aware Gener-
alization, a task focused on managing in-domain noise and out-of-domain generalization. We propose
a unified framework combining Learning with Noisy Labels (LNL) and Domain Generalization
(DG) approaches, supported by comprehensive experiments on three real-world datasets with varying
noise ratios and domain shifts.Our evaluation included state-of-the-art methods from both LNL and
DG fields, as well as their combinations. Surprisingly, no single method consistently outperformed
others, showing the complexity of this problem. Key insights from our work include: LNL methods
struggle to differentiate noise from diverse distributions, and their sample selection can distort domain
distributions, harming OOD performance. Prioritizing quality over quantity enhances robustness in
Noise-Aware Generalization .

We provide the following specific recommendations based on our experiments. Generally there
are two components to any dataset: the amount of noise and the strength of the domain shift. The
inherent inability to separate these two factors mean that regularization-based techniques (e.g., SWAD
and MIRO) are more effective. From here, our recommendations diverge based on the amount of
domain shift present. In cases of high domain shift (e.g., VLCS and NAG-Fashion), domain labels
are required to use other techniques (e.g., pseudo-labeling UNICON for addressing noisy labels), as
they the effect of domain shifts are minimized. If the domains during training are smaller than those
seen at test time (e.g., NAG-Fashion), then additional regularization may be required. In cases of low
domain shift (e.g., CHAMMI-CP) combining regularization with other techniques like UNICON can
be used immediately even in cases of high noise, but too much regularization can be detrimental.

Limitations. Our focus on in-domain noise has mainly involved closed-set noise. Future research
could explore Noise-Aware Generalization in the context of open-set noise, prevalent in real-world
datasets like those from web crawling.
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5 ETHICS STATEMENT

This paper addresses a unified task that requires models to perform well on both in-domain and
out-of-domain data when training on datasets with label noise. This can result in models that can
effectively learn from a wide variety of data, including cell painting data where prior work in tasks
like LNL found especially challenging due to its high amounts of label noise that is useful as a
step towards drug discovery (Wang & Plummer, 2024). However, like our topics in this field, also
can enable bad actors to use these models to train more effective recognition systems for nefarious
purposes. Additionally, users should be mindful that although we provide an evaluation on a diverse
set of datasets, they still make mistakes in their predictions that may vary depending on the dataset.
Thus, researchers and engineers should be mindful of these factors when deploying a system for
end-users.

6 REPRODUCIBILITY STATEMENT

We will release our code to ensure it can be reproduced upon acceptance. This will include code for
training/testing the models we compared to in a unified codebase where additional methods can be
easily integrated and the data loaders required to evaluate models on our benchmarks. We will also
include pretrained models for ease of use.
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A DOMAINNET WITH SYNTHESIZED NOISE (DOMAINNET-SN)

To control the noise ratio and add variety to the benchmark datasets, DomainNet with 345 classes is
augmented with synthesized asymmetric noise. Unlike symmetric noise, where noise is uniformly
sampled from all other classes, asymmetric noise is sampled from specific classes. In our setting,
each class has a single noise source class. For example, as shown in Table 4, for class index 0, the
noise source is class index 308. If the noise ratio is set to be p, it means a sample has a probability of
p to flip to the noisy label 308.

The asymmetric noise pairs are determined using the validation confusion matrix. We select 20% of
the samples as the validation set and the rest are used for training. After training for one epoch with
ERM (Gulrajani & Lopez-Paz, 2020), we generate the confusion matrix for the validation set. For
each class, the class with the highest number of predictions (excluding its own class) is selected as
the noise source.

B VLCS NOISE

C EXPERIMENTS

This section presents the experimental details including model architecture, algorithm implementation,
hyperparameter choices, etc. We provide the code in a zip file along with this supplementary and will
open-source the code upon acceptance.

C.1 MODEL ARCHITECTURE

For the VLCS, DomainNet-SN, and Robust-Fashion datasets, we used ResNet50 (He et al., 2016)
model pretrained on ImageNet (Deng et al., 2009) as the foundational architecture. Conversely, for
the CHAMMI-CP dataset, we follow the architecture outlined in the benchmark paper (Chen et al.,
2024b), employing a ConvNeXt (Liu et al., 2022b) model pretrained on ImageNet 22K (Deng et al.,
2009) as the backbone. To accommodate the CP images with five input channels, we made necessary
adjustments to the first input layer.

C.2 INTEGRATED METHODS

Algorithm 1, 2, 3, 4, 5, 6 show the detail of the integrated methods.
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Algorithm 1: ERM++ + ELR Algorithm.

Input :Sample inputs X = {xi}ni=1, noisy labels Ỹ = {ỹi}ni=1, ELR temporal ensembling
momentum β, regularization parameter λ, neural network with trainable parameters fθ

Output :Neural network with updated parameters fθ′

for step← 1 to training_steps do
for minibatch B do

for i in B do
pi = fθ(xi) ; // Model prediction.
ti = β ∗ ti + (1− β) ∗ pi ; // Temporal ensembling.

end
loss = − 1

|B|Σ|B|cross_entropy(pi, yi) + λ
|B|Σ|B|log(1− < pi, ti >) ; // ELR

loss: cross entropy loss and regularization loss.
Update fθ.

end
fθ′ = Update fθ with ERM++ parameter averaging.

end

Algorithm 2: MIRO + ELR Algorithm.

Input :Sample inputs X = {xi}ni=1, noisy labels Ỹ = {ỹi}ni=1, ELR temporal ensembling
momentum β, ELR regularization parameter λ1, MIRO regularization parameter λ2,
MIRO mean encoder µ, MIRO variance encode σ, feature extractor with trainable
parameters fθ, pretrained feature extractor with parameters fθ0

Output :Neural network with updated parameters fθ′

for step← 1 to training_steps do
for minibatch B do

for i in B do
pi = fθ(xi) ; // feature extractor output.
p0i = fθ0(xi) ; // Pretrained feature extractor output.
ti = β ∗ ti + (1− β) ∗ pi ; // Temporal ensembling.

end
loss = − 1

|B|Σ|B|cross_entropy(pi, yi) ; // Cross entropy loss.

loss += λ1
|B|Σ|B|log(1− < pi, ti >) ; // ELR loss with regularization

term.
loss += λ2

|B|Σ|B|(log(|σ(pi)|) + ||p0i − µ(pi)||2σ(pi)−1) ; // MIRO loss with

regularization term.
Update fθ.

end
fθ′ = Updated fθ.

end
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Algorithm 3: SWAD + ELR Algorithm.

Input :Sample inputs X = {xi}ni=1, noisy labels Ỹ = {ỹi}ni=1, ELR temporal ensembling
momentum β, ELR regularization parameter λ, neural network with trainable
parameters fθ

Output :Neural network with updated parameters fθ′

for step← 1 to training_steps do
for minibatch B do

for i in B do
pi = fθ(xi) ; // Model prediction.
ti = β ∗ ti + (1− β) ∗ pi ; // Temporal ensembling.

end
loss = − 1

|B|Σ|B|cross_entropy(pi, yi) + λ
|B|Σ|B|log(1− < pi, ti >) ; // ELR

loss: cross entropy loss and regularization loss.
Update fθ. Decide the start steps and end stepe iteration for averaging in SWAD.

end
fθ′ = 1

stepe−steps+1Σfθ ; // SWAD parameter averaging.

end

Algorithm 4: MIRO + SWAD + ELR Algorithm.

Input :Sample inputs X = {xi}ni=1, noisy labels Ỹ = {ỹi}ni=1, ELR temporal ensembling
momentum β, ELR regularization parameter λ1, MIRO regularization parameter λ2,
MIRO mean encoder µ, MIRO variance encode σ, feature extractor with trainable
parameters fθ, pretrained feature extractor with parameters fθ0

Output :Neural network with updated parameters fθ′

for step← 1 to training_steps do
for minibatch B do

for i in B do
pi = fθ(xi) ; // feature extractor output.
p0i = fθ0(xi) ; // Pretrained feature extractor output.
ti = β ∗ ti + (1− β) ∗ pi ; // Temporal ensembling.

end
loss = − 1

|B|Σ|B|cross_entropy(pi, yi) ; // Cross entropy loss.

loss += λ1
|B|Σ|B|log(1− < pi, ti >) ; // ELR loss with regularization

term.
loss += λ2

|B|Σ|B|(log(|σ(pi)|) + ||p0i − µ(pi)||2σ(pi)−1) ; // MIRO loss with

regularization term.
Update fθ. Decide the start steps and end stepe iteration for averaging in SWAD.

end
fθ′ = 1

stepe−steps+1Σfθ ; // SWAD parameter averaging.

end
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Algorithm 5: MIRO + UNICON Algorithm.

Input :Sample inputs X = {xi}ni=1, noisy labels Ỹ = {ỹi}ni=1, MIRO regularization
parameter λ2, MIRO mean encoder µ, MIRO variance encode σ, feature extractor-1
with trainable parameters f1θ, feature extractor-2 with trainable parameters f2θ,
pretrained feature extractor with parameters fθ0 , UNICON sharpening temperature T ,
UNICON unsupervised loss coefficient λu, UNICON contrastive loss coefficient λc, ,
UNICON regularization loss coefficient λr.

Output :Neural network with updated parameters f1θ′ and f2θ′

for step← 1 to training_steps do
Dclean, Dnoisy = UNICON − Selection(X = {xi}ni=1, f1θ, f2θ), ; // UNICON
clean-noisy sample selection.

for clean minibatch Bclean do
for noisy minibatch Bnoisy do

for i in B = Bclean

⋃
Bnoisy do

p1i = f1θ(xi) ; // feature extractor-1 output.
p2i = f2θ(xi) ; // feature extractor-2 output.
p0i = fθ0(xi) ; // Pretrained feature extractor output.

end
loss1 = − 1

|B|Σ|B|cross_entropy(p1i, yi) ; // Cross entropy loss for

feature extractor-1.
loss1+ = λ2

|B|Σ|B|(log(|σ(p1i)|) + ||p0i − µ(p1i)||2σ(p1i)−1) ; // MIRO loss

with regularization term for feature extractor-1.
loss2 = − 1

|B|Σ|B|cross_entropy(p2i, yi) ; // Cross entropy loss for

feature extractor-2.
loss2+ = λ2

|B|Σ|B|(log(|σ(p2i)|) + ||p0i − µ(p2i)||2σ(p2i)−1) ; // MIRO loss

with regularization term for feature extractor-2.
Xweak

clean|B| = weak-augmentation(Bclean)
Xweak

noisy|B| = weak-augmentation(Bnoisy)

Xstrong
clean|B| = strong-augmentation(Bclean)

Xstrong
noisy|B| = strong-augmentation(Bnoisy)

Get labeled set with UNICON label refinement on clean batch.
Get unlabeled set with UNICON pseudo label on noisy batch.
Lu1, Lu2 = MixMatch on labeled and unlabeled sets ; // UNICON
unsupervised loss for feature extractor-1 and
extractor-2.

Get Lc1, Lc2 ; // UNICON contrastive loss for feature
extractor-1 and extractor-2.

Get Lr1, Lr2 ; // UNICON regularization loss for feature
extractor-1 and extractor-2.

loss1+ = λu ∗ Lu1 + λc ∗ Lc1 + λr ∗ Lr1 ; // Update UNICON loss for
feature extractor-1.

loss2+ = λu ∗ Lu2 + λc ∗ Lc2 + λr ∗ Lr2 ; // Update UNICON loss for
feature extractor-2.

Update f1θ and f2θ.
end

end
f1θ′ = Updated f1θ, f2θ′ = Updated f2θ.

end
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Algorithm 6: MIRO + SWAD + UNICON Algorithm.

Input :Sample inputs X = {xi}ni=1, noisy labels Ỹ = {ỹi}ni=1, MIRO regularization
parameter λ2, MIRO mean encoder µ, MIRO variance encode σ, feature extractor-1
with trainable parameters f1θ, feature extractor-2 with trainable parameters f2θ,
pretrained feature extractor with parameters fθ0 , UNICON sharpening temperature T ,
UNICON unsupervised loss coefficient λu, UNICON contrastive loss coefficient λc, ,
UNICON regularization loss coefficient λr.

Output :Neural network with updated parameters f1θ′ and f2θ′

for step← 1 to training_steps do
Dclean, Dnoisy = UNICON − Selection(X = {xi}ni=1, f1θ, f2θ), ; // UNICON
clean-noisy sample selection.

for clean minibatch Bclean do
for noisy minibatch Bnoisy do

for i in B = Bclean

⋃
Bnoisy do

p1i = f1θ(xi) ; // feature extractor-1 output.
p2i = f2θ(xi) ; // feature extractor-2 output.
p0i = fθ0(xi) ; // Pretrained feature extractor output.

end
loss1 = − 1

|B|Σ|B|cross_entropy(p1i, yi) ; // Cross entropy loss for

feature extractor-1.
loss1+ = λ2

|B|Σ|B|(log(|σ(p1i)|) + ||p0i − µ(p1i)||2σ(p1i)−1) ; // MIRO loss

with regularization term for feature extractor-1.
loss2 = − 1

|B|Σ|B|cross_entropy(p2i, yi) ; // Cross entropy loss for

feature extractor-2.
loss2+ = λ2

|B|Σ|B|(log(|σ(p2i)|) + ||p0i − µ(p2i)||2σ(p2i)−1) ; // MIRO loss

with regularization term for feature extractor-2.
Xweak

clean|B| = weak-augmentation(Bclean)
Xweak

noisy|B| = weak-augmentation(Bnoisy)

Xstrong
clean|B| = strong-augmentation(Bclean)

Xstrong
noisy|B| = strong-augmentation(Bnoisy)

Get labeled set with UNICON label refinement on clean batch.
Get unlabeled set with UNICON pseudo label on noisy batch.
Lu1, Lu2 = MixMatch on labeled and unlabeled sets ; // UNICON
unsupervised loss for feature extractor-1 and
extractor-2.

Get Lc1, Lc2 ; // UNICON contrastive loss for feature
extractor-1 and extractor-2.

Get Lr1, Lr2 ; // UNICON regularization loss for feature
extractor-1 and extractor-2.

loss1+ = λu ∗ Lu1 + λc ∗ Lc1 + λr ∗ Lr1 ; // Update UNICON loss for
feature extractor-1.

loss2+ = λu ∗ Lu2 + λc ∗ Lc2 + λr ∗ Lr2 ; // Update UNICON loss for
feature extractor-2.

Update f1θ and f2θ. Decide the start steps and end stepe iteration for averaging in
SWAD.

end
end
f1θ′ = 1

stepe−steps+1Σf1θ f2θ′ = 1
stepe−steps+1Σf2θ ; // SWAD parameter

averaging.
end
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Table 3: VLCS Dataset Overview (Total Samples, Noisy Samples)

Domain Category Total Samples Noisy Samples

Caltech

Bird 237 1
(with person)

Car 123 0
(black & white car imgs)

Chair 118 0
Dog 67 0

(only black and white dog)
Person 870 0

(profile photos with redundancy)

LabelMe

Bird 80 20
Car 1209 559

(background: building, road, mountains;
small & incomplete cars, unclear night imgs [OOD])

Chair 89 61
(over half have cars, person)

Dog 43 25
(with person, cars)

Person 1238 924
(over 80% noisy images have cars,

street photos are similar to car and chair categories,
small person figures)

SUN09

Bird 21 12
(background, 1 person and dog)

Car 933 548
(street view, buildings, person)

Chair 1036 186
(mostly person, very few car interior)

Dog 31 25
(∼20 noisy images with person)

Person 1265 631
(very small person figures)

VOC2007

Bird 330 29
(mostly human, a few cars, one small bird)

Car 699 133
(mostly person, ∼5 don’t have cars)

Chair 428 145
(mostly person, some cars, very few missing chair)

Dog 420 111
(mostly human, a few cars)

Person 1499 61
(mostly cars, some don’t have person)

C.3 IMPLEMENTATION DETAILS

We incorporate the implementation of the ERM++ 1 (Teterwak et al., 2023), DISC 2 (Li et al., 2023),
UNICON 3 (Karim et al., 2022), ELR 4 (Liu et al., 2020), SAGM 5 (Wang et al., 2023), MIRO 6 (Cha

1https://github.com/piotr-teterwak/erm_plusplus
2https://github.com/JackYFL/DISC
3https://github.com/nazmul-karim170/UNICON-Noisy-Label
4https://github.com/shengliu66/ELR
5https://github.com/Wang-pengfei/SAGM
6https://github.com/kakaobrain/miro
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Table 4: Asymmetrical Noise Dictionary

Key Value Key Value Key Value Key Value Key Value Key Value
0 308 1 208 2 28 3 135 4 5 5 0
6 0 7 324 8 324 9 208 10 288 11 324
12 208 13 285 14 208 15 16 16 17 17 282
18 19 19 327 20 309 21 208 22 327 23 208
24 288 25 135 26 27 27 28 28 208 29 208
30 327 31 98 32 33 33 144 34 35 35 308
36 282 37 38 38 327 39 208 40 208 41 42
42 208 43 44 44 308 45 46 46 331 47 324
48 91 49 90 50 327 51 324 52 53 53 324
54 327 55 331 56 282 57 151 58 334 59 324
60 324 61 208 62 175 63 64 64 327 65 208
66 67 67 68 68 208 69 208 70 138 71 331
72 324 73 175 74 53 75 254 76 338 77 276
78 91 79 208 80 282 81 208 82 282 83 319
84 85 85 208 86 310 87 324 88 208 89 90
90 91 91 208 92 323 93 285 94 95 95 261
96 276 97 98 98 324 99 282 100 288 101 102

102 103 103 327 104 110 105 288 106 107 107 282
108 276 109 110 110 324 111 110 112 288 113 114
114 157 115 208 116 327 117 98 118 327 119 208
120 208 121 110 122 324 123 208 124 125 125 208
126 208 127 324 128 129 129 208 130 327 131 208
132 208 133 28 134 135 135 136 136 324 137 138
138 35 139 282 140 324 141 208 142 208 143 282
144 324 145 146 146 282 147 148 148 208 149 208
150 151 151 98 152 153 153 308 154 208 155 341
156 157 157 208 158 324 159 208 160 208 161 98
162 163 163 208 164 282 165 308 166 230 167 1
168 285 169 208 170 171 171 208 172 208 173 208
174 175 175 208 176 282 177 178 178 110 179 246
180 208 181 282 182 324 183 282 184 208 185 324
186 324 187 188 188 282 189 190 190 324 191 282
192 193 193 135 194 35 195 28 196 282 197 307
198 178 199 208 200 208 201 28 202 324 203 282
204 208 205 206 206 282 207 208 208 91 209 324
210 211 211 212 212 213 213 288 214 208 215 216
216 282 217 246 218 335 219 276 220 282 221 222
222 208 223 327 224 110 225 285 226 208 227 228
228 208 229 324 230 327 231 232 232 208 233 282
234 282 235 324 236 327 237 208 238 285 239 240
240 331 241 285 242 324 243 208 244 309 245 107
246 247 247 248 248 324 249 321 250 251 251 288
252 135 253 254 254 327 255 208 256 208 257 341
258 208 259 135 260 261 261 262 262 208 263 213
264 208 265 327 266 208 267 268 268 269 269 208
270 309 271 208 272 273 273 135 274 208 275 276
276 277 277 324 278 279 279 208 280 281 281 282
282 282 283 208 284 285 285 98 286 282 287 208
288 310 289 324 290 282 291 309 292 208 293 294
294 208 295 324 296 327 297 208 298 208 299 324
300 208 301 285 302 324 303 282 304 282 305 282
306 307 307 308 308 282 309 282 310 341 311 208
312 313 313 331 314 282 315 282 316 282 317 282
318 282 319 327 320 327 321 282 322 208 323 324
324 325 325 324 326 327 327 282 328 329 329 282
330 282 331 332 332 324 333 282 334 335 335 208
336 337 337 338 338 208 339 340 340 341 341 342
342 208 343 344 344 282
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Table 5: Learning rate on VLCS (Fang et al., 2013),Noise-Aware Generalization-Fashion (Xiao
et al., 2015; 2017) ,CHAMMI-CP (Chen et al., 2024b) and DomainNet-SN. Six groups of methods are
presented: baseline (ERM (Gulrajani & Lopez-Paz, 2020)), DG methods (SWAD (Cha et al., 2021),
MIRO (Cha et al., 2022), ERM++ (Teterwak et al., 2023), SAGM (Wang et al., 2023)), Robust-OOD
methods (VREx (Krueger et al., 2021), Fishr (Rame et al., 2022)), Domain-aware optimization
method (DISAM (Zhang et al., 2024)), LNL methods (ELR (Liu et al., 2020), UNICON (Karim et al.,
2022), DISC (Li et al., 2023), PLM (Zhao et al., 2024)), and LNL+DG combination methods.

Method VLCS Noise-Aware Generalization-Fashion CHAMMI-CP DomainNet-SN

ERM 1e-3 1e-3 5e-5 1e-3

ERM++ 5e-5 1e-3 5e-5 -
MIRO 5e-5 5e-5 5e-5 5e-5
SWAD 5e-5 5e-5 5e-5 5e-5
MIRO+SWAD 5e-5 5e-5 5e-5 -
SAGM 3e-5 3e-5 1e-4 -
SAGM+SWAD 3e-5 3e-5 1e-4 -

Fishr 5e-5 5e-5 5e-5 -
VREx 5e-5 5e-5 5e-5 -

DISAM 5e-5 5e-5 5e-5 -

ELR 1e-3 1e-3 5e-5 -
DISC 1e-3 1e-3 5e-5 -
UNICON 5e-3 5e-3 5e-5 -
PLM 1e-3 5e-5 5e-5 -

ERM++ + ELR 5e-5 1e-3 5e-5 -
MIRO+UNICON 5e-5 5e-5 5e-5 -
MIRO+SWAD+UNICON 5e-5 5e-5 5e-5 -
MIRO+ELR 5e-5 5e-5 5e-5 -
SWAD+ELR 5e-5 5e-5 5e-5 -
MIRO+SWAD+ELR 5e-5 5e-5 5e-5 -

et al., 2022), VREx 7 (Krueger et al., 2021), Fishr 8 (Rame et al., 2022), DISAM 9 (Zhang et al.,
2024), PLM 10 (Zhao et al., 2024), into our codebase. Each training batch includes samples from all
training domains, with a batch size of 128 (reduced to 32 for Noise-Aware Generalization-Fashion).
For relatively small datasets VLCS (Fang et al., 2013) and CHAMMI-CP (Chen et al., 2024b),
experiments are run on a single NVIDIA RTX A6000 (48GB RAM) and three Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz for 5000 steps. For Noise-Aware Generalization-Fashion (Xiao et al., 2015;
2017) and DomainNet-SN, experiments are run on four NVIDIA RTX A6000 (48GB RAM) and
twelve Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz for 15000 steps.

To determine the optimal learning rate, we sweep over some values in a range of values from 10−6 to
10−3 on a logarithmic scale. See Table 5 for the lr of specific methods on certain datasets.

D DETAILED RESULTS

Table 6, 7, 8 show the results for each domain in VLCS (Fang et al., 2013) and CHAMMI-CP (Chen
et al., 2024b) datasets. For Table 6 and 7, the "Domain" column indicates the domain left out for
testing. The OOD results show performance on this specific test domain, while the ID results reflect
performance on the remaining training domains. For example, ID results for Caltech101 (Fei-Fei
et al., 2004) indicate validation performance on a mixed dataset including LabelMe (Russell et al.,
2008), VOC2007 (Everingham et al., 2010), and SUN09 (Choi et al., 2010). For CHAMMI-CP (Chen

7https://github.com/facebookresearch/DomainBed
8https://github.com/alexrame/fishr
9https://github.com/MediaBrain-SJTU/DISAM

10https://github.com/RyanZhaoIc/PLM/tree/main
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et al., 2024b) results in Table 8, task1 shows the performance of ID task and task2 and task3 are both
for OOD tasks. The OOD-AVG in the last column refers to the average performance across task2 and
task3.

Looking at Table 6 and 7, we observe that DG methods generally perform better on ID tasks
compared to LNL methods. However, the combination of LNL+DG methods shows greater promise
in OOD tasks.
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Table 6: VLCS (Fang et al., 2013) OOD results on Caltech101 (Fei-Fei et al., 2004), LabelMe (Rus-
sell et al., 2008), VOC2007 (Everingham et al., 2010) and SUN09 (Choi et al., 2010). Six groups of
methods are presented: baseline (ERM (Gulrajani & Lopez-Paz, 2020)), DG methods (SWAD (Cha
et al., 2021), MIRO (Cha et al., 2022), ERM++ (Teterwak et al., 2023), SAGM (Wang et al., 2023)),
Robust-OOD methods (VREx (Krueger et al., 2021), Fishr (Rame et al., 2022)), Domain-aware
optimization method (DISAM (Zhang et al., 2024)), LNL methods (ELR (Liu et al., 2020), UNI-
CON (Karim et al., 2022), DISC (Li et al., 2023), PLM (Zhao et al., 2024)), and LNL+DG combination
methods.

Method Caltech101 LabelMe SUN09 VOC2007 AVG

ERM 97.73 64.36 73.47 72.84 77.10

ERM++ 98.45 63.78 72.06 76.42 77.68
MIRO 98.23 63.20 71.59 75.19 77.06
SWAD 99.29 62.12 74.37 80.49 79.07
MIRO+SWAD 98.76 61.79 73.84 77.05 77.86
SAGM 97.88 66.73 72.77 77.60 78.75
SAGM+SWAD 98.85 64.19 74.45 80.16 79.41

Fishr 97.17 67.61 66.31 72.30 75.85
VREx 96.82 63.65 69.66 73.93 76.02

DISAM 97.74 65.62 71.18 74.38 77.23

ELR 97.26 61.13 69.30 76.97 76.16
DISC 96.76 65.36 69.83 74.66 76.65
UNICON 99.51 61.37 73.46 75.21 77.39
PLM 97.17 64.83 72.73 67.65 75.60

ERM++ + ELR 98.23 62.54 74.13 77.55 78.11
MIRO+UNICON 99.01 61.29 71.88 72.66 76.21
MIRO+SWAD+UNICON 99.72 57.34 73.80 76.06 76.73
MIRO+ELR 98.23 62.59 69.95 79.27 77.51
SWAD+ELR 99.29 63.39 75.97 81.38 80.01
MIRO+SWAD+ELR 98.94 62.59 75.82 82.08 79.86
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Table 7: VLCS (Fang et al., 2013) ID results on Caltech101 (Fei-Fei et al., 2004), LabelMe (Russell
et al., 2008), VOC2007 (Everingham et al., 2010) and SUN09 (Choi et al., 2010). Six groups of
methods are presented: baseline (ERM (Gulrajani & Lopez-Paz, 2020)), DG methods (SWAD (Cha
et al., 2021), MIRO (Cha et al., 2022), ERM++ (Teterwak et al., 2023), SAGM (Wang et al.,
2023)), Robust-OOD methods (VREx (Krueger et al., 2021), Fishr (Rame et al., 2022)), Domain-
aware optimization method (DISAM (Zhang et al., 2024)), LNL methods (ELR (Liu et al., 2020),
UNICON (Karim et al., 2022), DISC (Li et al., 2023), PLM (Zhao et al., 2024)), and LNL+DG
combination methods.

Method Caltech101 LabelMe VOC2007 SUN09 AVG

ERM 80.59 86.70 85.18 83.41 83.97

ERM++ 75.41 78.59 84.34 78.26 79.15
MIRO 80.63 89.70 86.82 86.70 85.96
SWAD 82.35 90.11 88.17 87.08 86.93
MIRO+SWAD 81.37 89.96 89.13 86.86 86.83
SAGM 81.89 90.10 88.59 86.56 86.78
SAGM+SWAD 81.84 89.80 88.73 86.16 86.63

Fishr 80.25 87.47 85.94 84.32 84.50
VREx 78.82 87.14 85.99 82.64 83.65

DISAM 80.04 86.24 86.21 85.11 84.40

ELR 82.59 88.70 87.14 86.81 86.31
DISC 80.93 85.94 84.08 84.20 83.79
UNICON 81.28 84.58 88.85 84.70 84.85
PLM 82.22 87.17 76.80 85.22 82.85

ERM++ + ELR 80.77 88.12 85.75 81.25 84.83
MIRO+UNICON 82.02 86.20 86.25 85.33 84.95
MIRO+SWAD+UNICON 81.44 86.08 85.95 81.82 83.82
MIRO+ELR 77.31 88.86 87.86 86.13 85.04
SWAD+ELR 81.75 89.90 88.16 87.55 86.84
MIRO+SWAD+ELR 81.97 90.11 88.22 86.80 86.78
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Table 8: CHAMMI-CP (Chen et al., 2024b) results. Six groups of methods are presented: base-
line (ERM (Gulrajani & Lopez-Paz, 2020)), DG methods (SWAD (Cha et al., 2021), MIRO (Cha
et al., 2022), ERM++ (Teterwak et al., 2023), SAGM (Wang et al., 2023)), Robust-OOD meth-
ods (VREx (Krueger et al., 2021), Fishr (Rame et al., 2022)), Domain-aware optimization method
(DISAM (Zhang et al., 2024)), LNL methods (ELR (Liu et al., 2020), UNICON (Karim et al., 2022),
DISC (Li et al., 2023), PLM (Zhao et al., 2024)), and LNL+DG combination methods.

Method Task1(ID) Task2(OOD) Task3(OOD) OOD-AVG

ERM 79.22 56.80 25.35 41.08

ERM++ 72.49 62.45 26.64 44.55
MIRO 65.47 61.89 31.21 46.55
SWAD 73.91 61.99 25.32 43.66
MIRO+SWAD 67.31 62.24 29.40 45.82
SAGM 77.11 58.65 23.73 41.19
SAGM+SWAD 78.27 60.86 22.05 41.45

Fishr 67.65 57.12 27.24 42.18
VREx 67.30 58.28 25.87 42.08

DISAM 72.36 63.25 26.40 44.83

ELR 82.63 61.20 26.06 43.63
DISC 43.28 57.55 25.01 41.28
UNICON 76.72 58.57 25.46 42.02
PLM 70.77 62.57 26.31 44.44

ERM++ + ELR 75.72 59.11 24.96 42.04
MIRO+UNICON 84.52 61.71 25.17 43.44
MIRO+SWAD+UNICON 76.17 62.01 29.29 45.65
MIRO+ELR 74.54 58.90 23.65 41.28
SWAD+ELR 73.95 62.15 27.16 44.66
MIRO+SWAD+ELR 70.73 59.90 29.73 44.82
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