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ABSTRACT

Feature selection in tensor data poses greater challenges than in vector represen-
tations, since it must capture correlations spanning multiple modes rather than
treating each mode in isolation. Existing tensor-based methods partially address
this but often treat the feature space as a whole, selecting features globally without
respecting mode-specific dependencies. This not only overlooks cross-mode in-
teractions but also increases computational burden, as all features must be consid-
ered at once. Moreover, they lack a principled criterion for preserving the global
structure of the original tensor. In this work, we introduce Multi-Linear Subspace
Learning Feature Selection (MSLFS), a framework that overcomes these limita-
tions by distributing feature selection across modes. Specifically, MSLFS selects a
small number of representative slices along each mode, whose intersections yield
the most informative features. The core innovation is a multi-linear subspace dis-
tance, which provides a principled measure of how well these selected features
preserve the global multi-way structure of the data, while significantly reduc-
ing redundancy and computational cost. This objective is complemented by two
novel regularizations: a joint sparsity constraint that enforces coordinated spar-
sity across modes to identify compact, non-redundant features, and a higher-order
graph constraint that preserves local manifold geometry within the induced sub-
tensor. Taken together, these components guarantee that the overall tensor struc-
ture as well as the local neighborhood relationships are preserved. Comprehen-
sive experiments on image recognition and biomedical benchmarks demonstrate
that MSLFS consistently surpasses state-of-the-art feature selection techniques in
clustering tasks.

1 INTRODUCTION

Subspace learning has long served as a foundation for dimensionality reduction, with PCA (Zass &
Shashua, 2006), LDA (Jelodar et al., 2019), and their variants (Song et al., 2025; Li et al., 2025) pro-
ducing low-dimensional embeddings that preserve informative directions. However, these methods
operate on vectorized data, discarding multi-way correlations and disrupting the natural geometry
of tensorial data such as images and biomedical signals (Liu et al., 2017; Lu et al., 2020). As a
result, classical subspace learning often misses key structural dependencies, leading to suboptimal
representations for multi-way data (Chouchane et al., 2024).

Recent advances in tensor learning extend linear subspace analysis to multi-way data, enabling
models to exploit richer structural information than traditional vector-based methods. Yet, most
existing approaches still fall short in how they handle feature selection. In particular, they typically
flatten the tensor into a single feature space and select features globally, overlooking the mode-
specific dependencies that define the multi-way structure of the data (Chen et al., 2023). This global
treatment masks the complementary roles of different modes and forces algorithms to operate over
the entire feature set, which becomes computationally expensive in high dimensions. More critically,
these methods lack a principled criterion for ensuring that the chosen features preserve the global
subspace geometry of the tensor, often capturing only partial correlations (Sheehan & Saad, 2007).

To overcome these challenges, we introduce Multi-linear Subspace Learning Feature Selection
(MSLFS), a framework that distributes the selection process across modes rather than treating the
feature space as a rigid whole. Instead of picking features globally, MSLFS identifies a small num-
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ber of representative slices along each mode; their intersections then form a compact set of features
that best reflect the underlying structure of the data. This strategy both respects the multi-way orga-
nization of tensor data and reduces computational overhead. At the heart of the framework lies a new
notion of multi-linear subspace distance, which serves as a principled measure of how well selected
features preserve the original multi-way geometry. By optimizing this criterion, MSLFS ensures
that the chosen features jointly capture mode-specific information and cross-mode dependencies.

Beyond the core formulation, we introduce two regularizers. The joint sparsity term enforces shared
sparsity across modes, ensuring that only a compact and representative subset of features is retained.
The higher-order graph term preserves local manifold geometry in the selected subtensor by extend-
ing neighborhood smoothness across all modes. Together, these constraints balance sparsity, global
structure, and local geometry. In summary, the contributions of this work are presented as follows.

• A distributed selection strategy is designed to operate across tensor modes, where a small
set of representative slices is chosen per mode. Informative features are yielded by their
intersections, which respect the multi-way structure while reducing computational cost.

• A novel multi-linear subspace distance is introduced, providing a principled criterion by
which the preservation of the global subspace structure across all tensor modes by the
selected features is evaluated.

• A joint sparsity constraint is proposed to act simultaneously across multiple tensor modes,
whereby a compact and non-redundant subset of features is encouraged while preserving
the overall data structure.

• A higher-order graph regularization is proposed, through which neighborhood smoothness
is extended to tensor data so that local manifold structures are preserved in the reduced
representation.

2 RELATED WORK

Vector-Based Unsupervised Feature Selection. Unsupervised feature selection has been widely
studied, though most methods target vectorized data rather than multi-dimensional structures. A
summary of the most recent methods is presented as follows: ESUFS (Huang et al., 2025) mitigates
the sensitivity and structural inconsistencies of graph-based models by jointly learning a discrete
similarity graph and an indicator matrix, ensuring correct connectivity while emphasizing natu-
rally discriminative features. UFS-CGL (Zhou et al., 2024) further improves graph-guided selection
by preserving class-specific structure through contrastive affinity learning and an ℓ1,2-regularized
projection that suppresses redundant shared features. To overcome the rigidity of linear projec-
tions in spectral methods, FOG-R (Chen et al., 2024) replaces hard dimensionality reduction with
a flexible optimal graph that jointly optimizes graph learning and ℓ2,1-regularized feature selection.
MRMGRFS (Zuo et al., 2025) addresses the common imbalance between feature relevance and
redundancy by combining SCFS, which measures relevance via spectral clustering, with SJGRM,
which refines these scores through Jensen–Shannon–based redundancy minimization. NNSE (You
et al., 2023b) captures nonlinear feature–label relationships by replacing linear mappings with neu-
ral network–based self-expression enhanced by adaptive graph regularization. SDAE (Hassanieh &
Chehade, 2024b) employs a deep autoencoder with a selective layer that identifies a compact set of
features sufficient for reconstructing the original space, enabling nonlinear, globally representative,
and fully unsupervised feature selection.

Tensor-Based Unsupervised Feature Selection. Recently, tensor-based methods have been in-
troduced to overcome the drawbacks of vector-based feature selection, though their use in unsuper-
vised settings remains limited. Among these, two notable approaches have been proposed. GRLTR
(Su et al., 2018) integrates low-rank tensor representation, local geometry preservation, and ℓ2,1-
norm feature selection, while CPUFS (Chen et al., 2023) combines a tensor-oriented linear clas-
sifier, graph-regularized non-negative CP decomposition, and pseudo-label regression. However,
these methods still treat the feature space as flat, selecting features globally without considering
mode-specific dependencies, which increases computational cost. Our approach instead selects a
few representative slices from each mode, whose intersections yield the most informative features.
This preserves the multi-way structure, reduces complexity, and ensures the selected features better
capture the global data structure.
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Notations. For clarity, symbols used in this paper are summarized in Table 1, with detailed de-
scriptions and preliminaries in Appendix 7.1.

Table 1: Summary of notations.

Notation Meaning

x, x, X, X Scalar; vector; matrix; tensor.
Im, e(m)

j
Identity matrix; j-th column.

Ai,:, A:,j i-th row; j-th column of A.
∥A∥F , ∥A∥2,1, Tr(A) Frobenius norm; ℓ2,1-norm; trace.
⟨u,v⟩, ⟨A,B⟩F Dot product; Frobenius inner product.
A⊙B, A⊘B, A⊗B Hadamard product; element-wise division; Kronecker product,

where (A⊗B)im, jn = aijbmn.
X ∈ RI1×···×IN , X (N)

j ,
X(N)

N -mode tensor, with IN samples and I1 × · · · × IN−1 features;
j-th frontal slice; mode-N unfolding.

X ×n A, X×̄nv n-mode tensor–matrix; tensor–vector products.
IndI1×I2 ; R+ Indicator matrix; Set of non-negative real numbers.

3 MULTI-LINEAR SUBSPACE LEARNING

In tensor analysis, multi-linear subspace learning maintains multi-mode structure instead of flat-
tening data (Lu et al., 2011). A major challenge is defining a geometry-aware distance between
subspaces spanned by tensor slices across modes. The goal of this section is to define a multi-
linear subspace distance which quantifies similarities between these slice-based subspaces, preserv-
ing cross-mode dependencies and discriminative information. To this end, we first establish the
formal definition of the subspace spanned by tensor slices, which serves as the basis for a similarity
measure that precisely captures the underlying multi-linear relationships.

Definition 1. Let X ∈ RI1×I2×···×IN be an N -mode tensor with the mode-n slices X (n)
1 , . . . ,X (n)

In
,

where n ∈ {1, 2, . . . , N}. The space spanned by X (n) = {X (n)
i }

In
i=1 is denoted by S(X (n)) and

defined as S(X (n)) = {
∑In

i=1 α
(n)
i X

(n)
i | α(n)

i ∈ R}. Here, α(n) = [α
(n)
1 , α

(n)
2 , . . . , α

(n)
In

]⊤ ∈ RIn

denotes the vector of scalar coefficients corresponding to the mode-n slices.

This construction associates each set of tensor slices with a multi-linear subspace, turning the prob-
lem of comparing tensor data into a problem of comparing subspaces. To proceed, we need a
principled way of measuring how close an external tensor is to such a subspace.
Definition 2. Given X ∈ RI1×I2×···×IN and a tensor Z of the same dimension as a mode-n slice
of X , where n ∈ {1, 2, . . . , N}, the distance from Z to S(X (n)) is defined as dist(Z,S(X (n))) =
minW∈S(X (n)) ∥Z −W∥F .

This distance corresponds to the minimum discrepancy between Z and any element of the sub-
space. In other words, it quantifies the error incurred when approximating Z by linear combinations
of the mode-n slices of X . It follows that minW∈S(X (n)) ∥Z − W∥F = ∥Z − ProjS(X (n))Z∥F ,
where ProjS(X (n))Z denotes the orthogonal projection of Z onto the subspace. Since this pro-

jection is itself a linear combination of slices, there exists α(n) = [α
(n)
1 , . . . , α

(n)
In

]⊤ ∈ RIn

such that ProjS(X (n))Z =
∑In

i=1 α
(n)
i X

(n)
i = X×̄nα

(n). Consequently, dist(Z,S(X (n))) =

∥Z − X×̄nα
(n)∥F .

Beyond this general case, additional structure yields simplifications. If the slices {X (n)
i }

In
i=1 are

orthonormal (i.e., ⟨X (n)
i ,X (n)

j ⟩F = 0 for i ̸= j and ∥X (n)
i ∥F = 1 for all i), the projection co-

efficients become explicit inner products: α(n) = [⟨Z,X (n)
1 ⟩F , . . . , ⟨Z,X

(n)
In
⟩F ]⊤. In this case,

dist(Z,S(X (n))) = ∥Z −
∑In

i=1⟨Z,X
(n)
i ⟩FX

(n)
i ∥F , which admits a simple geometric interpreta-

tion as subtracting the projection of Z onto the orthonormal basis formed by the mode-n slices.

So far we have defined the distance between a single tensor and the subspace spanned by tensor
mode-n slices. Beyond this, the concept can be naturally extended to quantify the distance between
two subspaces, each spanned by the mode-n slices of two distinct tensors.

Definition 3 (Multi-linear Subspace Distance). Let X ∈ RI1×I2×···×IN be an N -mode tensor, and
let Y be another N -mode tensor of the same dimensionality, except that its mode-n size equals
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Jn, where n ∈ {1, 2, . . . , N}. The squared distance between the mode-n subspaces S(X (n)) and
S(Y(n)) is defined as dist(S(X (n)),S(Y(n)))2 =

∑In
i=1 dist(X

(n)
i ,S(Y(n)))2.

It can be shown that dist(S(X (n)),S(Y(n)))2 =
∑In

i=1 ∥X
(n)
i −Y×̄nα

(n)
i ∥2F = ∥X−Y×nH

(n)∥2F ,
where H(n) ∈ RIn×Jn is such that its i-th row is α(n)

i . Thus, the distance admits a compact tensor
representation via a reconstruction error term. This formulation essentially measures how far each
mode-n slice of X lies from the S(Y(n)), and aggregates these deviations across all mode-n slices.
Remark 1. The concept of multi-linear subspace distance provides a key link between tensor ge-
ometry and feature selection. Concretely, let X ∈ RI1×I2×···×IN denote the tensor data with IN
samples and I1 × I2 × · · · × IN−1 features. Each mode-N fiber represents a single feature and
can be seen as the intersection of its corresponding mode-1 through mode-(N − 1) slices. Thus, the
ability of a fiber to characterize the feature space depends on how well the slices containing that fiber
span the subspaces S(X (1)), . . . ,S(X (N−1)). The multi-linear subspace distance provides a natural
measure to evaluate this, enabling us to identify informative slices across modes whose intersections
yield fibers that faithfully preserve the global structure. By minimizing the distance between the
full subspace and the one formed by selected slices, our framework ensures fidelity and coherence
across modes. This principle provides the foundation for our feature selection strategy, which will
be further developed in the following sections.

3.1 SUBTENSORS AND SLICE SELECTION

Building on the idea of multi-linear subspace distance, a natural way to reduce redundancy while
preserving structure is to restrict attention to a subset of slices. Such subsets define subtensors,
which retain the essential information needed to approximate the span of the full tensor. By working
with subtensors, we can formalize slice selection as a principled step in feature selection, preparing
the ground for our definition below.

Definition 4. For a tensor X ∈ RI1×I2×···×IN , a subtensor X (n;k) is obtained by choosing k mode-
n slices indexed by {i(n)1 , . . . , i

(n)
k }, where each i

(n)
j ∈ {1, . . . , In} and n ∈ {1, 2, · · · , N}.

Any single mode-n slice X (n)
j can be written as X (n)

j = X×̄ne
(n)
j , ∀j ∈ {1, · · · In}, where

e
(n)
j is the j-th column of the identity IIn . More generally, a subtensor X (n;k) formed from

{X (n)
i1

, . . . ,X (n)
ik
} can be expressed as X (n;k) = X ×n W(n;k), where W(n;k) ∈ Rk×In is a

selection matrix whose rows are standard basis vectors.

Building on this, the distance between the span of all slices and that of a selected subset follows
directly. By Definition 3, we obtain

dist(S(X (n)),S(X (n;k))) = ∥X − X (n;k) ×n H(n;k)∥F = ∥X − X ×n W(n;k) ×n H(n;k)∥F
= ∥X − X ×n (H(n;k)W(n;k))∥F . (1)

This characterization shows that the distances between full and reduced subspaces can be understood
as the error of reconstructing the original tensor using only selected slices and suitable weighting.

3.2 CORE REPRESENTATION VIA INTERSECTION FIBERS

The subspace framework developed in (1) can be naturally extended to a compact tensor repre-
sentation in terms of mode-N fibers. By selecting slices along modes 1, . . . , N − 1 that span the
corresponding mode subspaces S(X (1)), . . . ,S(X (N−1)), we obtain a reduced set of mode-N fibers
located at their intersections. These intersection fibers act as structural representatives, capturing the
same subspace as the full collection of mode-N fibers. Consequently, the entire tensor can be ap-
proximated using a core representation derived from this smaller, more informative subset, whose
validity is rigorously established by the following theorem.

Theorem 3.1. Let X ∈ RI1×I2×···×IN be an N -mode tensor. Suppose that, for each mode
n ∈ {1, 2, . . . , N − 1}, the subspace S(X (n)) has a basis of dimension Rn ≤ In with in-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

dex set Tn = {i(n)1 , . . . , i
(n)
Rn
}. Let W(n;Rn) ∈ IndRn×In denote the corresponding indica-

tor matrix. For each (N − 1)-tuple (i1, . . . , iN−1) ∈ {1, . . . , I1} × · · · × {1, . . . , IN−1}, let
fi1,...,iN−1

= Xi1,...,iN−1,: ∈ RIN denote the mode-N fiber. (Part I: Core Dictionary). The∏N−1
n=1 Rn intersection fibers {f

i
(1)
r1

,...,i
(N−1)
rN−1

}R1,···RN−1

r1,...,rN−1=1 form a core dictionary that spans all

mode-N fibers of X . Stacking them columnwise yields the core matrix

Fcore =
(
X ×N−1

n=1 W(n;Rn)
)
(N)

= X(N)

N−1⊗
n=1

W(N−n;RN−n)
⊤
, (2)

where
⊗N−1

n=1 W(N−n;RN−n)
⊤

acts as the indicator matrix selecting precisely those core fibers.
(Part II: Separable Reconstruction). There exist coefficient matrices H(n;Rn) ∈ RIn×Rn , n ∈
{1, 2, . . . , N − 1} such that every mode-N fiber admits the separable expansion

fi1,···iN−1
=

R1∑
r1=1

· · ·
RN−1∑

rN−1=1

(
N−1∏
n=1

h
(n;Rn)
in,rn

)
f
i
(1)
r1

,...,i
(N−1)
rN−1

, (3)

and equivalently, the unfolding satisfies

X(N) = (X ×N−1
n=1 H(n;Rn)W(n;Rn))(N) = Fcore

N−1⊗
n=1

H(N−n;RN−n)
⊤
. (4)

Proof. A detailed proof of this theorem is presented in Appendix 7.2.

Intuition. Fixing bases for S(X (1)), . . . ,S(X (N−1)) encodes the tensor’s structure in their∏N−1
n=1 Rn intersection fibers, which act as a compact core dictionary, capturing the interactions

between the mode 1, . . . , N − 1 subspaces. The coefficient matrices H(n;Rn), n ∈ {1, . . . , N − 1}
provide separable weights to reconstruct all fibers. Exact recovery is guaranteed when the chosen
slices form true bases; otherwise, approximate bases yield reconstructions with errors tied to the
residuals, for which we derive explicit upper bounds in Appendix 7.3.
Remark 2. Theorem 3.1 underpins multi-way feature selection. When modes 1, · · · , N − 1 cor-
respond to features and mode-N indexes samples, each mode-N fiber represents a feature’s re-
sponse across samples. Feature selection thus reduces to choosing representative bases along modes
1, . . . , N − 1, whose intersection fibers form the most informative representatives of the full feature
space.

4 TENSOR-BASED FEATURE SELECTION

Figure 1: Schematic illustration of multi-linear subspace
learning feature selection (MSLFS). Mode-1 and mode-2
slices of the input tensor are processed via ℓ2,1-norm based
sparse selection, where the joint row sparsity regularization
ensures that only a limited number of slice combinations are
retained as informative representatives. The first term of
the objective function ensures reconstruction fidelity by us-
ing the intersection of the selected slices to form representa-
tive mode-3 fibers. The second term enforces local manifold
preservation within each mode, thereby maintaining the geo-
metric structure of the data subspaces.

In this section, we formalize the task of
feature selection in tensor data. The model
developed in this section is presented un-
der the assumption that the input is a non-
negative 3-mode tensor. This assump-
tion is well aligned with many practical
multi-way datasets such as images, videos,
and medical scans, where entries naturally
take non-negative values (Bi et al., 2025).
Nonetheless, the framework can be read-
ily extended to general tensor data, and we
provide a discussion of this extension in
Appendix 7.7. Let X ∈ RI1×I2×I3

+ be a
non-negative 3-mode data tensor with I3
samples, each described by I1 × I2 multi-
way features. The problem is to select a
subset of mode-3 fibers that best preserve
the structure of the full tensor.
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Feature Selection via Core Theorem.
According to Theorem 3.1, this can be
achieved by choosing m1 ≤ I1 slices
along mode-1 and m2 ≤ I2 slices along
mode-2, which approximate S(X(1)) and S(X(2)), respectively. The intersection of these selected
slices yields a compact yet expressive set of representative mode-3 fibers that best span the feature
subspace. Concretely, the feature selection problem can be formulated as follows:

min
H(1;m1),H(2;m2),W(1;m1),W(2;m2)≥0

∥X − X ×1 H
(1;m1)W(1;m1) ×2 H

(2;m2)W(2;m2)∥2F

s.t. W(1;m1) ∈ Indm1×I1 ,W(2;m2) ∈ Indm2×I2 . (5)

Here, W(1;m1) and W(2;m2) are indicator matrices marking the selected slices, and H(1;m1) ∈
RI1×m1 and H(2;m2) ∈ RI2×m2 are the corresponding coefficient matrices.

Relaxation via Orthogonality. Since the minimization problem (5) is NP-hard, directly using in-
dicator matrices is impractical. We relax this by enforcing orthogonality on W(1;m1) and W(2;m2),
equivalently on their Kronecker product. Combined with non-negativity, this ensures each column
remains one-hot, preserving selection while keeping the optimization tractable.

Row-Sparsity Regularization. Given the sparsity of W(1;m1) and W(2;m2), their Kronecker
product, which acts as the indicator matrix for the m1 ×m2 intersection mode-3 fibers, inherits this
property. To emphasize only the most informative slice combinations, we impose joint row-sparsity
on (W(2;m2)⊗W(1;m1))⊤, ensuring that only a few mode-3 fibers dominate the reconstruction and
redundancy is reduced. To formalize this idea, we employ the ℓ2,1 norm. For (W(2;m2)⊗W(1;m1))⊤

this becomes:

∥(W(2;m2) ⊗W(1;m1))⊤∥2,1 = Tr
(
(W(2;m2) ⊗W(1;m1))U (W(2;m2) ⊗W(1;m1))⊤

)
, (6)

where U ∈ RI1I2×I1I2 is diagonal with entries equal to the reciprocals of the ℓ2 norms of the
columns of W(2;m2) ⊗W(1;m1).

Mode-Wise Factorization of the Penalty. Because each column of W(2;m2) ⊗W(1;m1) is a
Kronecker product of a column of W(2;m2) and one of W(1;m1), the matrix U decomposes as
U(2)⊗U(1), where U(1) ∈ RI1×I1 and U(2) ∈ RI2×I2 are diagonal matrices whose entries depend
only on the columns of W(1;m1) and W(2;m2), respectively. Substituting this gives:

∥(W(2;m2)⊗W(1;m1))⊤∥2,1 = Tr
(
(W(2;m2)⊗W(1;m1))(U(2)⊗U(1))(W(2;m2)⊗W(1;m1))⊤

)
.

(7)
Using standard Kronecker product identities, this expression simplifies to

Tr((W(2;m2)U(2)W(2;m2)
⊤
)⊗ (W(1;m1)U(1)W(1;m1)

⊤
)),

and since the trace of a Kronecker product factorizes into the product of traces, we finally obtain

∥(W(2;m2) ⊗W(1;m1))⊤∥2,1 = ∥W(2;m2)
⊤
∥2,1∥W(1;m1)

⊤
∥2,1

= Tr(W(2;m2)U(2)W(2;m2)
⊤
) Tr(W(1;m1)U(1)W(1;m1)

⊤
). (8)

Interpretation. The ℓ2,1 penalty factorizes across modes, with each trace term measuring the rep-
resentational quality of slices in its subspace while penalizing redundancy. This separation reduces
computation and enables mode-wise control, ensuring balanced selection that retains only the most
informative fibers.

4.1 GRAPH REGULARIZATION FOR HIGHER-ORDER MANIFOLD LEARNING

In multi-way feature selection, it is crucial to preserve both the global span and the intrinsic geometry
of the data. Graph regularization enforces local neighborhood consistency, ensuring proximity in the
original space is maintained in the learned representation. Extending this to tensors requires jointly
modeling local structures across all modes.

6
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Fiber Representation. Let H(1;m1) ∈ RI1×m1 and H(2;m2) ∈ RI2×m2 denote coefficient matri-
ces for the selected slices along modes 1 and 2. By Theorem 3.1, each mode-3 fiber fi1,i2 can be
approximated in terms of the core fibers as: fi1,i2 = Fcore

(
(H(2;m2) ⊗ H(1;m1))⊤

)
:, i1i2

, where

the coefficient vector
(
(H(2;m2) ⊗ H(1;m1))⊤

)
:, i1i2

encodes how the fiber is reconstructed from
the shared subspace. Intuitively, if two fibers fi1,i2 and fj1,j2 are similar in the original space, their
coefficient vectors should also be close, reflecting their functional similarity in reconstruction.

Graph Regularization. To enforce this locality, we minimize the squared distance between coef-
ficient vectors, weighted by their similarity:

1

2

∑
i1,i2

∑
j1,j2

∥∥∥((H(2;m2) ⊗H(1;m1))⊤
)
:, i1i2

−
(
(H(2;m2) ⊗H(1;m1))⊤

)
:, j1j2

∥∥∥2
2
bi1i2,j1j2 , (9)

where bi1i2,j1j2 encodes the similarity between fi1,i2 and fj1,j2 . This term can be rewritten com-
pactly in matrix form as: Tr

[
(H(2;m2)⊗H(1;m1))⊤L(H(2;m2)⊗H(1;m1))

]
, where L ∈ RI1I2×I1I2

is the Laplacian of the feature similarity graph.

Mode-Wise Decomposition. To ease computation, we exploit the fact that similarities between
fibers factorize across modes. This induces a Kronecker structure in the joint Laplacian, expressed as
L = L(2)⊗L(1). For each mode n ∈ {1, 2}, the Laplacian L(n) = A(n)−B(n) is constructed from
the degree matrix A(n) and similarity matrix B(n), with L(n),A(n),B(n) ∈ RIn×In . Substituting
this decomposition yields:

Tr
[
(H(2;m2) ⊗H(1;m1))⊤(L(2) ⊗ L(1))(H(2;m2) ⊗H(1;m1))

]
=

Tr(H(2;m2)
⊤
L(2)H(2;m2)) Tr(H(1;m1)

⊤
L(1)H(1;m1)). (10)

Interpretation. The factorization shows that preserving local geometry among fibers indexed by
(i1, i2) decomposes into two preservation tasks, one per mode. Each trace term enforces neigh-
borhood smoothness along its mode, while the Kronecker structure captures their joint effect. This
regularization encourages nearby slices in the tensor to share similar coefficients in the reduced
space, aligning feature selection with the data manifold. The mode-wise decomposition also lowers
computational cost and clarifies each mode’s contribution to locality preservation.

Similarity Construction. The similarity matrices B(1) = [b
(1)
i1,i2

] ∈ RI1×I1 and B(2) = [b
(2)
i1,i2

] ∈
RI2×I2 are built via a heat kernel. For example, the similarity between two mode-n slices X(n)

i1
and

X
(n)
i2

, where n ∈ {1, 2}, is defined as: b(n)i1,i2
= exp

(
−∥X(n)

i1
−X

(n)
i2
∥2F /σ2

)
if X(n)

i1
∈ Nk(X

(n)
i2

)

or vice versa; otherwise b
(n)
i1,i2

= 0, where σ > 0 is the kernel width and Nk(·) denotes the set of k
nearest neighbors.

Overall Objective Function. Bringing together the reconstruction fidelity, sparsity control, and
manifold preservation, the MSLFS framework can be formulated as

min
H(n;mn),W(n;mn)≥0,∀n∈{1,2}

1

2
∥X − X ×1 H

(1;m1)W(1;m1) ×2 H
(2;m2)W(2;m2)∥2F

+
α

2
Tr(H(2;m2)

⊤
L(2)H(2;m2)) Tr(H(1;m1)

⊤
L(1)H(1;m1))

+
β

2
Tr(W(2;m2)U(2)W(2;m2)

⊤
) Tr(W(1;m1)U(1)W(1;m1)

⊤
)

s.t. W(2;m2)W(2;m2)
⊤
⊗W(1;m1)W(1;m1)

⊤
= Im1m2

. (11)

Details of the optimization procedure, convergence analysis, and computational complexity are pro-
vided in Appendices 7.4, 7.5, and 7.6, respectively. In brief, Algorithm 1 outlines the optimization
steps for solving the minimization problem (11).
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Algorithm 1 MSLFS Algorithm

Input: Data tensor X ∈ RI1×I2×I3 ; numbers of selected slices m1,m2; parameters α, β, γ; max iter.
Output: Compute ℓ2-norm of columns in W(1;m1), W(2;m2), sort descending. Select top m1 columns of

W(1;m1), top m2 of W(2;m2) for mode-1, mode-2 slices. Output m1 ×m2 features at their intersection.
1: Initialize W(1;m1) ∈ Rm1×I1 , W(2;m2) ∈ Rm2×I2 , H(1;m1) ∈ RI1×m1 , H(2;m2) ∈ RI2×m2 randomly;

build similarity matrices B(1), B(2).
2: for t = 0 to max iter do
3: Update W(1;m1) via (17), H(1;m1) via (19), W(2;m2) via (23), H(2;m2) via (25).
4: end for

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of MSLFS through extensive experiments, compar-
ing it with top-performing feature selection models on real-world benchmark datasets.

Datasets and Compared Methods. To evaluate the effectiveness of MSLFS, we conduct experi-
ments on several benchmark datasets, including COIL20 (Nene et al., 1996), Kinetic Fluorescence
(Nikolajsen et al., 2023), ORL (Cai et al., 2010), UMIST (Graham & Allinson, 1998), Pixraw10P
(Li et al., 2017), Orlraws10P (Li et al., 2017), FashionMNIST (Xiao et al., 2017), BreastMNIST
(Yang et al., 2021), PneumoniaMNIST (Yang et al., 2023), OrganCMNIST (Yang et al., 2023),
OrganSMNIST (Yang et al., 2021), and COVID-19 Systems Serology (Tan et al., 2023). For com-
parison, we select 13 top-tier models: LS (He et al., 2005b), UDFS (Yang et al., 2011), SAE (Guo
et al., 2017), ILFS (Roffo et al., 2017), GRLTR (Su et al., 2018), CAE (Balın et al., 2019), FSPCA
(Tian et al., 2020), CPUFS (Chen et al., 2023), SPCAFS (Li et al., 2023), NNSE (You et al., 2023a),
GRSSLFS (Tiwari et al., 2024), SDAE (Hassanieh & Chehade, 2024a), and SPDFS (Dong et al.,
2025).

Experimental Settings. To ensure fair evaluation, all methods are tuned under comparable set-
tings. For graph-based approaches, the k-neighborhood is selected from {2, 5, 10, 15}. We fix
γ = 108 to enforce orthogonality and set the kernel width σ = 103. Regularization parame-
ters are searched over {10−4, 10−3, . . . , 104}, and the number of selected features is varied across
{50, 100, 150, 200, 250, 300}. Clustering is performed with the true number of clusters, and the
maximum iterations of iterative methods are tuned within {5, 10, 30}, where 5 or 10 iterations offer
a good trade-off between efficiency and convergence. k-means is applied to the selected features and
repeated 10 times with random initializations; average results are reported. Performance is assessed
by ACC and NMI (Solorio-Fernández et al., 2020), where higher values indicate better results.

Clustering Results. Table 2 presents ACC and NMI results across eight benchmarks against 10
leading baselines. MSLFS consistently achieves top performance, with large improvements on
COIL20, ORL, and Orlraws10P, and robust results on challenging datasets such as FashionM-
NIST and BreastMNIST. These gains come from its slice-based subspace modeling, which leverages
cross-mode structure, and graph-regularized selection, which maintains local geometry, producing
compact and discriminative features that drive clustering accuracy.

Table 2: Clustering results of the MSLFS vs. 13 cutting-edge models on benchmark datasets (I).

Model COIL20 ORL UMIST Pixraw10P Orlraws10P FashionMNIST BreastMNIST OrganSMNIST
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

LS (NeurIPS 2005) 54.34 72.11 48.11 71.44 41.05 59.31 67.37 83.52 69.24 78.76 50.49 51.17 62.22 4.78 33.17 37.69
UDFS (IJCAI 2011) 55.47 71.19 47.95 71.50 36.52 53.03 70.54 79.94 57.64 67.57 52.46 51.22 62.67 5.55 33.52 37.34
SAE (IJCNN 2017) 62.11 74.22 52.76 72.11 44.12 57.08 88.56 89.09 77.64 84.47 53.23 50.62 61.67 5.78 31.24 34.34
ILFS (CVPR 2017) 61.45 73.56 56.68 75.92 45.52 58.74 73.29 83.74 74.52 82.26 63.57 60.31 63.57 7.43 28.86 34.58
GRLTR (JVCIR 2018) 68.78 77.84 54.32 75.00 49.68 63.21 92.44 93.67 82.90 87.51 54.92 51.01 59.19 5.00 33.38 32.16
CAE (ICML 2019) 59.93 72.17 56.25 74.93 54.34 69.22 86.27 91.75 74.45 81.23 67.57 64.26 74.88 9.36 39.81 41.96
FSPCA (NeurIPS 2020) 67.14 79.43 57.07 73.97 52.38 65.54 85.66 92.16 80.41 87.74 63.26 61.68 71.42 8.55 38.15 40.81
CPUFS (TPAMI 2022) 64.72 76.21 57.38 75.39 49.46 63.37 77.27 89.40 76.81 85.36 60.53 58.52 67.87 8.26 37.24 39.57
SPCAFS (TPAMI 2023) 63.15 74.74 52.21 71.76 44.23 58.21 82.16 88.91 73.36 80.44 54.36 51.53 60.46 5.42 34.01 33.26
NNSE (PATCOG 2023) 69.22 79.34 57.21 77.23 55.63 66.11 86.63 92.31 80.37 85.93 57.11 64.63 64.55 11.34 38.01 39.26
GRSSLFS (TMLR 2024) 67.47 78.76 53.95 74.58 58.06 68.06 89.30 92.17 79.10 86.04 56.65 62.43 53.85 10.00 32.74 30.94
SDAE (AAAI 2024) 70.21 80.86 60.45 74.31 56.76 68.32 90.36 92.22 85.45 89.67 65.32 65.96 72.94 10.98 39.72 41.88
SPDFS (TPAMI 2025) 67.66 78.96 53.64 73.01 48.37 61.15 78.36 89.13 75.45 82.21 56.76 52.96 61.12 7.66 33.41 34.25
MSLFS (Ours) 73.15 84.67 64.43 79.61 56.79 70.17 93.16 94.28 88.33 91.42 66.42 66.74 76.93 12.85 44.25 44.87
Improvement +2.94 +3.81 +3.98 +4.38 – +0.95 +0.72 +0.61 +2.88 +1.75 – +0.78 +2.05 +1.51 +4.44 +2.91
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Table 3: Clustering results of the MSLFS vs. 13 cutting-edge models on benchmark datasets (II).

Model Kinetic Fluorescence PneumoniaMNIST OrganCMNIST COVID-19 Systems Serology
ACC NMI ACC NMI ACC NMI ACC NMI

LS (NeurIPS 2005) 69.86 77.66 54.33 63.17 48.02 51.79 65.55 81.12
UDFS (IJCAI 2011) 70.99 76.74 54.17 63.23 43.49 45.51 68.72 77.54
SAE (IJCNN 2017) 77.63 79.77 58.98 63.84 51.09 49.56 86.74 86.69
ILFS (CVPR 2017) 76.97 79.11 62.90 67.65 52.49 51.22 71.47 81.34
GRLTR (JVCIR 2018) 84.30 83.39 60.54 66.73 58.65 57.69 90.62 91.27
CAE (ICML 2019) 75.45 77.72 62.47 66.66 61.31 61.70 84.45 89.35
FSPCA (NeurIPS 2020) 82.66 84.98 63.29 65.70 59.35 58.02 83.84 89.76
CPUFS (TPAMI 2022) 80.24 81.76 63.60 67.12 56.43 55.85 75.45 87.00
SPCAFS (TPAMI 2023) 78.67 80.29 58.43 63.49 51.20 50.69 80.34 86.51
NNSE (PATCOG 2023) 83.74 84.89 63.43 68.96 62.60 58.59 84.81 89.91
GRSSLFS (TMLR 2024) 82.99 84.31 60.17 66.31 62.03 60.54 87.48 89.77
SDAE (AAAI 2024) 85.73 86.41 68.67 68.04 75.69 74.80 88.54 89.82
SPDFS (TPAMI 2025) 83.18 84.51 59.86 64.74 55.34 53.63 76.54 86.73
MSLFS (Ours) 88.67 90.22 71.65 72.34 73.76 72.65 95.34 95.88
Improvement +2.94 +3.81 +2.98 +3.38 - - +4.72 +4.61

Ablation Study. The MSLFS objective includes two regularizations: locality preservation (α)
to capture local geometry and sparsity (β) to enhance discriminability. An ablation study on six
datasets (Table 4) shows that the full model consistently outperforms reduced variants. Removing
either term lowers performance, with the sharpest drop when both are omitted, confirming their
complementary importance for robust clustering.

Table 4: Ablation study results on eight datasets.

Case COIL20 Pixraw10P ORL BreastMNIST UMIST OrganCMNIST Kinetic Fluorescence COVID-19 Systems Serology
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

α, β ̸= 0 72.88 83.44 93.66 94.11 64.13 79.45 76.13 12.69 56.33 69.79 73.69 72.49 88.34 89.98 95.56 96.02
α = 0 66.87 77.22 89.80 91.37 61.12 77.54 63.14 8.44 49.42 63.38 72.21 72.38 85.34 85.76 91.76 94.56
β = 0 68.13 78.97 90.45 92.32 58.98 75.66 68.73 10.89 49.01 61.88 71.34 71.77 86.22 87.03 93.33 95.43
α, β = 0 64.86 74.78 85.20 88.03 56.90 74.05 61.13 7.89 46.56 57.22 69.78 70.87 83.23 82.79 90.09 91.13

Convergence Curves. This section analyzes the convergence of MSLFS on four benchmark
datasets. Figure 2 shows objective values versus iterations (up to 50). In all cases, the loss drops
quickly at first and then stabilizes, demonstrating fast and robust convergence across diverse datasets.

Figure 2: Convergence curves of the MSLFS on the image datasets.

Computational Complexity. Table 5 shows that while many methods incur cubic costs in tensor
dimensions, MSLFS reduces complexity to linear dependence on I1I2I3 with only minor contribu-
tions from slice counts. Its mode-wise design distributes selection across modes and avoids costly
global operations, yielding clear efficiency gains over prior approaches.

Data Visualization using t-SNE. Figure 3 presents t-SNE visualizations on UMIST. The raw
data shows scattered and overlapping clusters, while MSLFS with varying feature counts produces
progressively clearer, more compact, and better-separated groups. This demonstrates the ability of
the MSLFS to extract discriminative features that enhance clustering quality.

Figure 3: t-SNE plots of UMIST before and after feature reduction with MSLFS.
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Table 5: Computational complexity of different models for each iteration. Here t and c denote the
dimension of the reduced space and cluster number, respectively.

Model Computational Complexity

LS O
(
I1I2I

2
3 + I1I2 log2 I1I2

)
UDFS O

(
I31I

3
2 + I23 c

)
FSPCA O

(
max{I1I2m1m2t,m

3
1m

3
2}+ I1I2m1m2t

)
CPUFS O

(
(I1I3 + I2I3)c

2 + (I1I2I3 + I23 )c
)

SPCAFS O
(
I21I

2
2 (I3 + I1I2)

)
GRSSLFS O

(
I21I

2
2I

2
3

)
GRLTR O

(
I1I2I3 log2 I3 + I1I

2
2I3 + I33

)
SPDFS O

(
max{I1I2I3t, I21I22 t}+ I1I2I3tc

2 +max{I1I2I3t, I1I2 log2 I1I2,m3
1m

3
2}
)

MSLFS O
(
I1I2I3

(
max{m1, I2}+max{m2, I1}

))

Selected Features Visualization. Figure 4 depicts feature selection on ORL and Pixraw10P with
100, 200, and 300 features. Fewer features capture broad structure, while more reveal finer details.
Across datasets, the model consistently highlights informative regions, expressing its efficacy for
image-based feature selection.

Figure 4: Image visualizations on ORL and Pixraw10P with 100, 200, and 300 selected features.

6 CONCLUSION

The proposed MSLFS introduces a novel approach to tensor-based feature selection by distributing
the selection process across modes rather than treating the feature space as a rigid whole. Its key
innovation, the multi-linear subspace distance, provides a principled criterion for preserving global
structure while enabling efficient and interpretable feature selection. Complemented by joint sparsity
and higher-order graph regularization, MSLFS captures both cross-mode dependencies and local
manifold geometry, setting it apart from existing tensor-based methods. This framework opens
new directions for multi-way learning, with future work aimed at extending MSLFS to broader
tasks such as its integration with deep tensor architectures for large-scale representation learning.
Comprehensive theoretical discussions and supplementary experiments can be found in Appendices
7 and 8*.
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7 ADDITIONAL THEORETICAL RESULTS

7.1 NOTATIONS AND PRELIMINARIES

Notations. Throughout this paper, vectors are represented by bold lowercase letters (e.g., v), ma-
trices by bold uppercase letters (e.g., A), and tensors by bold calligraphy letters (e.g., X ). The
identity matrix of size m is denoted by Im, and e

(m)
j denotes the jth column of Im. For a matrix

A = (aij) ∈ Rm×n, the i-th row and the j-th column are denoted by Ai,: and A:,j , respectively.

The Frobenius norm of A is defined as ∥A∥F =
√∑m

i=1

∑n
j=1 a

2
ij , while the ℓ2,1-norm is given by

∥A∥2,1 =
∑m

i=1 ∥Ai,:∥2. For a square matrix A, Tr(A) denotes its trace. The dot product between
two vectors u,v ∈ Rn is defined as ⟨u,v⟩ =

∑n
i=1 uivi, and the Frobenius inner product between

two matrices A,B ∈ Rm×n is defined as ⟨A,B⟩F =
∑m

i=1

∑n
j=1 aijbij . The Hadamard product of

A,B ∈ Rm×n is expressed as A⊙B = (aijbij)
m,n
i=1,j=1. For A ∈ KI×J and B ∈ KM×N , the Kro-

necker product is A⊗B ∈ K(IM)×(JN); defining im = (i−1)M+m and jn = (j−1)N+n, its en-
tries are given by (A⊗B)im, jn = aijbmn for 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ m ≤M , and 1 ≤ n ≤ N .
A third-order tensor is denoted by X = (xi1,i2,i3)i1=1,...,I1; i2=1,...,I2; i3=1,...,I3 ∈ RI1×I2×I3 , where
each entry xi1,i2,i3 ∈ R; the j-th frontal slice (j = 1, . . . , I3), denoted by X

(3)
j , is obtained by fixing

the third index and belongs to RI1×I2 . Furthermore, the mode-3 unfolding of X , denoted by X(3),
rearranges the entries of X into a matrix of size I3 × I1I2 by mapping the mode-3 fibers to the
columns of X(3).

Preliminaries. Let X ∈ RI1×I2×···×IN be an N -mode tensor, A ∈ RJ×In a matrix, and v ∈ RIn

a vector (n = 1, . . . , N ). The n-mode tensor-matrix product X ×n A ∈ RI1×···×J×···×IN and
the n-mode tensor-vector product X×̄nv ∈ RI1×···×In−1×In+1×···×IN are defined elementwise as
(X ×n A)i1···j···iN =

∑In
in=1 xi1···iNajin , (X×̄nv)i1···in−1in+1···iN =

∑In
in=1 xi1···iN vin . For

y ∈ RJ , we have X ×n A×̄ny = X×̄n(y
⊤A), and the j-th mode-n slice of X ×n A is X×̄nAj,:,

j = 1, . . . , J . In particular, if y = e
(n)⊤
j is the j-th column of the identity IIn , then X ×n y extracts

the j-th mode-n slice: X ×n e
(n)⊤
j = X (n)

j .

The mode-n unfolding ofX , denoted by X(n) ∈ RIn×(I1···In−1In+1···IN ), rearrangesX into a matrix
by aligning all mode-n fibers as its columns. Tensor-matrix products admit the following unfolding
formulations: (X ×nA)(n) = AX(n), (X ×mA)(n) = X(n)

(
IIm+1···IN ⊗A⊗ II1···Im−1

)⊤
,m ̸=

n. More generally, for a sequence of tensor-matrix products, we have
(
X ×1 A1 ×2 A2 · · · ×N

AN

)
(n)

= An X(n)

(
AN ⊗ · · · ⊗An+1 ⊗An−1 ⊗ · · · ⊗A1

)⊤
.

7.2 PROOF OF THEOREM 3.1

Proof. Step 1 (Core matrix equals intersection fibers). Define the subtensor obtained by selecting
the chosen basis slices in modes 1, · · · , N − 1

Y := X ×N−1
n=1 W(n;Rn) ∈ RR1×···×RN−1×IN .

Since W(n;Rn) is the indicator selector for the index set Tn, the (r1, r2, · · · , rN−1, :)-entry of Y
is precisely the intersection fiber f

i
(1)
r1

,··· ,i(N−1)
rN−1

= X
i
(1)
r1

,··· ,i(N−1)
rN−1

,:
. Hence, Y stacks exactly the∏N−1

n=1 Rn intersection fibers. Unfolding along mode-N and using the standard product–unfolding
identity yields

Fcore := Y(N) = X(N)

N−1⊗
n=1

W(N−n;RN−n)
⊤
,

so Fcore is exactly the matrix whose columns are the
∏N−1

n=1 Rn intersection fibers. Step 2 (Co-
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efficient matrices along modes 1, · · · , N − 1). Because {X (n)

i
(n)
rn

}Rn
rn=1 is a basis of S(X (n)), n ∈

{1, · · · , N − 1}, for every in ∈ {1, 2, · · · , In}, there exist coefficients {h(n;Rn)
in,rn

}Rn
rn=1 such that

X (n)
in

=

Rn∑
rn=1

h
(n;Rn)
in,rn

X (n)

i
(n)
rn

.

Collect these into H(n;Rn) ∈ RIn×Rn . Step 3 (Fiber-level decomposition). Fix an (N − 1)-tuple
(i1, · · · , iN−1). Expanding along modes 1, · · · , N − 1 gives

fi1,··· ,iN−1
= Xi1,··· ,iN−1,: =

R1∑
r1=1

h
(1;R1)
i1,r1

X
i
(1)
r1

,··· ,iN−1,:
=

R1∑
r1=1

· · ·
RN−1∑

rN−1=1

(
N−1∏
n=1

h
(n;Rn)
in,rn

)
X

i
(1)
r1

,··· ,i(N−1)
rN−1

,:
,

i.e.,

fi1,··· ,iN−1
=

R1∑
r1=1

· · ·
RN−1∑

rN−1=1

(
N−1∏
n=1

h
(n;Rn)
in,rn

)
f
i
(1)
r1

,··· ,i(N−1)
rN−1

.

Step 4 (Tensor-level identity). Stacking the identities in Step 3 over all (i1, · · · , iN−1) shows that
X is obtained by first selecting the basis slices and then recombining them with the coefficients:

X = X ×N−1
n=1 H(n;Rn)W(n;Rn).

Unfolding this equality along mode N and using the same product–unfolding identity as in Step 1
gives

X(N) =
(
X ×N−1

n=1 H(n;Rn)W(n;Rn)
)
(N)

= X(N)

(
N−1⊗
n=1

W(N−n;RN−n)
⊤

)(
N−1⊗
n=1

H(N−n;RN−n)
⊤

)
.

Substituting the expression for Fcore from Step 1 yields

X(N) = Fcore

N−1⊗
n=1

H(N−n;RN−n)
⊤
.

This completes the proof.

7.3 RESIDUAL ERROR BOUNDS FOR APPROXIMATE SLICE BASES

Theorem 3.1 establishes that when mode-wise bases are selected exactly, the full tensor can be
reconstructed from the resulting core fibers without loss. In practice, however, the selected slices
only approximate the true bases of the mode subspaces, leading to reconstruction errors tied to the
residuals of these approximations. In this section, we provide two upper bounds that quantify how
such residual errors behave when the projection operators deviate from the true subspace projections.
Let X ∈ RI1×···×IN denote the original tensor, and let

X̂ = X ×N−1
n=1 Pn, Pn = H(n;Rn)W(n;Rn),

be the reconstructed tensor obtained using approximate mode-wise bases. The following theorem
characterizes the residual error ∥X − X̂∥F through two complementary inequalities: one capturing
the distortion caused by the mode-wise projection operators Pn, and another bounding the accumu-
lated spectral amplification introduced by the multi-linear Kronecker structure.

Theorem 7.1. Let X and X̂ be defined as above. Then, the reconstruction error satisfies the follow-
ing bounds:

(1)

∥X−X̂∥F ≤
N−1∑
n=1

∥X(n)∥F
(
max

i
|1− σi(Pn)|+ σ1(Pn)max

(
|1− σmin|, |1− σmax|

))
,
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where X(n) is the mode-n unfolding of X , σi(Pn) are the singular values of Pn, and

σmax =
∏
ℓ̸=n

σ1(Pℓ), σmin =
∏
ℓ̸=n

σIℓ(Pℓ).

(2)

∥X − X̂∥F ≤ ∥X(N)∥F

(
1 +

N−1∏
n=1

∥H(n;Rn)
⊤
∥2

)
,

where X(N) is the mode-N unfolding of X .

Proof. We first establish the bound in (1). Let X(n) denote the mode-n unfolding of X . The
reconstructed unfolding is

X̂(n) = PnX(n)Q
⊤
n , Qn =

⊗
ℓ̸=n

Pℓ,

and the residual is
E(n) = X(n) − X̂(n) = X(n) −PnX(n)Q

⊤
n .

Applying the triangle inequality and submultiplicativity of the Frobenius norm gives

∥E(n)∥F ≤ ∥X(n)∥F
(
∥I−Pn∥2 + ∥Pn∥2∥I−Q⊤

n ∥2
)
.

Because Qn is a Kronecker product of Pℓ matrices, its singular values are all products of the singular
values of these factors. Denoting

σmax =
∏
ℓ̸=n

σ1(Pℓ), σmin =
∏
ℓ̸=n

σIℓ(Pℓ),

the stated bound follows. Summing the contributions for all n = 1, . . . , N − 1 yields (1). For (2),
note that

∥X − X̂∥F = ∥X(N) − X̂(N)∥F = ∥X(N)

(
I−

N−1⊗
n=1

Pn

)⊤

∥F .

Using ∥AB∥F ≤ ∥A∥F ∥B∥2 and submultiplicativity of the spectral norm,

∥X − X̂∥F ≤ ∥X(N)∥F

(
1 +

N−1∏
n=1

∥P⊤
n ∥2

)
≤ ∥X(N)∥F

(
1 +

N−1∏
n=1

∥H(n;Rn)
⊤
∥2

)
,

which completes the proof.

7.4 OPTIMIZATION

We now detail the optimization procedure of the proposed MSLFS method given in Problem (12),
describing the iterative steps for solving its objective function and updating the associated optimiza-
tion variables.

min
H(n;mn),W(n;mn)≥0,∀n∈{1,2}

1

2
∥X − X ×1 H

(1;m1)W(1;m1) ×2 H
(2;m2)W(2;m2)∥2F

+
α

2
Tr(H(2;m2)

⊤
L(2)H(2;m2)) Tr(H(1;m1)

⊤
L(1)H(1;m1))

+
β

2
Tr(W(2;m2)U(2)W(2;m2)

⊤
) Tr(W(1;m1)U(1)W(1;m1)

⊤
)

s.t. W(2;m2)W(2;m2)
⊤
⊗W(1;m1)W(1;m1)

⊤
= Im1m2

. (12)
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To derive the multiplicative updating rules for W(1;m1) and H(1;m1), one must calculate the deriva-
tives of the objective function with respect to these variables and set them equal to zero. To this end,
the first term of the objective function can be unfolded as follows:

min
H(n;mn),W(n;mn)≥0,∀n∈{1,2}

1

2
∥X(1) −H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))

⊤
∥2F

+
α

2
Tr[H(2;m2)

⊤
L(2)H(2;m2)]Tr[H(1;m1)

⊤
L(1)H(1;m1)]

+
β

2
Tr[W(2;m2)U(2)W(2;m2)

⊤
]Tr[W(1;m1)U(1)W(1;m1)

⊤
]

s.t. W(2;m2)W(2;m2)
⊤
⊗W(1;m1)W(1;m1)

⊤
= Im1m2 . (13)

Simplifying the objective function leads us to:
1

2
Tr[X⊤

(1)X(1) − 2(II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤
H(1;m1)

⊤
X(1)

+ (II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤
H(1;m1)

⊤
H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤]

+
α

2
Tr[H(2;m2)

⊤
L(2)H(2;m2)]Tr[H(1;m1)

⊤
L(1)H(1;m1)]

+
β

2
Tr[W(2;m2)U(2)W(2;m2)

⊤
]Tr[W(1;m1)U(1)W(1;m1)

⊤
]

+
γ

4
Tr[W(2;m2)W(2;m2)

⊤
W(2;m2)W(2;m2)

⊤
⊗W(1;m1)W(1;m1)

⊤
W(1;m1)W(1;m1)

⊤

− 2W(2;m2)W(2;m2)
⊤
⊗W(1;m1)W(1;m1)

⊤
+ Im1m2 ]. (14)

Now the the derivatives of the objective function w.r.t. W(1;m1) and H(1;m1) can be calculated as
follows:

∂F
∂W(1;m1)

= −H(1;m1)
⊤
X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

+H(1;m1)
⊤
H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

+ βTr[W(2;m2)U(2)W(2;m2)
⊤
]W(1;m1)U(1)

+ γTr[W(2;m2)W(2;m2)
⊤
W(2;m2)W(2;m2)

⊤
]W(1;m1)W(1;m1)

⊤
W(1;m1)

− γTr[W(2;m2)W(2;m2)
⊤
]W(1;m1). (15)

∂F
∂H(1;m1)

= −X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤

+H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]L(1)H(1;m1). (16)

According to KKT conditions (Lee & Seung, 1999), we have the following updating rules:

W(1;m1) = (W(1;m1) ⊙H(1;m1)
⊤
X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤

(1) (17)

+ γTr[W(2;m2)W(2;m2)
⊤
]W(1;m1))

⊘ (H(1;m1)
⊤
H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

+ βTr[W(2;m2)U(2)W(2;m2)
⊤
]W(1;m1)U(1)

+ γTr[W(2;m2)W(2;m2)
⊤
W(2;m2)W(2;m2)

⊤
]W(1;m1)W(1;m1)

⊤
W(1;m1)) (18)

H(1;m1) = H(1;m1) ⊙ (X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]A(1)H1)

⊘ (H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))
⊤
(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)W
(2;m2)

⊤

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]B(1)H(1;m1)). (19)
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To derive the update rules for W(2;m2) and H(2;m2), the first term of (12) must be reformulated using
the mode-2 unfolding of the tensor. Then, the derivatives of (12) with respect to these variables are
computed.

min
H(n;mn),W(n;mn)≥0,∀n∈{1,2}

1

2
∥X(2) −H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))

⊤
∥2F

+
α

2
Tr[H(2;m2)

⊤
L(2)H(2;m2)]Tr[H(1;m1)

⊤
L(1)H(1;m1)]

+
β

2
Tr[W(2;m2)U(2)W(2;m2)

⊤
]Tr[W(1;m1)U(1)W(1;m1)

⊤
]

s.t. W(2;m2)W(2;m2)
⊤
⊗W(1;m1)W(1;m1)

⊤
= Im1m2

. (20)

∂F
∂W(2;m2)

= −H(2;m2)
⊤
X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤

(2)

+H(2;m2)
⊤
H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤

(2)

+ βTr[W(1;m1)U(1)W(1;m1)
⊤
]W(2;m2)U(2)

+ γTr[W(1;m1)W(1;m1)
⊤
W(1;m1)W(1;m1)

⊤
]W(2;m2)W(2;m2)

⊤
W(2;m2)

− γTr[W(1;m1)W(1;m1)
⊤
]W(2;m2). (21)

∂F
∂H(2;m2)

= −X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤

+H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]L(2)H(2;m2). (22)

According to KKT conditions (Lee & Seung, 1999), we have the following updating rules:

W(2;m2) = W(2;m2) ⊙ (H(2;m2)
⊤
X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤

(2) (23)

+ γTr[W(1;m1)W(1;m1)
⊤
]W(2;m2))

⊘ (H(2;m2)
⊤
H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤

(2)

+ βTr[W(1;m1)U(1)W(1;m1)
⊤
]W(2;m2)U(2)

+ γTr[W(1;m1)W(1;m1)
⊤
W(1;m1)W(1;m1)

⊤
]W(2;m2)W(2;m2)

⊤
W(2;m2)), (24)

H(2;m2) = H(2;m2) ⊙ (X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]A(2)H(2;m2))

⊘ (H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]B(2)H(2;m2)). (25)

7.5 CONVERGENCE ANALYSIS

This section iinvestigates the convergence analysis of MSLFS to explore the decreasing behavior of
the objective function (12). It is first assumed that each matrix W(n;mn), H(n;mn), for n ∈ {1, 2} is
individually updated while the others remain unchanged. Based on this assumption, the decreasing
behavior of the objective function is analyzed for each variable. For this purpose, several important
definitions and findings from (Lee & Seung, 1999) are examined.

Definition 7.2 ((Lee & Seung, 1999)). The function G(u, u(t)) is deemed an auxiliary function for
f(u) if it fulfills the subsequent criteria:

g(u, u(t)) ≥ f(u), g(u, u) = f(u), (26)

for every u ∈ R.
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Lemma 1 ((Lee & Seung, 1999)). Suppose g(u, u(t)) is an auxiliary function associated with f(u).
Then, the sequence {f(u(t))}∞t=1 is non-increasing when u is updated according to

u(t+1) = argmin
u∈R

g(u, u(t)).

In Proposition 7.3, an auxiliary function is created to ensure that the original objective function
diminishes monotonically in line with the update rule for W(1;m1) specified in (17).

Proposition 7.3. Given that the matrices H(1;m1),W(2;m2), and H(2;m2) are fixed, the update rule
(17) for W(1;m1) ensures that the objective function of the minimization problem (12) does not
increase.

Proof. Assume that the matrices H(1;m1),W(2;m2), and H(2;m2) are fixed. Consider the objective
function in the optimization problem (12) with respect to W(1;m1):

f(W(1;m1)) =
1

2
∥X − X ×1 H

(1;m1)W(1;m1) ×2 H
(2;m2)W(2;m2)∥2F

+
β

2
Tr[W(2;m2)U(2)W(2;m2)

⊤
] Tr[W(1;m1)U(1)W(1;m1)

⊤
]

+
γ

4
∥W(2;m2)W(2;m2)

⊤
⊗W(1;m1)W(1;m1)

⊤
− Im1m2

∥2F .

To show that f(W(1;m1)
(t+1)

) ≤ f(W(1;m1)
(t)
), define g(w1, f(w

(1;m1)
j1,i1

(t)
)) as follows:

g(w1, w
(1;m1)
j1,i1

(t)
) = B(w(1;m1)

j1,i1

(t)
) + Ḃ(w(1;m1)

j1,i1

(t)
)(w1 − w

(1;m1)
j1,i1

(t)
)

+
(
H(1;m1)

⊤
H(1;m1)W(1;m1)

(t)
X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

+ βTr[W(2;m2)U(2)W(2;m2)
⊤
]W(1;m1)

(t)
U(1)

+ γ Tr[W(2;m2)W(2;m2)
⊤
W(2;m2)W(2;m2)

⊤
]W(1;m1)

(t)(
W(1;m1)

(t))⊤
W(1;m1)

(t)
)
j1,i1

×
(w1 − w

(1;m1)
j1,i1

(t)
)2

2w
(1;m1)
j1,i1

(t)
,

for j1 = 1, 2, · · · ,m1 and i1 = 1, 2, · · · , I1. Moreover, assume that B(w1) indicates the part of
f(w) relevant to W

(1;m1)
j1,i1

, and

Ḃ(w1) :=

(
∂f

∂W(1;m1)

)
j1,i1

=
(
−H(1;m1)

⊤
X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

+H(1;m1)
⊤
H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

+ β Tr[W(2;m2)U(2)W(2;m2)
⊤
]W(1;m1)U(1)

+ γ Tr[W(2;m2)W(2;m2)
⊤
W(2;m2)W(2;m2)

⊤
]W(1;m1)W(1;m1)

⊤
W(1;m1)

− γ Tr[W(2;m2)W(2;m2)
⊤
]W(1;m1)

)
j1,i1

.

It can be seen that g(w1, w
(1;m1)
j1,i1

(t)
) is an auxiliary function of B(w1). For this purpose, consider

the Taylor expansion of B(w1) around w
(1;m1)
j1,i1

(t)
:

B(w1) = B(w(1;m1)
j1,i1

(t)
) + Ḃ(w(1;m1)

j1,i1

(t)
)(w1 − w

(1;m1)
j1,i1

(t)
) +

1

2
B̈(w(1;m1)

j1,i1

(t)
)(w1 − w

(1;m1)
j1,i1

(t)
)2,
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where

B̈(w1) :=

(
∂2F

∂W(1;m1)
2

)
j1,i1

=
(
H(1;m1)

⊤
H(1;m1)

)
j1,j1

×
(
X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

)
i1,i1

+ βTr[W(2;m2)U(2)W(2;m2)
⊤
]u

(1)
j1,i1

+ γ Tr[W(2;m2)W(2;m2)
⊤
W(2;m2)W(2;m2)

⊤
]

((
W(1;m1)

⊤
W(1;m1)

)
i1,i1

+ w
(1,m1)

2

j1,i1

+
(
W(1;m1)W(1;m1)

⊤)
j1,j1

)
− γ Tr[W(2;m2)W(2;m2)

⊤
].

It is easy to validate that g(w1, w1) = B(w1). Moreover, in light of the following inequalities,(
H(1;m1)

⊤
H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

)
j1,i1

=

m1∑
r=1

I1∑
s=1

(
H(1;m1)

⊤
H(1;m1)

)
j1,r

w
(1;m1)
r,s ×

(
X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

)
s,i1

≥
(
H(1;m1)

⊤
H(1;m1)

)
j1,j1

(
X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

)
i1,i1

,

(
W(1;m1)U(1)

)
j1,i1

=

I1∑
s=1

w
(1,m1)
j1,s

u
(1)
s,i1

≥ u
(1)
j1,i1

,

and(
W(1;m1)W(1;m1)

⊤
W(1;m1)

)
j1,i1

=

I1∑
s=1

m1∑
r=1

w
(1,m1)
j1,s

w(1,m1)
r,s w

(1,m1)
r,i1

≥
(
W(1;m1)

⊤
W(1;m1)

)
i1,i1

+ w
(1,m1)

2

j1,i1
+
(
W(1;m1)W(1;m1)

⊤)
j1,j1

,

it can be observed that g(w1, w
(1;m1)
j1,i1

(t)
) ≥ B(w1), for each w1 ∈ R. Consequently, since the

requirements of Definition 26 are met g(w1, w
(1;m1)
j1,i1

) serves as an auxiliary function for B(w1).

Then, by minimizing g(w1, w
(1;m1)
j1,i1

(t)
) with respect to w1, the updating rule of W(1;m1) can be

obtained in the form

W(1;m1) =

(
W(1;m1) ⊙H(1;m1)

⊤
X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤

(1) + γ Tr[W(2;m2)W(2;m2)
⊤
]W(1;m1)

)
⊘

(
H(1;m1)

⊤
H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)

+ βTr[W(2;m2)U(2)W(2;m2)
⊤
]W(1;m1)U(1)

+ γ Tr[W(2;m2)W(2;m2)
⊤
W(2;m2)W(2;m2)

⊤
]W(1;m1)W(1;m1)

⊤
W(1;m1)

)
.

The obtained result is in exact agreement with the update rule (17) specified for the matrix W(1;m1).
Collectively, this result and Lemma 1 establish that the proposed update rule guarantees the mono-
tonic decrease of the original objective function.

In line with the strategy described in Proposition 7.3, two separate cases can be analyzed for the
update rules of W(2;m2), H(1;m1) and H(2;m2). For each case, an auxiliary function is introduced to
ensure the monotonic decrease of the original objective function. The cases are outlined as follows:

Case 1: Assuming that W(1;m1), H(1;m1), and H(2;m2) are fixed, the update rule (23) for W(2;m2)

guarantees that the objective function in the minimization problem (12) is non-increasing.
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Under this scenario, the objective function with respect to W(2;m2) is expressed as

f(W(2;m2)) =
1

2
∥X − X ×1 H

(1;m1)W(1;m1) ×2 H
(2;m2)W(2;m2)∥2F

+
β

2
Tr[W(2;m2)U(2)W(2;m2)

⊤
] Tr[W(1;m1)U(1)W(1;m1)

⊤
]

+
γ

4
∥W(2;m2)W(2;m2)

⊤
⊗W(1;m1)W(1;m1)

⊤
− Im1m2

∥2F .

Next, by defining the function

g(w2, w
(2;m2)
j2,i2

(t)
) = B(w(2;m2)

j2,i2

(t)
) + Ḃ(w(2;m2)

j2,i2

(t)
)(w2 − w

(2;m2)
j2,i2

(t)
)

+
(
H(2;m2)

⊤
H(2;m2)W(2;m2)

(t)
X(2)(II3 ⊗H(1;m1)W(1;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤

(2)

+ βTr[W(1;m1)U(1)W(1;m1)
⊤
]W(2;m2)

(t)
U(2)

+ γ Tr[W(1;m1)W(1;m1)
⊤
W(1;m1)W(1;m1)

⊤
]W(2;m2)

(t)(
W(2;m2)

(t))⊤
W(2;m2)

(t)
)
j2,i2

×
(w2 − w

(2;m2)
j2,i2

(t)
)2

2w
(2;m2)
j2,i2

(t)
,

it can be demonstrated that g(w2, w
(2;m2)
j2,i2

(t)
) serves as an auxiliary function for B(w2), for

j2 = 1, 2, . . . ,m2, and i2 = 1, 2, . . . , I2. Note that B(w2) represents the components of
f(W(2;m2)) associated with w

(2;m2)
j2,i2

and takes the form

B(w2) = B(w(2;m2)
j2,i2

(t)
) + Ḃ(w(2;m2)

j2,i2

(t)
)(w2 − w

(2;m2)
j2,i2

(t)
)

+
1

2
B̈(w(2;m2)

j2,i2

(t)
)(w2 − w

(2;m2)
j2,i2

(t)
)2,

with

Ḃ(w2) :=

(
∂f

∂W(2;m2)

)
j2,i2

=
(
−H(2;m2)

⊤
X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤

(2)

+H(2;m2)
⊤
H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))⊤

× (II3 ⊗H(1;m1)W(1;m1))X⊤
(2)

+ β Tr[W(1;m1)U(1)W(1;m1)
⊤
]W(2;m2)U(2)

+ γ Tr[W(1;m1)W(1;m1)
⊤
W(1;m1)W(1;m1)

⊤
]W(2;m2)W(2;m2)

⊤
W(2;m2)

− γ Tr[W(1;m1)W(1;m1)
⊤
]W(2;m2)

)
j2,i2

,

and

B̈(w2) :=

(
∂2f

∂W(2;m2)
2

)
j2,i2

=
(
H(2;m2)

⊤
H(2;m2)

)
j2,j2

×
(
X(2)(II3 ⊗H(1;m1)W(1;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤

(2)

)
i2,i2

+ βTr[W(1;m)U(1)W(1;m1)
⊤
]u

(2)
j2,i2

+ γ Tr[W(1;m1)W(1;m1)
⊤
W(1;m1)W(1;m1)

⊤
]

×

((
W(2;m2)

⊤
W(2;m2)

)
i2,i2

+ w
(2,m2)

2

j2,i2

+
(
W(2;m2)W(2;m2)

⊤)
j2,j2

)
− γ Tr[W(1;m1)W(1;m1)

⊤
].
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Case 2: Assuming that W(1;m1), W(2;m2), and H(2;m2) are fixed, the update rule (19) for H(1;m1)

guarantees that the objective function in the minimization problem (12) is non-increasing.
Under this scenario, the objective function with respect to H(1;m1) is expressed as

f(H(1;m1)) =
1

2
∥X − X ×1 H

(1;m1)W(1;m1) ×2 H
(2;m2)W(2;m2)∥2F

+
α

2
Tr[H(2;m2)

⊤
L(2)H(2;m2)] Tr[H(1;m1)

⊤
L(1)H(1;m1)].

Next, by defining the function

g(h1, h
(1;m1)
i1,j1

(t)
) = B(h(1;m1)

i1,j1

(t)
) + Ḃ(h(1;m1)

i1,j1

(t)
)(h1 − h

(1;m1)
i1,j1

(t)
)

+
(
H(1;m1)

(t)

W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤

× (II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(2;m2)
⊤

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]B(1)H(1;m1)

)
i1,j1

(h1 − h
(1;m1)

(t)

i1,j1
)2

2h
(1;m1)(t)

i1,j1

,

it can be demonstrated that g(h1, h
(1;m1)
i1,j1

(t)
) serves as an auxiliary function for B(h1),

for i1 = 1, . . . , I1, and j2 = 1, . . . ,m1. Note that B(h1) represents the components of
f(H(1;m1)) associated with h

(1;m1)
i1,j1

and takes the form

B(h1) = B(h(1;m1)
i1,j1

(t)
) + Ḃ(h(1;m1)

i1,j1

(t)
)(h1 − h

(1;m1)
i1,j1

(t)
)

+
1

2
B̈(h(1;m1)

i1,j1

(t)
)(h1 − h

(1;m1)
i1,j1

(t)
)2,

with

Ḃ(h1) :=

(
∂f

∂H(1;m1)

)
i1,j1

=
(
−X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)W
(1;m1)

⊤

+H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤

× (II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]L(1)H(1;m1)

)
i1,j1

,

and

B̈(h1) :=

(
∂2f

∂H(1;m1)
2

)
i1,j1

=
(
W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤

× (II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤
)
j1,j1

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]ℓ

(1)
i1,i1

.

Case 3: Assuming that W(1;m1), W(2;m2), and H(1;m1) are fixed, the update rule (25) for H(2;m2)

guarantees that the objective function in the minimization problem (12) is non-increasing.
Under this scenario, the objective function with respect to H(2;m2) is expressed as

f(H(2;m2)) =
1

2
∥X − X ×1 H

(1;m1)W(1;m1) ×2 H
(2;m2)W(2;m2)∥2F

+
α

2
Tr[H(2;m2)

⊤
L(2)H(2;m2)] Tr[H(1;m1)

⊤
L(1)H(1;m1)].

Next, by defining the function

g(h2, h
(2;m2)
i2,j2

(t)
) = B(h(2;m2)

i2,j2

(t)
) + Ḃ(h(2;m2)

i2,j2

(t)
)(h1 − h

(2;m2)
i2,j2

(t)
)

+
(
H(2;m2)

(t)

W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))⊤

× (II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]B(2)H(2;m2)

)
i2,j2

,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

it can be demonstrated that g(h2, h
(2;m2)
i2,j2

(t)
) serves as an auxiliary function for B(h2),

for i2 = 1, . . . , I2, and j2 = 1, . . . ,m2. Note that B(h2) represents the components of
f(H(2;m2)) associated with h

(2;m2)
i2,j2

and takes the form

B(h2) = B(h(2;m2)
i2,j2

(t)
) + Ḃ(h(2;m2)

i2,j2

(t)
)(h2 − h

(2;m2)
i2,j2

(t)
) +

1

2
B̈(h(2;m2)

i2,j2

(t)
)(h2 − h

(2;m2)
i2,j2

(t)
)2,

with

Ḃ(h2) :=

(
∂f

∂H(2;m2)

)
i2,j2

=
(
−X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤

(2)W
(2;m2)

⊤

+H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))⊤

× (II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]L(2)H(2;m2)

)
i2,j2

,

and

B̈(h2) :=

(
∂2f

∂H(2;m2)
2

)
i2,j2

=
(
W(2;m2)X(1)(II3 ⊗H(1;m1)W(1;m1))⊤

× (II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤
)
j2,j2

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]ℓ

(2)
i2,i2

.

7.6 COMPUTATIONAL COMPLEXITY

The purpose of this section is to evaluate the computational complexity of the suggested MSLFS
method to offer a clear insight into its efficiency. Assessing the time complexity of each phase in
Algorithm 1 allows for the calculation of the total computational expense. This evaluation will also
emphasize the performance and scalability of the algorithm when managing large-scale applications.
Initially, it is crucial to emphasize that for specific matrices A ∈ Rm×n, B ∈ Rn×r, C ∈ Rm×nk,
and E ∈ Rn×n, the calculations for AB and C(Ik ⊗E) consist of 2mnr−mr and 2mn2k−mnk
arithmetic operations, respectively. It is important to note that the calculation (Ik ⊗ E) requires no
arithmetic operations since it is a diagonal matrix. Accordingly, the computational cost of updating
the matrices W(1;m1), H(1;m1), W(2;m2) and H(2;m2) appears as follows:

1. The computational expense of updating the matrix W(1;m1) is Total flops(W(1;m1))

≈ 6m1I1I2I3 + 4 I1I
2
2I3 + 2m1I

2
2I3 + 6m2

2I2 + 6m2I
2
2 + 8m2

1I1 + 2m1I1 + 2m3
2

= O(m1I1I2I3 + I1I
2
2I3) = O(I1I2I3 max{m1, I2}).

2. The computational expense of updating the matrix H(1;m1) is Total flops(H(1;m1))

≈ 8m1I1I2I3 + 6 I1I
2
2I3 + 8m2I

2
2 + 4m1I

2
1 + 2m2

2I2 + 4m1I
2
1

= O(m1I1I2I3 + I1I
2
2I3) = O(I1I2I3 max{m1, I2}).

3. The computational expense of updating the matrix W(2;m2) is Total flops(W(2;m2))

≈ 6m2I1I2I3 + 4 I2I
2
1I3 + 2m2I

2
1I3 + 6m2

1I1 + 6m1I
2
1 + 8m2

2I2 + 2m2I2 + 2m3
1

= O(m2I1I2I3 + I21I2I3) = O(I1I2I3 max{I1,m2}).

4. The computational expense of updating the matrix H(2;m2) is Total flops(H(2;m2))

≈ 8m2I1I2I3 + 6 I2I
2
1I3 + 8m1I

2
1 + 4m2I

2
2 + 2m2

1I1 + 4m2I
2
2

= O(m2I1I2I3 + I2I
2
1I3) = O(I1I2I3 max{m2, I1}).

To sum up, the computational expense of a single iteration of Algorithm 1 can be deter-
mined as follows:

Overall Total flops = O
(
I1I2I3

(
max{m1, I2}+max{m2, I1}

))
.
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7.7 MSLFS UPDATING RULES FOR A REAL-VALUED TENSOR DATA

To derive multiplicative updating rules when X may be signed but all learned variables remain
non-negative, we follow the same derivative computations as before and then apply elementwise
positive/negative splitting to the matrix expressions that involve X(n), where n ∈ {1, 2}. For
any real matrix M we denote M+ := max(M, 0) and M− := max(−M, 0) (elementwise), so
M = M+ −M−. The multiplicative update rule for a non-negative variable Z with gradient de-
composed as ∇ZF = G+ − G− (with G± ≥ 0) is Z ← Z ⊙ G− ⊘ G+. The gradients are
fully developed in the previous section. Using the elementwise positive/negative splitting described
above, the multiplicative updates (for non-negative factors while X may be signed) are:

W(1;m1) = W(1;m1) ⊙ [(H(1;m1)
⊤
X(1)II3 ⊗ (H(2;m2)W(2;m2))X⊤

(1))−

+ γTr[W(2;m2)W(2;m2)
⊤
]W(1;m1)]

⊘ [(H(1;m1)
⊤
H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))⊤(II3 ⊗H(2;m2)W(2;m2))X⊤

(1))+

+ βTr[W(2;m2)U(2)W(2;m2)
⊤
]W(1;m1)U(1)

+ γTr[W(2;m2)W(2;m2)
⊤
W(2;m2)W(2;m2)

⊤
]W(1;m1)W(1;m1)

⊤
W(1;m1)],

H(1;m1) = H(1;m1) ⊙ [(X(1)(II3 ⊗H(2;m2)W(2;m2))X⊤
(1)W

(1;m1)
⊤
)−

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]A(1)H1]

⊘ [(H(1;m1)W(1;m1)X(1)(II3 ⊗H(2;m2)W(2;m2))
⊤
(II3 ⊗H(2;m2)W(2;m2))X⊤

(1)W
(2;m2)

⊤
)+

+ αTr[H(2;m2)
⊤
L(2)H(2;m2)]B(1)H(1;m1)],

W(2;m2) = W(2;m2) ⊙ [(H(2;m2)
⊤
X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤

(2))−

+ γTr[W(1;m1)W(1;m1)
⊤
]W(2;m2)]

⊘ [(H(2;m2)
⊤
H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(1;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤

(2))+

+ βTr[W(1;m1)U(1)W(1;m1)
⊤
]W(2;m2)U(2)

+ γTr[W(1;m1)W(1;m1)
⊤
W(1;m1)W(1;m1)

⊤
]W(2;m2)W(2;m2)

⊤
W(2;m2)],

H(2;m2) = H(2;m2) ⊙ [(X(2)(II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤
)−

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]A(2)H(2;m2)]

⊘ [(H(2;m2)W(2;m2)X(2)(II3 ⊗H(1;m1)W(;m1))⊤(II3 ⊗H(1;m1)W(1;m1))X⊤
(2)W

(2;m2)
⊤
)+

+ αTr[H(1;m1)
⊤
L(1)H(1;m1)]B(2)H(2;m2)].

8 ADDITIONAL EXPERIMENTAL RESULTS

8.1 DATASETS

Table 6 summarizes the key statistics of the eight benchmark datasets used in our experiments, in-
cluding the number of samples, feature dimensions, number of classes, and the range of selected
features. These datasets together provide a comprehensive and diverse evaluation environment for
assessing the proposed method across different domains, sample sizes, and feature complexities.
COIL20 (Nene et al., 1996), ORL (Cai et al., 2010), and UMIST (Graham & Allinson, 1998) are
classical image recognition benchmarks encompassing objects and human faces. COIL20 contains
20 objects imaged from multiple viewpoints, effectively testing robustness to pose variation. ORL
consists of 40 subjects captured under relatively controlled conditions, whereas UMIST presents 20
subjects with more pronounced pose and illumination variations, creating a more challenging low-
sample scenario. Pixraw10P and Orlraws10P (Li et al., 2017) are high-dimensional raw image
subsets with limited samples, designed to evaluate the scalability of feature selection in situations
where the number of features far exceeds the number of observations. Moving beyond traditional
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object and face recognition, FashionMNIST (Xiao et al., 2017) serves as a modern drop-in replace-
ment for the classic MNIST handwritten digit dataset, sharing the same grayscale 28 × 28 format
but comprising clothing images with richer visual variability and finer inter-class distinctions, thus
providing a more challenging benchmark while remaining compatible with MNIST’s experimen-
tal protocols. In the biomedical domain, BreastMNIST and OrganSMNIST (Yang et al., 2021)
focus on medical imaging tasks, with BreastMNIST providing a binary classification task based on
breast ultrasound scans and OrganSMNIST involving multi-class organ recognition from MRI slices,
thereby testing the applicability of the proposed approach to real-world medical scenarios. Collec-
tively, these datasets span a wide range of sample sizes (from 100 to 1,440), feature dimensions
(from 23× 28 to 100× 100), and class cardinalities (from 2 to 40), ensuring that the empirical eval-
uation thoroughly examines the method’s robustness, scalability, and generalization ability across
diverse, small-sample, high-dimensional, and domain-shifted settings.

Table 6: Detailed Statistics of the Eight Datasets.

Dataset # of Samples Feature Size # of Classes Range of Selected Features
COIL20 1,440 32× 32 20 [50, 100, . . ., 300]
ORL 400 32× 32 40 [50, 100, . . ., 300]
UMIST 575 23× 28 20 [50, 100, . . ., 300]
Pixraw10P 100 100× 100 10 [50, 100, . . ., 300]
Orlraws10P 100 92× 112 10 [50, 100, . . ., 300]
FashionMNIST 1,000 28× 28 10 [50, 100, . . ., 300]
BreastMNIST 546 28× 28 2 [50, 100, . . ., 300]
OrganSMNIST 500 28× 28 11 [50, 100, . . ., 300]
OrganCMNIST 20,000 224× 224 11 [50, 100, . . ., 300]
PneumoniaMNIST 5,800 224× 224 2 [50, 100, . . ., 300]
Kinetic Fluorescence 10,000 64× 12× 10 7 [50, 100, . . ., 300]
COVID-19 Systems Serology 5,200 20× 35× 74 5 [50, 100, . . ., 300]

8.2 COMPARISON MODELS

This section summarizes the feature selection methods used for comparison, highlighting the core
mechanism and strategy of each model to identify informative features while preserving relevant
data structures.

• LS (He et al., 2005a): Assesses each feature individually based on how well it can maintain
the local geometric structure of the data.

• UDFS (Yang et al., 2011): Selects the most informative features by performing both ℓ2,1
norm-based feature selection and local discriminative analysis at the same time.

• ILFS (Roffo et al., 2017): A probabilistic feature selection method that ranks features by
considering all possible subsets while avoiding combinatorial complexity.

• GRLTR (Su et al., 2018): Combines low-rank tensor representation with local geometry
preservation and ℓ2,1 norm-based feature selection.

• CAE (Balın et al., 2019): An end-to-end global feature selection approach that simultane-
ously trains a neural network to reconstruct the input data while selecting a representative
subset of features.

• FSPCA (Tian et al., 2020): Simultaneously conducts feature selection and PCA by directly
estimating the leading eigenvectors under row-sparsity constraints.

• CPUFS (Chen et al., 2023): Integrates a tensor-based linear classifier with graph-
regularized non-negative CP decomposition and pseudo-label regression.

• SPCAFS (Li et al., 2023): Applies a ℓ2,p-norm sparsity regularization to the PCA projec-
tion matrix for feature selection.

• GRSSLFS (Tiwari et al., 2024): Selects high-variance basis features and integrates self-
representation, subspace learning, and manifold regularization to enhance feature selection.

• SPDFS (Dong et al., 2025): Performs discriminative feature selection via ell2,0-norm con-
strained sparse projection, combining fuzzy membership learning with globally and itera-
tively optimized projection strategies.
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8.3 RUNTIME EFFICIENCY EVALUATION

To assess how efficiently each method runs, we compare the per-iteration CPU time on datasets
with more than 5,000 samples (Table 7). Across the board, MSLFS is the fastest method, notice-
ably outperforming both the matrix-based and tensor-based baselines. On the COVID-19 Systems
Serology dataset, for example, MSLFS completes an iteration in 31.3 seconds, faster than ILFS and
FSPCA, and well ahead of more complex deep or graph-regularized models like SAE, NNSE, and
GRSSLFS. The gap grows larger on the much bigger Kinetic Fluorescence dataset: MSLFS is the
only approach that stays under 130 seconds per iteration, while several baselines exceed 180 sec-
onds or even fail due to memory limitations. This speed comes from MSLFS’s mode-wise slice
selection and separable reconstruction strategy, which avoid heavy global computations and reduce
unnecessary redundancy, leading to linear complexity with respect to both the number of samples
and the mode-wise feature dimensions. Overall, the results show that MSLFS is consistently the
most computationally efficient method among all those we tested.

Table 7: Per-iteration CPU time comparison across methods on datasets with more than 5,000 sam-
ples. Here, “OM” indicates out-of-memory errors.

Methods COVID-19 Systems Serology PneumoniaMNIST Kinetic Fluorescence OrganCMNIST
UDFS 101.2 156.6 385.3 OM
SAE 72.1 106.7 211.3 389.4
ILFS 46.5 64.5 144.2 237.8
GRLTR 161.9 257.6 OM OM
CAE 66.3 87.7 143.9 256.7
FSPCA 45.4 78.9 156.2 281.5
CPUFS 56.7 89.5 154.6 303.1
SPCAFS 74.4 103.6 164.2 266.4
NNSE 97.3 142.2 186.7 314.8
GRSSLFS 125.6 184.4 343.1 OM
SDAE 86.7 102.5 193.4 299.3
SPDFS 89.7 112.4 232.1 356.2
MSLFS 31.3 57.2 124.5 232.4

8.4 FEATURE VISUALIZATION ACROSS MODELS

Figure 5 shows how each method selects features on the Pixraw10P dataset by marking the chosen
pixels on a sample face image. The three rows correspond to different feature numbers (100, 200,
and 300), and the columns compare a tensor-based approach (CPUFS), two autoencoder models
(NNSE and SDAE), a matrix-based baseline (SPDFS), and our proposed method, MSLFS. Looking
across the figure, the models behave quite differently. CPUFS tends to pick scattered but meaningful
points around the eyes, nose, and mouth, suggesting that it makes reasonable use of the tensor struc-
ture. The autoencoder methods also concentrate on facial regions but in a denser and less organized
way, which hints that while nonlinear encoders can detect useful signals, they do not enforce spatial
or mode-wise consistency. The matrix-based SPDFS shows the least structure, spreading its selec-
tions almost uniformly across the image, a typical outcome when flattening destroys the original
tensor geometry. In contrast, MSLFS produces the most coherent and visually interpretable selec-
tions: its grid-like patterns remain stable as the number of selected features increases, reflecting its
slice-driven multilinear design. This leads MSLFS to preserve the underlying tensor structure of the
image far better than the autoencoder and matrix baselines that use vectorized data.

8.5 T-SNE VISUALIZATION ON ADDITIONAL DATASETS

Figure 6 compares the t-SNE embeddings obtained from features selected by the competing methods
under three feature budgets. Across all settings, the vectorized approaches, whether linear (SPDFS)
or nonlinear (SDAE, NNSE), produce clusters that are only partially separated and often exhibit
substantial overlap. SPDFS displays the weakest structure, with diffuse and intermixed clusters, re-
flecting its inability to model relationships that span multiple modes once the tensor is flattened. The
autoencoder methods fare slightly better: their nonlinear encoders extract useful global patterns, but
the resulting clusters remain elongated or entangled, indicating that mode interactions are not con-
sistently preserved even when deep architectures are used. These limitations arise from the fact that
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Figure 5: Comparison of selected feature visualizations across five models on Pixraw10P dataset.

all vectorized models process the data as a long feature vector, discarding the inherent multi-way
structure that governs how information is distributed across modes. As a result, the features they
select do not fully reflect the underlying tensor manifold, and therefore fail to produce cleanly sep-
arated embeddings. In contrast, MSLFS consistently yields compact, well-separated clusters across
all feature budgets. By performing slice-based selection within a multilinear framework, MSLFS
explicitly preserves inter-mode dependencies and respects the geometry of the tensor space. This
allows it to isolate features that are genuinely discriminative on the underlying manifold, resulting
in substantially more coherent and class-aligned t-SNE embeddings.

8.6 CUSTOMIZING FEATURE SELECTION VIA MODE COMBINATIONS

To further evaluate the flexibility of MSLFS in distributing features across different tensor modes, we
conducted an experiment on the Pixraw10P dataset by fixing the total number of selected features to
300 while varying the distribution of mode-1 and mode-2 slices. As illustrated in Figure 7, MSLFS
can generate multiple valid configurations, such as 100× 3, 50× 6, or 10× 30, each corresponding
to 300 intersection fibers. Across these different allocations, the selected slices capture meaningful
vertical and horizontal structures. However, the results indicate that balanced selections across the
two modes (e.g., 15×20 or 12×25) better preserve the overall inherent structure spanned by modes
1 and 2, while extreme allocations to a single mode tend to lose complementary information. This
highlights that although MSLFS is flexible in how features are distributed, balanced configurations
most effectively maintain both local and global structures.

8.7 CLUSTERING ON SELECTED FEATURES

The experimental results with varying numbers of selected features further highlight the effective-
ness of MSLFS. As shown in Figure 8, MSLFS is compared against 10 state-of-the-art models
across eight benchmark datasets, where the performance curves illustrate both the absolute cluster-
ing accuracy and the stability of each method under different feature dimensions. Overall, MSLFS
consistently outperforms competing approaches, achieving the best or near-best results in terms of
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Figure 6: Comparison of t-SNE embeddings derived from features selected by comparative models.

Figure 7: Visualization of mode-wise feature selection flexibility on Pixraw10P

ACC and NMI across nearly all datasets. The improvements are especially notable on COIL20,
ORL, and UMIST where MSLFS maintains clear superiority across varying feature subsets. Even
on more challenging datasets such as BreastMNIST and OrganSMNIST, where existing methods
often suffer from instability, MSLFS achieves significant margins, underscoring its robustness to
data variability and imbalance. Furthermore, unlike other models that exhibit sharp fluctuations as
the number of selected features changes, MSLFS demonstrates smooth and reliable performance
trends, consistently producing discriminative feature subsets. This stability is largely attributed to
its slice-based selection mechanism and higher-order graph regularization, which together preserve
informative structures while effectively suppressing redundancy.

8.8 SENSITIVITY ANALYSIS

To further investigate the influence of the regularization parameters α and β on the clustering per-
formance of MSLFS, a sensitivity analysis is conducted. Figure 9 presents the heatmaps of NMI
and ACC values across six datasets, including UMIST, Pixraw10P, Orlraws10P, ORL, OrganSM-
NIST, and FashionMNIST. From Figure 9, it can be observed that the proposed method exhibits
relatively stable behavior across a wide range of parameter values, though some dataset-specific
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Figure 8: ACC and NMI curves of different feature selection methods on the eight datasets

trends emerge. For the UMIST dataset, both NMI and ACC remain stable with small fluctuations,
and the best results are achieved when α lies within {101, 102, 103} and β takes values around
{101, 102, 103}. For the Pixraw10P dataset, MSLFS shows more sensitivity to β, with superior
performance observed when α ∈ {10−1, 100, 101} and β is set within {10−3, 10−2, 10−1}. In the
Orlraws10P dataset, MSLFS achieves consistently high NMI and ACC values, with optimal perfor-
mance emerging when α ∈ {10−3, 10−2, 103} and β ∈ {10−2, 10−1, 100, 104}.
For the ORL dataset, the clustering performance is relatively insensitive to variations in β, while the
most favorable results occur when α is chosen from {100, 101}. In the case of the OrganSMNIST
dataset, both NMI and ACC show more noticeable fluctuations, but relatively better performance is
achieved when α ∈ {10−4, 10−3, 10−2, 104} and β lies between {10−1, 100, 101}. Finally, for the
FashionMNIST dataset, the results indicate higher stability across parameter values, with the best
performance obtained for α ∈ {10−2, 10−1, 102} and β ∈ {10−1, 100, 104}.
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Figure 9: A comparison of the NMI and ACC scores obtained by MSLFS with different values of
the parameters α, and β on six datasets.
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