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ABSTRACT

Feature selection in tensor data poses greater challenges than in vector represen-
tations, since it must capture correlations spanning multiple modes rather than
treating each mode in isolation. Existing tensor-based methods partially address
this but often treat the feature space as a whole, selecting features globally without
respecting mode-specific dependencies. This not only overlooks cross-mode in-
teractions but also increases computational burden, as all features must be consid-
ered at once. Moreover, they lack a principled criterion for preserving the global
structure of the original tensor. In this work, we introduce Multi-Linear Subspace
Learning Feature Selection (MSLFS), a framework that overcomes these limita-
tions by distributing feature selection across modes. Specifically, MSLFS selects a
small number of representative slices along each mode, whose intersections yield
the most informative features. The core innovation is a multi-linear subspace dis-
tance, which provides a principled measure of how well these selected features
preserve the global multi-way structure of the data, while significantly reduc-
ing redundancy and computational cost. This objective is complemented by two
novel regularizations: a joint sparsity constraint that enforces coordinated spar-
sity across modes to identify compact, non-redundant features, and a higher-order
graph constraint that preserves local manifold geometry within the induced sub-
tensor. Taken together, these components guarantee that the overall tensor struc-
ture as well as the local neighborhood relationships are preserved. Comprehen-
sive experiments on image recognition and biomedical benchmarks demonstrate
that MSLFS consistently surpasses state-of-the-art feature selection techniques in
clustering tasks.

1 INTRODUCTION

Subspace learning has long served as a foundation for dimensionality reduction, with PCA (Zass &
Shashua, 2006), LDA (Jelodar et al., 2019), and their variants (Song et al., 2025; Li et al., 2025) pro-
ducing low-dimensional embeddings that preserve informative directions. However, these methods
operate on vectorized data, discarding multi-way correlations and disrupting the natural geometry
of tensorial data such as images and biomedical signals (Liu et al., 2017; Lu et al., 2020). As a
result, classical subspace learning often misses key structural dependencies, leading to suboptimal
representations for multi-way data (Chouchane et al., 2024).

Recent advances in tensor learning extend linear subspace analysis to multi-way data, enabling
models to exploit richer structural information than traditional vector-based methods. Yet, most
existing approaches still fall short in how they handle feature selection. In particular, they typically
flatten the tensor into a single feature space and select features globally, overlooking the mode-
specific dependencies that define the multi-way structure of the data (Chen et al., 2023). This global
treatment masks the complementary roles of different modes and forces algorithms to operate over
the entire feature set, which becomes computationally expensive in high dimensions. More critically,
these methods lack a principled criterion for ensuring that the chosen features preserve the global
subspace geometry of the tensor, often capturing only partial correlations.

To overcome these challenges, we introduce Multi-linear Subspace Learning Feature Selection
(MSLES), a framework that distributes the selection process across modes rather than treating the
feature space as a rigid whole. Instead of picking features globally, MSLFS identifies a small num-
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ber of representative slices along each mode; their intersections then form a compact set of features
that best reflect the underlying structure of the data. This strategy both respects the multi-way orga-
nization of tensor data and reduces computational overhead. At the heart of the framework lies a new
notion of multi-linear subspace distance, which serves as a principled measure of how well selected
features preserve the original multi-way geometry. By optimizing this criterion, MSLFS ensures
that the chosen features jointly capture mode-specific information and cross-mode dependencies.

Beyond the core formulation, we introduce two regularizers. The joint sparsity term enforces shared
sparsity across modes, ensuring that only a compact and representative subset of features is retained.
The higher-order graph term preserves local manifold geometry in the selected subtensor by extend-
ing neighborhood smoothness across all modes. Together, these constraints balance sparsity, global
structure, and local geometry. In summary, the contributions of this work are presented as follows.

* A distributed selection strategy is designed to operate across tensor modes, where a small
set of representative slices is chosen per mode. Informative features are yielded by their
intersections, which respect the multi-way structure while reducing computational cost.

* A novel multi-linear subspace distance is introduced, providing a principled criterion by
which the preservation of the global subspace structure across all tensor modes by the
selected features is evaluated.

* A joint sparsity constraint is proposed to act simultaneously across multiple tensor modes,
whereby a compact and non-redundant subset of features is encouraged while preserving
the overall data structure.

* A higher-order graph regularization is proposed, through which neighborhood smoothness
is extended to tensor data so that local manifold structures are preserved in the reduced
representation.

2 RELATED WORK

Vector-Based Unsupervised Feature Selection. Unsupervised feature selection has been widely
studied, though most methods target vectorized data rather than multi-dimensional structures. Clas-
sical examples include Laplacian Score (LS) (He et al., 2005b), which ranks features by their ability
to preserve local geometry. Unsupervised Discriminative Feature Selection (UDFS) (Yang et al.,
2011) jointly applies ¢ 1-norm regularization and local discriminative analysis to select sparse and
informative features. Sparse PCA for Feature Selection (SPCAFS) (Li et al., 2023) extends PCA
with an £ ,-norm penalty on the projection matrix, yielding compact feature subsets while retaining
principal variance directions.

Tensor-Based Unsupervised Feature Selection. Recently, tensor-based methods have been intro-
duced to overcome the drawbacks of vector-based feature selection, though their use in unsupervised
settings remains limited. Among these, two notable approaches have been proposed. Graph Reg-
ularized Low-Rank Tensor Representation (GRLTR) (Su et al., 2018) integrates low-rank tensor
representation, local geometry preservation, and /5 ;-norm feature selection, while CPUFS (Chen
et al., 2023) combines a tensor-oriented linear classifier, graph-regularized non-negative CP decom-
position, and pseudo-label regression. However, these methods still treat the feature space as flat,
selecting features globally without considering mode-specific dependencies, which increases com-
putational cost. Our approach instead selects a few representative slices from each mode, whose
intersections yield the most informative features. This preserves the multi-way structure, reduces
complexity, and ensures the selected features better capture the global data structure.

Notations. For clarity, symbols used in this paper are summarized in Table 1, with detailed de-
scriptions and preliminaries in Appendix 7.1.

3 MULTI-LINEAR SUBSPACE LEARNING

In tensor analysis, multi-linear subspace learning maintains multi-mode structure instead of flat-
tening data (Lu et al., 2011). A major challenge is defining a geometry-aware distance between
subspaces spanned by tensor slices across modes. The goal of this section is to define a multi-
linear subspace distance which quantifies similarities between these slice-based subspaces, preserv-
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Table 1: Summary of notations.

Notation Meaning

z,x, X, X Scalar; vector; matrix; tensor.

I, ej'”) Identity matrix; j-th column.

A A i-th row; j-th column of A.

A7, |All2,1, Tr(A) Frobenius norm; £ ;-norm; trace.

(u,v), (A,B)p Dot product; Frobenius inner product.

AO®B,A2oB,A®B Hadamard product; element-wise division; Kronecker product,
where (A @ B) 7 = @ijbmn.

X € RIixIaxIs XS:‘), X(S) 3-mode tensor, with I3 samples and I; x I, features; j-th frontal
’ slice; mode-3 unfolding.

X xp A, XX,V n-mode tensor—matrix; tensor—vector products.

Ind/1 %12, Ry Indicator matrix; Set of non-negative real numbers.

ing cross-mode dependencies and discriminative information. To this end, we first establish the
formal definition of the subspace spanned by tensor slices, which serves as the basis for a similarity
measure that precisely captures the underlying multi-linear relationships.

Definition 1. Let X € R/1>*/2XIs be a 3-mode tensor with the mode-n slices Xgn), e ,Xg:),
where n € {1,2,3}. The space spanned by X (") = {XE”)}{; is denoted by S(X(™)) and defined
as S(X™) = {2, 0" X[ | o € R}

This construction associates each set of tensor slices with a linear subspace, turning the problem of
comparing tensor data into a problem of comparing subspaces. To proceed, we need a principled
way of measuring how close an external matrix is to such a subspace.

Definition 2. Given X € R1*/2X%s and a matrix Z of the same dimension as a mode-n slice
of X, where n € {1,2,3}, the distance from Z to S(X(™) is defined as dist(Z,S(X™)) =
minwyesxm) |2 = W|p.

This distance corresponds to the minimum discrepancy between Z and any element of the sub-
space. In other words, it quantifies the error incurred when approximating Z by linear combinations
of the mode-n slices of X' It follows that minw ¢ gxm) |1Z — W||r = [|Z — Projgx)Z| F,
where Projgx(n)Z denotes the orthogonal projection of Z onto the subspace. Since this pro-
jection is itself a linear combination of slices, there exists o™ = [a{™, ... ,aﬁ?ﬂ € Ri»
such that ProjgxmnZ = Sy a"X™ = xx,a. Consequently, dist(Z,S(X™)) =
1Z — X X o™ p.

Beyond this general case, additional structure yields simplifications. If the slices {XE")}Z.’;I are
orthonormal (i.e., (Xg"),Xgn)ﬁ = 0fori # jand |X™||z = 1 for all i), the projection co-
efficients become explicit inner products: o™ = [(Z, Xg")> VA X§Z)> r]". In this case,
dist(Z,S(X™)) = ||Z — Zf;(Z, XETL)>FXZ(-") |l 7, which admits a simple geometric interpreta-
tion as subtracting the projection of Z onto the orthonormal basis formed by the mode-n slices.

So far we have defined the distance between a single matrix and the subspace spanned by tensor

mode-n slices. Beyond this, the concept can be naturally extended to quantify the distance between
two subspaces, each spanned by the mode-n slices of two distinct tensors.

Definition 3 (Multi-linear Subspace Distance). Let X € R/1*/2%Is be a 3-mode tensor and )
another 3-mode tensor of the same dimensionality except that its mode-n size equals J,,, where
n € {1,2,3}. The distance between the mode-n subspaces S(X(™) and S(Y (™) is defined as

dist(S(X™), S(Y™)) = 31 dist(X™ | S(Y™)).

It can be shown that dist(S(X™), S(Y™)) = -1 X —y%,al™ |2 = (| =Y x,, H™ |12,
where H(™ € RI»*/n ig such that its i-th row is a§”>. Thus, the distance admits a compact tensor
representation via a reconstruction error term. This formulation essentially measures how far each
mode-n slice of X lies from the S (Y(”)), and aggregates these deviations across all mode-n slices.

Remark 1. The concept of multi-linear subspace distance provides a key link between tensor ge-
ometry and feature selection. Concretely, let ¥ € R/t *72x1s denote the tensor data with I3 samples
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and I; x I, features. Each mode-3 fiber represents a single feature and can be seen as the intersection
of its corresponding mode-1 and mode-2 slices. Thus, the ability of a fiber to characterize the fea-
ture space depends on how well these slices span S(X1)) and S(X(?)). The multi-linear subspace
distance provides a natural measure to evaluate this, enabling us to identify informative slices across
modes whose intersections yield fibers that faithfully preserve the global structure. By minimizing
the distance between the full subspace and the one formed by selected slices, our framework ensures
fidelity and coherence across modes. This principle provides the foundation for our feature selection
strategy, which will be further developed in the following sections.

3.1 SUBTENSORS AND SLICE SELECTION

Building on the idea of multi-linear subspace distance, a natural way to reduce redundancy while
preserving structure is to restrict attention to a subset of slices. Such subsets define subtensors,
which retain the essential information needed to approximate the span of the full tensor. By working
with subtensors, we can formalize slice selection as a principled step in feature selection, preparing
the ground for our definition below.

Definition 4. For a tensor X € R/1*/2xIs 3 subtensor X' ("*) is obtained by choosing k& mode-n
slices indexed by {i{", ... ,i,(cn)}, where each ig»n) e{l,....I,}andn € {1,2,3}.

Any single mode-n slice Xgn) can be written as Xg-n) = Xinegn),Vj e {1,---1,}, where
egn) is the j-th column of the identity I; . More generally, a subtensor X'("*) formed from

(xtm ,XE:)} can be expressed as X% = X x,, Wk) where W(k) ¢ RFXIn j5 a

Z]‘ .7 . .
selection matrix whose rows are standard basis vectors.

Building on this, the distance between the span of all slices and that of a selected subset follows
directly. By Definition 3, we obtain

dist(S(X™), S(X™R))) = || & — x50, HOP | p = || X — X x,, WE) 5 HP|| L
= [|& = X x,, (HEOWER))|| L (1)

This characterization shows that the distances between full and reduced subspaces can be understood
as the error of reconstructing the original tensor using only selected slices and suitable weighting.

3.2 CORE REPRESENTATION VIA INTERSECTION FIBERS

The subspace framework developed in (1) can be naturally extended to a compact tensor representa-
tion in terms of mode-3 fibers. By selecting slices along modes 1 and 2 that span the corresponding
mode subspaces S(X(M) and S(X(?), we obtain a reduced set of mode-3 fibers located at their
intersections. These intersection fibers act as structural representatives, capturing the same subspace
as the full collection of mode-3 fibers. Consequently, the entire tensor can be approximated using a
core representation derived from this smaller, more informative subset, whose validity is rigorously
established by the following theorem.

Theorem 3.1. Let X € R1*2XIs be a 3-mode tensor. Suppose the mode-1 and mode-2 sub-

spaces S(X(V) and S(X(?)) admit bases of dimensions Ry < I, and Ry < I, indexed by
o=, i =GP Let WERD € Indf %0t and WH2) ¢ Il x 2
be the corresponding indicator matrices. For each pair (i1,42) € {1,...,I1} x {1,..., 12}, let
£i 60 = Xiidn,: € R’s denote the mode-3 fiber.

1,22

Ri,R:

(Part I: Core Dictionary). The R; R, intersection fibers {f#l)’i%) }Th’wil form a core dictionary

that spans all mode-3 fibers of X'. Stacking them columnwise yields the core matrix

Feore = (X x3 W W(Q;RZ)) = X(3) (WZH2) @ wlif)) T 2

(3

where (W(Q?Rz) ® W(LRl))T acts as the indicator matrix selecting precisely those core fibers.
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(Part II: Separable Reconstruction). There exist coefficient matrices H®1) ¢
Rt H(2iR2) ¢ RI2XR2 gych that every mode-3 fiber admits the separable expansion

l 2
£iis Z Z hg,ﬁl) hg 22) fzﬁl), 2 3)
’l"l—l ’I“2—
and equivalently, the unfolding satisfies
X3 = (X x; HEROW LR o) gERIWER2)) o = B (HZ) @ HERD)T - (4)

Proof. A detailed proof of this theorem is presented in Appendix 7.2.

Intuition. Fixing bases for S(X()) and S(X(?) encodes the tensor’s structure in their Ry Ry
intersection fibers, which act as a compact core dictionary, capturing the interactions between the
two subspaces. The coefficient matrices H(::%1) and H(?:%2) provide separable weights to recon-
struct all fibers. Exact recovery is guaranteed when the chosen slices form true bases; otherwise,
approximate bases yield reconstructions with errors tied to the residuals.

Remark 2. Theorem 3.1 underpins multi-way feature selection. When modes 1 and 2 correspond
to features and mode-3 indexes samples, each mode-3 fiber represents a feature’s response across
samples. Feature selection thus reduces to choosing representative bases along modes 1 and 2,
whose intersection fibers form the most informative representatives of the full feature space.

4 TENSOR-BASED FEATURE SELECTION

Mode-2 Slices

Mode-1 Slices |

Mode-1 Sparse Slice Selection
% Using {31 Norm

In this section, we formalize the task of
feature selection in tensor data. The model
developed in this section is presented un-
der the assumption that the input is a non-
negative 3-mode tensor. This assump-

Mode-2 Sparse Slice Selection
Using £3,; Norm

tion is well aligned with many practical %&:ﬂ - - ———
multi-way datasets such as images, videos, 5"“‘;:',';;;;:’2’"” : £ ff’“‘ét',f;,’,!,f‘;‘“
and medical scans, where entries naturally E E

take non-negative values (Bi et al., 2025). Mode 3 unfotcing ot ﬂ
Nonetheless, the framework can be read- e o ortde

ily extended to general tensor data, and we =

provide a discussion of this extension in Figure 1: Schematic illustration of multi-linear subspace

Appendix 7.6. Let X € R 2%/ pe a
non-negative 3-mode data tensor with I3
samples, each described by I; x I multi-
way features. The problem is to select a
subset of mode-3 fibers that best preserve
the structure of the full tensor.

Feature Selection via Core Theorem.
According to Theorem 3.1, this can be
achieved by choosing m; < I slices
along mode-1 and my < I slices along
mode-2, which approximate S(X(

learning feature selection (MSLFS). Mode-1 and mode-2
slices of the input tensor are processed via ¢2 1-norm based
sparse selection, where the joint row sparsity regularization
ensures that only a limited number of slice combinations are
retained as informative representatives. The first term of
the objective function ensures reconstruction fidelity by us-
ing the intersection of the selected slices to form representa-
tive mode-3 fibers. The second term enforces local manifold
preservation within each mode, thereby maintaining the geo-
metric structure of the data subspaces.

D) and S(X(?), respectively. The intersection of these selected

slices yields a compact yet expressive set of representative mode-3 fibers that best span the feature
subspace. Concretely, the feature selection problem can be formulated as follows:

min
Hm) H(Zm2) Wimy) W(2im2) >(

s.t.

X — X %, |5 (SHUEPAVVASSUDISVIN H(2;m2)W(2;m2)||%

Wm) g Ind™ 7 WEm2) e Ind™2 2 (5)

Here, W Lim1) and W(2m2) are indicator matrices marking the selected slices, and HE™) ¢
RI1xm1 and H(2m2) ¢ R12%™2 are the corresponding coefficient matrices.
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Relaxation via Orthogonality. Since the minimization problem (5) is NP-hard, directly using in-
dicator matrices is impractical. We relax this by enforcing orthogonality on W (11) and W (2m2)|
equivalently on their Kronecker product. Combined with non-negativity, this ensures each column
remains one-hot, preserving selection while keeping the optimization tractable.

Row-Sparsity Regularization. Given the sparsity of W(1™1) and W(22)  their Kronecker
product, which acts as the indicator matrix for the m; X mo intersection mode-3 fibers, inherits this
property. To emphasize only the most informative slice combinations, we impose joint row-sparsity
on (WZm2) @ W(Lm) T ensuring that only a few mode-3 fibers dominate the reconstruction and

redundancy is reduced. To formalize this idea, we employ the /5 ; norm. For (W @&m2) W (Lim)) T
this becomes:

||(W(2;m2) ® W(l;ml))THZl — Tr((w(2;m2) ® W(l;ml)) U (W(Qmm) ® W(l;ml))T), (6)

where U € R/1/2x1112 g diagonal with entries equal to the reciprocals of the 5 norms of the
columns of W(2im2) @ Wlim1),

Mode-Wise Factorization of the Penalty. Because each column of W(%2) @ Wlim1) g a

Kronecker product of a column of W (2m2) and one of W(l?ml), the matrix U decomposes as

U@ UM, where UM e R *11 and UR) e R2*!2 are diagonal matrices whose entries depend

only on the columns of W (11) and W (2™2) respectively. Substituting this gives:

[ (W(Q;mz) ®W(1;m1))T 2.1 = Tr((W(Q;m’“) ®W(1;m1))(U(2) ®U(1))(W(2;m2) ®W(1§"”1)>T).
(7

Using standard Kronecker product identities, this expression simplifies to

TI-((W(2§m2)U(2)W(2§m2)T) ® (W(l;ml)U(l)W(l;ml ),
and since the trace of a Kronecker product factorizes into the product of traces, we finally obtain
(W) e W) Tl 3 = [[WEmT [ W

— (2m2) 172 W (2ma) " (Lma) ry (W) yw (ma
Tr(W U“'wW ) Tr(W UvY'wW

)T

.
7). ®)
Interpretation. The /5 ; penalty factorizes across modes, with each trace term measuring the rep-
resentational quality of slices in its subspace while penalizing redundancy. This separation reduces

computation and enables mode-wise control, ensuring balanced selection that retains only the most
informative fibers.

4.1 GRAPH REGULARIZATION FOR HIGHER-ORDER MANIFOLD LEARNING

In multi-way feature selection, it is crucial to preserve both the global span and the intrinsic geometry
of the data. Graph regularization enforces local neighborhood consistency, ensuring proximity in the
original space is maintained in the learned representation. Extending this to tensors requires jointly
modeling local structures across all modes.

Fiber Representation. Let H(1™1) ¢ RIxm1 apd H(22) ¢ RI2X™2 denote coefficient matri-
ces for the selected slices along modes 1 and 2. By Theorem 3.1, each mode-3 fiber f;, ;, can be

approximated in terms of the core fibers as: f;, ;, = Feore ((H(Q?mz) ® H(l;ml))T): i1ia’
the coefficient vector ((H(Z™2) @ H(:m))T) 7 encodes how the fiber is reconstructed from

the shared subspace. Intuitively, if two fibers f;, ;, and f;, ;, are similar in the original space, their
coefficient vectors should also be close, reflecting their functional similarity in reconstruction.

1,82
where

Graph Regularization. To enforce this locality, we minimize the squared distance between coef-
ficient vectors, weighted by their similarity:

1 2;m Lima)\T 2;m Limq)\T 2
S (e e memo)T) o (@) o memT) )
11,22 J1,J2
where b,— —— encodes the similarity between f;, ;, and f; ;,. This term can be rewritten com-
12,7172 ’ B

pactly in matrix form as: Tr[(H(%m2) @ H(1:m1)) TL(H®m2) @ H(1im1))] where L € Ri2x/1l2
is the Laplacian of the feature similarity graph.
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Mode-Wise Decomposition. To ease computation, we exploit the fact that similarities between
fibers factorize across modes. This induces a Kronecker structure in the joint Laplacian, expressed as
L = L® @LW. For each mode n € {1, 2}, the Laplacian L(™ = A (™) —B(™) is constructed from
the degree matrix A(") and similarity matrix B(™), with L() A(") B(") ¢ RI»*I»  Substituting
this decomposition yields:

Tr[(H(Q;"”) @ HEMNT(LE) @ LOYHZ™2) ¢ H(l;ml))] =
Tr(H™2) LAHE™)) TG LOHEG™)), (10)

Interpretation. The factorization shows that preserving local geometry among fibers indexed by
(i1,12) decomposes into two preservation tasks, one per mode. Each trace term enforces neigh-
borhood smoothness along its mode, while the Kronecker structure captures their joint effect. This
regularization encourages nearby slices in the tensor to share similar coefficients in the reduced
space, aligning feature selection with the data manifold. The mode-wise decomposition also lowers
computational cost and clarifies each mode’s contribution to locality preservation.

Similarity Construction. The similarity matrices B(") = [b(1)< ] € RIiv*Ii and B?) = [b(2) | €

11,12 01,02
R’2%12 are built via a heat kernel. For example, the similarity between two mode-n slices Xl(.?) and
X" where n € {1,2}, is defined as: b\ = exp(—ung> - X2 /02) if X e Mu(x{™)

i2 11,12
(n)

or vice versa; otherwise bi1 in
,

nearest neighbors.

= 0, where 0 > 0 is the kernel width and Ny (-) denotes the set of k

Overall Objective Function. Bringing together the reconstruction fidelity, sparsity control, and
manifold preservation, the MSLFS framework can be formulated as

EHX — X % HGm)y(lima) X9 H(Q;mz)w(Q;mz)”%

min
H(imn) Wnimn) >0,¥ne{1,2} 2
+ @ TF(H(ZMz)TL(Q)H(?:ma)) Tr(H(l:ml)TL(l)H(lﬂm))
2

+ é Tr(W(2;m2)U(Q)W(Q;nzg)T) rI\r(W(l;ml)U(l)W(l;ml)T)
2

.t Vv(Q;m;_;)Vv(2;'mg)—r ® W(l;’ml)w(l;ml)T _ Imlmz- (1)

Details of the optimization procedure, convergence analysis, and computational complexity are pro-
vided in Appendices 7.3, 7.4, and 7.5, respectively. In brief, Algorithm 1 outlines the optimization
steps for solving the minimization problem (11).

Algorithm 1 MSLFS Algorithm

Input: Data tensor X € R71*72%13. numbers of selected slices 1m1, mo; parameters , 3, v; max_iter.
Output: Compute ¢2-norm of columns in WE™0 W (Z™m2) sort descending. Select top m1 columns of
WS top ma of WZ™2) for mode-1, mode-2 slices. Output m; x my features at their intersection.
1: Initialize W(Hm1) ¢ Rmxln WwZme) ¢ gmexla glim) ¢ plixm g2ima) ¢ glaxm2 randomly;
build similarity matrices B, B®.
2: for t = 0 to max_iter do
3: Update W™D via (17), HE™1) via (19), W (3™2) via (23), H(®™2) yia (25).
4: end for

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of MSLFS through extensive experiments, compar-
ing it with top-performing feature selection models on real-world benchmark datasets.

Datasets and Compared Methods. To evaluate the effectiveness of MSLFS, we conduct experi-
ments on several benchmark datasets, including COIL20 (Nene et al., 1996), ORL (Cai et al., 2010),
UMIST (Graham & Allinson, 1998), PixrawlOP (Li et al., 2017), Orlraws10P (Li et al., 2017),
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FashionMNIST (Xiao et al., 2017), BreastMNIST (Yang et al., 2021), and OrganSMNIST (Yang
et al., 2021). For comparison, we select ten top-tier models: LS (He et al., 2005b), UDFS (Yang
etal., 2011), ILFS (Roffo et al., 2017), GRLTR (Su et al., 2018), CAE (Balin et al., 2019), FSPCA
(Tian et al., 2020), CPUFS (Chen et al., 2023), SPCAFS (Li et al., 2023), GRSSLFS (Tiwari et al.,
2024), and SPDFS (Dong et al., 2025).

Experimental Settings. To ensure fair evaluation, all methods are tuned under comparable set-
tings. For graph-based approaches, the k-neighborhood is selected from {2,5,10,15}. We fix
v = 10® to enforce orthogonality and set the kernel width o = 103. Regularization parame-
ters are searched over {107%,1073,...,10%}, and the number of selected features is varied across
{50, 100, 150, 200, 250, 300}. Clustering is performed with the true number of clusters, and the
maximum iterations of iterative methods are tuned within {5, 10, 30}, where 5 or 10 iterations offer
a good trade-off between efficiency and convergence. k-means is applied to the selected features and
repeated 10 times with random initializations; average results are reported. Performance is assessed
by ACC and NMI (Solorio-Fernandez et al., 2020), where higher values indicate better results.

Clustering Results. Table 2 presents ACC and NMI results across eight benchmarks against 10
leading baselines. MSLFS consistently achieves top performance, with large improvements on
COIL20, ORL, and Orlraws10P, and robust results on challenging datasets such as FashionM-
NIST and BreastMNIST. These gains come from its slice-based subspace modeling, which leverages
cross-mode structure, and graph-regularized selection, which maintains local geometry, producing
compact and discriminative features that drive clustering accuracy.

Table 2: Clustering results of the MSLFS vs. 10 cutting-edge models on benchmark datasets.

Model COIL20 ORL UMIST Pixrawl0P Orlraws10P  FashionMNIST BreastMNIST OrganSMNIST
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
LS (NeurIPS 2005) 5434 7211 4811 7144 4105 5931 6737 83.52 6924 7876 5049 5117 6222 478 33.17  37.69
UDFS (IJCAI 2011) 5547 71.19 4795 7150 3652 53.03 70.54 79.94 57.64 6757 5246 5122 6267 555 3352 3734
ILFS (CVPR 2017) 61.45 7356 56.68 7592 4552 5874 7329 83.74 7452 8226 6357 6031 63.57 743 2886 3458
GRLTR (JVCIR 2018) 68.78 77.84 5432 7500 49.68 6321 9244 9367 8290 8751 5492 51.01 59.19 500 3338 3216
CAE (ICML 2019) 59.93  72.17 5625 7493 5434 6922 8627 91.75 7445 8123 67.57 6426 7488 936 39.81 41.96

FSPCA (NeurIPS 2020)  67.14 79.43 57.07 73.97 5238 6554 8566 92.16 8041 87.74 6326 61.68 7142 855 3815 4081
CPUFS (TPAMI 2022) 64.72 7621 5738 7539 4946 63.37 7727 89.40 76.81 8536 60.53 58.52 67.87 826 3724  39.57
SPCAFS (TPAMI 2023)  63.15 74.74 5221 7176 44.23 5821 8216 8891 7336 8044 5436 5153 6046 542 3401 33.26
GRSSLFS (TMLR 2024) 6747 7876 5395 7458 58.06 68.06 89.30 92.17 79.10 86.04 56.65 6243 5385 10.00 32.74 30.94
SPDFS (TPAMI 2025) 67.66 7896 53.64 7301 4837 61.15 7836 89.13 7545 8221 5676 52.96 61.12  7.66 33.41 34.25
MSLFS (Ours) 73.15 84.67 6443 79.61 5679 70.17 93.16 9428 8833 9142 6642 6674 7693 12.85 4425 44.87
Improvement +4.37 4524 +7.05 +3.69 - +0.95 +0.72 +0.61 +5.43 +3.68 - 4248  +2.05 +2.85 +444 42091

Ablation Study. The MSLFS objective includes two regularizations: locality preservation (o)
to capture local geometry and sparsity (5) to enhance discriminability. An ablation study on six
datasets (Table 3) shows that the full model consistently outperforms reduced variants. Removing
either term lowers performance, with the sharpest drop when both are omitted, confirming their
complementary importance for robust clustering.

Table 3: Ablation study results on six datasets.

Case COIL20 Pixraw10P ORL BreastMNIST UMIST OrganSMNIST
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
a,0#0 72.88 8344 93.66 9411 64.13 7945 7613 12.69 56.33 69.79 4421 44.57
a=0 66.87 7722 89.80 9137 61.12 7754 63.14 844 4942 6338 3854 39.11
B=0 68.13 7897 90.45 9232 5898 75.66 68.73 10.89 49.01 61.88 41.11 42.77
o, =0 6486 7478 8520 88.03 5690 74.05 61.13 7.89 4656 5722 36.18  36.66

Convergence Curves. This section analyzes the convergence of MSLFS on four benchmark
datasets. Figure 2 shows objective values versus iterations (up to 50). In all cases, the loss drops
quickly at first and then stabilizes, demonstrating fast and robust convergence across diverse datasets.

g FashionMNIST g BreastMNIST g OrganSMNIST g Oriraws10P g UMIST
2 o0 2 2 2 2
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Figure 2: Convergence curves of the MSLFS on the image datasets.
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Computational Complexity. Table 4 shows that while many methods incur cubic costs in tensor
dimensions, MSLFS reduces complexity to linear dependence on I I» I3 with only minor contribu-
tions from slice counts. Its mode-wise design distributes selection across modes and avoids costly
global operations, yielding clear efficiency gains over prior approaches.

Table 4: Computational complexity of different models for each iteration. Here ¢ and c denote the
dimension of the reduced space and cluster number, respectively.

Model Computational Complexity
LS O(IL 1,13 + I Iz log, I I5)
UDFS O(I313 + I3c)

FSPCA @] max{lllgmlmgt,m?mg} + Illgmlmgt)

CPUFS  O((Lils + L1s) + (L oI5 + I3)c)

SPCAFS  O(I}I3(Is + I112))

GRSSLFS  O(LI313)

GRLITR O(IIxIslogy Is + I I3 15 + I3)

SPDFS O (max{I1215t, If[%t} + NIt + max{I11213t, I, 12 log, 112, mfmé})
MSLFS @] IlIglg(max{ml,Ig} +max{mg,Il}))

Data Visualization using t-SNE. Figure 3 presents t-SNE visualizations on UMIST. The raw
data shows scattered and overlapping clusters, while MSLFS with varying feature counts produces
progressively clearer, more compact, and better-separated groups. This demonstrates the ability of
the MSLFS to extract discriminative features that enhance clustering quality.

» UMIST: 100 Features UMIST: 200 Features UMIST: 300 Features
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Figure 3: t-SNE plots of UMIST before and after feature reduction with MSLFS.

Selected Features Visualization. Figure 4 depicts feature selection on ORL and Pixraw10P with
100, 200, and 300 features. Fewer features capture broad structure, while more reveal finer details.
Across datasets, the model consistently highlights informative regions, expressing its efficacy for
image-based feature selection.

Pixraw10P: Pixraw10P: Pixraw10P:
Pixraw10P 100 Features 200 Features_ 300 Features
i Ew ¥

ORL: ORL: ORL:
100 Features 200 Features 300 Features

Figure 4: Image visualizations on ORL and Pixraw10P with 100, 200, and 300 selected features.

6 CONCLUSION

The proposed MSLFS introduces a novel approach to tensor-based feature selection by distributing
the selection process across modes rather than treating the feature space as a rigid whole. Its key
innovation, the multi-linear subspace distance, provides a principled criterion for preserving global
structure while enabling efficient and interpretable feature selection. Complemented by joint sparsity
and higher-order graph regularization, MSLES captures both cross-mode dependencies and local
manifold geometry, setting it apart from existing tensor-based methods. This framework opens
new directions for multi-way learning, with future work aimed at extending MSLFS to broader
tasks such as its integration with deep tensor architectures for large-scale representation learning.
Comprehensive theoretical discussions and supplementary experiments can be found in Appendices
7 and 8.

*This paper has used large language models solely for improving the clarity and polish of the writing.
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7 ADDITIONAL THEORETICAL RESULTS

7.1 NOTATIONS AND PRELIMINARIES

Notations. Throughout this paper, vectors are represented by bold lowercase letters (e.g., v), ma-
trices by bold uppercase letters (e.g., A), and tensors by bold calligraphy letters (e.g., X). The
identity matrix of size m is denoted by I,,, and e§-m) denotes the jth column of I,,,. For a matrix
A = (a;;) € R™*™, the i-th row and the j-th column are denoted by A, . and A. ;, respectively.

The Frobenius norm of A is defined as ||A[|p = /372, >°7_, a7;, while the (> 1-norm is given by

|All2,1 = > %, |As,:]|2- For a square matrix A, Tr(A) denotes its trace. The dot product between
two vectors u, v € R™ is defined as (u,v) = Y7, u;v;, and the Frobenius inner product between
two matrices A, B € R™*" is definedas (A, B)p = > " | Z?zl a;;b;;. The Hadamard product of
A,B € R™*" is expressed as A©B = (a;;bi;);-1 ;_;. For A € K*7 and B € KM* N, the Kro-
necker product is A@B € KUM)*(JN), ; defining ém = (i—1)M+mand jn = (j—1)N+n, its en-
tries are given by (A®B);— — I awbmn for1<:<I,1<j<J,1<m< M,and1 <n<N.
A third-order tensor is denoted by X' = (4, iy.i5 )iy =1.... Iy:in=1....Iy: ig=1,....1; € RI1*2XI3 where
each entry x;, ;, i, € R; the j-th frontal slice (j = 1,. .., I3), denoted by X‘g?’), is obtained by fixing
the third index and belongs to R’ */2. Furthermore, the mode-3 unfolding of X, denoted by X(3)

rearranges the entries of X’ into a matrix of size I3 x I;Is by mapping the mode-3 fibers to the
columns of X 3).

Preliminaries. Let X' € RT1*12XXIN pe an N-mode tensor, A € R7*!» a matrix, and v € R~
a vector (n = 1,...,N). The n-mode tensor-matrix product X x, A € RIXXJxXIn apd

the n-mode tensor-vector product X x,, v € RI1X>XIn-1xInt1xXIN are defined elementwise as
I, S In

(X Xn A)iyejoiy = 24021 Tiyin @iy (XXnV)iyoinyingaomin = Din =1 Tigowiy Vi, - FOI

y € R7, wehave X x,, AX,y = X'X,,(y " A), and the j-th mode-n slice of X' x,, A is X X, A; .,

g")T is the j-th column of the identity Iy _, then X’ X, y extracts

T _ x(m
()

7 =1,...,J. Inparticular, ify = e
the j-th mode-n slice: X x,, e;

The mode-n unfolding of X', denoted by X,y € RI»*(vIn—1lus1--IN) ‘rearranges X into a matrix
by aligning all mode-n fibers as its columns. Tensor-matrix products admit the following unfolding

formulations: (X X, A) () = A X(n), (X X A) () = X(n) Lrpsstn @ AR, 1) ,m #
n. More generally, for a sequence of tensor-matrix products, we have (X X1 Aj Xo A2 XN

v
AN) :AnX(n)(AN®~~®An+1®An_1®~~~®A1> .

7.2 PROOF OF THEOREM 3.1

Proof. Step 1 (Core matrix equals intersection fibers). Define the subtensor
y = X Xl W(I;Rl) X2 W(Q;Rz) c RR1XR2X13‘
Since W (1R1) and W (ZR2) are indicator selectors for the index sets T} and T, the (r1,79,:)-entry

of Y is precisely the intersection fiber f. (1) 2 = =X i @ . Hence, ) stacks exactly the Ry R in-

tersection fibers. Unfolding along mode Té nnd using the standard product—unfolding identity yields
Fcore = Y(g) = X(3) (W<2;R2) X W(1§R1))T

s0 Fore 1s exactly the matrix whose columns are the R R, intersection fibers.

Step 2 (Coefficient matrices along modes 1 and 2). Because {X((l)} _, is a basis of S(XM)),

(1;R1)
11,71

X0 = $° 00 x
Z By X

’I‘11

forevery i1 € {1,2,--- , I}, there exist coefficients {h }T1 1 such that

12
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Collect these into H(33#1) ¢ RIxF1 - Similarly, since {X((Q)} >, is a basis of S(X(?)), there

exists H(ZR2) ¢ RI2x Rz with

Ro>
2 2:R
XE2) _ Z h( 2) X((z,))

12,72
ro=1

Step 3 (Fiber-level decomposition). Fix (i1,i2). Expanding along mode 1 and then mode 2 gives

Rl Rg
_ § ’ (1;R1) _ § : § : (131) (2:R2)
f’il,iz - 21 12,0 — h 31,71 X h’ 11,71 19,72 ‘)(7(1) 152)7 I
r1=1 ri=1rs=1

ie.,

Ro
Z 2: (1;R1) 4. (2;R2)
11 iy T hh,h hLz T2 f,ﬁ.l’ (2

slrg
ri=1ro=1

Step 4 (Tensor-level identity). Stacking the identities in Step 3 over all (i1,42) shows that X is
obtained by first selecting the basis slices and then recombining them with the coefficients:

X=X X1 H(l;Rl)W(l;R1) X9 H(2;R2)W(2;Rz)‘
Unfolding this equality along mode 3 and using the same product—unfolding identity as in Step 1
gives
X(3) = (X X1 HGR) W) X H(2;R2)W(2;R2))(3)
= X3 (W(2;R2) ® W(I;R1)>T(H(2;R2) ® H(l%R1))T

Substituting the expression for F . from Step 1 yields
X(3) = Fcore(H(Q;Rg) X H(l;Rl))T-
This completes the proof. O

7.3  OPTIMIZATION

We now detail the optimization procedure of the proposed MSLFS method given in Problem (12),
describing the iterative steps for solving its objective function and updating the associated optimiza-
tion variables.

min ,” — X x HEGmOwtm) o H(2;mz)W(2;m2)||%
H(mmn) W (nmn) >0,¥ne{1,2} 2

(&%

+ 5 rI\r(H(2;m2)TL(2)H(2;m2)) Tr(H(l;ml)TL(l)H(l;m1))

+ é H(w(Z;mg)U(Q)W(Q;'mg)T) T‘I‘(W(l;ml)U(l)W(l;m])T)
2

st WEmIWEm) ' g wm)wm)t —q ()
To derive the multiplicative updating rules for W (3™1) and H(*™1)  one must calculate the deriva-

tives of the objective function with respect to these variables and set them equal to zero. To this end,
the first term of the objective function can be unfolded as follows:

ym ; .7 n T
H(msmn) W(ﬂr{}lln)>0 Vne{1,2} §HX () — HEmMIWEmIX ) (17, @ HEm2WEme)) g
+ %T‘r[H(Q?m2)TL(2)H(2;m2)]Tr[H(1;m1)TL(l)H(l;ml)]
B

+ fTr[W(Q;M2)U(2)W(2;m2)T]Tr[w(l;Tnl)U(l)W(l;MHT]
2

st WEm2)WEm2) " o witim)ywtim) " — L, (13)

13
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Simplifying the objective function leads us to:
ETT[X(Tl)X(l) —2(I7, ® HE&m2) W3 2))X(Tl)w(1 D g tme) X @)
+ (I[3 ® H(2;mz)V\/'(?;mz)))(EVDVV(I;WU)TH(l;m1)TH(l;v’m)Vv(lnnl))((l)(II3 ® H(2;m2)w(2;m2))T}
+ gTr[H(Z;WQ)TL(2)H(2;m2)}Tr[H(1;m1)TL(l)H(l;ml)]
2

+ E’I‘r[w(??m2)U(2>W(2?m2)T]ﬁ[w(l;mﬂU(l)W(l;m])T}
2

+ 1Tr[\;V(?mz)VV(?mm)TVV(?;mz)VV@;m)T ® WDy Limn) Ty (ima) yr(Lima)
4
— 2W(2;m2)w(2;m2)T ® ‘A/(l;ml)vv(hml)T + Im1m2]- (14)

leOW the the derivatives of the objective function w.r.t. W(3™1) and H(1™1) can be calculated as
ollows:

av&ifmn = —H"" X ) (I, @ HEDWET2)X )
+ H(l?ml)TH(1§”"1)W(1?ml>x<1)(II3 ® H(2;m2>W(2:m2>)T(IIS ® H(25m2)W<2;m2>)Xa)
+ AT [W )y wEme) gy (mo g ()
+ ,YTI.[W(2:M2)W(2;M2)TW(2:MQ)W(2;M2)T]W(I;M1)W(1;m1)TW(1;M1)
— A Te[WEm) W Eme) Ty (m), (15)
78}1(?;1) = —X (1) (11, @ HEmWEm)) X [y im’

+ H(l;m1>w(1;m1)x(1)(113 ® I_I(2WL2)VV(2WL2))T(II3 ® H(2;m2)w(2;M2))XEI'I)W(I;TM)T
T [HE™2) L@ gEm Oy tim), (16)
According to KKT conditions (Lee & Seung, 1999), we have the following updating rules:
W(l;ml) — (W(l;m1) ® H(l;ml)T)((l)(II3 ® H(2;m2)W(2;m2))X(T1) (17)
+ 7Tr[Vv(?;mz)\7\/‘(2%2)T]Vv(l;ml))
@ (H(l;ml)TH(Lml)W(l*ml)X(l)(113 ® H(Q;"L?)W@"M))T(113 ® H(2;m2)W(2;m2))Xa)
+ BTr[WZm2) y@w (2m2) Ty (im) (1)
+ ’YVI\I‘[W(Q;/’TLQ)W(2;m2)TW(2;77L2)W(2;m2)—r]W(l;ml)w(l;'lnl)TW(1;77L1)) (18)

H(l;ml) — H(l;'m1) ® (:)((1)(:[[3 ® H(2;mg)w(2;’rn2))Xa)w(l;ml)-r

+ aTe[HE™) L HE™)]AVH,)

o (HEMIWEmIX () (I, @ HEmWEmD)T (1), @ HEm2) W Em)) X [ wZm)

+ aTr[H@;m?)TL(Q)H(Q"”"’)}B(l)H(l””l)). (19)
To derive the update rules for W (2im2) and H(Z™2) | the first term of (12) must be reformulated using

the mode-2 unfolding of the tensor. Then, the derivatives of (12) with respect to these variables are
computed.

. 1
min =

)T
H(n;mn)7W(n;mn)20,VnE{1,2} 2

||X(2) _ H@;Ma)Vv(?;mz)X(Z)(II3 ® HGm)wma) ||%
+ g’I‘I-[H(2§m2)TL(Q)H(2§m2)]Tr[H(1§ml)TL(l)H(l?ml)]
2

+ éTr[W(2;M2)U(2)W(2;M2)T]Tr[w(l;an(l)W(l;mnT]
2

st WEmWEm) ' g wlm)wtm)t — - (90)
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78“?(“: 5 = —HE) X, (1, @ HOm W)X

+ HEm) T gEmIWEmX o (1, @ HEm WG T (1, @ HEm)wim))xX [

+ BTr[WEm) O W Lim) " [y (2m2) g (2)

+ ,yTr[W(l:ml)W(l:ml)TW(l;fm)W(l;ml)T]W(2;M2)W(2;M2)TW(Q:mz)

— Ay Te[W ) W Lm) Ty (25ma) @1)
8H(?2}:m2) = X (I, @ HEmI W)Xy W)

+ HEmWEmDX ) (1, @ HEmWEm)T(1; @ HEm) wlm) )X [ w(Zima) '

+ aTr[HEm) L OHEGmOLE@ | @m:) (22)
According to KKT conditions (Lee & Seung, 1999), we have the following updating rules:
WEma) = WEm) o (HEm)" X ) (I}, @ HEmWtm))x [ (23)

+ ,yTr[W(léml)W(l;ml)T]W(Qmw))

%) (H(Q;’rnz)-rH(Q;mg)VV(Q;nLg))((2)(II3 ® H(l;’ml)vv(l;ml))—l—(II3 ® H(l;ml)W(l;nLl))XEl'z)
+ AW Em) O W Eim) [y (2ima) 1y (2)
Ay Te[WEmD) W Ema) T ygy (ima) gy (Lma) Ty (2ime) g (2m2) T ygy (2ma)) (24)

H@m2) — g@im2) o (X2 (Ir, @ H(l;m1)W(1;m1))X(72)W(2;m2)T
+ aTr[H(1§m1)TL(l)H(l;M1)]A(2)H(2;m2))
im im .m m m o )T
O (HEmMIWEmDX o) (I, © HEmD W) T (1, @ HEm) W)X [, Wm2)
+ aTr[H(l;WM)T L(l)H(l;ﬂ"L1)]B(2)H(2;m2)). (25)

7.4 CONVERGENCE ANALYSIS

This section iinvestigates the convergence analysis of MSLFS to explore the decreasing behavior of
the objective function (12). It is first assumed that each matrix W (wmn) Hma) for n € {1,2}is
individually updated while the others remain unchanged. Based on this assumption, the decreasing
behavior of the objective function is analyzed for each variable. For this purpose, several important
definitions and findings from (Lee & Seung, 1999) are examined.

Definition 7.1 ((Lee & Seung, 1999)). The function G(u, u(t)) is deemed an auxiliary function for
f(w) if it fulfills the subsequent criteria:

g(uvu(t)) > f(u)v g(uvu) = f(u)v (26)
for every u € R.
Lemma 1 ((Lee & Seung, 1999)). Suppose g(u,u™®)) is an auxiliary function associated with f (u).

Then, the sequence { f(u®))}2 | is non-increasing when u is updated according to

(t+1) _ i )
u argglelﬁg(u,u ).

In Proposition 7.2, an auxiliary function is created to ensure that the original objective function
diminishes monotonically in line with the update rule for W11) specified in (17).

Proposition 7.2. Given that the matrices H(1i"1) W (Z™2) "and H(2"™2) are fixed, the update rule
(17) for W(Lim1) ensures that the objective function of the minimization problem (12) does not
increase.

15
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Proof. Assume that the matrices H(171) W (2m2) "and H(%™2) are fixed. Consider the objective
function in the optimization problem (12) with respect to W (1i71):

‘ 1 ‘ , ‘ ,
f(W(l’ml)) 25”.)( — X x4 H(l’ml)W(l’ml) X H(2,m2)w(2,m2)‘|%‘
n g Tr[WZm) g @ w @me) ) mypw m) g O wmn T

+ T wem e T g wmwm T 1, 2.

. t
To show that f(W(Lml)(Hl)) < f(W(l?ml)(t)), define g(w1, f(wj(}:;?l)( ))) as follows:
1;m (®) 1;m () 5 1;m (t) 1;m (t)
glwn, w7 ) = Bl ) + Blug ) (wn — w1

ima) " yma imy) () im ;M M ym
—|—(H(1’ D T Gm) ywLima) X(l)(113®H(2 2) W2 2))T(IIB®H(2 2) W2 2))X(T1)

+ ﬁTr[W(2;mz)U(2)W(2;m2)T]W(l;M1)(t)U(l)

W(2;m2)w(2;m2)—r]w(1;m1) (t) (W(l;ml) (t)) Tvv(l;ml)(t)>

+ 7Tr[v\/'(Q;mz)V\/‘(?;mz)T
Jisi1
my) @)
(wl — wj(}jlll) )2
(1;m1)(®)

Jist1

X

b

2w

for jy = 1,2,--- ;my and iy = 1,2,--- , I;. Moreover, assume that B(w;) indicates the part of
f(w) relevant to W™ and

Jist1

Blws) = <3W(1;m1)>' = (- O X (1, @ HEm W)X
J1,%

+ RO T gEmOWGmOX () (1, @ HEmWEm)) ([, @ HEm W Em))X |
+8 Tr[W(?;mQ)U(Q)W(Q;mz)T]W(l;ml)U(l)
+ 7Tr[W(QV”?)W(QW"?)TW(g?m2)W(2§m2)T]W(l;ml)w(l;ml)TW(l;ml)

- Tr[W(2?m2)W(2§m2)T]W(l;m1))
J1,%1
. t
It can be seen that g(w, w](ll:Z”)( )) is an auxiliary function of B(w;). For this purpose, consider
) t

the Taylor expansion of B(w;) around wﬁ:zl)( ) :

1m (t) . 1;m (t) 1;m (t) 1. 1;m (t) 1im (t)
Blw) = Blwf, 7)) + Blwy ) (wy — w7 + §B(wg('1,i11) )(wy = wi T,
where

2
B(wl) = (M> — (H(l;ml)TH(l;ml))
8W(1;m1)2 1.1 41,41

x (Xo(I, @ HEmI WO T (1, @ HEmI W)X ) -
+ BTr[W(z;mz)U(z)W@;mz)T]u(l)

J1,i1

+ 7 Tr[w(Z;mz)W(2;mz)TW(2;mz)W(2;m2)T] <(W(1;m1)Tw(1;m1)) 4 w(l,m1)2

il,il jl’il

+ (W(lnnl)w(l;ml)T) ) _ ’yTr[W(2?m2)W(2;m2)T].

J1,J1
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It is easy to validate that g(w;, w;) = B(ws ). Moreover, in light of the following inequalities,

<H(1§m1)THU;ml)W(l;ml)X(l)(IIS ®H(2;m2)w(2;m2))T(113 ®H(2;m2)w(2;m2))xa>) o
J1,%1
my Iy

im) T ;m ;1 ;m ;m m m
:ZZ<H(L (DR = (¢ 1)) wﬁ}s 1)><<X(1)(II3®H(2‘ 2)W(Zm2))T (11, @ HZm2)wZm2))x (1)>

r=1s=1 Jr

Z(H(l’ ) g 1)) (X(1)(II3®H(2’ 2)Ww(2im2)) T (11, ®@ HZm2)wZima)yx (1)>

j1 ,J1 i1,i1
1;m 1) _ (1,mq) (1) (1)
(W( 1)U< >J1,11 Z Wiy ,s ! Us,ip = qu i1’
and
. . T . . T .
(ot o) S SE ) > (e w)
J1i1 s=1r=1

(1,m )2 1;m 1;mq)
+ wjl,ill + (W( 1)W( . )jhjl7
(13m)(®) S .
P ) > B(wi), for each w; € R. Consequently, since the
(Lyma

J1st1

it can be observed that g(wq,w

requirements of Definition 26 are met g(wy,w )) serves as an auxiliary function for B(w).

(15mq) (D)

Then, by minimizing g(w1,w;,’; ) with respect to w1, the updating rule of W(1i™1) can be

obtained in the form
. . . T . . . . T .
W(laml) — (W(lyml) 0 H(l»ml) )((1)(]:13 ® H(2’"L2)W(2’m2))X(Tl) +,yTr[W(27m2)W(2»m2) ]W(lyml

%) (H(lxml) H(Lml)Vv(lxml))((l)(II3 ® H(2vm2)w(2xm2))7(113 ® H(2¢m2)w(2vm2))xz—1)

+ BTY[w@;Mz)U(2)W(2;7'L2)T]W(l;"u)U(l)

+ TT[W(2;m2)W(2;m2)TW(2;m2)w(2;m2)T]W(l;vm)w(lmu)TW(l;m1)) )

The obtained result is in exact agreement with the update rule (17) specified for the matrix W11),
Collectively, this result and Lemma 1 establish that the proposed update rule guarantees the mono-

tonic decrease of the original objective function. O

In line with the strategy described in Proposition 7.2, two separate cases can be analyzed for the
update rules of W(272) H1m1) and H(2™2) | For each case, an auxiliary function is introduced to
ensure the monotonic decrease of the original objective function. The cases are outlined as follows:

Case 1: Assuming that W(m1) H1m1)  and H(%™2) are fixed, the update rule (23) for W (%m2)
guarantees that the objective function in the minimization problem (12) is non-increasing.
Under this scenario, the objective function with respect to W(22) is expressed as

FOWEm)) ZLyp Ly s mmwtm) o peme) wizims) 2,
2

+ By pwema) @)y @me) Ty (i) ) gy (mn) Ty
2

+ % ||Vv(?;mz)\7\/’(2;7712)T ® W(l;ml)w(l;M1)T —Lim, H%
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Next, by defining the function

2:mg) (D) 2:m) (D) : 2m (t) 2:m) (D)
g(wa, w'ZT ) = BwZT ) + Bl ) (wp — w(FT )

J2,t2
m T m m (t) m m m m
+(H(2* 2 HEmI W)X o) (1, @ HEmI W) 11, @ HEmIWm))X [
y(®)

_|_l@Tr[W(l;ml)U(l)W(l;ml)T]W(2;m2 u®

+ fyTr[W(hml)W(l?ml)TW(l?ml)w(l;M1)T]W(2;m2)(t) (W(z;m2)(t))TW(2§m2)(t))
J2,i2

(2ima) (D5

J2,i2 )

(2ma2) ()

J2,i2

(we —w
X

)

2w
. ima) (®) S .
it can be demonstrated that g(ws, wg:i;) ) serves as an auxiliary function for B(ws), for
Jjo=1,2,...,mg,and i = 1,2,...,I5. Note that B(ws) represents the components of
F(W@m2)) agsociated with w!>""*) and takes the form

J2,i2

Bluws) = B ) + Blum) ) wy —wZn )

J2,i2 J2,t2 J2,i2
1. 2:ms) (V) 2:ms) (D)
+ 58(10;271,22) )(w2 o w](é,i;) )2’

with

. af ima) T im ym
Bluz) = (aw(2m)) = (- HO X (I, @ HOmOW )X
2,12

+ H(2;m2)TH(Z;mz)w(Q;vnz)X@) (I, ® HEmOWEm) T

x (I, @ HEmOWE™)X D)

+ BT [WEm) g wLm) "y (2m2) )

NN rH[V\/‘(lﬂnl)Vv(l;m)TVv(l;ml)Vv(l;ml)T]‘7\7(2%2)Vv(2;m2)TVV(Q;mz)
_ 7mw(lmmw(l;ml>T]W(2;mz))

J2,i2

B(wQ) = i — (H(2;Tn2)TH(2;m2)>
8W(2;m2)2 ja,ia J2,J2

x (Xa) (I, @ HOm O Wm0) T(1, @ RO W)X ) )

and

12,12
+ BTr[WEm gy (tim) T, (2

J2,12

+ Y TI‘[W(l;ml)W(1§m1)TW(1;m1)W(1;m1)T]

12,19 J2,i2

X ((W(Q;mg)TW(z;mg)) + w(27m2)2

+ (W(Q;mz)w(Q;mz)T)

J2,J2

> — 4 Tr[WEm) W m) ')

Case 2: Assuming that W(1m1) W (2m2) ‘and H(%™2) are fixed, the update rule (19) for H(*m1)
guarantees that the objective function in the minimization problem (12) is non-increasing.
Under this scenario, the objective function with respect to H(1™1) is expressed as
FEEm) :1”;\» — X x; HEmOwoim) o) gEime)w(Zme) )2
2

+ % TI«[I-I(2;mz)'r L(2)H(2;mz)] Tr[H(l;ml)TL(l)H(l;ml)},
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Next, by defining the function
gl by = BT BTy — )

11,51 11,71 1,71 21,71

+ (H(lvml) t)W(l;ml)X(l)(IIS ® H(2’m2)W(2;m2))T
sIMg m Ny T
x (I, @ HEmIWEm2)X [y (2im2)
(hy — (1;m1)(t))2

11 »J1

11,1 hgl ;nl)
1,J1

+a TF[H(Q;"L?)T L(2)H(Q;mg)]B(l)H(l;ml))

b

) (E
it can be demonstrated that g(hq, hg:}?l)( )) serves as an auxiliary function for B(hy),
fori; = 1,...,11, and jo = 1,...,m;. Note that B(h;) represents the components of

f(EM™)) associated with h(-l"-nl) and takes the form

B(hy) = By 4 gm0y - i)

11,71 11,71 11,71

t
B(h(lml)())(hl p(im) Oz

11,J1 21,71
with
. 8f : Mo ;M T
Blh) = <8H(1;m1))- = (X0 (I @ HEm W)X Wt
?1,J1

+ H(l;ml)W(l;ml)X(l)(Ilg ® H(Z;mg)W(Q;mg))T
;m ;m ;m T
x (I, ®H(2’ 2) W (2 2))X2—1)W(1’ 1)
=+ aTr[H(Q;TM)TL(Q)H(Q;m2)]L(1)H(1;m1))
11,71
and

B(hy) = ————= — (W(l,rm)X I H(Q’mZ)W(zx"Q) T
) (aHu;ml)?)“ i I, ® )

X (I[ ® H(2;77L2)W(2;m2))XT1 W(lmh)T)

) W Ji,J1

+ o Tr[HE™m2) L@y,

11,21°

Case 3: Assuming that W(m1) W (Zm2) and H™1) are fixed, the update rule (25) for H(22)
guarantees that the objective function in the minimization problem (12) is non-increasing.
Under this scenario, the objective function with respect to H(%2) is expressed as

. 1 . . . .
f(H(Q,mQ)) :§||X — X x; H(l,m1)w(1,ml) X9 H(2,m2)w(2,m2)H%
L+ Tr[HEm2) " L@@ TpEOm) O tm])
2
Next, by defining the function
NG
9(ha, BTy = B ) 4 B ED (g - p2m0 )

i2,J2 12,72 i2,J2 12,72

+ (H(Q’mz)( )W(Q;mg)X(g) (II3 ® H(l;m1)w(1;m1))T
im ‘ma ima) T

X (113 ®H(1’ Dw ))X&)W(Q 2)

+a Tr[H(l?ml)TL(l)H(l;ml)]B(2)H(2;m2)>

. . ’
12,72

o) (E
it can be demonstrated that g(hs, hz('f,’;T)( )) serves as an auxiliary function for B(hz),
forio = 1,...,1I, and jo = 1,...,mqy. Note that B(hs) represents the components of
f(H@m2)) associated with h<2;7-n2) and takes the form

NG
B(hs) = B ") 4+ B0 ) (o — 1270 1 L0 )y — 2

©2,J2 12,J2 12,2 12,72 12,72
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3 .m -m )T
B(hs) := <8H(2"’2)> = ( — Xy (I, ® HEmIw 1))X(E)W(Qv 2)
12,7

+ HEmIWEX o) (I, @ HEmI W hm)) T
ym ym ima)

x (I, @ HEmIWm))x [ w(Zime)

+aTr[H(lz,ml)TL(l)H(nml)]L(z)H(z;m2)) 7

12,72
and
B(hy) := <82J02> _ (W(zm"‘)X(l)(I[S & Hm) Wtm)y T
oR@m? ), .
+ Qe [HGm) T L)@ ’

12,%2°

7.5 COMPUTATIONAL COMPLEXITY

The purpose of this section is to evaluate the computational complexity of the suggested MSLFS
method to offer a clear insight into its efficiency. Assessing the time complexity of each phase in
Algorithm 1 allows for the calculation of the total computational expense. This evaluation will also
emphasize the performance and scalability of the algorithm when managing large-scale applications.
Initially, it is crucial to emphasize that for specific matrices A € R™*", B € R"*", C € R™*"k,
and E € R™*™, the calculations for AB and C(I; ® E) consist of 2mnr — mr and 2mn?k — mnk
arithmetic operations, respectively. It is important to note that the calculation (I, ® E) requires no
arithmetic operations since it is a diagonal matrix. Accordingly, the computational cost of updating
the matrices W(1m1) H(im) "W (2m2) and H(22) appears as follows:

1. The computational expense of updating the matrix W (5:™1) is Total flops(W (1i1))
~ 6my L1 IoIs + 4115303 +2myIas + 6 mals + 6 mols +8mily +2my Iy +2m3
= O(mllllglg + 11[2213) = 0(11[213 max{ml,lg}).
2. The computational expense of updating the matrix H(*™1) is Total flops(H(1™1))
~8myliIoly + 6 [ 1313 + 8mol3 +4dmy I} +2mialy +4my I}
= O(mlfl.[g[g + 11]22]3) = O(Il.[z[g max{ml,Ig}).
3. The computational expense of updating the matrix W (22) is Total flops(W (2:2))
~ 6moliIols + 4 LI T3 4+ 2mol I3 + 6m3 T, + 6my I +8mi3ly + 2maly +2m3
= O(mgflfglg + 112[2]3) = 0(11]213 I’Il&X{[l, mg})
4. The computational expense of updating the matrix H(%™2) is Total flops(H(22))

~ 8mpliIoIs + 6 Iy 1213 + 8myI? + 4mol2 4+ 2mi1; + 4myls
= O(mglllglg + 12112]3) = 0(11[213 max{mg,ll}).

To sum up, the computational expense of a single iteration of Algorithm 1 can be deter-
mined as follows:

Overall Total flops = (9(11[213<max{m1, I} + max{ms, Il}))
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7.6 MSLFS UPDATING RULES FOR A REAL-VALUED TENSOR DATA

To derive multiplicative updating rules when X may be signed but all learned variables remain
non-negative, we follow the same derivative computations as before and then apply elementwise
positive/negative splitting to the matrix expressions that involve Xy, where n € {1,2}. For
any real matrix M we denote My := max(M,0) and M_ := max(—M,0) (elementwise), so
M = M, — M_. The multiplicative update rule for a non-negative variable Z with gradient de-
composed as VzF = GT — G~ (with G* > 0)is Z + Z ® G~ @ G*. The gradients are
fully developed in the previous section. Using the elementwise positive/negative splitting described
above, the multiplicative updates (for non-negative factors while X may be signed) are:

. . )T . .
W(lvml) _ W(laml) ® [(H(l,ml) X(1)113 ® (H(Q’mQ)W(ZmQ))XErl)),
A Te[WEm2) W Zime) gy (im))
o [(H(lvml) H(lvm1>W<1vml>X(1)(IIS ® H<2’m2)W(2‘m2))T(II3 ® H(Q'mQ)W(Z’m2>)X2—1))+
4 AT [WEm YW Eme) Ty (m) g™
+ WTr[W(Z;mz)W(Q;mzfW(Q;mz)W(Q;mz)T]W(l;mmw(l;mﬂTW(l;m1)]7

‘ i ; ; o 3\ T
gH®Gm) — ggim) o [(X(l)(:[fg ® H<2’m2>W(2’m2))X(TDW(LWH) )
+ aTr[H<2;nL2)TL(Q)H(2;WL2)}A(1)H1}
© [(H(l;ml)w(l;ml)X(U(IIs b H(Q;mZ)W(Q;mZ))T (113 ® H(Q;mZ)W(Q?mﬂ)XEFI)W(Q;mz)T)+
+ aTr[HQWn?)TL(Q)H(2§M2)]B(1)H(1;m1)]’

. . o) T . .
W Em2) — WwZm2) o [(H(Zmz) X2 (I, @ H(lvm1>W<1vm1>)X2—2))7
+ ,YTT[W(l;ml)W(l;ml)T]W(Q;"lz)]
o [(H(2;7nz)TH(2;m2)W(2;m2)X(2)(113 ® H(Mm)VV(lnm))T(II3 ® H(l;ml)w<1;m1))X(T2))+

)T

(L5m1) 17(1) w7 (Lsma (25m2)17(2)
+ 8Tr[W LSAA"\% I\ U
+ ,YTI“[VV(l;ml)VV(lﬂm)-'—VV(l;ml)VV(l;ml)-'—]VV(QWM)VV(2;m2)TVV(Qmm)]7

H@m2) _ gg@m2) o [(X(g)(II3 ® H(l;ml)w(l;ml))X&)W(Q?mﬂj—)_
+ OéTr[Hu;ml)TL(I)H(hml)}A(Z)H(%mz)]
(%) [(H(Z;mg)w(2;m2)x<2>(II3 ® H(l;m1)w(;m1))T(II3 ® H(l;ml)W(l;ml))XZ;)W@;mQ)T)+
+ aTr[H(l;ml)TL(l)H(l;ml)]B(Q)H(Z;mQ)].

8 ADDITIONAL EXPERIMENTAL RESULTS

8.1 DATASETS

Table 5 summarizes the key statistics of the eight benchmark datasets used in our experiments, in-
cluding the number of samples, feature dimensions, number of classes, and the range of selected
features. These datasets together provide a comprehensive and diverse evaluation environment for
assessing the proposed method across different domains, sample sizes, and feature complexities.
COIL20 (Nene et al., 1996), ORL (Cai et al., 2010), and UMIST (Graham & Allinson, 1998) are
classical image recognition benchmarks encompassing objects and human faces. COIL20 contains
20 objects imaged from multiple viewpoints, effectively testing robustness to pose variation. ORL
consists of 40 subjects captured under relatively controlled conditions, whereas UMIST presents 20
subjects with more pronounced pose and illumination variations, creating a more challenging low-
sample scenario. Pixrawl0QP and Orlraws10P (Li et al., 2017) are high-dimensional raw image
subsets with limited samples, designed to evaluate the scalability of feature selection in situations
where the number of features far exceeds the number of observations. Moving beyond traditional
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object and face recognition, FashionMNIST (Xiao et al., 2017) serves as a modern drop-in replace-
ment for the classic MNIST handwritten digit dataset, sharing the same grayscale 28 x 28 format
but comprising clothing images with richer visual variability and finer inter-class distinctions, thus
providing a more challenging benchmark while remaining compatible with MNIST’s experimen-
tal protocols. In the biomedical domain, BreastMNIST and OrganSMNIST (Yang et al., 2021)
focus on medical imaging tasks, with BreastMNIST providing a binary classification task based on
breast ultrasound scans and OrganSMNIST involving multi-class organ recognition from MRI slices,
thereby testing the applicability of the proposed approach to real-world medical scenarios. Collec-
tively, these datasets span a wide range of sample sizes (from 100 to 1,440), feature dimensions
(from 23 x 28 to 100 x 100), and class cardinalities (from 2 to 40), ensuring that the empirical eval-
uation thoroughly examines the method’s robustness, scalability, and generalization ability across
diverse, small-sample, high-dimensional, and domain-shifted settings.

Table 5: Detailed Statistics of the Eight Datasets.

Dataset # of Samples Feature Size # of Classes Range of Selected Features
COIL20 1,440 32 x 32 20 [50, 100, ..., 300]
ORL 400 32 x 32 40 [50, 100, ..., 300]
UMIST 575 23 x 28 20 [50, 100, ..., 300]
Pixraw 10P 100 100 x 100 10 [50, 100, ..., 300]
Orlraws10P 100 92 x 112 10 [50, 100, . .., 300]
FashionMNIST 1,000 28 x 28 10 [50, 100, ..., 300]
BreastMNIST 546 28 x 28 2 [50, 100, ..., 300]
OrganSMNIST 500 28 x 28 11 [50, 100, . .., 300]

8.2 COMPARISON MODELS

This section summarizes the feature selection methods used for comparison, highlighting the core
mechanism and strategy of each model to identify informative features while preserving relevant
data structures.

e LS (Heetal., 2005a): Assesses each feature individually based on how well it can maintain
the local geometric structure of the data.

* UDFS (Yang et al., 2011): Selects the most informative features by performing both ¢5 ;
norm-based feature selection and local discriminative analysis at the same time.

» ILFS (Roffo et al., 2017): A probabilistic feature selection method that ranks features by
considering all possible subsets while avoiding combinatorial complexity.

* GRLTR (Su et al,, 2018): Combines low-rank tensor representation with local geometry
preservation and /5 ; norm-based feature selection.

e CAE (Balin et al., 2019): An end-to-end global feature selection approach that simultane-
ously trains a neural network to reconstruct the input data while selecting a representative
subset of features.

e FSPCA (Tian et al., 2020): Simultaneously conducts feature selection and PCA by directly
estimating the leading eigenvectors under row-sparsity constraints.

* CPUFS (Chen et al., 2023): Integrates a tensor-based linear classifier with graph-
regularized non-negative CP decomposition and pseudo-label regression.

* SPCAFS (Li et al., 2023): Applies a ¢3 ,,-norm sparsity regularization to the PCA projec-
tion matrix for feature selection.

e GRSSLFS (Tiwari et al., 2024): Selects high-variance basis features and integrates self-
representation, subspace learning, and manifold regularization to enhance feature selection.

» SPDFS (Dong et al., 2025): Performs discriminative feature selection via ellz g-norm con-
strained sparse projection, combining fuzzy membership learning with globally and itera-
tively optimized projection strategies.

8.3 T-SNE VISUALIZATION ON ADDITIONAL DATASETS

In the main text, we presented t-SNE visualizations for the UMIST dataset. Here, we extend this
analysis to Pixraw 10P and Orlraws10P to further demonstrate the effectiveness of our unsupervised
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tensor-based feature selector, MSLFS. Figure 5 shows the t-SNE embeddings of the original data
and the embeddings obtained using the top 100, 200, and 300 features selected by MSLFS. As more
informative features are included, intra-class samples become more tightly clustered while inter-
class samples separate more clearly, confirming that MSLFS effectively identifies discriminative
features in an unsupervised manner.
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Figure 5: Visualization of t-SNE plots on the initial dataset and the dataset after applying the pro-
posed model for feature reduction on the Orlraws10P and Pixraw10P datasets.

8.4 CUSTOMIZING FEATURE SELECTION VIA MODE COMBINATIONS

To further evaluate the flexibility of MSLFS in distributing features across different tensor modes, we
conducted an experiment on the Pixraw 10P dataset by fixing the total number of selected features to
300 while varying the distribution of mode-1 and mode-2 slices. As illustrated in Figure 6, MSLFS
can generate multiple valid configurations, such as 100 x 3, 50 x 6, or 10 x 30, each corresponding
to 300 intersection fibers. Across these different allocations, the selected slices capture meaningful
vertical and horizontal structures. However, the results indicate that balanced selections across the
two modes (e.g., 15 x 20 or 12 x 25) better preserve the overall inherent structure spanned by modes
1 and 2, while extreme allocations to a single mode tend to lose complementary information. This
highlights that although MSLES is flexible in how features are distributed, balanced configurations
most effectively maintain both local and global structures.
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Figure 6: Visualization of mode-wise feature selection flexibility on Pixraw10P

8.5 CLUSTERING ON SELECTED FEATURES

The experimental results with varying numbers of selected features further highlight the effective-
ness of MSLFS. As shown in Figure 7, MSLFS is compared against 10 state-of-the-art models
across eight benchmark datasets, where the performance curves illustrate both the absolute cluster-
ing accuracy and the stability of each method under different feature dimensions. Overall, MSLFS
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consistently outperforms competing approaches, achieving the best or near-best results in terms of
ACC and NMI across nearly all datasets. The improvements are especially notable on COIL20,
ORL, and UMIST where MSLFS maintains clear superiority across varying feature subsets. Even
on more challenging datasets such as BreastMNIST and OrganSMNIST, where existing methods
often suffer from instability, MSLFS achieves significant margins, underscoring its robustness to
data variability and imbalance. Furthermore, unlike other models that exhibit sharp fluctuations as
the number of selected features changes, MSLFS demonstrates smooth and reliable performance
trends, consistently producing discriminative feature subsets. This stability is largely attributed to
its slice-based selection mechanism and higher-order graph regularization, which together preserve
informative structures while effectively suppressing redundancy.
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Figure 7: ACC and NMI curves of different feature selection methods on the eight datasets

8.6 SENSITIVITY ANALYSIS

To further investigate the influence of the regularization parameters « and /3 on the clustering per-
formance of MSLFS, a sensitivity analysis is conducted. Figure 8 presents the heatmaps of NMI
and ACC values across six datasets, including UMIST, Pixraw10P, Orlraws10P, ORL, OrganSM-
NIST, and FashionMNIST. From Figure 8, it can be observed that the proposed method exhibits
relatively stable behavior across a wide range of parameter values, though some dataset-specific
trends emerge. For the UMIST dataset, both NMI and ACC remain stable with small fluctuations,
and the best results are achieved when « lies within {10%,10%,10%} and §3 takes values around
{10%,10%,10}. For the Pixraw10P dataset, MSLFS shows more sensitivity to 3, with superior
performance observed when o € {107%,10°,10'} and §3 is set within {1073,1072,1071}. In the
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Orlraws10P dataset, MSLFS achieves consistently high NMI and ACC values, with optimal perfor-
mance emerging when o € {1073,1072,10%} and 3 € {102,107, 10°, 10%}.

For the ORL dataset, the clustering performance is relatively insensitive to variations in /3, while the
most favorable results occur when « is chosen from {10°,10'}. In the case of the OrganSMNIST
dataset, both NMI and ACC show more noticeable fluctuations, but relatively better performance is
achieved when o € {107%,1072,1072,10%} and 3 lies between {1071, 10", 10'}. Finally, for the
FashionMNIST dataset, the results indicate higher stability across parameter values, with the best
performance obtained for e € {1072,1071,10%} and B € {1071, 10°, 10%}.
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Figure 8: A comparison of the NMI and ACC scores obtained by MSLFS with different values of
the parameters «, and (8 on six datasets.
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