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ABSTRACT

With the increasing concern over data privacy, more researchers are focusing on
protecting sensitive labels using aggregate observations, such as similarity labels
and label proportions. Unfortunately, these methods weaken the supervisory in-
formation of insensitive labels, thereby reducing the performance of existing clas-
sifiers. To address this issue, we propose a novel setting called Aggregate-Masked
Labels, whose primary advantage lies in introducing augmented supervision to
maintain partially full supervision and protecting sensitive labels. Specifically, for
aggregate observations that contain sensitive labels, we use these sensitive labels
as the aggregate-masked labels. In contrast, for aggregate observations without
sensitive labels, we assign the ground-truth label to each instance, as shown in
Figure 1. Moreover, we introduce the risk-consistent estimator that effectively
leverages aggregate-masked labels to train a multi-class classifier. We further in-
troduce stochastic label combinations to alleviate the high computational cost,
effectively accelerating the training process. Experimental results on both real-
world and benchmark datasets demonstrate that our method achieves state-of-the-
art classification performance.

1 INTRODUCTION

As the demand for data privacy in machine learning applications grows (Wu et al., 2023; Wei et al.,
2024), privacy-preserving methods in weakly supervised learning have become a critical area of
research (Yao et al., 2023; Matsuo et al., 2024). The exposure of sensitive labels, particularly during
the data annotation, can lead to significant risks, including privacy leakage, data misuse, and the
potential for individuals to refuse providing ground-truth labels in sensitive contexts.

In recent years, researchers have made substantial efforts to alleviate this problem, including
Partial-Label Learning (PLL) (Liang et al., 2025; Gong et al., 2025), Complementary Label Learn-
ing (CoLL) (Wang et al., 2024; Gao & Zhang, 2021; Gao et al., 2023), Multi-Positive and Un-
labeled Learning (MPUL) (Xu et al., 2017) and Concealed Labels (CL) (Li et al., 2024). These
methods assign each instance a set of candidate labels or leave it unlabeled. Moreover, aggregate
observation methods represent another promising paradigm, including Similarity and Unlabeled
Learning (SUL) (Wu et al., 2022; Nitayanont & Hochbaum, 2024), Similarity-Confidence Learn-
ing (SCL) (Zhang et al., 2024b; Barbany et al., 2024) and Label Proportion Learning (LPL) (Luo
et al., 2024; Busa-Fekete et al., 2023). By replacing individual instance annotations with aggregate
labels, these methods effectively protect sensitive labels during training and significantly reduce
labeling costs.

However, we find that while aggregate observation methods are effective at protecting privacy, they
often lack the full supervision from insensitive labels, potentially reducing the overall performance
of the model. Then, we aim to propose a setting that protects sensitive labels and strengthens the
supervision for insensitive labels. A straightforward but highly effective approach is to introduce
augmented supervision for insensitive labels during the training process, which maintains partially
full supervision for the classifier while protecting the sensitive labels.

Inspired by this finding, we propose a novel setting called Aggregate-Masked Labels (AML), which
protects sensitive labels while maintaining partially full supervision from insensitive data. Specifi-
cally, AML uses an aggregate-masked label for aggregate observations containing sensitive labels to
protect label privacy, while assigning ground-truth labels when all labels in the aggregate observation
are insensitive. For example, as shown in Figure 1 (right), the aggregate observation includes a sen-
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Sensitive Label

Sensitive or not ? 
It decides masked or unmasked !

(b) Aggregate Observation                                               (d) Aggregate-UnMasked Observation

Ordinary Label                                                       Aggregate-Masked Label

Policeman

StudentDoctor Teacher Nurse

Policeman exists,

but who?

Policeman

StudentDoctor Teacher Nurse

Student Teacher Nurse

(a) Aggregate Observation                                              (c) Aggregate-Masked Observation

Figure 1: Illustration of the comparison between the ordinary labeling setting and the AML setting.
In many cases, certain labels, such as “Policeman”, are considered sensitive. In the ordinary labeling
setting (left), all instances are annotated with ground-truth labels, including sensitive ones, which
may lead to privacy leakage. In the AML setting (right), if the aggregate observation contains sen-
sitive labels, the ground-truth labels of instances are not exposed. Instead, the set of sensitive labels
within the aggregate observation is provided as AML (e.g., “Policeman”), ensuring the protection
of privacy. For insensitive labels, such as “Doctor”, “Student”, “Teacher” or “Nurse” are retained.

sitive label such as “Policeman”, the entire aggregate observation is assigned an aggregate-masked
label, which protects private data, i.e., adversaries cannot identify the specific instance associated
with the sensitive label. In contrast, if all labels within an aggregate observation are insensitive (e.g.,
“Doctor”, “Nurse”, “Student”, “Teacher”), the ground-truth labels are maintained. The primary ad-
vantage of aggregate-masked labels is that they provide aggregate labels without exposing sensitive
labels and are often easier to obtain in practice.

In this paper, we propose a risk-consistent estimator to learn from these aggregate observations.
The estimator utilizes full supervision from insensitive labels and aggregate-masked labels from ag-
gregate observations. In addition, we introduce stochastic label combinations to alleviate the high
computational cost, effectively accelerating the training process. Experiments on real-world and
benchmark datasets demonstrate that our approach achieves state-of-the-art classification perfor-
mance without disclosing private data. Our main contributions are as follows:

• We propose a novel setting, i.e., learning from aggregate-masked labels, which masks sensitive
labels while maintaining partially full supervision for insensitive labels.

• We propose a risk-consistent estimator that effectively leverages aggregate-masked labels to train
a multi-class classifier, which classify precisely instances from insensitive and sensitive labels.

• We propose a stochastic label combination method that reduces the high computational cost
of enumerating all labels under the AML setting. Combined with probability estimation, our
approach better exploit the aggregate-masked labels, effectively accelerating training.

2 METHODOLOGY

In this section, we introduce the problem setting for AML and propose the corresponding method,
including the risk-consistent estimator and stochastic aggregate-masked observation risk.

2.1 PROBLEM SETUP

Sensitive labels. Let X ⊂ Rd denotes the d-dimensional feature space, and Y △
= I

⋃
S =

{1, . . . , r, s1, . . . , st} denotes the label space, where I = {1, . . . , r} denotes the set of r insensitive
labels, and S = {s1, . . . , st} denotes the set of t sensitive labels. In real scenarios, distinguishing

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

labels between sensitive (e.g., “Policeman”) and insensitive (e.g., “Student”) is essential for privacy
label annotation. Sensitive labels may expose attributes associated with personal privacy, whereas
insensitive labels maintain partially full supervision without disclosing privacy.

Aggregate observations. Let X = {x1, . . . , xm} denotes the aggregate observation sampled from
distribution p(X), and let Y = {y1, . . . , ym} ∈ Ym denotes the ordinary supervised labels of the
aggregate observations, where Ym denotes the product set of Y . The goal of this setting is to learn a
classifier f : X → Y that not only recognizes insensitive labels, but also accurately predicts sensitive
labels by minimizing the expected aggregate observations ordinary supervised risk as follows:

R(f) = E(X,Y )∼p(X,Y )

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

∑
Y ∈Ym

p(Y | X)

m∑
i=1

L [f(xi), yi] (1)

where p(X,Y ) and p(Y | X) denote the joint and conditional distributions of the aggregate obser-
vation data, and L [f(xi), yi] denotes the multi-class loss function.

Aggregate-Masked Labels. In our setting, we collect aggregate observation X = {x1, . . . , xm}
and provide the Aggregate-Masked Labels (AML) YA ∈ YA to form an AML observation Ai =
({xi,1, . . . , xi,j , . . . , xi,m}, YA,i), where YA denotes the label space of AML and xi,j denotes the
jth instance within the ith AML observation. In this paper, as shown in Figure.1, we called AML
observation Ai as Aggregate-Masked Observation (AMO), when it contains at least one sensitive
label, i.e., S ∩{yi,1, . . . , yi,j . . . , yi,m} ̸= ∅, where yi,j is xi,j corresponding ground-truth label. In
contrast, we called it as Aggregate-UnMasked Observation (AUMO), i.e., ∀j, yi,j ∈ I.

Let YU = {1, . . . , r}m denotes the label space of AUMO, YM = P(S)/∅ denotes the label space
of AMO, and YA = YU

⋃
YM , where P(S) denotes the set of all subsets of sensitive labels. Then,

the ith AML YA,i can be defined as follows:

YA,i =

{
YU,i if ∀j, yi,j ∈ I (AUMO),
YM,i else (AMO)

(2)

where YU,i = {yi,1, . . . , yi,m} ∈ YU , YM,i = S ∩ {yi,1, . . . , yi,m}, and satisfies YM,i ⊆ YM . Let
D = {Ai}Ni denotes the AML dataset, where N is the total number of AML observation. Notably, to
protect sensitive labels, we have established a constraint on the number of samples m. Specifically,
within each AML observation, m is required to meet the condition m ≥ t+ 1.

Motivation. By introducing augmented supervision, AML not only protects sensitive labels but also
maintains partially full supervision for insensitive labels, which enables the model to leverage more
supervision during training and thereby achieve better classification performance. For example, the
aggregate Ai contains four samples in Figure 1 (a), among which one sample belongs to the sensi-
tive label “Policeman”. Then, the aggregate is labeled as YA,i = {Policeman}, which protects the
sensitive label in the data collection. In contrast, for aggregated observations that do not contain sen-
sitive labels in Figure 1 (b), the ground-truth label of each sample is preserved, thereby significantly
enriching the supervisory information.

To achieve a more formal comprehension of the characteristics of AML, we present the following
assumptions. Assumption 1 describes the conditional distribution relationship between ordinary
labels and AML, thereby enabling the construction of a risk-consistent estimator.

Assumption 1 (AML Assumption). The conditional distribution of AML are under the assumption
as follows:

P (∀i, yi ∈ I | YA ∈ YU , X) = 1 (3)
This assumption indicates that for any aggregate observations, if its AML YA is belong to YU , then
the ordinary labels of their instances must be the insensitive label.

2.2 RISK-CONSISTENT ESTIMATOR

In this section, we propose a risk-consistent estimator for the classification task under AML setting,
aiming to effectively learn from Aggregate-Masked Observations.
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As shown in Eq. (1), computing the expected ordinary supervised risk requires access to the ground-
truth labels Y = {y1, . . . , ym}. However, for AML of AMO (YA ∈ YM ), these labels are un-
available due to the presence of sensitive labels. To address this, we introduce a risk-consistent
estimator that approximates the unknown expectation over Y using the predicted label distributions.
Specifically, we evaluate the loss over all possible label assignments within AMO, and subtract the
contribution from labels in YU , maintaining only the influence of labels in YM . This decomposition
is formally characterized in Lemma 2, which enables the computation of the AMO risk using only
AML and model predictions, without requiring ground-truth supervision.

Lemma 2. (AMO risk) Under the AML assumption, for multi-class classifier f , we derive the
expected risk for aggregate observations in the AMO (i.e., YA ∈ YM ) as follows:

RAMO(f) =EX∼p(X)

∑
YA∈YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

= E(X,YA)∼p(X,YA∈YM )

 ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

L̂(X,K)

−
∑

k1∈YU

. . .
∑

km∈YU

L̂(X,K)

]
(4)

where L̂(X,K) denotes the product of the predicted probabilities for X under label assignment
K = {k1, . . . , km}, multiplied by the sum of the label losses L [f(xi), ki] for all instance. Formally,
it can be defined as:

L̂(X,K) =

m∏
j=1

P (yj = kj | xj)

m∑
i=1

L [f(xi), ki] (5)

Here, P (yj = kj | xj) represents the prediction probability of the model that instance xj assigned
to class kj , and L [f(xi), yi] is the loss about predicted label yi for instance xi. The proof of Lemma
2 is provided in the Appendix B.1.

Therefore, the total expected risk can be decomposed into two parts. Specifically, for the risk corre-
sponding to the AUMO, we can compute it directly using the model predictions for each instance.
However, for AMO, we adjust the risk calculation based on Eq. (4), leading to the total classification
risk under the AML assumption as follows.

Theorem 3. Under the AML assumption, the classification risk R(f) in Eq. (1) can be equivalently
expressed as follows:

RAML(f) = EX,YA∼p(X,YA∈YU )

m∑
i=1

L [f(xi), YAi
]

+ EX,YA∼p(X,YA∈YM )

[ ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

L̂(X,K)

−
∑

k1∈YU

. . .
∑

km∈YU

L̂(X,K)

]
(6)

The proof of Theorem 3 is provided in Appendix B.2. It is worth noting that this risk formula-
tion characterizes the relationship between learning under the AML setting and ordinary supervised
learning, and demonstrates the influence of AML on model training. The first term corresponds
to the AUMO setting, where each instance xi is supervised by YU,i, and the loss can be directly
computed. The second term corresponds to the AMO setting, where the AML YM,i is unknown.
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Empirical risk. Since the training dataset D is sampled independently from the p(X,Y ), the em-
pirical risk estimator can be naively approximated as:

R̂AML(f) =
1

N

N∑
j=1

m∑
i=1

L [f(xj,i), YA,j,i]

+
1

N

N∑
j=1

[ ∑
k1∈YU

⋃
YA,j

. . .
∑

km∈YU

⋃
YA,j

L̂(Xj ,K)

−
∑

k1∈YU

. . .
∑

km∈YU

L̂(Xj ,K)

]
(7)

where xj,i and YA,j,i respectively denote the ith instance and its label in the jth aggregation obser-
vations, as obtained from AUMO.

2.3 STOCHASTIC AMO RISK

Although the formulation in Eq. (6) is effective, it sums over all possible combinations of labels from
YA. When the aggregate observations size m and labels space Y are large, the required computations
grow exponentially, reaching up to | Y |m during training. Then, we introduce a stochastic sampling
strategy to reduce the computational cost of enumerating all label in the RAMO(f).

Specifically, let αK be a binary variable that takes a value of either 0 or 1. We uniformly sample
a fixed number of elements from all possible label combinations, and assign αK a value of 1 for
the selected elements; otherwise, αK is assigned a value of 0. Then, we propose a method called
stochastic AMO risk for accelerating training, defined as follows:

RSAMO(f) =EX,YA∼p(X,YA∈YM )

[ ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

αK L̂(X,K)

−
∑

k1∈YU

. . .
∑

km∈YU

αK L̂(X,K)

]
(8)

By leveraging this risk, we can control the number of label combinations, thereby achieving the
objective of reducing computational costs.

2.4 PRACTICAL IMPLEMENTATION

Probability estimator. In this section, we introduce CLIP (Contrastive Language-Image Pretrain-
ing) to estimate label probabilities in AML settings. Given sample xi, CLIP generates a proba-
bility distribution over a set of class labels yi. This distribution can be formally represented as
P (yi = ki|xi), where ki is the predicted class for the ith instance. In the context of AMO, where
only AML are available and ground-truth labels are unavailable, these predictions serve as approx-
imations of labels. We incorporate these probability estimates into the risk-consistent formulation,
which enhances the model’s performance under the AML setting and demonstrates its effectiveness.

Loss functions. Designing effective loss functions is essential for AML. To address this, we employ
the squared loss under the One-Versus-Rest (OVR) framework, which encourages positive alignment
between predictions and their corresponding labels. The OVR strategy offers theoretical guarantees
and has demonstrated strong empirical performance in multi-class supervised learning scenarios,
making it a practical and reliable choice in our setting.

Model. We adopt the CLIP ViT-L/14 visual encoder as the backbone of our model, leveraging its
strong semantic alignment capabilities between visual and textual modalities. To preserve the rich
representations learned during pretraining, the image encoder is kept frozen throughout the training
process. The high-dimensional embeddings produced by CLIP are subsequently passed through
multiple linear classification layers to predict labels. This design improves the efficiency of feature
utilization while reducing the risk of overfitting, enabling robust learning under the masked label.
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Table 1: Classification accuracy ( mean ± std ) of each algorithm on CIFAR-10, Caltech-101 and
DTD. R denotes a random choice. The best result in each setting is highlighted in bold, and the
second-best is underlined.

Dataset Method Sensitive Labels Set S
{0} {1} {0,1} {1,2} {R,R} {R,R}

ESA (Li et al., 2025b) 87.30±0.09 85.82±0.23 79.02±0.19 79.19±0.26 85.66±0.33 70.19±0.15
CoMPU (Zhou et al., 2022) 85.86±0.07 87.66±0.04 74.49±0.18 78.63±0.04 87.04±0.01 69.93±0.12
NMPU (Shu et al., 2020) 86.38±0.05 84.55±0.52 72.66±0.63 78.02±0.33 84.15±0.21 69.07±0.20

CIFAR-10 PAPI (Xia et al., 2023) 82.15±0.68 79.41±1.69 81.04±0.19 73.51±3.52 77.88±2.13 79.76±3.06
SPMI (Liu et al., 2024) 51.22±0.03 50.88±0.12 49.27±0.23 47.10±0.32 51.72±0.02 50.47±0.09
DIRK (Wu et al., 2024) 72.40±1.10 69.07±0.41 74.40±0.74 67.51±0.74 69.28±0.78 67.51±0.74
L2P-AHIL (Ma et al., 2025) 62.81±0.14 62.51±0.39 63.27±0.36 63.30±0.16 63.22±0.33 63.37±0.39
AML 89.95±0.04 89.96±0.12 89.36±0.23 88.31±0.10 88.10±0.83 88.82±0.13

ESA (Li et al., 2025b) 54.14±2.19 53.95±0.54 59.98±0.03 61.49±1.47 56.12±0.31 63.57±0.39
CoMPU (Zhou et al., 2022) 38.11±0.82 43.40±5.57 44.67±0.62 43.29±0.05 47.77±0.25 39.08±1.26
NMPU (Shu et al., 2020) 50.07±0.41 52.88±0.51 43.20±0.85 48.94±2.01 53.41±1.42 51.56±1.08

Caltech-101 PAPI (Xia et al., 2023) 72.99±0.27 72.63±0.55 69.91±1.78 69.61±0.85 72.45±0.62 72.50±0.59
SPMI (Liu et al., 2024) 67.43±0.36 66.79±0.60 66.15±0.55 66.19±1.13 67.91±0.73 68.24±0.69
DIRK (Wu et al., 2024) 62.55±0.35 65.10±1.09 63.02±0.59 62.37±0.32 64.78±0.68 64.31±1.56
L2P-AHIL (Ma et al., 2025) 46.40±1.09 46.97±0.54 48.49±0.74 48.24±0.54 46.89±0.77 47.25±0.71
AML 81.99±0.00 73.39±0.21 72.78±0.00 73.02±0.31 81.59±0.05 81.14±0.07

ESA (Li et al., 2025b) 55.41±0.88 56.64±1.75 67.60±1.56 67.64±0.25 70.07±0.56 69.01±0.43
CoMPU (Zhou et al., 2022) 44.33±0.75 36.70±0.13 51.99±0.56 49.33±1.31 55.18±2.19 58.55±3.32
NMPU (Shu et al., 2020) 62.23±0.37 62.05±0.50 62.72±1.44 60.15±0.94 63.60±1.44 58.68±0.50

DTD PAPI (Xia et al., 2023) 50.96±0.72 50.93±0.39 50.39±0.38 50.32±0.52 50.24±1.01 50.17±0.77
SPMI (Liu et al., 2024) 47.60±0.75 46.97±1.69 45.80±1.21 46.79±0.52 46.52±0.31 47.83±0.69
DIRK (Wu et al., 2024) 46.04±0.50 45.60±1.17 45.57±0.55 46.72±0.67 47.20±0.19 38.54±0.71
L2P-AHIL (Ma et al., 2025) 17.33±0.56 16.86±0.54 16.08±0.80 16.19±0.08 17.85±0.35 17.36±0.43
AML 80.90±0.06 81.80±0.22 80.27±0.44 79.69±0.38 78.07±0.13 80.96±0.36

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. To comprehensively evaluate the effectiveness of our method, we conduct experi-
ments on several standard image classification benchmarks as well as two real-world datasets.

Table 2: Classification accuracy (mean± std) of
each algorithm on CIFAR-100. R denotes a ran-
dom choice. The best result is in bold, and the
second-best is underlined.

Method Sensitive Labels Set S
{0} {0,1} {R,R}

ESA (Li et al., 2025b) 51.26±0.29 57.90±0.22 57.98±0.21
CoMPU (Zhou et al., 2022) 33.86±1.29 31.54±2.33 28.53±0.75
NMPU (Shu et al., 2020) 28.06±0.13 26.51±0.50 24.70±1.13
PAPI (Xia et al., 2023) 28.59±1.00 28.22±0.56 29.13±0.74
SPMI (Liu et al., 2024) 19.89±0.66 19.94±0.74 19.44±0.17
DIRK (Wu et al., 2024) 9.83±0.62 9.84±0.17 8.73±1.17
L2P-AHIL (Ma et al., 2025) 36.58±0.20 35.77±0.16 35.39±0.40
AML 68.31±0.12 67.43±0.08 66.63±0.25

The benchmark datasets include CI-
FAR10 (Krizhevsky et al., 2009), CI-
FAR100 (Krizhevsky et al., 2009), Caltech-
101 (Fei-Fei et al., 2007), and DTD (Cimpoi
et al., 2014). The real-world datasets include
AMLM and AMLS. The details of the datasets
are provided in the Appendix C.

Compared approaches. We compare our pro-
posed method with representative approaches
from three related methods: Multi-Positive and
Unlabeled Learning (ESA (Li et al., 2025b),
CoMPU (Zhou et al., 2022), NMPU (Shu et al.,
2020)), Partial-Label Learning (PAPI (Xia
et al., 2023), SPMI (Liu et al., 2024), DIRK (Wu et al., 2024)) and Label Proportion Learning (L2P-
AHIL (Ma et al., 2025)). Specifically, for ESA, CoMPU and NMPU, we treat insensitive labels as
positive and sensitive labels as negative. To enable a fair comparison, we assume class priors are
known during training. For PAPI, SPMI and DIRK, we construct candidate label matrices according
to their respective assumptions. Specifically, instances in the AUMO setting are assigned a positive
label, while those in the AMO setting are labeled AML. For L2P-AHIL, we apply proportion-level
supervision to groups containing sensitive labels, while groups without sensitive labels are trained
with instance-level supervision.

Implementation details. We implement all methods using PyTorch and conduct training under
consistent computational settings on a single NVIDIA RTX 4090D GPU. The models are optimized
using the AdamW optimizer with an initial learning rate selected from {1e−4, 1e−3, 1e−2, 1e−1},
and a weight decay of {1e−3, 1e−4}. In addition, each method is run three times, and we report the
mean and standard deviation of the results.
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Table 3: Classification accuracy ( mean±std ) of each algorithm on AMLM and AMLS. R denotes
a random choice. The best result is highlighted in bold, and the second-best is underlined.

Dataset Method Sensitive Labels Set S
{0} {1} {0,1} {1,2} {R,R} {R,R}

ESA (Li et al., 2025b) 87.34±1.79 85.44±0.00 80.06±2.24 79.43±1.34 84.49±2.24 75.32±1.79
CoMPU (Zhou et al., 2022) 82.28±3.58 87.02±1.34 77.53±0.45 75.63±0.45 72.78±0.00 71.52±2.68
NMPU (Shu et al., 2020) 71.52±2.68 85.12±0.44 69.30±2.24 73.10±0.44 78.79±1.34 61.07±1.34

AMLM PAPI (Xia et al., 2023) 54.24±1.28 51.55±3.83 52.38±2.88 50.93±5.15 57.14±1.01 48.45±1.52
SPMI (Liu et al., 2024) 58.39±2.21 55.28±0.51 51.14±2.60 55.69±0.29 55.90±1.34 47.62±0.59
DIRK (Wu et al., 2024) 64.39±1.46 68.26±1.37 60.46±1.46 70.45±0.22 70.45±0.22 47.67±2.46
L2P-AHIL (Ma et al., 2025) 49.27±4.05 49.83±5.16 47.27±0.96 46.29±1.69 49.31±1.02 46.37±1.47
AML 88.82±0.88 90.06±0.62 86.02±1.32 90.06±1.24 86.95±1.07 85.40±0.44

ESA (Li et al., 2025b) 79.51±1.16 74.32±1.54 73.22±1.54 65.84±1.15 51.09±2.70 75.13±1.15
CoMPU (Zhou et al., 2022) 80.05±0.38 80.87±0.77 72.95±1.16 65.57±0.77 84.15±1.54 67.21±1.54
NMPU (Shu et al., 2020) 78.41±0.38 80.32±0.00 67.75±0.77 57.10±1.15 50.00±1.16 59.28±0.38

AMLS PAPI (Xia et al., 2023) 45.59±0.25 39.46±0.44 43.24±1.53 47.57±1.17 41.80±1.35 43.24±3.50
SPMI (Liu et al., 2024) 56.04±1.27 53.51±1.17 58.20±1.67 56.58±1.35 55.14±1.17 54.05±0.44
DIRK (Wu et al., 2024) 39.91±1.16 37.51±0.23 41.67±1.76 46.71±1.02 39.69±0.06 38.66±1.37
L2P-AHIL (Ma et al., 2025) 52.32±2.78 54.52±3.63 48.00±4.66 58.13±1.40 57.56±2.11 50.41±5.00
AML 85.41±1.53 88.83±1.56 82.43±1.53 77.84±1.87 89.83±1.43 81.62±0.94

Table 4: Classification accuracy ( mean±std ) of different number of sensitive labels on CIFAR-10,
Caltech-101, DTD, AMLM and AMLS. We denote the number of sensitive labels as t.

Number CIFAR-10 Caltech-101 DTD AMLM AMLS
t = 1 89.95±0.04 82.03±0.05 80.90±0.06 88.82±0.88 85.41±1.53
t = 2 89.36±0.23 72.50±0.38 80.27±0.44 86.02±1.32 82.43±0.38
t = 3 77.74±0.17 72.34±0.67 77.88±0.06 82.92±2.20 70.81±4.59
t = 4 68.70±0.27 71.73±0.03 75.93±0.18 71.42±3.51 47.02±2.29
t = 5 51.81±0.61 66.91±0.00 73.31±0.12 64.59±0.00 33.51±1.58

3.2 RESULTS ON BENCHMARK DATA

We conduct experiments on benchmark datasets and training label combinations are stochastically
selected based on the size of the sensitive label set S. Specifically, for |S| = 1, all samples are
included (100%). For |S| = 2, only the top 20% of samples are selected. This stochastic sampling
strategy effectively reduces the training cost for larger |S|. As shown in Table 1 and Table 2, the
proposed method achieves the best performance in all datasets. Notably, DIRK performs poorly
on CIFAR-100 as its rectification mechanism fails to recover supervision with increasing classes.
These results demonstrate the effectiveness and robustness of our method.

3.3 RESULTS ON REAL-WORLD DATA

To further evaluate the effectiveness of our method in real-world scenarios, we conduct experiments
on two datasets: AMLM and AMLS. The experimental setting, including the stochastic sampling
based on the size of the sensitive label set S, follows the same setting used in the benchmark datasets.
As shown in Table 3, the proposed method achieves the best overall performance in both datasets.
Specifically, our approach consistently outperforms state-of-the-art weakly supervised methods such
as ESA, CoMPU, and NMPU. On the other hand, the inferior performance of PAPI, SPMI, and
DIRK can be attributed to the reduced supervision they provide in the privacy-preserving setting.
These results clearly validate the superiority of our method compared to all baselines, highlighting
its robustness and strong adaptability to privacy classification tasks.

3.4 EFFECT OF THE NUMBER OF SENSITIVE LABELS

To further validate the robustness of our method under AML, we conduct an ablation study on the
five dataset by varying the number of sensitive labels, i.e., t ∈ {1, 2, 3, 4, 5}. As shown in Table 4,
the classification performance degrades with the increase in the number of sensitive labels, which
can be attributed to decreasing supervision. Our method maintains high accuracy and stability even
when many labels are masked, demonstrating its effectiveness in protecting sensitive labels.
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Table 5: Classification accuracy ( mean± std ) of different aggregate observations size on CIFAR-
10. Given t sensitive labels, we evaluate model performance with the number of instances m.

Dataset S m = t+ 1 m = t+ 2 m = t+ 3 m = t+ 4 m = t+ 5

{0} 89.95±0.04 89.35±0.14 80.91±0.11 80.76±0.07 80.61±0.07
{1} 89.96±0.12 89.73±0.21 80.87±0.09 80.84±0.12 80.58±0.05

CIFAR-10 {0, 1} 89.36±0.23 81.77±4.39 71.40±0.07 71.13±0.03 70.86±0.02
{1, 2} 88.31±0.10 78.28±0.71 71.99±0.16 71.63±0.00 71.23±0.09
{0, 1, 2} 77.74±0.17 62.34±0.00 62.12±0.11 61.47±0.07 60.99±0.00

Table 6: Classification accuracy ( mean±std ) of different CLIP-based Text Prompts on CIFAR-10.
R denotes a random choice.

Prompt Sensitive Labels Set S
{0} {1} {0,1} {1,2} {R,R} {R,R}

Default 89.95±0.04 89.96±0.12 89.36±0.23 88.31±0.10 88.82±0.13 89.83±0.00
GPT-4o 89.89±0.07 90.11±0.05 89.16±0.19 88.46±0.15 88.74±0.19 88.78±0.17
ERNIE-Bot 89.86±0.07 89.92±0.09 88.27±0.36 87.44±0.39 89.59±0.11 89.75±0.10
DeepSeek 90.10±0.07 90.11±0.16 89.30±0.16 89.28±0.27 89.06±0.17 89.16±0.02

3.5 EFFECT OF AGGREGATE OBSERVATIONS SIZE

To evaluate the sensitivity of our method for the aggregate observations, we conduct experiments
by varying the size of aggregate observations. Specifically, as shown in Table 5, the original setting
assigns m = t + 1 labels to each aggregate observation, where t denotes the number of sensitive
labels. Then, we increase the size of aggregate observations by adding two to five samples. From
the table, we can observe that as the size of the aggregate observations increases, the classifier’s
performance slightly decreases. This trend is expected, since the larger observation size reduces the
amount of supervision available. However, the model’s overall performance remains competitive,
since augmented supervision introduces partially full supervision to offset the reduced information.

3.6 EFFECT OF STOCHASTIC AMO RISK
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Figure 2: Classification accuracy under different
stochastic label combinations and model convergence
across sampling rates (10%, 20%, 50%, 100%) with
sensitive label sets S = {0} and S = {0, 1}.

In this section, we further investigate the
impact of varying stochastic label combi-
nations. Specifically, we analyze the con-
vergence behavior under two sensitive la-
bel sets, S = {0} and S = {0, 1}, using
10%, 20%, 50% and 100% of the stochas-
tically selected label combinations. As
shown in Figure 2, the model converges to
comparable accuracy even when trained
with significantly fewer label combina-
tions (e.g., 20% or 50%). However, in the
S = {0, 1}, using only 10% of the com-
binations results in a slight performance
drop. We believe that a small number
of combinations in a larger combination
space leads to insufficient supervision, resulting in slightly lower accuracy. These results demon-
strate the robustness and efficiency of our stochastic label combinations.

3.7 EFFECT OF CLIP-BASED TEXT PROMPTS

To further investigate the impact of CLIP-based text prompts on model performance, we extend the
original prompt (i.e., a photo of a/an {}.) by three large language models: GPT-4o. (OpenAI,
2023), ERNIE-Bot (Sun et al., 2021), and DeepSeek (DeepSeek-AI et al., 2024). As shown in
Table 6, the experimental results indicate that these prompt variations have minimal effect on model
accuracy, demonstrating the robustness and practical effectiveness of the proposed method when
incorporating CLIP for probability estimation.
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4 RELATED WORK

In this section, we introduce existing research on learning with privacy concerns (Sportisse et al.,
2023), which can be broadly categorized into two main approaches. The first method focuses on
aggregate observations (Dan et al., 2021; Roth et al., 2021), where aggregate labels are provided
to protect privacy. The second method focuses on inaccurate labeling (Tian et al., 2024; Xu et al.,
2023), where each individual sample is labeled with an inaccurate label.

4.1 LEARNING FROM AGGREGATE OBSERVATIONS

Aggregate observations are a widely used approach to protect sensitive labels in privacy label learn-
ing. Existing methods can be broadly categorized into three classes: pairwise observations (Ramı́rez
et al., 2023; Xia et al., 2024; Liao et al., 2023; Zhang et al., 2020), multiple-instance supervision (Li
et al., 2025a) and label proportion learning (He et al., 2023; Asanomi et al., 2023; Liu et al., 2023).

Pairwise observations aim to protect sensitive labels by aggregating data points based on their pair-
wise relations. Specifically, pairwise comparison (Feng et al., 2021) through comparison of relation-
ships between two instances, while triplet comparison (Cui et al., 2020) compare the relative distance
among triplets. Pairwise similarity (Bao et al., 2018) determines whether two instances belong to the
same class, and similarity confidence (Cao et al., 2021) further incorporates confidence scores. In
addition, ordinal ranking specifies the order between two instances. Multiple-instance supervision
focuses on comparing whether at least one positive label exits in an aggregate observations, ensuring
that sensitive label information is not directly exposed. Finally, label proportion learning protects
sensitive information by providing proportions of data from each class in the aggregate observations,
rather than labeling each sample individually.

4.2 LEARNING FROM INACCURATE LABELING

Inaccurate labeling methods provide another approach to privacy label learning, where individual
sample are labeled, but the labels may be inaccurate to protect sensitive information. Representa-
tive approaches include Complementary Label Learning (CoLL) (Lin & Lin, 2023), Partial Label
Learning (PLL) (Hai et al., 2025; Huang et al., 2025; Li et al., 2025c; Zhang et al., 2024a), Multi-
Positive and Unlabeled Learning (MPUL) (Li et al., 2025b; Perini et al., 2023), and Concealed
Labels (CL) (Li et al., 2024), which have been widely studied in recent years.

CoLL supervises the model using labels that indicate classes the instance does not belong to. By
learning from these incorrect labels, the method effectively masks the true class of each instance.
PLL assigns a set of candidate labels to each instance with only one being correct, thereby avoiding
the model using the true label and concealing sensitive information during training. MPUL protects
sensitive labels by training models with positive labels and unlabeled instances. In this setting, only
positive labels are available, while negative labels remain masked, effectively avoiding exposure
of sensitive negative labels. CL aims to protect sensitive information by replacing true labels with
either None labels or randomly insensitive labels during training.

Although both aggregate observation and inaccurate labeling methods are effective in protecting
sensitive labels, aggregate observation methods often weaken supervision of insensitive labels in
order to protect sensitive labels, while inaccurate labeling protects only partial or specific sensitive
labels. These limitations highlight the need for approaches that can both protect sensitive labels and
maintain full supervision for insensitive labels, as achieved by our proposed augmented supervision.

5 CONCLUSION

In this paper, we propose the Aggregate-Masked Labels (AML) to address the issue of protecting
sensitive labels during the annotation process. AML maintains partially full supervision for insen-
sitive labels while leveraging aggregate-masked labels to protect sensitive information. Moreover,
we introduce a consistent-risk estimator to distinguish between sensitive and insensitive labels, and
introduce stochastic sampling with probability estimation to enhance model robustness. Experimen-
tal results on both synthetic and real-world datasets demonstrate that AML achieves competitive
performance.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, large language models (e.g., ChatGPT) were used solely
for grammar checking, language polishing and enhancing readability. All initial drafts of the
manuscript were written entirely by the authors. The authors carefully reviewed all AI-generated
suggestions to ensure accuracy and academic rigor.

B PROOFS

B.1 PROOF OF LEMMA 2

Lemma 2. (AMO risk) Under the AML assumption, for multi-class classifier f , we derive the
expected risk for aggregate observations in the AMO (i.e., YA ∈ YM ) as follows:

RAMO(f) =EX∼p(X)

∑
YA∈YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

= E(X,YA)∼p(X,YA∈YM )

 ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

L̂(X,K)

−
∑

k1∈YU

. . .
∑

km∈YU

L̂(X,K)

]
(9)

Proof. The expected risk for aggregate observations can be expressed as follows:

R(f) = E(X,Y )∼p(X,Y )

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

∑
Y ∈Ym

p(Y | X)

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

∑
YA⊆YU

⋃
YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

[ ∑
YA∈YU

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

+
∑

YA∈YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

]

(10)

On the other hands,

EX∼p(X)

∑
YA∈YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

∑
YA∈YM

p(YA | X)
∑

Y ∈Ym

p(Y | YA, X)

m∑
i=1

L [f(xi), yi]

= E(X,YA)∼p(X,YA∈YM )

∑
Y ∈Ym

p(Y | YA, X)

m∑
i=1

L [f(xi), yi]

= EX,YA∼p(X,YA∈YM )

[ ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

m∏
j=1

P (yj = kj | xj)

m∑
i=1

L [f(xi), ki]

−
∑

k1∈YU

. . .
∑

km∈YU

m∏
j=1

P (yj = kj | xj)

m∑
i=1

L [f(xi), ki]

]

(11)
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Let

L̂(X,K) =

m∏
j=1

P (yj = kj | xj)

m∑
i=1

L [f(xi), ki] (12)

Hence, by substituting eq.(12) into eq.(11)we can obtain

EX∼p(X)

∑
YA∈YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

= E(X,YA)∼p(X,YA∈YM )

 ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

L̂(X,K)

−
∑

k1∈YU

. . .
∑

km∈YU

L̂(X,K)

]
(13)

which proves Lemma 2. □

B.2 PROOF OF THEOREM 3

Theorem 3. Under the AML assumption, the classification risk R(f) can be equivalently expressed
as follows:

RAML(f) = EX,YA∼p(X,YA∈YU )

m∑
i=1

L [f(xi), YAi
]

+ EX,YA∼p(X,YA∈YM )

[ ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

L̂(X,K)

−
∑

k1∈YU

. . .
∑

km∈YU

L̂(X,K)

]
(14)

Proof. The expected risk for aggregate observations can be expressed as follows:

RAML(f) = E(X,Y )∼p(X,Y )

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

∑
Y ∈Ym

p(Y | X)

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

∑
YA

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

[ ∑
YA∈YU

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

+
∑

YA∈YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

]

(15)

According to Assumption 1, we can obtain

EX∼p(X)

∑
YA∈YU

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

∑
YA∈YU

p(YA | X)

m∑
i=1

L [f(xi), YAi
]

= EX,YA∼p(X,YA∈YU )

m∑
i=1

L [f(xi), YAi
]

(16)
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Hence, from Eq. (15), Eq. (16) and Lemma 2, we have

RAML(f) = E(X,Y )∼p(X,Y )

m∑
i=1

L [f(xi), yi]

= EX∼p(X)

[ ∑
YA∈YU

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

+
∑

YA∈YM

∑
Y ∈Ym

p(Y, YA | X)

m∑
i=1

L [f(xi), yi]

]

= EX,YA∼p(X,YA∈YU )

m∑
i=1

L [f(xi), YAi
]

+ EX,YA∼p(X,YA∈YM )

[ ∑
k1∈YU

⋃
YA

. . .
∑

km∈YU

⋃
YA

L̂(X,K)

−
∑

k1∈YU

. . .
∑

km∈YU

L̂(X,K)

]
which proves Theorem 3. □

C DETAILS OF DATASETS

The detailed specifications of the datasets are provided in Table 7.

CIFAR-10 and CIFAR-100 consist of natural images with 10 and 100 classes, respectively. Caltech-
101 is a standard benchmark dataset for object recognition, containing images from 101 object
classes and one background class, totaling 9146 images. DTD (Describable Textures Dataset) con-
sists of 5640 images categorized into 47 texture classes.

AMLM consists of 804 images categorized into six classes. The AMLS contains 925 images from
eight classes. Given the sensitive nature of real-world information, certain labels need to be protected
during annotation. These datasets were constructed from real-world data related to sensitive medical
image, making them highly relevant for evaluating privacy labels learning methods such as AML.

Table 7: Overview of the datasets used in our experiments, including name of dataset, number of
Training, number of Testing, and number of Classes.

Name Training Testing Classes

CIFAR-10 50K 10K 10
CIFAR-100 50K 10K 100
Caltech-101 6400 2746 101+1
DTD 4512 1128 47
AMLS 740 185 8
AMLM 646 158 6
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