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Abstract

Large language models are playing an increas-001
ingly significant role in molecular research, yet002
existing models often generate erroneous infor-003
mation. Traditional evaluations fail to assess a004
model’s factual correctness. To rectify this ab-005
sence, we present MoleculeQA1, a novel ques-006
tion answering (QA) dataset which possesses007
62K QA pairs over 23K molecules. Each QA008
pair, composed of a manual question, a posi-009
tive option and three negative options, has con-010
sistent semantics with a molecular description011
from authoritative corpus. MoleculeQA is not012
only the first benchmark to evaluate molecular013
factual correctness but also the largest molecu-014
lar QA dataset. A comprehensive evaluation on015
MoleculeQA for existing molecular LLMs ex-016
poses their deficiencies in specific aspects and017
pinpoints crucial factors for molecular mod-018
eling. Furthermore, we employ MoleculeQA019
in reinforcement learning to mitigate model020
hallucinations, thereby enhancing the factual021
correctness of generated information.022

1 Introduction023

Large Language Models (LLMs) have practical024

applications in molecule research (Fabian et al.,025

2020; Bagal et al., 2021), specifically in the use026

of cross-modal models (Liu et al., 2023b; Cao027

et al., 2023). These models bridge the gap between028

molecular structures and natural language (Bran029

and Schwaller, 2023), helping experts understand030

the properties, potential applications, and acqui-031

sition methods of specific compounds, improving032

understanding of the complex molecular architec-033

ture and reducing experimental failure rates.034

Although molecular LLMs are capable of gener-035

ating task-relevant content, they often suffer from036

generating illusory statements. In the widely stud-037

ied molecule captioning (mol2text) task, users ex-038

pect the model to generate a comprehensive and039

1https://anonymous.4open.science/r/MoleculeQA

CID Ground-Truth Generated

9810996 The molecule is a dipeptide com-
posed of N-(3,3-dimethylbutyl)-
L-aspartic acid and methyl L-
phenylalanate units joined by a
peptide linkage.

The molecule is a dipeptide
obtained by formal conden-
sation of the alpha-carboxy
group of N-(3,3-dimethylbutyl)-
L-phenylalanine with ethanol.

10129879 The molecule is the stable isotope
of potassium with relative atomic
mass 38.963707.

The molecule is the stable iso-
tope of tellurium with relative
atomic mass 124.904425.

5281034 A synthetic androgen, it was
mainly used for the treatment of
anaemias until being replaced by
treatments with fewer side effects.

It has a role as a contraceptive
drug, a progestin and a synthetic
oral contraceptive.

15011611 It is found in Tripterygium wil-
fordii and Tripterygium hypoglau-
cum.

The molecule is an abietane
diterpenoid isolated from
the stem bark of Fraxinus
sieboldiana.

Table 1: The accuracy of the state-of-the-art mol2text model
in describing the given molecule is assessed using BioT5-base
(Pei et al., 2023) inference results. The generated content is
plausible and fluent, but comparison with the ground truth
reveals several factual errors highlighted in red.

detailed description of a given compound. In this 040

task, existing benchmarks (Edwards et al., 2022; 041

Liu et al., 2023b) typically employ metrics such 042

as BLEU (Papineni et al., 2001) and ROUGE (Lin, 043

2004) to evaluate the performance of molecular 044

LLMs. However, without examining the factual 045

accuracy of these models, it is vague to justify 046

how reliable they are. In Table 1, we provide sev- 047

eral examples from the CheEBI-20 (Edwards et al., 048

2021) test dataset to illustrate this issue. Despite 049

the plausible and fluent appearance of the generated 050

content, there are numerous unnoticed inaccurate 051

statements, which remain difficult to detect under 052

the current lexical-based benchmarking approach. 053

Counterfactual molecular generation content can 054

lead to the following adverse consequences: 1) Mis- 055

use of deployed models can deceive and mislead 056

ordinary users, reducing productivity. 2) Profes- 057

sionals may lower their expectations of deployed 058

models when they recognize significant factual er- 059

rorness, thus hindering positive applications. To 060

avoid these repercussions, quantifying the level 061

of comprehension that models have of molecule 062

knowledge is valuable. However, expertise and 063

professional knowledge are required for human to 064
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detect hallucinations in generated molecular text,065

which is extremely difficult with high cost.066

To alleviate the absence of fine-grained factual067

correctness evaluation for molecular LLMs, we pro-068

pose MoleculeQA, a comprehensive benchmark069

based on question-answer pairs covering various070

aspects including molecular property, source, struc-071

ture, and application. MoleculeQA endeavors to072

provide reliable assessments of knowledge compre-073

hension for molecular LLMs, and to offer potential074

solutions for mitigating model hallucinations.075

Construction of MoleculeQA involves two main076

stages. 1) Molecular Taxonomy Construction.077

We utilize authoritative molecule description cor-078

pus as the source. Using a hybrid approach of079

rule-based and automated methods, we extract top-080

ics based on properties, sources, and other relevant081

aspects. After clustering and manual normalization,082

we gather the topics to build a hierarchical domain083

taxonomy that has broad coverage and strong exper-084

tise. 2) Taxonomy-guided QA construction. By085

converting each molecular description into several086

pairs of QA that align with the topics at different087

levels of taxonomy, we can create a QA bench-088

mark that guarantees both granularity, breadth, and089

quality. MoleculeQA is not only the first factual090

evaluation benchmark in the molecular domain, but091

also the largest molecular QA dataset.092

Based on MoleculeQA, we perform accuracy093

tests on various molecular LLMs. Our experimen-094

tal results indicate that existing methods remain at095

a discernible remove from achieving a precise com-096

prehension of molecules, and undercover several097

vital factors for molecule modeling. Furthermore,098

we utilize MoleculeQA to provide feedback for099

molecular LLMs’ reinforcement learning, aiming100

to enhance the factual correctness of the models.101

Our contributions are summarized as follows:102

• We reveal the factual inaccuracies in the con-103

tent generated by existing LLMs in the molecule104

or chemistry domain, which have not been ade-105

quately detected by existing benchmarks.106

• For comprehensive factual accuracy evaluation,107

we develop a domain taxonomy for molecule108

corpus and use it to create a high-quality question109

answering benchmark called MoleculeQA.110

• Using MoleculeQA, we test a series of mod-111

els. Based on our experimental outcomes, we112

identify specific deficiencies in molecular LLMs113

and summarize several critical factors for molec-114

ular understanding. We also attempt to use115

MoleculeQA as feedback for reinforcement 116

learning to reduce model hallucinations. 117

2 Related Work 118

2.1 Molecule Understanding LLMs 119

Advancements in language models pre-trained with 120

scientific corpora (Lee et al., 2019; Luo et al., 2022; 121

Beltagy et al., 2019) have shown considerable suc- 122

cess in molecular research. Recently, cross-modal 123

models have emerged (Edwards et al., 2021; Luo 124

et al., 2023a; Liu et al., 2023a), aiming to bridge 125

the gap between molecular language (bio-sequence 126

or structure) and natural language. Evaluation tasks 127

for these models include seq2seq generation-based 128

tasks (e.g., molecule captioning and text-based de 129

novo molecule generation) and contrastive-based 130

tasks (e.g., cross-modal retrieval). The correspond- 131

ing models can be classified as generative models 132

(e.g., MolT5 (Edwards et al., 2022), BioT5 (Pei 133

et al., 2023)) and contrastive models (e.g., MoMu 134

(Su et al., 2022), MoleculeSTM (Liu et al., 2022)). 135

Seq2seq tasks assess the model’s translation abil- 136

ity between modalities. For text-to-molecule gen- 137

eration, metrics include molecule fingerprint simi- 138

larity (e.g. Morgan-FTS (Schneider et al., 2015)), 139

sequence-based metrics like BLEU (Papineni et al., 140

2001) and validity. Molecule captioning tasks rely 141

on n-gram precision (BLEU), recall (ROUGE (Lin, 142

2004)), or both (METEOR (Banerjee and Lavie, 143

2005)) to measure lexical similarity but lack chem- 144

ical knowledge comparison and factual correctness 145

detection. Retrieval-type tasks align molecules 146

with descriptions, but overlook fine-grained align- 147

ment between text snippets and substructures. 148

2.2 Domain-Specific QA 149

The Question Answering (QA) task serves as a 150

quantitative measure for evaluating the reasoning 151

and inference capabilities of intelligent systems. 152

In the general domain, a large number of QA 153

datasets have been constructed (Rajpurkar et al., 154

2016; Lai et al., 2017; Yang et al., 2018). In 155

addition, specific domains such as medical (Jin 156

et al., 2019, 2020; Pal et al., 2022), news (Nalla- 157

pati et al., 2016; Trischler et al., 2016), and legal 158

(Zheng et al., 2021; Zhong et al., 2019) have also 159

developed standard QA datasets that are widely 160

used by the community. QA datasets in specific do- 161

mains can be classified into extraction-based (Pap- 162

pas et al., 2018), generation-based (Savery et al., 163

2020), multi-choice (Pal et al., 2022) and Yes / No 164
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formats (Jin et al., 2019). QA pairs are constructed165

from various sources, including scientific articles166

(Jin et al., 2019), examination problems (Pal et al.,167

2022; Zaki et al., 2023), professional databases168

(Liang et al., 2023), and crowd-sourcing data (Wei169

et al., 2020; Hendrycks et al., 2020).170

However, in the molecular domain, there is171

a scarcity of comprehensive, diverse, and high-172

quality QA datasets. Existing datasets like173

DrugChat (Liang et al., 2023) have limitations174

in terms of molecule features and simplistic an-175

swers. BioMedGPT (Luo et al., 2023b) transforms176

molecule caption task datasets into QA format,177

inheriting current evaluation issues like domain178

knowledge deficiency and excessive reliance on179

lexical similarity. Conversely, MoleculeQA con-180

structs a domain taxonomy and derives QA pairs181

from descriptive texts, ensuring comprehensive, di-182

verse, high-quality, and credible coverage.183

3 MoleculeQA Dataset184

3.1 Exposure of Factual Correctness Issue185

In this subsection, we analyze the extent of factual186

correctness in the generated content of the molecule187

captioning (mol2text) models.188

Setup. To evaluate the reliability of compound189

descriptions generated by these models, we cate-190

gorize them into four different aspects: Structure,191

Property, Application, and Source. The aspects192

are derived from descriptions in PubChem (Kim193

et al., 2022), the largest molecule caption dataset194

currently available. PubChem includes specific195

sources for each molecule’s description, such as196

Lotus (Mun et al., 2016) for source information,197

DrugBank (Wishart et al., 2017) for application198

details, CAMEO Chemicals (cam) for property de-199

scriptions, and multiple data repositories for struc-200

ture information. The definitions of these main201

aspects are summarized in the Table 2 below.202

Aspect Definition

Structure Details about architecture, composition, and
interaction of atoms within a molecule.

Property Physical, biological or chemical property in
various environments or reactions.

Application The utilization of a molecular compound in
various applications and scenarios.

Source The natural or synthetic origin, as well as
the production context related to a molecule.

Table 2: Evaluation Aspects of description about molecules.

We randomly sample 100 molecule&caption203

samples from the ChEBI-20 test set and take204

MolT5, MoMu, and BioT5 models to generate de-205

scriptions for each molecule. Both ground truth and206

generated content are manually classified based on 207

four aspects. We evaluate the models’ descriptions 208

in each aspect against the ground truth, with two 209

trained domain experts judging them as correct (if 210

the generated content matches the ground truth), 211

miss (if the ground truth has a corresponding as- 212

pect description but it was completely missing in 213

the generated content), or error (if there is a clear 214

factual inconsistency with the ground truth). 215

Figure 1: The performance of three representative models
on the traditional metrics for the molecule caption task (e.g.
BLEU etc.) and the factual accuracy metric we defined.

Model Structure Property Application Source

MolT5-base 63/0/34 1/4/3 7/15/8 20/10/30
MoMu-base 63/0/34 1/4/3 5/16/9 19/ 8/33
BioT5-base 62/0/35 2/3/3 9/12/9 16/13/31

Table 3: Human Assessment of Model Generated Molecu-
lar Descriptions based on 4 aspects, with the counts presented
according to error / miss / correct.

Results. In Figure 1, we assess the content gener- 216

ated by the model using traditional lexical-based 217

metrics (BLEU, ROUGE, METEOR), as well as 218

their factual accuracy on the selected subset. We 219

define factual accuracy as the ratio of correct pre- 220

dictions to the total number of slots, serving as 221

an average metric to evaluate the reliability of the 222

generated content. Despite the progress in training 223

methodologies, models have exhibited incremental 224

improvements in lexical similarity metrics (such as 225

a 17.6% increase in BLEU-2). Nevertheless, there 226

is no discernible improvement in the dependability 227

of the generated content, with factual accuracy per- 228

sisting at 0.4. In our detailed factual performance 229

analysis (Table 3), we observe that models often 230

omit application-related details and relevant prop- 231

erties. The generated descriptions about Structure 232

show a significant discrepancy rate of more than 233

63% compared to ground truth. This challenges 234

the credibility of expert model-generated content, 235

which warrants further scrutiny. 236

3.2 Domain Taxonomy Construction 237

Taxonomy frameworks organize concepts or en- 238

tities within a domain hierarchically, aiding in 239
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antibacterial activity

reagent antidepressant

n-substituent
cationic groups

Description 
Corpus Topics Taxonomy

Normalization
&

Structuralize

Extract

Figure 2: The process of constructing a molecular domain taxonomy. The procedures involve the selection of the information
source, extraction of topics, normalization and structuralization of topics, and hierarchical clustering by domain experts.

Text: "It has a role as a metabolite 
and an acaricide. It is a diterpenoid.."
Topic: {"acaricide"..,}

Content: "It has a role as an acaricide."

acaricide

Therapeutic Usage

Application

Appropriate Topic: 
Therapeutic Usage

Q: "How can the molecule be 
applied for therapeutic use？"

"It has a role as an acaricide."
"Can be used as vasodilation."
"It can be used as a recreational drug."
"Can be used as sedative."

(a) Extract Content (b) Reassign topic (c) Design question (d) Collect Pos. & Neg. answers

Figure 3: The process of constructing a molecular domain taxonomy. The procedures involve the selection of the information
source, extraction of topics, normalization and structuralization of topics, and hierarchical clustering by domain experts.

the organization of domain-specific queries (Liu240

et al., 2012) and ensuring the quality of comprehen-241

sion domain knowledge and constructing question-242

answering pairs. We adhere to established proce-243

dures for the construction of domain taxonomies,244

as illustrated in Figure 2.245

Information Source. Considering the data quality,246

we choose the most widely used ChEBI-20 dataset247

as our molecular description corpus. To mitigate248

the class imbalance issue in ChEBI-20, primarily249

dominated by structural information, we include250

additional sources like T3DB (Wishart et al., 2014),251

FDA Pharm Classes, and DrugBank. We employ252

a pre-trained text classifier to perform an initial253

coarse-grained division of the corpus based on the254

four aspects we defined above, which serve as the255

first-level nodes in our taxonomy.256

Topics Extraction. We further employ a hybrid ap-257

proach combining rule-based and few-shot prompt-258

ing methods to extract topics and their correspond-259

ing original text from the corpus, formatting the260

(topic, text) pairs. Subsequently, to mitigate lexi-261

cal noise and uncontrolled granularity within the262

1K topics collected, we utilize GPT-4 (OpenAI,263

2023b) with a few-shot prompt-based approach to264

accomplish an initial semantic aggregation.265

Topics Normalization & Structuralization. Next,266

domain experts intervene to perform rule-based267

topic merging and concept splitting manually. Fi-268

nally, the remaining 587 topics are hierarchically269

clustered by human experts, resulting in a three-270

level molecular domain taxonomy. An overview of271

this taxonomy can be found in the Appendix. The272

leaf nodes represent specific molecule characteris- 273

tics and are the narrowest topics/concepts, while 274

non-leaf nodes represent broader concepts. 275

3.3 MoleculeQA Construction 276

Based on the taxonomy in 3.2, we develop a 4-step 277

procedure to extract questions and answers from 278

molecular descriptions to construct MoleculeQA. 279

The whole workflow is displayed in Fig 3. 280

Content Extraction & Reassign Topic. With 281

(topic, text) pairs annotated in 3.2, a reasonable 282

notion is to query molecules by topic, but con- 283

tent related to a specific topic can be over-brief 284

to be queried. For example, for the molecule 285

CID:5479113, the content of topic acaricide 286

is It has a role as an acaricide. Without 287

enough information, it is difficult to justify which 288

species of mites this molecule is effective. How- 289

ever, it can be queried from a coarser granular- 290

ity like Therapeutic Usage, the parent topic of 291

acaricide. 292

To select a suitable topic for querying, we first 293

use an agent to extract content related to the topic 294

from text. A rule-based program is employed to 295

verify the content, and, in cases where specific de- 296

tails about a given topic are unavailable, we replace 297

the topic with its parent topic until the level of 298

granularity is appropriate for querying purposes. 299

Question Design. We invite two annotators 300

to design questions for topics based on the 301

extracted contents. For example, contents 302

for topic inhibitor include It is a protein 303

synthesis inhibitor and It is a mitotic 304
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Taxonomy Reference Description Extracted Question Positive Answer Negative Answer

Property→
Antiviral
activity

It has been shown to exhibit inhibitory ef-
fects on the viral neuraminidases from two
influenza viral strains, H1N1 and H9N2.

Which kind of antivi-
ral activity does this
molecule have/exhibit?

It exhibits inhibitory effects on the
viral neuraminidases from two in-
fluenza viral strains, H1N1 and
H9N2.

It is used for the treatment of cy-
tomegalovirus (CMV) retinitis in
AIDS patients.

Structure→
Backbone

The molecule is a heparan sulfate com-
posed of a backbone of repeating beta-
D-glucuronosyl-(1->4)- N-sulfonyl-alpha-D-
glucosamine units joined by (1->4)-linkages.

Which kind of backbone
does this molecule have?

It has a backbone of repeating
beta-D-glucuronosyl-(1->4)-N-
sulfonyl-alpha-D-glucosamine units
joined by (1->4)-linkages

It has a backbone of repeating
alpha-L-iduronosyl-(1->4)-N-
sulfonyl-alpha-D-glucosamine
units joined by (1->4)-linkages.

Table 4: Examples of automatically generated QA instances. blue stands for reference locations, red for factual errors.

inhibitor, annotators may design Which kind305

of inhibitor is this molecule?. For each306

topic, annotators discuss choosing the better design307

as its final question and make sure each question308

can be answered using the molecular descriptions.309

Pos. Options Collection. For the positive op-310

tions, since formal extracted contents may be rigid311

and can’t be directly used as answers, we lever-312

age the in-context learning capability of ChatGPT313

(OpenAI, 2023a) to generate appropriate positive314

options via few-shot prompting.315

Neg. Options Collection. For the same question,316

we take positive options from other molecules as317

negative candidates for each molecule. To elimi-318

nate illegal negatives, we merge synonymous op-319

tions and remove overlapping options. Then we320

adopt BioT5 (Pei et al., 2023) to encode all candi-321

dates and choose candidates with similar semantics322

to the positive option as negatives. Several gener-323

ated QA instances are shown in Table 4.324

Data Split. We split molecules in MoleculeQA into325

train/dev/test sets by scaffolds to divide molecules326

with similar structures into the same sets as sug-327

gested in (Hu et al., 2019), making the QA task328

more challenging yet realistic.329

Quality Control. To provide reliable factual eval-330

uation, LLM and human efforts are combined to331

ensure MoleculeQA’s quality. We convert each QA332

instance into natural language using templates and333

assess its logical and semantic consistency with the334

original description using ChatGPT. This process335

is repeated 3 times to minimize variations. With336

taxonomy guidance, the number of disqualified337

samples is minimal and can be manually resolved.338

Human Evaluation. We assign one annotator 2 to339

evaluate the reliability of the test split and receive340

error rate lower than 1%. Finally, we randomly341

sample 100 cases and assign two annotators to eval-342

uate the quality of QA samples. The annotators343

assess the Consistency between the question and344

the correct option with the reference caption text,345

2All annotators are doctoral students engaged in molecule
research, with at least six months of professional experience.

as well as Discrimination between the positive and 346

negative options. Human evaluation results can be 347

found in Table 5. The high consistency and discrim- 348

ination metrics, along with a satisfactory level of 349

agreement (Cohen kappa) among annotators, vali- 350

date the quality and reliability of our MoleculeQA. 351

Metric Annotator 1 Annotator 2 Agreement (κ)

Consistency 99.0 99.0 1.0
Discrimination 97.0 96.0 0.85

Table 5: Evaluation for the generated QAs quality.

3.4 Data Analysis 352

Data Statistics. In Table 6, we present the num- 353

ber of QA samples and the coverage of topics in 354

MoleculeQA in comparison to several popular bio- 355

molecular and chemistry-related benchmarks (Wei 356

et al., 2020; Yue et al., 2023; Hendrycks et al., 2020; 357

Lu et al., 2022). We observe that MoleculeQA 358

is both the first benchmark focused on evaluating 359

molecular factual knowledge and the largest scale 360

QA dataset in the molecular field.

Benchmarks # QA Sophistication

MMLU(Chem) 534 College, High school, Medicine
MMMU(Chem) 638 Inorganic, Organic, Physical
ScienceQA 867 Solution, Reaction, Molecule
ChemistryQA 4,500 Reaction, Molecule, Physics

MoleculeQA 61,574 Structure, Source, Property, Application

Table 6: Number of samples and topics coverage compared
to popular related benchmarks.

361
The train, development, and test split consists of 362

49,993, 5,795 & 5,786 QA samples. The general 363

statistics of the dataset are summarized in Table 7. 364

Aspects Structure Property Application Source Total

# Train 32,176 4,838 1,917 11,062 49,993
# Dev 3,314 698 558 1,225 5,795
# Test 3,113 731 599 1,343 5,786
Avg. Q Tokens 7.96 9.02 7.90 7.00 7.74
Avg. A Tokens 9.50 10.98 11.93 7.96 9.42

Table 7: MoleculeQA dataset statistics, where Q and A rep-
resent the Question and Answer respectively.

Data Distribution. Fig 4 provides the visualized 365

distribution of MoleculeQA. All topics in our tax- 366

onomy are queried in MoleculeQA for a compre- 367

hensive, fine-grained factual evaluation. Inherited 368

from ChEBI-20, QA pairs in the Structure aspect 369

5



account for approximately two-thirds of the whole370

MoleculeQA. While topics within each aspect have371

relatively balanced sample numbers.372
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Figure 4: An overview of MoleculeQA topics distribution.
Four coarse-grained aspects occupy the inner circle, and in the
outer circle we list finer-grained non-leaf topics.

4 Experiment373

4.1 Baseline Models374

The main purpose of baseline experiments is to375

investigate current models’ performance in answer-376

ing multiple-choice questions related to molecu-377

lar knowledge. We categorize models based on378

whether their base LLMs are adequately trained on379

a large-scale biomolecular corpus as follows:380

Molecular LLM, represented by MolT5 (Edwards381

et al., 2022), MoMu (Su et al., 2022), BioT5382

(Pei et al., 2023), MolCA (Liu et al., 2023b) and383

BioMedGPT-LM-7B (Luo et al., 2023b). These384

models undergo incremental training stages with385

extensive molecular modality data (e.g. SMILES386

or SELFIES strings), biomedical academic papers,387

and molecule-description pairs.388

General LLM, represented by T5 (Raffel et al.,389

2019), OPT (Zhang et al., 2022), GALACTICA390

(Taylor et al., 2022), BLOOM (Scao, 2022), Pythia391

(Biderman et al., 2023), LLama-2 (Touvron et al.,392

2023b), along with its instruction fine-tuned deriva-393

tives, such as Vicuna (Chiang et al., 2023) and394

Mol-Instruction-7B (Fang et al., 2023).395

Large-scale Universal Models. We evaluate the396

large-scale, state-of-the-art LLMs in few-shot set-397

tings, including open-access models such as Mix-398

tral 8×7B (Jiang et al., 2024), and OpenAI’s GPT399

family, specifically GPT-3.5 (OpenAI, 2023a) and400

GPT-4 (OpenAI, 2023b) accessed via API 3.401

3https://api.openai.com/v1/chat/completions

4.2 Evaluation Setups 402

We follow training approaches and hyper- 403

parameters in the original papers for respective 404

methods. Details about training configuration and 405

few-shot examples are provided in Appendix A.3. 406

Training approaches in our evaluation include: 407

Full Fine-tuning: All model parameters are up- 408

dated, including the base LLMs, structure encoders, 409

and projectors for molecule-language alignment. 410

LoRA-based Fine-tuning: The base LLMs are 411

tuned by low-rank adaptation (Hu et al., 2021), and 412

structure encoders are also trainable. 413

Few-shot Setting: We sample 10 QA examples 414

from four aspects respectively to prompt LLMs 415

with task definition and contextual information. 416

The main metric of MoleculeQA is the accuracy, 417

which is defined as the ratio of correctly answered 418

samples among all test samples. We present the ac- 419

curacy in four aspects as well as the total accuracy. 420

4.3 Main Results 421

We summarize the benchmarking results in Table 8: 422

• Comparison over four aspects. Achieving the 423

highest accuracy on Source is generally more fea- 424

sible for each model, whereas addressing Prop- 425

erty and Application presents notable difficulties, 426

with no method surpassing a 50% accuracy rate. 427

This phenomenon may be ascribed to the compar- 428

atively smaller data scale within these domains. 429

• Molecular LLMs v.s. General LLMs. Molecu- 430

lar LLMs demonstrate better performance, with 431

a minimum total accuracy over 51%. By contrast, 432

other than T5s, decoder-only General LLMs 433

fail to achieve a total accuracy exceeding 50%, 434

whether fully fine-tuned or tuned with LoRA. 435

• T5 series comparison. Among T5-based meth- 436

ods, T5 demonstrates superior performance 437

compared to MolT5 (e.g., T5-base surpasses 438

MolT5-base in total accuracy by 5.1%) contra- 439

dicting their performance on molecule caption 440

tasks. BioT5 combines bio-molecular texts and 441

databases for molecular pretraining, achieving 442

higher total accuracy than T5 (+ 6.5%). 443

• Decoder-only LLMs comparison. Among 444

Llama-based models, BioMedGPT-7B achieves 445

the best performance with incremental pre- 446

training, while Mol-Instruction fine-tuned by in- 447

structions has slight improvement than Llama 448

and Vicuna. With the similar size of the base 449

model (7B) and LoRA parameters, the perfor- 450

mance ranking among different models is as 451
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Model # Trainable
Params Implementation Structure Source Property Application Total

Random – – 24.41 22.30 23.04 24.57 24.03

Molecular LLM

MolT5-small 80M full ft 49.59 64.18 46.51 40.90 51.69
MolT5-base 250M full ft 58.01 65.85 45.14 42.24 55.39
MoMu-small 82M full ft 52.71 63.44 44.87 40.57 52.96
MoMu-base 252M full ft 61.58 65.30 43.78 43.07 57.43
BioT5-base 252M full ft 65.98 69.24 49.11 40.73 62.03
MolCA-125M 100M LoRA ft 65.54 67.34 45.77 40.33 60.30
MolCA-1.3B 110M LoRA ft 71.12 70.98 47.81 43.17 64.79
BioMedGPT-LM-7B 40M LoRA ft 54.19 60.01 38.85 40.90 52.23

General LLM

T5-small 60M full ft 55.51 64.41 45.42 38.56 54.55
T5-base 220M full ft 60.42 66.42 45.83 43.74 58.24
OPT-125M 125M full ft 38.58 55.92 41.04 28.73 42.93
OPT-350M 331M full ft 44.39 60.83 46.24 40.57 48.05
GALACTICA-6.7B 12.5M LoRA ft 32.35 41.92 31.05 28.21 33.96
BLOOM-7.1B 27.5M LoRA ft 35.01 47.51 31.46 33.56 37.31
Pythia-6.9B 29.4M LoRA ft 42.79 58.90 38.58 39.07 45.61
Mol-Instruction-7B 40M LoRA ft 37.46 47.36 32.69 29.88 38.37
Llama-2-7B-chat 40M LoRA ft 28.75 39.84 31.33 27.71 31.54
Llama-2-13B-chat 63M LoRA ft 34.37 43.86 31.05 29.72 35.67
Vicuna-v1.5-7B 40M LoRA ft 34.89 44.15 34.20 31.55 36.61
Vicuna-v1.5-13B 63M LoRA ft 37.01 43.19 30.64 31.55 37.07

Large-scale Universal Models
Mixtral-8×7B-Instruct-v0.1 – 10-shot 23.32 31.87 32.89 29.96 27.79
GPT-3.5-1106-turbo – 10-shot 25.60 37.60 28.04 32.22 29.29
GPT-4-1106-preview – 10-shot 60.94 50.19 35.57 43.91 53.47

Table 8: We report the accuracy (%) results on MoleculeQA test set under different aspects (Best for model-wise).

follows: Pythia > BLOOM > GALACTICA >452

Llama, which may provide a reference for molec-453

ular base model selection. Increasing model size454

(e.g. 7B→13B) also receives mild accuracy gain.455

• Single v.s. Multiple modalities. Both MoMu456

and MolCA are models that jointly incorporate457

molecular 2D graph modality and textual infor-458

mation. They demonstrate improvements over459

their base models (MolT5 and GALACTICA re-460

spectively) that solely rely on 1D-text modality.461

• Large-scale Universal Models. The utilization462

of highly advanced models, such as GPT-4, has463

potential in the field of molecular research. In a464

10-shot scenario, GPT-4 demonstrates accuracy465

comparable to certain specialized models. How-466

ever, the performance of smaller models declined467

sharply, which may be attributed to the lack of468

their emergent abilities((Wei et al., 2022)).469

5 Analysis470

We propose the following research questions (RQs)471

for the molecular domain to guide our analysis:472

• RQ1: Are existing LLMs powerful enough for473

application in practical molecular scenarios?474

• RQ2: What factors are crucial for enhancing475

LLMs’ ability for molecule comprehension?476

• RQ3: Can MoleculeQA be adopted to alleviate477

the hallucinations in molecular LLMs?478

5.1 In-depth Performance Analysis (RQ1) 479

We draw a preliminary conclusion from Table 8 480

that existing LLMs’ comprehension of molecules 481

is far from satisfactory: When confronted with 482

aspects of Property and Application, pivotal for 483

real-world applications, evaluated models consis- 484

tently fail to achieve commendable accuracy. To 485

more thoroughly assess the methods’ level of com- 486

prehension across various molecular aspects, we 487

plot T5-base and BioT5’s accuracy over each sub- 488

category in our taxonomy in Fig. 5. We find that in 489

aspects of Source and Structure, two models exhibit 490

consistent performance, with accuracy exceeding 491

40% across all categories. But on sub-topics like 492

Agricultural Chemical and Approval status, two 493

models perform notably sub-optimal. Various ac- 494

curacy on different topics can serve as a confidence 495

coefficient for related model applications. 496

5.2 Crucial Factor Attribution (RQ2) 497

We summarize the following crucial factors for 498

improving molecular comprehension ability: 499

Molecular Corpora. The two T5 variants, MolT5 500

and BioT5, displays divergent outcomes. MolT5 501

performs worse compared to T5, while BioT5 502

demonstrates improved performance. This di- 503

vergence can be attributed to the differences in 504

their training corpora, specifically in terms of 505

scale and diversity. Similarly, decoder-only mod- 506

7



Figure 5: Accuracy of different finer topics under 4 coarse-grained aspects on the MoleculeQA test set. We select BioT5- and
T5-base as representatives of Molecular LLM and General LLM, respectively, represented by solid and dashed bars.

els also exhibit this phenomenon: BioMedGPT507

(4.2M bio-molecular papers) > Mol-Instruction508

(1M molecular-oriented instruction samples) > Vi-509

cuna (70K general instruction samples) > Llama510

(General corpus). The above findings emphasize511

the importance of large, diverse, and high-quality512

molecular corpus for improving performance.513

Modality Modeling Strategy. We investigate514

which modality modeling strategies can more ef-515

fectively facilitate molecular modeling. (1) Modal-516

ity learning: There is a significant performance517

gap between LoRA-based methods and methods518

employing multi-modal fusion or full fine-tuning,519

which underscores that an adequate scale of train-520

able parameters is necessary to master the molecule521

modalities. (2) Multi-modal fusion: MolCA and522

MoMu demonstrate that fusing molecular graphs523

into the semantic space of LLMs is viable. How-524

ever, although they both deploy GIN as graph en-525

coder, in comparison to MoMu’s linear adaptation,526

MolCA’s Q-Former (Li et al., 2022) graph adapter527

achieves a much more significant improvement.528

5.3 Hallucination Alleviation (RQ3)529

Reinforcement Learning (RL) from feedback has530

widespread applications for mitigating hallucina-531

tions (Yu et al., 2024; Gunjal et al., 2024). However,532

this method is rarely applied to molecule caption533

(Gkoumas and Liakata, 2024). To verify the fea-534

sibility of this approach, we adopt MoleculeQA535

to provide feedback to optimize the fine-tuned536

molecule caption models: Given a QA pair of537

molecule x, we designate the positive option as538

the preferred output yw and one negative option as539

the dis-preferred output yl, and employ Direct Pref-540

erence Optimization (Rafailov et al., 2023) (DPO)541

as the RL strategy to optimize model π:542

LDPO(πθ;πref) = −E(x,yw,yl)∼D[
log σ

(
β log

(
πθ(yw | x)
πref(yw | x)

)
− β log

(
πθ(yl | x)
πref(yl | x)

))]
,

543

where πθ is the policy model parameterised by θ544

, πref is the fine-tuned model as the reference, β is 545

a hyper-parameter and σ is the Sigmoid function. 546

We convert QA instances into mol2text format 547

and remove molecules in ChEBI-20’s test set, af- 548

ter optimizing MolT5 and BioT5 on this corpus 549

with DPO, we evaluate their factual correctness 550

like Section 3.1 and report the result in Table 9.

Model Structure Property Application Source

MolT5-base 63/0/34 1/4/3 7/15/8 20/10/30
MolT5-base-DPO 59/0/38 0/2/6 10/13/7 17/ 8/35
BioT5-base 62/0/35 2/3/3 9/12/9 16/13/31
BioT5-base-DPO 57/1/39 1/2/5 11/10/9 14/14/33

Table 9: Comparison about Factual Correctness. We
manually evaluate two optimized models on the same 100
cases. An intuitive comparison is provided in Table 12.

551
The result indicates that, two models are guided 552

by counterfactual negative options to discern cor- 553

rect/incorrect fine-grained molecular facts, and to 554

generate descriptions that align better with ground 555

truth across most aspects, except for Application. 556

We attribute this to the small scale of Application. 557

6 Conclusion and Future Work 558

In conclusion, this paper addresses the absence 559

of evaluation for factual correctness in Large Lan- 560

guage Models (LLMs) within the molecular do- 561

main. By organizing molecular descriptions into a 562

taxonomy and constructing QA pairs through hu- 563

man and LLM efforts, we introduce MoleculeQA, 564

a novel dataset for molecular factual question an- 565

swering. Our evaluation reveals shortcomings of 566

existing models, emphasizing critical factors for 567

molecular comprehension and providing guidance 568

for molecular LLMs’ development. We also make 569

preliminary attempt to alleviate the hallucinations 570

in molecular LLMs based on MoleculeQA. Look- 571

ing forward, we propose three future directions: (1) 572

Design a powerful molecular model based on our 573

analysis. (2) Investigate more and better methods to 574

apply MoleculeQA for the optimization of molecu- 575

lar LLMs. (3) Incorporate additional data sources 576

to enrich MoleculeQA’s comprehensiveness. 577
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Limitations578

We conclude our limitations into the following as-579

pects: (1) Imbalanced data distribution across dif-580

ferent aspects, notably with Structure and Source581

data dominating the majority. This skew results582

from the overall prevalence of structural and source-583

related information in the data sources. To address584

this, future efforts will focus on introducing more585

data related to properties and applications while ex-586

panding topic coverage and diversity, all while safe-587

guarding against data leakage. (2) Absence of full588

fine-tuning for large models: Under the constraint589

of computational resources, we fail to fully fine-590

tune LLMs with 7B parameters and above, leading591

us to opt for adaptation-based fine-tuning methods.592

(3) We only conduct a preliminary attempt to allevi-593

ate the issue of model hallucinations, the potential594

of MoleculeQA is left for further exploration.595

Potential Risks596

Although MoleculeQA offers a viable approach597

for factual assessment in the molecular domain598

with reliable data quality, there remains a risk of599

misuse. Evaluations on this dataset may not accu-600

rately represent a model’s comprehension over all601

molecules. MoleculeQA could potentially be lever-602

aged to furnish a veneer of reliability for models603

with underlying risks.604
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A Appendix 977

A.1 Data Sources and License 978

As depicted in Table 11, we elaborate on the ori- 979

gins and legal permissions associated with each 980

data component utilized in the development of the 981

MoleculeQA. This encompasses both biomolecular 982

data and textual descriptions. Thorough scrutiny 983

was conducted on all data origins to confirm com- 984

patibility with our research objectives and sub- 985

sequent utilization. Proper and accurate citation 986

of these data sources is consistently maintained 987

throughout the paper. 988

A.2 Details about Taxonomy 989

We present the overall hierarchical structure of the 990

taxonomy upon which MoleculeQA is based in 991

Figure 6. Additionally, Table 10 provides details 992

regarding the subtopics and part of leaf topics en- 993

compassed within each of the four aspects: Struc- 994

ture, Source, Property, and Application. 995

A.3 Experimental Setup Details 996

A.3.1 Baselines 997

The following parts will individually introduce 998

the models we evaluated in this study and the ap- 999

proaches used for implementation. 1000

T5 (Raffel et al., 2019) is an encoder-decoder 1001

model pre-trained on a multi-task mixture of un- 1002

supervised and supervised tasks for which each 1003

task is converted into a text-to-text format. We di- 1004

rectly fine-tuned it on MoleculeQA dataset from 1005

public checkpoints 4 with three different model 1006

sizes: small, base and large. It’s important to note 1007

4https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md#t511
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Figure 6: The overarching structure of the MoleculeQA taxonomy comprises multiple aspects and subtopics arranged
hierarchically to categorize various facets of molecular factual knowledge. Due to space constraints, we did not elaborate on all
leaf topics.
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ASPECT SUB TOPICS LEAF TOPICS

Property

Biological and Pharmacologi-
cal Activities

"antimicrobial activity", "anti-neoplastic activity", "antioxidant activity",
"enzyme inhibition", "ion channel activity", "receptor activity"...

Reaction Types "acetylation", "condensation", "dehydrogenation", "epoxidation", "glycosy-
lation", "hydroxylation", "oxidation", "phosphorylation", "reduction"...

Chemical Interaction and Mech-
anism

"action", "affinity", "binding", "conversion", "decomposition", "duration",
"formation", "mechanism", "reaction/binding", "receptor affinity", "selectiv-
ity"...

Chemical Properties "chemical nature", "sensitivity", "ph value", "stability", "valence", "reactiv-
ity"

Environmental and Safety Con-
cerns

"bio-accumulation", "xenobiotic", "cell permeability", "teratogenic agent",
"environmental contaminant", "resistance", "safety concerns"

Medical and Therapeutic Effi-
cacy

"analgesic activity", "anti-inflammatory activity", "antimalarial activity",
"anti-mycobacterial", "carcinogenicity", "medical effects", "potency"...

Physical and Sensory Properties "abundance", "atomic mass", "boiling point", "color", "half-life", "odor",
"optical activity", "physical state", "solubility", "taste", "volatileness"...

Application

Agricultural Chemicals "fungicide", "herbicide", "insecticide", "disease control", "herbicide safener",
"synthetic auxin", "phytoestrogen"...

Biological Agents "antibiotic", "antifungal drug", "antibacterial drug", "antiprotozoal", "antivi-
ral drug", "nematicide", "acaricide", "antiseptic"...

Chemical Applications and
Techniques

"reagent", "indicator", "detection", "derivatisation agent", "fluorescent dye",
"production", "chromatographic reagent", "tracer", "solvent", "food addi-
tive"...

Pharmacodynamics and Phar-
macokinetics

"inhibitor", "antagonist", "prodrug", "modulator", "sympathomimetic agent",
"allergen", "sodium channel blocker", "ligand", "agonist"...

Regulatory Status and Approval "approval", "withdrawn from market", "registered in"...
Research and Development "experimental", "biomarker", "clinical development", "testing"...
Therapeutic Use "anti-arrhythmia drug", "anti-allergic agent", "anti-asthmatic drug", "an-

ticoronaviral agent", "anti-neoplastic agent", "anti-ulcer drug", "anti-HIV
agent", "orphan drug", "recreational drug", "vasodilator"...

Source

found in "found in"
metabolite "metabolite"
derives from "derives"
isolated from "isolated"

Structure

Biochemical and Biological
Terms

"active metabolite", "alkaloid" "coenzyme a", "enzyme", "epitope", "fatty
acyl coa", "glucoside", "hapten", "nucleobase", "oligosaccharide", "sphin-
goid base", "substrate"...

Chemical Bonding and Interac-
tions

"glycosidic bond", "disulfide bonds", "double bond", "exocyclic double
bond", "peptide bond", "c=c double bond", "bond", "connection", "attach-
ment"...

Chemical Compounds and
Classes

"acid", "alcohol", "amine", "cation", "dimer", "enamide", "hydrochloride",
"ion", "lactam", "polyphenol", "salt", "phosphate", "sulfate", "oxoanion",
"zwitterion"...

Chemical Species and States "anhydrous form", "heptahydrate form", "oxidation state", "hydrate", "major
microspecies", "deoxygenated", "major species", "microspecies"...

Functional Groups and Chemi-
cal Entities

"acyl group", "alcohol group", "alkyl group", "anilino group", "carbamoyl
group", "chloro group", "epoxy group", "ester group", "fatty acyl group",
"hydrazino group", "hydroperoxy group", "isopropyl substituent", "keto
group", "methyl group", "oxo group", "pentyl group", "phosphate group",
"primary hydroxy group", "s-acyl component", "s-methyl group", "sulfo
group", "thiol group"...

Molecular Structure and Config-
uration

"alpha-branch", "alpha-carbon", "backbone", "branch", "bridge", "core",
"composition", "configuration", "linked group", "n-substituent", "oh groups",
"omega-hydroxy", "position", "prenyl units", "terminal", "terminal group",
"glycosyl fragment", "repeating unit", "sequence", "subcomponents", "side
chain", "nucleus", "sugar fragment", "unit"...

Table 10: Taxonomy of Property, Application, Structure and Source aspects in MoleculeQA. Leaf Topics correspond to the
most granular concepts, while Sub Topics aggregate leaf topics further. The table presents only a subset of leaf topics.
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DATA SOURCES LICENSE URL LICENSE NOTE

PubChem https://www.nlm.nih.gov/web_
policies.html

Works produced by the U.S. government are not subject to copyright
protection in the United States. Any such works found on National
Library of Medicine (NLM) Web sites may be freely used or reproduced
without permission in the U.S.

FDA Pharm Classes https://www.fda.gov/about-fda/
about-website/website-policies

Unless otherwise noted, the contents of the FDA website (www.fda.gov),
both text and graphics, are not copyrighted. They are in the public domain
and may be republished, reprinted and otherwise used freely by anyone
without the need to obtain permission from FDA. Credit to the U.S. Food
and Drug Administration as the source is appreciated but not required.

Drug Bank https://creativecommons.org/
licenses/by-nc/4.0/legalcode

Subject to the terms and conditions of this Public License, the Licensor
hereby grants You a worldwide, royalty-free, non-sublicensable, non-
exclusive, irrevocable license to exercise the Licensed Rights in the
Licensed Material to: reproduce and Share the Licensed Material, in
whole or in part, for NonCommercial purposes only; and produce, repro-
duce, and Share Adapted Material for NonCommercial purposes only.

ChEBI https://creativecommons.org/
licenses/by/4.0/

You are free to: Share — copy and redistribute the material in any
medium or format. Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

LOTUS https://lotus.nprod.net/ LOTUS is one of the biggest and best-annotated resources for natural
products occurrences available free of charge and without any restriction.

CAMEO Chemicals https://cameochemicals.noaa.
gov/help/reference/terms_and_
conditions.htm?d_f=false

CAMEO Chemicals and all other CAMEO products are available at no
charge to those organizations and individuals (recipients) responsible for
the safe handling of chemicals.

Toxin-Toxin-Target
Database (T3DB)

http://www.t3db.ca/ T3DB is offered to the public as a freely available resource. Use and
re-distribution of the data, in whole or in part, for commercial purposes
requires explicit permission of the authors and explicit acknowledgment
of the source material (T3DB) and the original publication.

Table 11: Data resources and licenses utilized in data collection for MoleculeQA.

that the original T5 pre-training does not incorpo-1008

rate any specific knowledge related to the domain1009

of molecules.1010

MolT5 (Edwards et al., 2022) undergoes joint1011

training on molecule SMILES from the ZINC-151012

dataset (Sterling and Irwin, 2015) and a general1013

corpus from the C4 dataset (Raffel et al., 2019),1014

enabling MolT5 to acquire prior knowledge in1015

both of these domains. It contains three different1016

sizes: small, base, and large. In the experiment, we1017

utilized pre-trained model checkpoints of various1018

sizes 5 released by the authors. Subsequently, we1019

conducted full fine-tuning on the MoleculeQA train1020

set, followed by evaluating on the test set.1021

MoMu (Su et al., 2022) is pre-trained using molec-1022

ular 2D graphs and their semantically related tex-1023

tual data (crawled from published Scientific Cita-1024

tion Index papers) via contrastive learning. We1025

adopted MoMu-K pre-trained checkpoints 6 where1026

the text encoder is initialized with the weights of1027

KV-PLM (Zeng et al., 2022). Following the origi-1028

nal methodology, we injected encoded graph fea-1029

5https://huggingface.co/laituan245/
molt5-small, https://huggingface.
co/laituan245/molt5-base/, https:
//huggingface.co/laituan245/molt5-large/

6https://github.com/ddz16/MoMu?tab=
readme-ov-file#pretrain

tures into MolT5-base & large and conducted fine- 1030

tuning on MoleculeQA. 1031

BioT5 (Pei et al., 2023) as a comprehensive pre- 1032

training framework, builds upon the methodology 1033

of MolT5 while enhancing cross-modal integration 1034

into biology through chemical knowledge and nat- 1035

ural language associations. It leverages SELFIES 1036

for robust molecular representations and extracts 1037

knowledge from the surrounding context of bio- 1038

entities in unstructured biological literature. We 1039

utilized the official base version pre-trained check- 1040

point 7 and converted the MoleculeQA data into 1041

the corresponding format for fine-tuning. 1042

MolCA (Liu et al., 2023b) facilitates a language 1043

model (LM), such as Galactica, in comprehend- 1044

ing both text- and graph-based molecular contents 1045

through its cross-modal projector. This projector, 1046

implemented as a Q-Former, serves to bridge the 1047

representation space of a graph encoder with the 1048

text space of an LM. Additionally, MolCA employs 1049

a uni-modal adapter to enable efficient adaptation 1050

of the LM to downstream tasks. We conducted pre- 1051

training, including both stage 1 and stage 2, on the 1052

125M and 1.3B versions, based on the official code 1053

7https://huggingface.co/QizhiPei/
biot5-base
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and cleaned data 8. Subsequently, we performed1054

finetuning on MoleculeQA.1055

BioMedGPT-LM-7B (Luo et al., 2023b) It is a1056

large generative language model based on Llama21057

in the biomedical domain. It was fully fine-tuned1058

from the Llama2-7B-Chat with millions of biomed-1059

ical papers from the S2ORC corpus (Lo et al.,1060

2020). We directly apply the LoRA finetuning1061

method on the checkpoint 9 provided by the official1062

source.1063

OPT (Zhang et al., 2022) is a series of open-1064

sourced large causal language models which per-1065

form similar in performance to GPT-3 (Brown et al.,1066

2020). For comparison with fully fine-tuned T5 se-1067

ries models, we opted to fully fine-tune OPT-125M,1068

-350M, and -1.3B size models on MoleculeQA. In1069

our implementation, we referred to the interfaces1070

provided by Hugging Face 10.1071

GALACTICA (Taylor et al., 2022) is a large lan-1072

guage model (LLM) for Science: trained on over1073

48 million papers, textbooks, reference material,1074

compounds, proteins and other sources of scien-1075

tific knowledge. We selected GALACTICA-125M,1076

-1.3B, and -7.1B versions of the model 11 and con-1077

ducted fine-tuning using LoRA on MoleculeQA.1078

Pythia (Biderman et al., 2023) is an open suite of1079

large language models, all trained on public data in1080

the same order. These models vary in size, ranging1081

from 70M to 12B parameters. They were trained1082

on the Pile dataset, which is constructed from 221083

diverse high-quality subsets. We opted to conduct1084

finetuning based on LoRA on the standard versions1085

of Pythia-410M, -1B, -2.8B, -6.9B, and -12B sizes1086

models 12.1087

BLOOM (Scao, 2022) is an autoregressive large1088

language model, trained to continue text from1089

a prompt on vast amounts of text data using1090

industrial-scale computational resources. It was1091

trained on the ROOTS (Laurenccon et al., 2023)1092

corpus, a dataset comprising hundreds of sources1093

in 46 natural and 13 programming languages (591094

in total). For model scaling evaluation, we chose to1095

conduct finetuning based on LoRA on the BLOOM-1096

560M, -1.1B, -1.7B, -3B, and -7.1B sizes versions1097

8https://github.com/acharkq/MolCA
9https://huggingface.co/PharMolix/

BioMedGPT-LM-7B
10https://huggingface.co/docs/

transformers/model_doc/opt
11https://huggingface.co/models?other=

galactica
12https://huggingface.co/models?other=

pythia

of the model 13. Subsequently, we provided the 1098

results on the MoleculeQA test set. 1099

LLaMA-2 (Touvron et al., 2023b) is a collection 1100

of large language models with parameters ranging 1101

from 7 billion to 70 billion. The model architecture 1102

remains largely unchanged from that of LLaMA-1 1103

models (Touvron et al., 2023a), but 40% more data 1104

was used to train the foundational models. Specifi- 1105

cally, Llama 2 includes pre-trained and fine-tuned 1106

models optimized for dialogue applications, termed 1107

Llama 2-Chat. We opted to utilize the LLaMA- 1108

2-Chat 7B and 13B models 14 and transformed 1109

MoleculeQA into instruction samples for LoRA 1110

fine-tuning. 1111

Vicuna-v-1.5 (Chiang et al., 2023) is an open- 1112

source chatbot that has been trained by fine-tuning 1113

LLaMA on over 150K user-shared conversations 1114

collected from ShareGPT.com. Preliminary evalua- 1115

tion, conducted with GPT-4 as the judge, demon- 1116

strates that the Vicuna series achieves competitive 1117

performance when compared to OpenAI ChatGPT, 1118

while also outperforming other models such as 1119

LLaMA. We selected the v1.5 series models and 1120

conducted LoRA Finetuning on both the 7B and 1121

13B versions 15. 1122

Mol-Instructions-7B (Fang et al., 2023) is a low- 1123

rank adapter designed for LLaMA-2 base LLM, 1124

specifically trained on molecule-oriented instruc- 1125

tions sourced from the Mol-Instructions dataset. 1126

We utilize the version tailored for LLaMA-2-Chat 1127
16, merging the adapter back to the base LLM be- 1128

fore proceeding with LoRA fine-tuning. 1129

Mixtral-8×7B (Jiang et al., 2024) is a Sparse Mix- 1130

ture of Experts (SMoE) language model consisting 1131

of a decoder-only architecture. Its feedforward 1132

block selects from a set of 8 distinct groups of 1133

parameters. Notably, it is recognized as the most 1134

robust open-weight model currently available, li- 1135

censed under Apache 2.0. We adopt a locally de- 1136

ployed approach for conducting few-shot prompt- 1137

ing inference. 1138

GPT-3.5-turbo and GPT-4. For closed-source 1139

models such as OpenAI GPT Family GPT-3.5- 1140

turbo (OpenAI, 2023a) and GPT-4 (OpenAI, 1141

13https://huggingface.co/docs/
transformers/model_doc/bloom

14https://huggingface.co/docs/
transformers/model_doc/llama2

15https://huggingface.co/lmsys/
vicuna-7b-v1.5, https://huggingface.co/
lmsys/vicuna-13b-v1.5

16https://huggingface.co/zjunlp/
llama2-molinst-molecule-7b

16
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2023b), we employ batch inference via APIs for1142

conducting few-shot prompt inference. This ap-1143

proach significantly enhances evaluation efficiency1144

and reduces overhead.1145

A.3.2 Hyper-parameters1146

For MolT5, MoMu, T5, and BioT5, we employed1147

the original codebases and hyper-parameters pro-1148

vided in the respective papers for full fine-tuning.1149

Specifically, these models were trained on a single1150

NVIDIA 48GB A6000 GPU. Except for BioT5,1151

which had a learning rate set to 1e-3, the learning1152

rates for all other models were set to 1e-4. All1153

models underwent fine-tuning for 100 epochs on1154

the training set, and the checkpoint with the best1155

performance on the development set was selected1156

for evaluation on the test set.1157

For MolCA, we utilized the author’s recently1158

updated dataset (excluding any data leakage con-1159

cerns) and conducted pre-training stage 1 and stage1160

2 training on 2 NVIDIA 48GB A6000 GPUs. We1161

maintained consistency with the training hyper-1162

parameters provided in the original paper. Sub-1163

sequently, we fine-tuned pre-trained checkpoints of1164

different sizes on MoleculeQA, with a total batch1165

size set to 16. The 125M model was trained on a1166

single GPU card, while the 1.3B model was trained1167

on two GPU cards. The fine-tuning total epochs1168

were set to 100 for all versions.1169

For full fine-tuning of the OPT series, we con-1170

ducted training on 4 A6000 GPUs for the 125M and1171

350M versions and 8 GPUs for the 1.3B version.1172

The total batch size was set to 256, and the learning1173

rates were set to 3e-4 and 2e-4 for the respective1174

versions. All other hyper-parameters were kept1175

consistent with those specified in the original paper.1176

We performed full fine-tuning for 60 epochs, as we1177

observed over-fitting phenomena when exceeding1178

50 epochs.1179

For the remaining experiments based on LoRA1180

tuning, we employed the Alpaca-LoRA codebase1181

for instruction fine-tuning. Except for the 13B size1182

model trained on 8 A6000 GPUs, all other models1183

were trained on 4 GPUs. The total batch size was1184

set to 400, with gradient accumulation and learning1185

rate adjusted according to the model size (typically1186

set to 3e-4). We set the total training epochs to 20.1187

Regarding the LoRA configuration, we uti-1188

lized the PEFT 17 library for implementation.1189

We set LoRA’s rank r as 16, α as 16, dropout1190

17https://github.com/huggingface/peft

rate as 0.05, and applied LoRA to all mod- 1191

ules of ["q/k/v/o_proj", "gate_proj", 1192

"down/up_proj"] (adjusting module names if 1193

necessary based on actual implementation). Equiv- 1194

alent trainable parameters are reported in Table 8. 1195

We implemented DPO using the alignment- 1196

handbook 18 library and retained all the hyper- 1197

parameters. 1198
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Figure 7: Model parameter size vs. total accuracy on
MoleculeQA test set. Solid lines denote full fine-tune models,
and dashed lines represent LoRA fine-tune.

A.4 Scaling Law for Molecular LLMs 1199

In Fig. 7 and Fig. 8, we depict the variations in 1200

overall accuracy and aspect-specific accuracy of 1201

several models over increasing model scale. 1202

For fully fine-tuned models, we conduct compar- 1203

isons between T5-based models (T5 and MolT5) 1204

and decoder-only models (represented by OPT). To 1205

validate whether adaptively fine-tuning can adapt 1206

general LLMs to acquire molecular knowledge, we 1207

compared models such as BLOOM, Pythia, and the 1208

LLaMA2-series models using LoRA fine-tuning. 1209

We observe a pronounced scaling effect across 1210

different training methods and model architectures, 1211

with the scale effect being more evident in the full 1212

fine-tuning approaches. This observation is con- 1213

sistent with previous analysis about the scale of 1214

parameters and indicates that scaling up model size 1215

is a promising way to enhance molecular modeling. 1216

A.5 Examples of Hallucination Alleviation 1217

Here, we present selected examples (Table 12) com- 1218

paring the originally generated captions with those 1219

refined using the DPO method discussed in Sec- 1220

tion 5.3 1221

18https://github.com/huggingface/
alignment-handbook

17

https://github.com/huggingface/peft
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook


Figure 8: Model parameter size vs. Accuracy in four aspects.

A.6 Prompt of Different Tasks for LLM1222

In the construction process of MoleculeQA, we de-1223

ploy LLMs to finish the following tasks: (1) Corpus1224

classification; (2) Topic extraction; (3) Answer gen-1225

eration; (4) Semantic consistency validation. We1226

report the definitions and task contexts, which are1227

components of prompts for LLMs, of these tasks1228

in Table 13.1229

A.7 Few-Shot Details and Prompt Exhibition1230

We introduce details about our few-shot setting:1231

For each aspect, we select a representative and1232

various samples from different topics as examples1233

to construct an aspect-specific 10-shot prompt. We1234

demonstrate selected samples and the format of1235

prompt in Source aspect in Table 14.1236

18



CID Ground-Truth Original DPO Refined

5280695 The molecule is a monomethoxyflavone
that is the 8-O-methyl derivative of
gossypetin. It is a pentahydrox-
yflavone, a member of flavonols and
a monomethoxyflavone. It derives
from a gossypetin. It is a conju-
gate acid of a 3’,4’,5,7-pentahydroxy-
8-methoxyflavon-3-olate.

The molecule is a monomethoxyflavone
that is quercetin methylated at position
7. It has a role as a metabolite, an antiox-
idant and an anti-inflammatory agent. It
is a monomethoxyflavone, a tetrahydrox-
yflavone and a 7-hydroxyflavonol. It de-
rives from a quercetin.

The molecule is a 7-hydroxyflavonol
that is quercetin substituted by a
methoxy group at position 8. It has a
role as a plant metabolite. It is a tetrahy-
droxyflavone, a 7-hydroxyflavonol, a
monomethoxyflavone and a member of
flavonols. It derives from a quercetin.

91972219 The molecule is an amino disaccharide
that consists of N-acetyl-D-glucosamine
having an N-acetyl-6-O-sulfo-beta-D-
galactosaminyl residue attached at O-
4. It is an amino disaccharide, a glu-
cosamine oligosaccharide and a galac-
tosamine oligosaccharide.

The molecule is a linear amino dis-
accharide that consists of N-acetyl-
beta-D-glucosamine and N-acetyl-D-
galactosamine units connected in se-
quence by (1->4) links. It has a role
as an epitope. It is an oligosaccharide
sulfate, an amino disaccharide and a glu-
cosamine oligosaccharide.

The molecule is an amino disaccharide
consisting of N-acetylglucosamine hav-
ing an O-sulfated N-acetylglucosaminyl
residue attached at the 4-position. It has
a role as an epitope. It is an amino disac-
charide, a glucosamine oligosaccharide
and a galactosamine oligosaccharide.

53239760 The molecule is a fifteen-membered
glycopeptide comprising glycyl,
glutaminyl, alanyl, glycyl, 3-(1,3-
thiazol-4-yl)alanyl, (5R)-5-(beta-D-
galactopyranosyloxy)lysyl, glycyl.
alpha-glutamyl, glutaminyl, glycyl,
prolyl, lysyl, glycyl, alpha-glutamyl and
threonine residues coupled in sequence.

The molecule is a fifteen-membered
glycopeptide comprising glycyl,
glutaminyl, alanyl, glycyl, 3-(1,3)-
alpha-D-glutamyl, (5R)-5-(beta-D-
galactopyranosyloxy)lysyl, (5R)-5-
(beta-D-glucopyranosyloxy)lysyl,
glycyl. alpha-glutamyl, glutaminyl,
glutaminyl, prolyl, lysyl, glycyl, alpha-
glutamyl and threonyl residues coupled
in sequence.

The molecule is a fifteen-membered
glycopeptide comprising glycyl,
glutaminyl, alanyl, glycyl, 3-(1,3-
thiazol-4-yl)alanyl, (5R)-5-(beta-D-
galactopyranosyloxy)lysyl, glycyl.
alpha-glutamyl, glutaminyl, glycyl,
prolyl, lysyl, glycyl, alpha-glutamyl and
threonine residues coupled in sequence.

Table 12: Comparison between the original generated captions of BioT5-base and those generated by DPO-refined BioT5-base
discussed in Section 5.3. Errors relative to the ground truth are highlighted in red. Notably, the model trained using data
transformed by MoleculeQA and the DPO method exhibits fewer factual inaccuracies.

TASK DEFINITION TASK CONTEXT

Corpus Classification
Classify molecular descriptions
from the data source into one of four
aspects.

You are a research assistant for molecular research.
Please help me to classify some corpus.
Four kinds of content are included in this corpus :
The first is Source, which describes...
The second is...

Topic Extraction
Extract attributes of molecules in
specific aspect from original
descriptions.

You are a chemical research assistant,
you are familiar with description text of molecules,
you need to help me extract molecules’ Source
information, which describes...

Answer Generation Generate answer for given
question with original description

You are a chemistry research assistant, and I need you
to complete the following task: You will be given a
detailed description of a molecule and a question, please
extract specific information from the given description
to answer the question...

Semantic Consistency
Validation

Check if generated answer
has consistent semantic
with original description.

You are a chemistry research assistant, and I need you
to complete the following task: You will be given a
description of a molecule and a sentence transcribed from
it, please justify whether their semantics are consistent...

Table 13: Definition and context for each task. We prompt LLMs to finish these tasks for MoleculeQA construction.
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messages = [ {"role":"system", "content": f"""

You are a chemistry research assistant, and I’d like to test your professional ability on molecule understanding, please
complete the following task:

You are provided with the SMILES representation of a molecule and asked a question about the molecule’s source-
related knowledge (Source means the natural or synthetic origin, as well as the production context related to a
molecule), with four options given. Three of these options do not describe the given molecule, and you must select the
correct option.

Here are several examples to show how to finish the Question Answering task:

###

Example 1:

Molecular SMILES: C1=CC(=CC=C1/C=CC(=O)O[C@@H]([C@H](C(=O)O)O)C(=O)O)O

Question: Which molecule does this molecule derive from?

Choices:

A: It derives from a meso-tartaric acid and a cis-4-coumaric acid.

B: It derives from a meso-tartaric acid and a cis-caffeic acid.

C: It derives from a cyanidin cation and a cis-4-coumaric acid.

D: It derives from a cis-vaccenic acid and an oleic acid.

Answer: A

###

###

Example 2:

Molecular SMILES: COC1=C(C=C(C=C1)C=O)OC

Question: Where this molecule can be found?

Choices:

A: It can be found in leaves and fruit of cowberry Vaccinium vitis-idaea, grape seeds and beer.

B: It can be found in peppermint, ginger, raspberry, and other fruits.

C: It can be found in edible vegetables, grains, and fruits.

D: It can be found in grape seeds, in Hibiscus cannabinus (kenaf) root and bark, in apple and in cacao.

Answer: B

###

...

Notice that here are some rules you need to follow:

1. Your answer for each question should be one of A/B/C/D, which corresponds to the four options.

2. For my convenience, please give me a list of ANSWERs for the given instances in the format ’Answer X: ...’, without
any other information.

"""}

{ "role":"user", "content": f"""

Please give me your choices for these instances in the above examples’ styles. No other information is required.

Instance ID: <Instance ID>

Molecular SMILES: <Instance SMILES>

Question: <Instance Question>

Choices: <Instance Choices>

"""}

]

Table 14: An illustration depicting the process of constructing few-shot in-context-learning prompts for MoleculeQA
test set inference with GPT-4-like large-scale universal models.
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