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Abstract

Particle-based variational inference (VI) minimizes the KL divergence between
model samples and the target posterior with gradient flow estimates. With the
popularity of Stein variational gradient descent (SVGD), the focus of particle-based
VI algorithms have been on the properties of functions in Reproducing Kernel
Hilbert Space (RKHS) to approximate the gradient flow. However, the requirement
of RKHS restricts the function class and algorithmic flexibility. This paper remedies
the problem by proposing a general framework to obtain tractable functional
gradient flow estimates. The functional gradient flow in our framework can be
defined by a general functional regularization term that includes the RKHS norm
as a special case. We also use our framework to propose a new particle-based VI
algorithm: preconditioned functional gradient flow (PFG). Compared with SVGD,
the proposed preconditioned functional gradient method has several advantages:
larger function classes; greater scalability in the large particle-size scenarios;
better adaptation to ill-conditioned target distribution; provable continuous-time
convergence in KL divergence. Both theory and experiments have shown the
effectiveness of our framework.

Remark: This is an extended abstract that summarizes the main results of the proposed framework
and the conclusion. Full version is available at https://arxiv.org/abs/2211.13954.

1 Introduction

Given a target distribution p∗(x), particle-based VI aims to find g(t, x), so that starting with X0 ∼ p0,
the distribution p(t, x) of the following method: dXt = g(t,Xt)dt, converges to p∗(x) as t → ∞.
By continuity equation [7], we can capture the evolution of p(t, x) by

∂p(t, x)

∂t
= −∇ · (p(t, x)g(t, x)) . (1)

In order to measure the “closeness” between p(t, ·) and p∗, we typically adopt the KL divergence,

DKL(t) =

∫
p(t, x) ln

p(t, x)

p∗(x)
dx. (2)

Using chain rule and integration by parts, we have

dDKL(t)

dt
= −

∫
p(t, x)[∇ · g(t, x) + g(t, x)⊤∇x ln p∗(x)]dx, (3)
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which captures the evolution of KL divergence.

To minimize the KL divergence, one needs to define a “gradient” to update the particle distribution
as our g(t, x). The most standard approach, Wasserstein gradient [1], defines a gradient for p(t, x)
in the Wasserstein space, which contains probability measures with bounded second moment. In
particular, for any functional L that maps probability density p(t, x) to a non-negative scalar, we say
that the particle density p(t, x) follows the Wasserstein gradient flow of L if g(t, x) is the L2(Rd)-
functional derivative of L. For KL divergence, the corresponding derivative is ∇ ln p∗(x)

p(t,x) . However,
the computation of deterministic and time-inhomogeneous Wasserstein gradient is non-trivial. It is
necessary to restrict the function class of g(t, x) to obtain a tractable form.

Stein variational gradient descent (SVGD) provides a tractable form to update particles with the
kernelized gradient flow [2, 8]. It updates particles by minimizing the KL divergence with a functional
gradient measured in RKHS. By restricting the functional gradient with bounded RKHS norm, it
has an explicit formulation: g(t, x) can be obtained by minimizing Eq. (3). Nonetheless, there are
still some limitations due to the restriction of RKHS: (1) the expressive power is limited because
kernel method is known to suffer from curse of dimensionality [5]; (2) with n particles, the O(n2)
computational overhead of kernel matrix is required. Further, we identify another crucial limitation
of SVGD: the kernel design is highly non-trivial. Even in the simple Gaussian case, where particles
start with N (0, I) and p∗ = N (µ∗,Σ∗), commonly used kernels such as linear and RBF kernel, have
fundamental drawbacks in SVGD algorithm (Example 1).

Our motivation originates from functional gradient boosting [4, 9, 6]. For each p(t, x), we find a
proper function as g(t, x) in the function class F to minimize Eq. (3). In this context, we design a
regularizer for the functional gradient to approximate variants of “gradient” explicitly. We propose a
family of regularization to penalize the functional gradient output in the particle distribution. For well-
conditioned −∇2 ln p∗

1, we can approximate the Wasserstein gradient directly; For ill-conditioned
−∇2 ln p∗, we can adapt our regularizer to approximate a preconditioned one. Our functional gradient
is an approximation to the preconditioned Wasserstein gradient. Regarding the function space, we
do not restrict the function in RKHS. Instead, we use neural networks as our function classes to
obtain better approximation capacity. The extension to the function space of neural networks gives
the algorithm a much better expressive capacity, which will be justified with our empirical results.

Contributions. We propose a particle-based VI framework with regularized functional gradient
flow. We choose a special family of regularizers to approximate preconditioned Wasserstein gradient,
which is more effective than SVGD: The capacity of non-linear function classes are more expressive;
The functional gradient in our framework explicitly approximate the preconditioned Wasserstein
gradient, which supports ill-conditioned cases and obtains provable convergence rate; Our proposed
algorithm does not need the O(n2) kernel matrix, leading to computational efficiency when particle
size is large. Both theoretical and empirical results show the effectiveness of our framework.

2 PFG: Preconditioned Functional Gradient Flow

We let g(t, x) belong to a vector-valued function class F , and find the best gradient direction. Inspired
by the gradient boosting algorithm for regression and classification problems, we approximate the
Wasserstein gradient flow at any (t, x) by a function g(t, x) ∈ F which solves the following
minimization formulation:

g(t, x) = argmin
f∈F

[
−
∫

p(t, x)[∇ · f(x) + f(x)⊤∇ ln p∗(x)]dx+Q(f)

]
, (4)

where Q(·) is a regularization term that limit the output magnitude of f . This regularization term also
implicitly determines the underlying “distance metric” used to define the gradient estimates g(t, x) in
our framework. When Q(x) = 1

2∥f∥
2
H (RKHS norm), g(t, x) is equivalent to kernelized gradient in

SVGD. When Q(x) = 1
2

∫
p(t, x)∥f(x)∥2dx, Eq. (4) is equivalent to

g(t, x) = argmin
f∈F

∫
p(t, x)

∥∥∥∥f(x)−∇ ln
p∗(x)

p(t, x)

∥∥∥∥2 dx. (5)

1For any matrix, condition number is the ratio of the maximal to the minimal eigenvalues. A low condition
number is said to be well-conditioned, while a high condition number is said to be ill-conditioned.
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Figure 1: Evolution of particle distribution from N ([0, 0]⊤, I) to N ([20, 20]⊤,diag(100, 1)) (first
row: evolution of particle mean µt; second row: particle distribution p(5, x) at t = 5)

Algorithm 1 PFG: Preconditioned Functional Gradient Flow
Input: Unnormalized target distribution p∗(x) = e−U(x), fθ(x) : Rd → Rd, initial particles (parameters)

{xi
0}ni=1, θ0, iteration parameter T, T ′, step size η, η′, regularization function h(·).

for t = 1, . . . , T do
Assign θ0t = θt−1;
for t′ = 1, · · · , T ′ do

Compute L̂(θ) = 1
n

∑n
i=1

(
h(fθ(x

i
t)) + fθ(x

i
t) · ∇U(xi

t)−∇ · fθ(xi
t)
)

Update θt
′

t = θt
′−1

t − η′∇L̂(θt
′−1

t );
end
Assign θt = θT1

t and update particles xi
t = xi

t + η
(
fθt(x

i
t)
)

for all i = 1, · · · , n;
end
Return: Optimized particles {xi

T }ni=1

If F is well-specified, i.e., ∇ ln p∗(x)
p(t,x) ∈ F , we have g(t, x) = ∇ ln p∗(x)

p(t,x) , which is the direction of
Wasserstein gradient. Interestingly, despite the computational intractability of Wasserstein gradient,
Eq. (4) provides a tractable variational approximation.

Example 1. Consider that p(t, ·) is N (µt,Σt), p∗ is N (µ∗,Σ∗). We consider the SVGD algorithm
with linear kernel, RBF kernel, and regularized functional gradient formulation with Q(f) =
1
2Ept

∥f∥2, and Q(f) = 1
2Ept

∥f∥2
Σ−1

∗
. Starting with N (0, I), the path of µt and p(5, x) are

illustrated in Fig. 1. The detailed mathematical derivation are provided in the full version.

Example 1 shows the comparison of different regularizations. For RKHS norm, we consider the most
common kernels: linear and RBF. Fig. 1 demonstrates the path of µt with different regularizers. For
linear kernel, due to the curl component, p(5, x) is rotated with an angle (Fig. 1 (a)). For RBF kernel,
it is misspecified, leading to slow convergence, since linear function is not contained in the function
class. The L2 regularizer shows suboptimal performance due to the ill-conditioned Σ∗. We can see
that Q(f) = 1

2Ept
∥f∥2

Σ−1
∗

produces the optimal path for µt (the line between µ0 and µ∗).

General Regularization. Inspired by the Gaussian case, we consider the general form

Q(f(x)) =
1

2

∫
p(t, x)∥f(x)∥2Hdx (6)

where H is a symmetric positive definite matrix.

From the theoretical side, with sufficiently large function space, PFG (approximated preconditioned
Wasserstein gradient flow) reaches linear convergence rate to approximate log-Sobolev distributions,
which cannot be done by SVGD [3].

We will realize our algorithm with parametric fθ and discretize the update. Full procedure is presented
in Algorithm 1, where the regularizer h is 1

2∥ · ∥
2
H by default.
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Figure 2: Particle-based VI for Gaussian mixture sampling.
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Figure 3: Evolution of particle distribution from N (0, I) to N (µ∗,Σ∗) (first row: mean squared
error of µt: ∥µt − µ∗∥2; second row: KL divergence between p(t, x) and p∗(x))

3 Experiments

Gaussian Mixture. To demonstrate the capacity of non-linear function class, we have conducted the
Gaussian mixture experiments to show the advantage over linear function class, e.g., SVGD (RBF
kernel). We consider to sample from a 10-cluster Gaussian Mixture distribution. Both SVGD and
our algorithm are trained with 1,000 particles. Fig. 2 shows that the estimated score by RBF kernel
is usually unsatisfactory: (1) In low-density area, it suffers from gradient vanishing, which makes
samples stuck at these parts (b)); (2) The score function cannot distinguish connected clusters.

Ill-conditioned Gaussian distribution. We show the effectiveness of our proposed regularizer. For
ill-conditioned case, the condition number (the ratio between maximal and minimal eigenvalue) of
Σ∗ is large. We compare different µ∗ and Σ∗. When Σ∗ is well-conditioned (Σ∗ = I), L2 regularizer
performs well. However, it will be slowed down significantly with ill-conditioned Σ∗. For SVGD
with linear kernel, the convergence slows down with shifted µ∗ or ill-conditioned Σ∗. For SVGD
with RBF kernel, the convergence is slow due to the misspecified function class. Interestingly, for
ill-conditioned case, µt of SVGD (linear) converges faster than our method with H = I but KL
divergence does not always follow the trend. The reason is that Σt of SVGD is highly biased, making
KL divergence large. Our algorithm (H = Σ−1

∗ ) extends the Wasserstein gradient and makes the
particle-based sampling algorithm compatible with ill-conditioned sampling case.
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