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Abstract
Causal abstractions allow us to relate causal models on different levels of granularity. To ensure
that the models agree on cause and effect, frameworks for causal abstractions define notions of
consistency. Two distinct methods for causal abstraction are common in the literature: (i) graphical
abstractions, such as Cluster DAGs, which relate models on a structural level, and (ii) functional
abstractions, like α-abstractions, which relate models by maps between variables and their ranges.
In this paper we will align the notions of graphical and functional consistency and show an equiv-
alence between the class of Cluster DAGs, consistent α-abstractions with the range of abstracted
variables mapped bijectively, and constructive τ -abstractions. Furthermore, we extend this align-
ment and the expressivity of graphical abstractions by introducing Partial Cluster DAGs. Our results
provide a rigorous bridge between the functional and graphical frameworks and allow for adoption
and transfer of results between them.
Keywords: Causality, Causal Abstractions, Structural Causal Models, Cluster DAG, Consistency

1. Introduction

Causality is a fundamental concept for understanding and predicting the behavior of complex sys-
tems. Uncovering the underlying causal mechanisms of a system is essential to make informed
decisions and design more effective policies in critical fields such as medicine, economics, and pol-
itics. The formalism of Structural Causal Models (SCMs) (Pearl, 2009) provides us with a rigorous
language to represent a causal system and reason about its behaviour not only in an observational
regime (L1), but also under interventions (L2).

Whatever causal system we consider, we always need to choose at which level of resolution we
want to reason. For example, we may want to reason about voting behaviours either by defining
a causal model on a person-by-person basis or by considering the causal dynamics at the level of
districts. The two causal models represent the same system and can be connected by a relation of
abstraction: individual voting behaviours can be aggregated into district voting patterns. While most
causal algorithms select a single among many possible levels of representation, switching between
the levels can provide a richer understanding of a system; for instance, aggregating data at the
individual and the district level may be valuable for designing successful advertisement strategies.

We can express the relation between a low-level (or base) model and a high-level (or abstracted)
model through a causal abstraction map. In order to dynamically switch between models, this
abstraction map must guarantee the preservation of relations of cause and effect. We propose to
distinguish two main ways to express abstractions and assess their consistency in the literature.
The first line of work on graphical abstractions is based on the grouping or clustering of low-level
variables, as proposed with the Cluster DAG (CDAG) approach (Anand et al., 2023). In these
frameworks, we assess graphical consistency in terms of the identifiability of causal queries across
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the base and the abstracted model; when all relevant interventional queries are correctly identifiable
in both models, the abstraction is L2-consistent. The second line of work on functional abstractions
formalizes causal abstractions in terms of a map between variables and values in a low- and high-
level model, as in the α-abstraction (Rischel, 2020) or the τ -abstraction (Rubenstein et al., 2017)
framework. In these frameworks, we evaluate functional consistency in terms of a discrepancy
between the interventional distributions implied by the abstraction; in particular, whenever this
discrepancy is zero for all relevant interventions, the abstraction is L2-consistent.

As discussed in the related work, both frameworks have strong theoretical foundations and have
provided the basis for relevant practical applications. To bring these frameworks and their methods
together, in this paper we offer a formal bridging between graphical clustering and functional ab-
stractions. Concretely, we work with CDAGs, which are the main graphical abstraction formalism
in the literature, and with α-abstractions, which offer the most explicit representation of a func-
tional abstraction. To define a common ground of evaluation we first align the notion of functional
L2-consistency to graphical L2-consistency; then, we show that the set of L2-consistent CDAGs
corresponds to a well-defined subset of simple α-abstractions. Next, to increase the expressiv-
ity of graphical abstractions, we introduce a natural extension of CDAGs, namely Partial CDAGs
(PCDAGs) and prove that (i) PCDAGs describe a larger set of L2-consistent α-abstractions than
CDAGs; and, (ii) under assumption of faithfulness, all bijective L2-consistent α-abstractions must
be a PCDAG of the base model. Last, we strengthen our contribution by rigorously showing an
equivalence between two functional abstraction frameworks: the α-abstraction and the constructive
τ -abstraction. This allows us to extend our connection between functional and graphical causal
abstraction beyond the specific α-abstraction framework. These results establish a firm connection
between the different forms of abstraction proposed in the literature and their notions of consistency.
From a theoretical point of view, our contributions allow for the transfer of proofs and properties
between frameworks, while, practically, they suggest that PCDAGs may be a useful and grounded
starting point for designing and validating consistent abstractions.

Related Work. Establishing the resolution of a SCM is a key design choice in the modeling of
causal systems; the definition of variables and causal relations may be left to domain experts (Pearl,
2009), inferred from data through causal discovery or causal representation learning (Schölkopf
et al., 2021), or derived from pre-existing SCMs via graphical or functional causal abstraction.

Seminal work on graphical models with clustered variables and their properties was published
by Parviainen and Kaski (2017) and extended by Wahl et al. (2024); Anand et al. (2023) introduced
CDAGs as a causal inference tool for partially known causal models and proved results related to
causal identifiability; CDAGs have also been adopted and interpreted as abstracted models in the
context of learning abstractions using neural networks (Xia and Bareinboim, 2024).

Functional causal abstraction comprise two main frameworks. An α-abstraction (Rischel, 2020;
Rischel and Weichwald, 2021) defines two mappings between the variables and the values of two
models; this framework has been used for learning abstractions (Zennaro et al., 2023) and relate
multi-armed bandits at multiple levels of abstraction (Zennaro et al., 2024). Our work starts from
the α-abstraction framework as its formulation provides a more fine-grained understanding of an
abstraction. On the other hand, a τ -abstraction (Rubenstein et al., 2017; Beckers and Halpern,
2019; Massidda et al., 2022) relies only on a single function between the values of two models; this
framework has also been used to explain neural networks (Geiger et al., 2021), learn abstractions
(Felekis et al., 2024), derive causal models targeted at encoding a chosen dynamics (Kekić et al.,
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2024), or generate surrogates of complex simulation models (Dyer et al., 2023). We connect our
results to a specific form of τ -abstraction in the end of our work. Furthermore, Massidda et al.
(2024) have studied a linearized version of τ -abstraction called T-abstraction based on variable
clustering; while the focus of their work was on abstraction for linear models and causal discovery,
we study more generally the relation between clustering and functional abstraction.

2. Preliminaries

In this section we first provide the notions of SCM and causal hierarchy; we then review graphical
abstractions through the definitions of CDAGs and graphical consistency; and we conclude with
functional abstractions through the presentation of the α-framework and functional consistency.

Notation. We will denote a set of variables using bold uppercase V, a specific variable using
normal uppercase Vi ∈ V, when necessary with an index subscript, and the value of that variable
using lowercase vi. We use P (X) to denote a probability distribution; if necessary, we add a
subscript PM(X) to specify that the distribution is computed on modelM.

2.1. Causality

Structural Causal Models. An SCM is a graphical and functional modelling tool that allows us
to encode a causal system by (i) defining relations of cause and effects among variables, and (ii)
specifying the behaviour of the variables via functions and probability distributions (Pearl, 2009).

Definition 1 (Structural Causal Model) An SCM is a 4-tupleM : ⟨U,V,F , P (U)⟩ where:

• U is a set of exogenous variables each one with rangeR(U).

• V is a set of endogenous variables each one with rangeR(V ).

• F is a collection of functions determining the value of the endogenous variables such that,
for each V ∈ V, there is a function fV (PV ,UV ) with PV ⊆ V \ V, UV ⊆ U. We say that
Vi ∈ V is a direct cause of Vj ∈ V if and only if Vi is in the signature of the domain of the
function fVj ∈ F .

• P (U) is the probability distribution over the exogenous variables U.

In the following, we will make standard assumptions about our SCMs. We will restrict our
attention to semi-Markovian SCMs, that is, models without cyclic causal relations. It is immediate to
show that such an SCM entails a Directed Acyclic Graph (DAG)G = ⟨V,E⟩with the set of vertices
V given by the endogenous variables and the set of edges E given by the collection of edges Vi →
Vj if Vi is a direct cause of Vj . The set PVj for a function fVj represents then the graph-theoretical
parents of Vj , and we will denote it as Pa(Vj) from here on. Furthermore, if two variables Vi, Vj ∈
V share an exogenous parent U ∈ U, we say that Vi and Vj are confounded, implying they are
not independent even without a causal edge between them; we denote confounding with a dashed
bidirectional edge Vi Vj as a shorthand for Vi ← U → Vj . Notice that, despite the bidirectional
edge, the actual graph remains acyclic.
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Finally, we will also make the assumption of faithfulness, that is two variables are graphically
independent, or d-separated (Geiger et al., 1990), if and only if they are distributionally indepen-
dent. It is worth pointing out that, whereas an SCMM entails a unique DAG G, there normally are
multiple SCMsM with the same DAG structure G.

Importantly, causality defines a way of interacting with SCMs via interventions. We consider
hard interventions defined as follows:

Definition 2 (Interventions) LetM = ⟨V,U,F , P(U)⟩ be an SCM and X ∈ V an endogenous
variable, then an intervention do(X = x) is an operation that replaces the function determining
X = fX(Pa(X), UX) with the assignment X = x.

In analogy to conditioning, we will abbreviate the generic do(X = x) as do(X). Notice how an
intervention do(X) removes the direct causes of X; therefore it implies a new SCM with an under-
lying DAG with all the incoming edges into X removed. It is immediate to extend the definition of
an intervention on a single variable do(X) to multiple variables do(X).

Causal Hierarchy. A causal query on an SCM is a causal statement that can be located onto one
of the three distinct layers of the Pearl’s Causal Hierarchy (PCH) (Pearl, 2009; Bareinboim et al.,
2022): (L1) observational queries with the form P (Y |X) are statistical formulas that describe the
system in its natural behaviour; (L2) interventional queries with the form P (Y |do(X)) characterize
the system under external manipulations; and, (L3), counterfactual queries study the system under
hypothetical interventions that never took place. These layers are rigid, as queries on a higher layer
require more information to be answered and cannot automatically be reduced to a lower layer. In
order to assess the consistency of abstractions, we will focus on the first two levels of this hierarchy.
We will say that a causal query on the interventional layer L2 is identifiable if it can be reduced to
statistical quantities belonging to the observational layer L1. Under the assumption of faithfulness,
Do-calculus is a complete theory relying only on the graphical structure G ofM to decide whether
a causal query is identifiable.

2.2. Graphical Abstraction

Cluster DAGs. The simplest way to relate two SCMs is through their underlying DAGs. CDAGs
were originally introduced as graphical modelling tools allowing us to represent a system where in-
formation about the exact causal relationships among certain sets of variables were unknown (Anand
et al., 2023). Nonetheless, CDAGs may also be easily used to express the process of reduction of
information associated with abstraction.

Definition 3 (Cluster DAG) Let G = ⟨V,E⟩ be a DAG and φ : V → C be a surjective function
where C = {C1, . . . ,Ck}. The function φ induces a partition of V. GC = ⟨C,EC⟩ is a cluster
DAG (CDAG) of G if and only if the set of edges EC abides by the following rules:

1. An edge Ci → Cj is in EC if there exists a Vi → Vj in E such that Vi ∈ Ci, Vj ∈ Cj ,Ci ̸=
Cj .

2. A bidirected (confounding) edge Ci Cj is in EC if there exists a Vi Vj in E such
that Vi ∈ Ci, Vj ∈ Cj ,Ci ̸= Cj .

Further, it is required that the graph GC induced by φ is acyclic.
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Given an SCMM with underlying DAG G = ⟨V,E⟩, we can see the CDAG GC = ⟨C,EC⟩
as the structure of a graphically abstracted modelM′. Importantly, a CDAG GC does not identify
a single modelM′, but the collection of SCMs sharing the same structure.

Graphical Consistency. Although the building procedure of a CDAG guarantees the preserva-
tion of basic relations of cause and effect, we still want to establish whether a causal query can be
consistently identified both in the original SCM M and in a model M′ with the structure given
by the derived CDAG GC. Since the SCM M′ is not specified, we can investigate identifiabil-
ity only by evaluating graphical properties. We can express the relations of dependence and in-
dependence encoded graphically in a DAG through algebraic relation of equality and inequality
among distributions; for instance, the structure X → Y implies, amongst others, relations such as
P (X | Y ) ̸= P (X) and P (Y | X) = P (Y | do(X)). We denote G(G) the set of all the algebraic
constraints implied by the DAG G. We use these constraints to define graphical consistency:

Definition 4 (Graphical Consistency) Let G be a DAG underlyingM and GC the CDAG under-
lyingM′. Let us define G(G−1

C ) be the set of all the constraints obtained by taking each constraint
in G(GC) and substituting each cluster Ci with its pre-image φ−1(Ci). The two models M and
M′ are graphically consistent if G(G−1

C ) ⊆ G(G).

Graphical consistency means that all the equalities and inequalities expressed in the CDAG hold
in the original SCM among the clustered variables; thus, identifiable causal queries on the CDAG
are identifiable also on the original SCM. However, the converse does not necessarily hold: in
the original SCM there may be additional equalities and inequalities among the variables within a
cluster that are not expressible in the CDAG.

Graphical consistency may be restricted only to constraints pertaining to a chosen layer of the
causal hierarchy. Considering again the structure X → Y , the constraint P (X | Y ) ̸= P (X)
belongs to L1, while P (Y |X) = P (Y | do(X)) belongs to L2. We denote GLi(G) the set of all the
constraints at layer Li implied by the DAG G. We can express restricted forms of consistency as:

Definition 5 ((Graphical) Li-Consistency) Let G be a DAG underlying M and GC the CDAG
underlying M′. Let us define GLi(G−1

C ) as the set of all the constraints obtained by taking each
constraint in GLi(GC) and substituting each cluster Ci with its pre-image φ−1(Ci). The two mod-
elsM andM′ are graphically consistent if GLi(G−1

C ) ⊆ GLi(G).

By construction, a low-level model M and a high-level model M′ with an underlying
CDAG are always L2-consistent; therefore, for a constraint PM′(Y |X) = PM′(Y |do(X)) in
the high-level model, the constraint PM(φ−1(Y )|φ−1(X)) = PM(φ−1(Y )|do(φ−1(X))) holds
in the low-level model. In general, however, equalities across models, such as PM′(Y |X) =
PM(φ−1(Y )|do(φ−1(X))), do not hold; however, given a CDAG, Anand et al. (2023) prove the
existence of a high-level SCM M′ with CDAG structure such that equalities across models hold
(Theorem 7) and evaluations of do-calculus formulas on M′ are equivalent to the evaluations on
pre-images of the clusters inM (Theorem 3).

2.3. Functional Abstraction

α-Abstraction. Whereas a CDAG captures the graphical aspect of an abstraction, a functional
abstraction is meant to express an abstraction in terms of a mapping between variables and values
(see App. A.1 for the original definition with finite graphical models).
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Definition 6 (α-abstraction) Given two SCMs M : ⟨VM,UM,FM, PM(UM)⟩ and M′ :
⟨VM′ ,UM′ ,FM′ , PM′(UM′)⟩, an abstraction α :M→M′ is a 3-tuple ⟨R, φ, αV ′⟩ where:

1. R ⊆ VM is a subset of relevant variables inM.

2. φ : R→ VM′ is a surjective map from the relevant variables to the variables inM′.

3. αV ′ : R(φ−1(V ′))→ R(V ′), for each V ′ ∈ VM′ , is a surjective function from the range of
the pre-image φ−1(V ′) ⊆ VM inM to the range of V ′ inM′.

We will define the application of αV to a distribution as the pushforward αX [P (X)] =
αX#(P )(X).

Functional consistency. Differently from the constructive definition of a CDAG, the declarative
definition of an α-abstraction does not implicitly preserve relations of cause and effect. A require-
ment of consistency over distributions is instead expressed in terms of commutativity of abstractions
andLi operations, such as conditioning (L1) or intervening (L2); we use the shorthand P (Y |Li(X))
for P (Y |X) if i = 1 or P (Y |do(X)) if i = 2.

Definition 7 ((Functional) Li-Consistency) Let α :M→M′ be an abstraction. The abstraction
α is Li-consistent if, for all X,Y ⊆ VM′ , the following diagram commutes:

φ−1(X) φ−1(Y)|Li(φ−1(X))

X Y|Li(X)

Li

αX αY

Li

.

that is:
PM′(Y | αX[Li(φ−1(X))]) = αY

[
PM(φ−1(Y) | Li(φ−1(X)))

]
. (1)

Thus, L2-consistency means that the result of intervening and then abstracting must be identical
to that of abstracting and then intervening (Rischel, 2020). In practical applications, however, we
have to deal with noisy data and the need to drop information. As a result, it may be necessary to
relax the strict requirement of commutativity and introduce an error measure that quantifies how
different are the distributions on the two sides of Eq.1:

Definition 8 (Li–Abstraction error) Given an abstraction α :M→M′ and a distance or diver-
gence D(p, q) between distributions p and q, the Li-abstraction error is computed as:

eLi(α) = max
X,Y⊆VM′

D(PM′(Y | αX[Li(φ−1(X))]), αY

[
PM(φ−1(Y) | Li(φ−1(X))

]
). (2)

Notice how the abstraction error is a worst-case measure of inconsistency: considering all pos-
sible operations in the abstracted model, it returns the error corresponding to the pair X,Y ⊆ VM′

that maximizes the discrepancy D. It is immediate to redefine functional Li-consistency as zero
abstraction error eLi(α) = 0.
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3. Aligning Graphical and Functional Consistency

In order to relate graphical and functional abstractions, we need first of all to align the notions of
graphical and functional consistency. Both Li-consistencies share the following implication:

Lemma 9 L2-consistency implies L1-consistency. [Proof in App. B.1.]

However, graphical and functional consistency are intrinsically different, as one is defined on
a graphical level and the other on a functional level. Indeed, they both require different identities
in order to hold, as shown in Fig.1: graphical consistency requires that an equality in the CDAG
underlying an abstracted modelM′ hold in the original modelM; functional consistency implies
the identity of two interventional distributions in the abstracted model M′. We show that it is
possible to align functional consistency with graphical consistency as follows:

Proposition 10 A functional L2-consistent abstraction α : M → M′ with bijective maps αV

implies graphical L2-consistency.

This proposition relies on the following lemma which guarantees that a functional abstraction
α :M→M′, with all range mappings αV bijective, preserves equalities and inequalities.

Lemma 11 (Bijective Range Maps Preserve Distribution (In)Equalities) Let α : M → M′

be an L2-consistent abstraction with αV : R
(
φ−1(V )

)
→ R (V ) bijective for all V ∈ VM′ . Let

X,Y1,Y2,Z1,Z2 ⊆ VM be partitions defined by φ, then P (X|do(Y1),Z1) = P (X|do(Y2),Z2)
if and only if αX[P (X | do(Y1),Z1)] = αX[P (X | do(Y2),Z2)]. [Proof in App. B.2.]

The proof of Lem.11 shows that surjectivity of αV is sufficient to imply that inequalities inM′

must have a corresponding inequality inM, while bijectivity ensures also that all equalities inM′

have a corresponding equality inM.

4. Aligning Graphical and Functional Abstraction

After relating the notions of consistency, we now consider how graphical clustering and functional
abstraction themselves are related. To unify the notation, we will use Vi ∈ V for variables in the
base modelM and Ci ∈ C for variables in the abstracted modelM′, both in case of a graphical or
functional abstraction. Now, as by Def.3, CDAGs have two important limitations: (i) they require
every variable in M to belong to a cluster; and (ii) they specify an aggregation over variables in
M, but not over their values. Correspondingly, an aligned α-abstraction must: (i) consider all
variables as relevant, R = V; and, (ii) have bijective range mappings, as in Lem.11. Under these
two conditions, we now show a correspondence between bijective L2-consistent α-abstractions with
R = V and the set of CDAGs. Note that for applications the restrictions of the CDAG may impede
the use of it for real world abstractions. We will illustrate this using an example in the next section.

In the direction α-abstraction⇒ CDAG, we prove that a bijective L2-consistent α-abstraction
with R = V entails a unique CDAG. To do so, we show that an L2-consistent α-abstraction defines
a structure which complies with the two constructive rules of a CDAG in Def.3. Rule 1 is satisfied
by showing that the mapping of variables φ : V → C of an L2-consistent α-abstraction uniquely
determines the causal edges ofM′ as a CDAG would:
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(a) Abstraction: (b) Consistency:
M: M′:

X2X1

X3

X ′
1

X ′
2

R(X1, X2) R(X ′
1)

R(X3) R(X ′
2)

Graphical

Functional

Functional

Func. & Graph.

Func. & Graph.

M: M′:

P (Y )

P (Y |X)

P (Y |X)

P (Y ′)

P (Y ′|X ′)

P (Y ′|αX(X))

α [P (Y |X)]

= =

=

implies

Graphical consistency

implies

Functional consistency

Figure 1: Visualization of abstractions (a) and consistency (b). Figure (a) illustrates the overlap and
the differences between graphical and functional abstractions: both involve mapping and
clustering variables; however, graphical abstractions preserve edges, while functional ab-
stractions exploit the more detailed models to map variable ranges. Figure (b): given an
SCMM and an abstractionM′, graphical consistency implies preservation of equality
relations between distributions under abstraction, whereas functional consistency guaran-
tees that abstraction and Li operations (in this case conditioning) commute, yielding the
same resulting distributions.

Lemma 12 (L2-Consistency Uniquely Determines Adjacencies) Given an L2-consistent bijec-
tive abstraction α :M →M′, adjacencies between variables inM′ are uniquely determined by
the map φ : V→ C and comply with Rule 1 of Def.3 (CDAG). [Proof in App. B.3.]

The proof of Lem.12 shows that surjectivity alone guarantees that a causal edge in the abstrac-
tion implies a compatible causal edge in the base model. Conversely, for any bijective L2-consistent
α-abstraction, if there exists an adjacency in the base model, there must exists a corresponding ad-
jacency in the abstraction.

Next we prove that Rule 2 is also satisfied by showing that confounding edges are similarly
uniquely defined by an L2-consistent α-abstraction in accordance with the CDAG definition:

Lemma 13 (L2-Consistency Uniquely Determines Confounding Edges) Given an L2-
consistent bijective abstraction α : M → M′, confounding edges between variables in M′

are uniquely determined by the map φ : V → C and comply with Rule 2 of Def.3 (CDAG). [Proof
in App. B.4.]

Determining adjacencies according to Rule 1 and confounding according to Rule 2 immediately
implies a unique CDAG structure:

Theorem 14 (α-Abstraction⇒ CDAG) Given any bijective L2-consistent α-abstraction α :
M→M′ with R = V, the DAG ofM′ is a CDAG of the graph ofM. [Proof in App. B.5.]

This theorem uncovers a clear connection between graphical and functional abstraction. Despite
the fact that the definition of α-abstraction makes no reference at all to the graphical structure of
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X1 Y1

Z

X2 Y2

(a)

X1 Y1

X2 Y2

(b)

X1 Y1

X2 Y2

(c)

X1 Y1

X2 Y2

(d)

X1 Y1

X2 Y2

(e)

Figure 2: Given the DAG representing an SCM (a), there are 4 ways of clustering such
that X1, X2, Y1, and Y2 are in separate clusters : {{X1, Z}, {X2}, {Y1}, {Y2}}
(b), {{X1}, {X2, Z}, {Y1}, {Y2}} (c), {{X1}, {X2}, {Y1, Z}, {Y2}} (d),
{{X1}, {X2}, {Y1}, {Y2, Z}} (e). Observe that CDAGs (b) and (c) lose the abil-
ity to intervene on X1 and X2 independently, while (d) and (e) retain the ability to
intervene independently on X1 and X2, but make Y1 a direct cause of Y2 or vice versa.

an abstracted model, this theorem shows that for a bijective α-abstraction, if we want to guarantee
L2-consistency, there is a unique admissible graphical structure; and this structure is exactly the one
derived using the CDAG construction rules.

In the direction CDAG⇒ α-abstraction, we can show that for every CDAG there is an immedi-
ate bijective L2-consistent α-abstraction such that the underlying structure is that CDAG.

Theorem 15 (CDAG⇒ α-Abstraction) Given a CDAG there exists an equivalent L2-consistent
α-abstraction α : M → M′ with R = V, φ given by the clustering, and all maps αC bijective.
[Proof in App. B.6.]

Thm.14 and Thm.15 establish a correspondence between the set of bijective L2-consistent
α-abstraction and the set of CDAGs. However, notice there might still exist non-bijective L2-
consistent α-abstraction or even non-L2-consistent α-abstraction with an underlying CDAG. For
intuition about the bijectivity assumption, consider Example A.2 in the appendix.

5. Extending Graphical Abstractions: Partial CDAGs

Graphical abstractions in the form of CDAGs are bound to account in clustering for all variables
(R = V). This restriction limits the expressivity and usability of graphical clustering as illustrated
in the following example.

Example 1 LetM : ⟨U,V,F , P (U)⟩ be an SCM modeling the effects of smoking (X1) and air
pollution (X2) on lung cancer (Y1) and shortness of breath (Y2), through the mediating variable
of tar deposits (Z). We assume X1 and X2 to be independent, and Y1 and Y2 to be independent
given Z, as shown in the DAG of Fig.2 (a). Assume we are interested in the effects of X1, X2

(smoking and air quality) on Y1, Y2 (lung cancer and shortness of breath), and we have no way
of measuring the tar deposits Z. If we want to keep the possibility of intervening on X1 or X2

independently, and the ability of predicting Y1 or Y2 independently, any CDAG abstracting away
Z as in Fig.2 will sacrifice one of these possibilities: either our ability to intervene (subfigures (b),
(c)) or to independently predict (subfigures (d), (e)). The structure of the CDAGs does not seem to
align to the description of two causes and two effects because of the need to include Z in one of the
clusters. Ideally, we want to create an abstraction removing Z that preserves our ability to intervene
on X1, X2, predictability of Y1, Y2, and any confounding effect introduced by Z.
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To overcome the limitation described in the example, we now extend the expressivity of graph-
ical models by defining Partial CDAGs:

Definition 16 (Partial CDAG) Let G = ⟨V,E⟩ be a DAG and φ : V→ C be a partial surjective
function where C = {C1, . . . ,Ck}. Let Q ⊆ V be the remainder set of vertices that are not
mapped by φ. C ∪ Q forms a partition of the vertices V. GC = ⟨C,EC⟩ is a partial CDAG
(PCDAG) of G if and only if the set of edges EC abides by the following rules:

1. An edge Ci → Cj is in EC if there exists some path Vi → · · · → Vj with zero or more
intermediate variables in V, such that Vi ∈ Ci, Vj ∈ Cj , Ci ̸= Cj , and all intermediate
variables are in Q.

2A. A bidirected (confounding) edge Ci Cj is in EC if there exists some
Vi ← . . . . . . → Vj with zero or more intermediate variables on either side in
V, such that Vi ∈ Ci, Vj ∈ Cj , Ci ̸= Cj , and all intermediate variables are in Q.

2B. A bidirected (confounding) edge Ci Cj is in EC if there exists some Q ∈ Q with paths
Vi ← · · · ← Q → · · · → Vj and Vi ∈ Ci, Vj ∈ Cj , Ci ̸= Cj , such that all intermediate
vertices in the paths Q→ · · · → Vi and Q→ · · · → Vj are in Q.

Further, it is required that the graph GC is induced by φ acyclic.

The first two rules follow intuitively as extensions of CDAGs: Rule 1 ensures that directed
paths and adjacencies are maintained, while Rule 2A ensures preservation of confounding edges in
PCDAGs. However, by allowing for partial clustering more confounding edges might be introduced;
therefore, Rule 2B is required to capture confounding edges introduced when shared parents are
dropped. To understand the role of 2B see the following example.

Example 2 We continue with the SCM of Example 1, but we now define a partial clustering
C = {{X1}, {X2}, {Y1}, {Y2}} with remainder set Q = {Z}. By applying only Rule 1 and
Rule 2A we would obtain the second model in Fig.3. However, notice that in the original model it
holds that Y1 ⊥̸⊥ Y2 | X1, X2 due to Z. In the proposed PCDAG this dependence does not hold. In
order to guarantee that {Y1}⊥̸⊥ {Y2} | {X1}, {X2}, a confounding arrow {Y1} {Y2} must be
introduced as by Rule 2B. The last DAG of Fig.3 shows the PCDAG abstraction.

PCDAGs allow for dropping variables while keeping their confounding effects; this offers more
versatility as, in the case of the example above, it allows us to preserve independent predictability
(over Y1, Y2) and independent interventions (over X1, X2).

Similarly to CDAGs, we now prove some key graphical properties of PCDAGs related to the
preservation of adjancencies and directed paths. First of all, in PCDAGs we require a more flexible
notion of adjacency to account for dropped variables:

Definition 17 (Mediated Adjacency) LetM be an SCM with a PCDAG defined by clusters C and
remainder set Q. Given two variables Vi, Vj ∈ V, there exists a mediated adjacency Vi ⇝ Vj if
and only if there exists a directed path Vi → · · · → Vj such that all intermediate variables are in
Q.

10
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X1 Y1

Z

X2 Y2

⇝
Rule 1 and 2.A

X1 Y1

X2 Y2

⇝
Rule 2.B

X1 Y1

X2 Y2

Figure 3: Given an SCM represented by the left DAG, there exists an abstraction that preserves
marginal independence X1 ⊥⊥ X2, and independent predictability of Y1 and Y2 given by
the PCDAG. Notice how the application of rules 1 and 2A preserve causal and confound-
ing edges from the original model, whereas 2B introduces confounding edges preserving
confounding effects of removed fork structures.

This concept of mediated adjacency is equivalent to T-direct path in linear abstraction (Massidda
et al., 2024). PCDAGs preserve mediated adjacencies by construction:

Lemma 18 (PCDAGs Preserve Mediated Adjancencies) LetM be an SCM with a PCDAG de-
fined by clusters C and remainder set Q. Let Ci,Cj ∈ C, Ci ̸= Cj and Vi ∈ Ci, Vj ∈ Cj , then
a mediated adjacency between Vi and Vj exists if and only if there exists an adjacency between Ci

and Cj . [Proof in App. B.7.]

Preservation of mediated adjacencies immediately implies preservation of directed paths, as any
directed path can be decomposed into a series of consecutive adjacencies:

Lemma 19 (PCDAGs Preserve Directed Paths) Let M be an SCM with a PCDAG defined by
clusters C and remainder set Q. Let Ci,Cj ∈ C, Ci ̸= Cj and Vi ∈ Ci, Vj ∈ Cj , then a
directed path Ci → · · · → Cj exists if there exists a directed path Vi → · · · → Vj . [Proof in App.
B.8.]

We thus align ourselves with the results of Anand et al. (2023) by showing that PCDAGs pre-
serve adjacencies and directed paths. This in turn allows us to discuss the causal consistency of
PCDAGs and show that a PCDAG is compatible with functional L2-consistency:

Theorem 20 (L2-consistency of PCDAGs) Given an SCM M and a PCDAG M′ of M, there
exists a set of mechanisms FM′ such thatM′ is L2-consistent withM. [Proof in App. B.9.]

As PCDAGs can be compatible with functional L2-consistency, Prop.10 states that PCDAGs
are necessarily graphically L2-consistent.

6. Re-Aligning Graphical and Functional Abstraction

We now extend our previous results to the alignment of graphical abstraction in the form of PCDAGs
and functional abstractions. Differently from a CDAG, a PCDAG has only one limitation compared
to α-abstractions: (i) it specifies an aggregation over variables inM, but not over the values of the
variables. Therefore, a corresponding α-abstraction only needs to (i) have bijective range mappings.
With this condition, we now show a correspondance between bijective L2-consistent α-abstraction
(without necessarily R = V) and the set of PCDAGs.

11
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In the direction α-abstraction⇒ PCDAG, we prove that a bijective L2-consistent α-abstraction
entails a unique PCDAG. As before, we show that a bijective L2-consistent α-abstraction defines a
structure that complies with the three constructive rules of a PCDAG in Def.16. Rule 1 is satisfied
by showing that the mapping of variables φ : V → C of an L2-consistent α-abstraction uniquely
determines all the causal edges ofM′ as a PCDAG would:

Lemma 21 (L2-Consistency Uniquely Determines Adjacencies) Given a bijective L2-
consistent abstraction α : M → M′, adjacencies between variables in M′ are uniquely deter-
mined by the map φ : V→ C and comply with Rule 1 of Def.16 (PCDAG). [Proof in App. B.10.]

Next we prove that confounding edges of a bijective L2-consistent abstraction are necessarily
equal to those given by Rule 2A and 2B of a PCDAG in Def.16:

Lemma 22 (L2-Consistency Uniquely Determines Confounding Edges) Given a bijective L2-
consistent abstraction α : M → M′, confounding edges between variables in M′ are uniquely
determined by the map φ : V→ C and comply with Rule 2A and 2B of Def.16 (PCDAG). [Proof in
App. B.11.]

Determining mediated adjacencies according to Rule 1 and confounding according to Rule 2A
and 2B immediately implies a unique PCDAG structure:

Theorem 23 (α-Abstraction⇒ PCDAG) Given any bijective L2-consistent α-abstraction α :
M→M′, the DAG ofM′ is a PCDAG of the graph ofM. [Proof in App. B.12.]

And, mirroring the results of the CDAG, in the direction PCDAG⇒L2-consistent α-abstraction
we get that for all PCDAGs we can construct an equivalent L2-consistent α-abstraction by taking
the range maps αC to be bijective.

Theorem 24 (PCDAG⇒ α-Abstraction) Given a PCDAG there exists an equivalent L2-
consistent α-abstraction α : M → M′ with R ⊆ V, φ given by the clustering, and all maps
αC bijective. [Proof in App. B.13.]

Furthermore, by Prop.10, the PCDAG is necessarily graphically L2-consistent. Thus, if we want
a bijective L2-consistent abstraction, we can start by applying the rules of the PCDAG. Moreover,
by the proof of Lem.12 we get that the PCDAG can also be useful for surjective L2-consistent
abstractions, albeit that not all edges in the PCDAG may be necessary. In other words, PCDAGs
can also describe the structure of surjective L2-consistent abstractions, but may lose faithfulness.

7. Relation to other functional abstractions

Another alternative functional abstraction approach is given by τ -ω framework (Rubenstein et al.,
2017); see App. A.3 for a definition of a τ -ω abstraction. Here we show that a particular well-
behaved form of τ -ω abstraction called constructive τ -abstraction (Beckers and Halpern (2019)) is
equivalent to an α-abstraction. This equivalence immediately allows us to extend the connection
between PCDAGs and bijective constructive τ -abstractions.

Corollary 25 (Equivalence α-abstraction and Constructive τ -abstraction) The α-abstraction
is equivalent to the constructive τ -abstraction, if for all settings v ∈ R(V) there exists a u ∈ R(U)
giving rise to v. [Proof in App. B.14.]
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8. Conclusion

In this paper we have shown how graphical and functional abstraction are related by showing the
connection between CDAGs/PCDAGs and bijective L2-consistent α-abstractions. This alignment
highlights the dual graphical and functional nature of abstractions (similar to SCMs) and allows
us to take advantage both of the constructive definitions of graphical abstractions (which can pro-
vide strong consistency guarantees by construction) and the declarative definitions of functional
abstractions (which establish explicit maps between the models and the data generated by the mod-
els). Furthermore, alignment of graphical and functional abstraction suggests that any functional
abstraction learning algorithm aimed at learning new simplified models with the requirement of
L2-consistency can rely on the algorithmic procedure in the definition of the PCDAG to learn the
structure of an abstracted model. Future work will consider further theoretical study of the relations
between the abstraction frameworks, in particular considering implicit and explicit restrictions and
their implications; this would allow for a more immediate transfer of results and methods across
frameworks. Finally, our results may be exploited to improve abstraction learning algorithm by
taking advantage of graphical and functional aspects.
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Appendix A. Supplements

A.1. Finite Graphical Model and α-abstraction

This supplement defines the α-abstraction as introduced by Rischel (2020); Rischel and Weich-
wald (2021). First we must introduce the Finite Graphical Model: a formalism for causal models,
different from the SCM.

Definition 26 (Finite Graphical Model) (Rischel (2020)) A finite graphical modelM contains the
following:

1. A Directed Acyclic Graph (DAG) G = ⟨V,E⟩.

2. For each vertex V ∈ V a finite set of values it can take, denoted byM[V ].

3. For each vertex V ∈ V a stochastic matrixM[ψV ] giving the probability distributions of V
for all values its parents, Pa(V ), can take.

The Finite Graphical Model is the basis for the definition of the α-abstraction. The α-abstraction
defines the maps and properties that describe an abstraction from a low level Finite Graphical Model
to a high level one.

Definition 27 (α-abstraction) (Rischel (2020); Rischel and Weichwald (2021)) An abstraction of
finite graphical models α :M→M′ consists of the following:

1. A subset R ⊆ VM of relevant variables.

2. A surjective map φ : R → VM′ . Mapping all relevant variables to the variables of the
abstraction.

3. For each V ∈ VM′ , a surjective function R(φ−1(V )) → R(V ). Mapping the range of the
pre-image φ−1(V ) inM to the range of V inM′.

A.2. Example - Surjectivity vs. CDAG

Example 3 (Surjectivity does not imply a CDAG) Here we will construct an example showing
that only surjectivity is not a sufficient assumption to ensure that a L2-consistent α-abstraction
agrees with the structure of a CDAG, motivating the bijectivity assumption used throughout the
paper. Note however, that bijectivity itself is a sufficient but not minimal assumption, as will become
clear in this example.

First consider the SCM M with variables VM = {X,Z, Y }, R(X) = {1, 2}, R(Z) =
{1, 3, 5, 7, 9, . . . }, and fY ∈ FM = X × Z, giving rise to the DAG:
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X

Y

Z

Secondly, consider the SCM M′ with variables VM′ = {X ′, Z ′, Y ′}, R(X ′) = {1, 2},
R(Z ′) = {1, 3, 5, 7, 9, . . . }, and fY ′ ∈ FM′ = X × Z mod 2. It follows immediately that
Y ′ is dependent only on the value of X as for all z ∈ R(Z), X × z mod 2 equals 1 if X is 1, and
0 if X is 2.

There is a natural abstraction α :M→M′ given by the maps:

φ := {X 7→ X ′, Z 7→ Z ′, Y 7→ Y ′}

αX′ := R(X)
identity7−→ R(X ′)

αZ′ := R(Z) identity7−→ R(Z ′)

αY ′ :=

{
Y 7→ 0 Y is even
Y 7→ 1 Y is odd

One can verify that this abstraction is functionally L2 consistent. However, through the surjec-
tive mapping αY ′ : Y → Y ′ the dependence of Y ′ on Z ′ is removed. Essentially what we have
done here is summing out the effect of Z over the possible values of X .

Now if one is to construct the CDAG ofM given by φ we get:

X X ′

Y Y ′

Z Z ′

with all edges preserved according to the rules of the CDAG.
However, we have shown that the dependency of Y ′ on Z ′ no longer exists, and therefore the

edge Z ′ → Y ′ is not faithful. This illustrates that the CDAG is not necessarily compatible with
surjective L2-consistent α-abstractions.

A.3. Definition Constructive τ abstraction

Definition 28 Let Rst(V, x) = {v ∈ R(V )|x is the restriction of v to X} and let τ : R(VM) →
CM′ be given, then define ωτ (do(Vi = vi)) = do(Ci = ci) if Ci ∈ C, ci ∈ R(Ci) and
τ(Rst(Vi, vi)) = Rst(Ci, ci). (Beckers and Halpern, 2019)

Definition 29 (Constructive τ abstraction (Beckers and Halpern, 2019)) Let M, and M′ be
SCMs, thenM′ is a constructive τ -abstraction ofM if there are:
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• a surjective function τ : R(VM) → R(CM′), such that there exists a partition P =
{Z1, . . . , Zn+1} of V with Z1, . . . , Zn non-empty and mappings τi : R(Zi) → R(Ci) for
i = 1, . . . , n such that τ = (τ1, . . . , τn).

• a surjective function τU : R(UM)→ R(UM′) mapping the exogenous range of UM to the
exogenous range of UM′ , compatible with τ .

• the intervention set IM′ = ωτ (IM), such that all IM′ contains all possible interventions in
M′.

τU : R(UM) → R(UM′) is compatible with τ : R(VM) → R(VM′) if for all do(V =
v) ∈ IM and u ∈ R(UM), τ(M(u, do(V = v))) =M′(τU(u), ω(do(V = v))). (Beckers and
Halpern, 2019)

Appendix B. Proofs

B.1. Proof of lemma 9

Lemma 9 L2-consistency implies L1-consistency.
Proof Let α :M→M′ be an L2-consistent abstraction, and X,Y ⊆ VM′ with x ∈ R(X),y ∈
R(Y).

We will show that by the null interventionL2-consistency implies consistency over marginal and
joint probabilities. We continue by showing that consistency over marginal and joint probabilities
guarantee consistency for conditional distributions. Therefore, we conclude that L2-consistency
implies L1 consistency. Important for this proof is surjectivity of all range maps αV (v) to ensure
the pre-image α−1

V (v) exists for all v ∈ R(V ).
First, by definition of L2-consistency the following two equations hold:

P (φ−1(X) = α−1
X (x)|do(∅)) L2= P (X = x|do(∅)),

P (φ−1(Y) = α−1
Y (y), φ−1(X) = α−1

X (x)|do(∅)) L2= P (Y = y,X = x|do(∅)).
And, by definition of the null intervention:

P (φ−1(X) = α−1
X (x))

L2= P (X = x), and

P (φ−1(Y) = α−1
Y (y), φ−1(X) = α−1

X (x))
L2= P (Y = y,X = x).

It follows from these equations that L2-consistency implies:

P (φ−1(Y) = α−1
Y (y), φ−1(X) = α−1

X (x))

P (φ−1(X) = α−1
X (x))

L2=
P (Y = y,X = x)

P (X = x)

Finally, by applying Bayes’ Theorem the ratios can be substituted by conditional distributions:

P
(
φ−1(Y) = α−1

Y (y)|φ−1(X) = α−1
X (x)

) L2= P (Y = y|X = x)

Note that the last equation immediately implies L1-consistency. Therefore, any L2-consistent ab-
straction α :M→M′ is necessarily L1-consistent.
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B.2. Proof of lemma 11

Lemma 11 (Bijective Range Maps Preserve Distribution (In)Equalities) Let α :M →M′ be
an L2-consistent abstraction with αV : R

(
φ−1(V )

)
→ R (V ) bijective for all V ∈ VM′ . Let

X,Y1,Y2,Z1,Z2 ⊆ VM be partitions defined by φ, then P (X|do(Y1),Z1) = P (X|do(Y2),Z2)
if and only if αX[P (X | do(Y1),Z1)] = αX[P (X | do(Y2),Z2)]
Proof Let α :M→M′ be a L2-consistent abstraction with αV : R

(
φ−1(V )

)
→ R (V ) bijective

for all V ∈ VM′ . Let X,Y1,Y2,Z1,Z2 ⊆ VM, such that X,Y1,Y2,Z1,Z2 are pre-images of
φ.

This proof will consist of two parts, first we show that surjectivity of the range map gives us that

αX[P (X | do(Y1),Z1)] ̸= αX[P (X | do(Y2),Z2)]

implies

P (X | do(Y1),Z1) ̸= P (X | do(Y2),Z2).

Secondly, we show that bijectivity gives us the inverse:

P (X | do(Y1),Z1) ̸= P (X | do(Y2),Z2)

implies

αX[P (X | do(Y1),Z1)] ̸= αX[P (X | do(Y2),Z2)],

completing the proof.

Part 1. First consider the case where

αX[P (X | do(Y1),Z1)] ̸= αX[P (X | do(Y2),Z2)].

Surjectivity ensures that the distributions have pre-images in αX. Given a surjective function g if
g(a) ̸= g(b) then a ̸= b, and since pre-images exist for both distributions, these must also not be
equal. So,

αX[P (X | do(Y1),Z1)] ̸= αX[P (X | do(Y2),Z2)]

implies

P (X | do(Y1),Z1) ̸= P (X | do(Y2),Z2).

Part 2. Secondly, consider the case where

P (X | do(Y1),Z1) ̸= P (X | do(Y2),Z2).

Bijectivity of αX ensures there exists an inverse to αX such that

α−1
X [αX[P (X | do(Y1),Z1)]] = P (X | do(Y1),Z1)

and

α−1
X [αX[P (X | do(Y2),Z2)]] = P (X | do(Y2),Z2).

Again, consider that given a function g if g(a) ̸= g(b) then a ̸= b. So since

P (X | do(Y1),Z1) ̸= P (X | do(Y2),Z2)

it must hold that

αX[P (X | do(Y1),Z1)] ̸= αX[P (X | do(Y2),Z2)].
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Conclusion. We have illustrated that, given a bijective L2-consistent abstraction α,

P (X | do(Y1),Z1) ̸= P (X | do(Y2),Z2)

if and only if

αX[P (X | do(Y1),Z1)] ̸= αX[P (X | do(Y2),Z2)],

and therefore also

P (X | do(Y1),Z1) = P (X | do(Y2),Z2)

if and only if

αX[P (X | do(Y1),Z1)] = αX[P (X | do(Y2),Z2)].

B.3. Proof of lemma 12

Lemma 12 (L2-Consistency Uniquely Determines Adjacencies) Given an L2-consistent bijec-
tive abstraction α : M → M′, adjacencies between variables in M′ are uniquely determined
by the map φ : V→ C and comply with Rule 1 of Def.3 (CDAG).
Proof The proof follows from the generalized proof of Thm.12. Specifically, Rule 1 of Def.16
(PCDAG) is equivalent to Rule 1 of Def.3 (CDAG) for any abstraction with R = VM.

B.4. Proof of lemma 13

Lemma 13 (L2-Consistency Uniquely Determines Confounding Edges) Given an L2-
consistent bijective abstraction α : M → M′, confounding edges between variables in M′

are uniquely determined by the map φ : V→ C and comply with Rule 2 of Def.3 (CDAG).
Proof The proof follows from the generalized proof of Thm.22. Specifically, Rule 2A of Def.16
(PCDAG) is equivalent to Rule 2 of Def.3 (CDAG) for any abstraction with R = VM, and any
edges produced by rule 2B of the PCDAG require a non-empty remainder set.

B.5. Proof of theorem 14

Theorem 14 (α-Abstraction⇒ CDAG) Given any bijective L2-consistent α-abstraction α :
M→M′ with R = V, the DAG ofM′ is a CDAG of the graph ofM.
Proof This proof follows immediately from the results of Lem.12 and Lem.13. Together the lemmas
state that both all directed and all confounding edges of a bijective L2-consistent abstraction with
R = VM are necessarily equal to those given by the constructive rules of the CDAG.
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B.6. Proof of theorem 15

Theorem 15 (CDAG⇒ α-Abstraction) Given a CDAG there exists an equivalent L2-consistent
α-abstraction α :M→M′ with R = V, φ given by the clustering, and all maps αC bijective.
Proof The proof follows immediately from the result of Thm.20, showing there exists an L2-
consistent α-abstraction for each PCDAG by taking bijective range maps αC and the set of mech-
anisms FM′ to be the composite mechanisms as implied by φ. Note that a CDAG is by deinition
also a PCDAG, so the result transfers.

B.7. Proof of lemma 18

Lemma 18 (PCDAGs Preserve Mediated Adjancencies) LetM be an SCM with a PCDAG de-
fined by clusters C and remainder set Q. Let Ci,Cj ∈ C, Ci ̸= Cj and Vi ∈ Ci, Vj ∈ Cj , then
a mediated adjacency between Vi and Vj exists if and only if there exists an adjacency between Ci

and Cj .
Proof It follows directly from Def.16.1 (Partial Cluster DAG) that an mediated adjacency between
Vi ∈ Ci and Vj ∈ Cj creates an edge between Ci and Cj . It follows that, given two clusters
Ci,Cj ∈ C, if there exists an mediated adjacency between two variables Vi ∈ Ci, Vj ∈ Cj inM
there exists an adjacency between Ci and Cj inM′.

Furthermore, this is the only rule creating a directed edge, and therefore solely defines adja-
cencies in a PCDAG. It follows that, given two clusters Ci,Cj ∈ C, if there does not exists some
combination Vi ∈ Ci, Vj ∈ Cj inM with an mediated adjacency between Vi and Vj then there is
no adjacency between Ci and Cj inM′.

Thus showing that for each mediated adjacency inM there exists a corresponding adjacency in
M′, and for all adjacencies inM′ there exists at least one corresponding mediated adjacency inM.

B.8. Proof of lemma 19

Lemma 19 (PCDAGs Preserve Directed Paths) Let M be an SCM with a PCDAG defined by
clusters C and remainder set Q. Let Ci,Cj ∈ C, Ci ̸= Cj and Vi ∈ Ci, Vj ∈ Cj , then a
directed path Ci → · · · → Cj exists if there exists a directed path Vi → · · · → Vj .
Proof First, by Def.16.1 (Partial Cluster DAG) adjacencies in the PCDAG have the same direction
as the mediated adjacencies in the original DAG. Secondly, by Lem.18 adjacencies in the PCDAG
are consistent with mediated adjacencies inM. Note that adjacency are directed paths of length 1,
so if follows immediately that such directed paths are preserved.

Now consider directed paths of length greater than 1. Let Vi ∈ Ci, Vj ∈ Cj with Ci,Cj ∈ C
and let there be a directed path Vi → · · · → Vj . Any directed path can be split up into a sequence of
mediated adjacencies. Take Vi and the first vertex Vx along the path such that Vx /∈ R, then either
(i) there exists an edge Vi → Vx or (ii) there exist a path Vi → · · · → Vx such that any intermediate
vertices are in R. Therefore, there exists a mediated adjacency between Vi and Vx, by Lem.18 this
implies Ci → Cx, Vx ∈ Cx if Cx ̸= Ci. By repeated application of this process starting from
Vx, until we reach Vj , all generated edges between clusters can be composed into the directed path
Ci → · · · → Cj .
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B.9. Proof of theorem 20

Theorem 20 (L2-consistency of PCDAGs) Given an SCM M and a PCDAG M′ of M, there
exists a set of mechanisms FM′ such thatM′ is L2-consistent withM.
Proof For this proof we will show that a given two models M,M′ where M′ is PCDAG of
M, there exists a configuration of M′ such that M′ is L2 consistent with M. We will define
the functions forM′ according to the clustering, and show that these functions correspond to the
structure of the PCDAG. After we show that cluster variables together with these functions give us
L2 consistency.

First, letM : ⟨UV,V,FV, PV(UV)⟩ andM′ : ⟨UC,C,FC, PC(UC)⟩ be two SCMs such
that the DAG ofM′ is a PCDAG ofM and C the corresponding clusters.

We choose UC = UV and PC(UC) = PV(UV), and let the variables Ci ∈ C be given by the
clustering such that

Ci =

V
i
1
...
V i
n

 ,

with n as the number of variables in cluster Ci and V i
j ∈ Ci as the j-th variable in the cluster Ci.

Now construct the functions fCi ∈ FC again following the clustering:

fCi =

fV i
1
(Pa(V i

1 ),UV i
1
)

...
fV i

n
(Pa(V i

n),UV i
n
)

 ,

with fV i
j
∈ FV the function for V i

j inM, and UV i
j

the exogenous parents of V i
j .

This definition of fCi leaves two potential issues:

1. There can exist a function fV i
j

part of fCi which relies on a variable mapped to Q. By Def.16
of the PCDAG there exists no edges to or from Q, therefore such reliance must somehow be
removed.

2. There can exist a function fV i
j

part of fCi which relies on a variable V i
k , which is also mapped

to Ci. Acyclicity requires there exist no edge Ci → Ci, therefore such reliance must also be
removed.

First we describe how we can rewrite functions in the case of 1.: take fV i
j
(Pa(V i

j ),UV i
j
) part

of fCi with Pa(V i
j ) ∩Q ̸= ∅. Let P = Pa(V i

j ) ∩Q be the set of parents of V i
j that are mapped to

Q. All variables P ∈ P can be substituted with their functions instead. These functions will in turn
depend on a set of parents and exogenous parents. By acyclicity recursively applying this technique
all functions will have Pa(P ) ∩Q = ∅ in a finite number of applications. When Pa(P ) ∩Q = ∅
all parents of P are part of some cluster, or there are no endogenous parents left. Note that this gets
reliance on exogenous parents of all P s encountered.

For case 2. we follow a similar approach: take fV i
j
(Pa(V i

j ),UV i
j
) part of fCi with some subset

P ⊆ Pa(V i
j ) ∩Ci ̸= ∅. Applying the same substitution technique as before gives a function that

only relies on variables outside of the cluster Ci.
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These functions agree with the structure given by Def.16 of the PCDAG as causal edges Ci →
Cj exists if and only if there exists some Vi ∈ Ci and Vj ∈ Cj such that there is a mediated
adjacency Vi ⇝ Vj . Furthermore, recall that Ci Cj is a shorthand for Ci ← U → Cj . Given
the definition of the functions FC such confounding edges occur either (i) if there exists Vi ∈ Ci

and Vj ∈ Cj such that Vi ← U → Vj , or (ii) Vi ∈ Ci, Vj ∈ Cj , and Q ∈ Q such that

Vi Q Vj

U

.

Note that these cases exactly correspond to Def.16 (Partial Cluster DAG). This shows that the defi-
nition of FC is compatible with the structure defined by the PCDAG.

This leaves to show that such definitions give rise to L2-consistency. For this, first note that by
clustering there is a bijection between the ranges of a cluster Ci ∈ C and the variables that make
up the cluster Vi ⊆ V. Additionally, the function fCi is simply a combination of the functions of
Vi. So since UC = UV and PC(UC) = PV(UV) it follows immediately that

PC(Ci | do(Cj),Ck) = PV(Vi | do(Vj),Vk).

Therefore, it is immediate that there exists a modelM′ which is a compatible PCDAG ofM that is
L2-consistent withM.

B.10. Proof of lemma 21

Lemma 21 (L2-Consistency Uniquely Determines Adjacencies) Given a bijective L2-consistent
abstraction α : M → M′, adjacencies between variables inM′ are uniquely determined by the
map φ : V→ C and comply with Rule 1 of Def.16 (PCDAG).
Proof We will show that adjacencies in an abstracted model is uniquely determined by the map of
the endogenous variables φ : V → C. To get to this, we show that adjacencies Ci → Cj for any
Ci,Cj ∈ C exists if, and only if, there exist an mediated adjacency between the corresponding
pre-images of φ .

Let C be a (partial) clustering of V. Given two variables Vi, Vj ∈ V such that Vi ∈ Ci, Vj ∈ Cj

and Ci,Cj ∈ C, with Ci ̸= Cj .
First, consider the case where there exists an mediated adjacency Vi ⇝ Vj . By definition

P (Vj) ̸= P (Vj | do(Vi)), and by L2-consistency P (Cj) ̸= P (Cj | do(Ci)), so there must exist
a path Ci → Cj . Furthermore, by definition of the mediated adjacency there does not exist some
Z ∈ C that blocks the effect of do(Vi) such that

P (Vj | do(Vi), do(φ−1(Z))) = P (Vj | do(φ−1(Z))).

Lem.11 illustrates that

P (Vj | do(Vi), do(φ−1(Z))) = P (Vj | do(φ−1(Z)))

implies

P (Cj | do(Ci), do(Z)) = P (Cj | do(Z)).

In other words, there exists no intervention in M′ that blocks the path Ci → Cj , and since all
interventions are allowed, it must be that Ci → Cj is an adjacency.
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Second, consider the inverse: there exists no mediated adjacency Vi ⇝ Vj . Then we have that
there exists some Z ⊆ C, Vi /∈ Z such that

P (Vj | do(Vi), do(φ−1(Z)) = P (Vj | do(φ−1(Z))).

Interventional consistency requires that

P (Cj | do(Ci), do(Z)) = P (Cj | do(Z)).

So, if there exists a path Vi → Vj that can be blocked by an intervention do(φ−1(Z)) with Z ⊆ C,
Z ̸= Vj , then the path between Ci → Cj can also be blocked by do(Z). Consequently, we have
that if there does not exists an mediated adjacency Vi ⇝ Vj then there is no adjacency Ci → Cj .

Therefore, for any given abstraction α : M → M′ with φ : V → C adjacencies inM′ are
uniquely given by interventional consistency of α. Moreover, we note that that the preservation of
mediated adjacencies exactly complies to rule 1. of Def.16 (PCDAG).

B.11. Proof of lemma 22

Lemma 22 (L2-Consistency Uniquely Determines Confounding Edges) Given a bijective L2-
consistent abstraction α : M → M′, confounding edges between variables in M′ are uniquely
determined by the map φ : V→ C and comply with Rule 2A and 2B of Def.16 (PCDAG).
Proof The proof for this Lemma is split into two parts: first we show that L2 distributions can be
used to identify confounding edges between non adjacent variables. Secondly, we show the same is
possible for adjacent variables, but the proof requires a different approach.

Non Adjacent Confounding Edges. For this part we will show that given two variables X,Y ∈
V of a modelM with X and Y not adjacent there exists some Z ⊆ V \ {X,Y } such that

P (Y |X, do(Z)) = P (Y | do(Z))

if and only if there does not exist a confounding edge X Y . First we show that non existence
of a confounding edge X Y implies

P (Y |X, do(Z)) = P (Y | do(Z)).

After, we show that X Y implies

P (Y |X, do(Z)) ̸= P (Y | do(Z)),

completing this part of the proof.
First, assume X and Y do not share a confounding edge X Y . Non-adjacency gives that

there exists some Z ⊂ V \ {X,Y } blocking all paths between X and Y that have at least one
intermediate vertex in V. A path without a vertex in V would implyX Y , which by assumption
do not exist. So, there exists some Z ⊂ V \ {X,Y } such that Y ⊥⊥ X | do(Z). Or, in terms of
distributions:

P (Y |X, do(Z)) = P (Y | do(Z))

for all non-adjacent X,Y if there does not exist a confounding edge X Y .
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Secondly, we show the inverse: assume there exists a confounding edge X Y . By assump-
tion of X Y there exists a path between X and Y that cannot be blocked by any intervention.
So there cannot exist a Z ∈ V \ {X,Y } such that Y ⊥⊥ X | do(Z). This is expressed in terms of
distributions as

P (Y |X, do(Z)) ̸= P (Y | do(Z))
for all Z, if there is a X Y .

We conclude that all confounding edges between two non-adjacent variables X and Y can be
identified using L2 distributions.

Adjacent Confounding Edges. Whereas one can identify confounding effects by blocking causal
paths when considering non-adjacent variables, this is not possible in the case where X → Y . The
following part illustrates that L2 distributions can still be used to identify this confounding effect
through inequalities.

Given someX,Y ∈ V ofM, such thatX → Y . we will show that the absence of a confounder
X Y implies

P (Y |X, do(Z)) = P (Y | do(X), do(Z)).

Secondly, we show that the presence of a confounder X Y implies

P (Y |X, do(Z)) ̸= P (Y | do(X), do(Z)).

First, recall that any indirect path between X and Y can be blocked by some Z ∈ V \ {X,Y }.
It follows that given such a Z we have

P (Y |X, do(Z)) = P (Y | do(X), do(Z)).

Now let’s consider the following diagram:

X Y.

U

Recall that X Y is an shorthand for writing X ← U → Y . Note also that an arrow X → Y
implies P (Y ) ̸= P (Y |X) and P (X) ̸= P (X | Y ), assuming non-canceling paths. Now consider
what happens when conditioning on X by taking P (Y | X): there exists an arrow U → X , so
P (U |X) ̸= P (U).

Alternatively, consider P (Y |do(X)) would break the edge U → X , so P (U) = P (U |do(X)).
Furthermore the distributions P (Y | X) and P (Y | do(X)) are determined by a function
fY (U,UY , X) with UY some optional exogenous variable affecting Y . Therefore, given X and
a distribution P (UY ) the generated distributions depend only on the distribution P (U), and since

P (U | do(X)) = P (U) ̸= P (U |X)

it follows that
P (Y |X) ̸= P (Y | do(X)).

In the case the model has more variables than X and Y any other path can be blocked by some Z,
similar to the first part.

In conclusion, given two adjacent variables X,Y such that X → Y , there exists a confounding
arrow X Y if, and only if,

P (Y |X, do(Z)) ̸= P (Y | do(X), do(Z)).
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Preservation of Confounding Edges. Given a bijective L2-consistent α-abstraction α : M →
M′, Lem.11 states that all (in)equalities among distributions in M′ have a corresponding
(in)equality in M. As confounding edges can be determined uniquely by these inequalities, if
R = VM then a confounding edge Vi → Vj in M implies a corresponding confounding edge
Ci Cj inM′, in accordance to rule 2A of Def.16 (PCDAG).

Creation of Confounding edges. Additionally, note that if R ⊂ VM such that the remainder set
in non-empty: Q ̸= ∅ all Z ∈ Q are not considered in the preservation of (in)equalities of Lem.11,
and therefore can essentially be considered exogenous variables. This implies that if there exists
two clusters Ci,Cj ∈ CM′ some Z ∈ Q and Vi ∈ Ci, Vj ∈ Cj , such that Vi ⇝Z ⇝ Vj then
there must exists a confounding arrow Ci Cj , in accordance to rule 2B of Def.16.

Finally, as all other distributional (in)equalities are preserved over the abstraction, and all con-
founding edges can be identified by these (in)equalities there cannot be any other confounding
edges inM′. Therefore, the confounding edges of a bijective L2-consistent abstractions are exactly
described by the constructive rules of the PCDAG.

B.12. Proof of theorem 24

Theorem 24 (PCDAGs describe all bijective L2-consistent α-abstractions) Given a bijective
L2-consistent α-abstraction α :M→M′,M′ is a permissible Partial Cluster DAG ofM.
Proof This proof follows immediately from the results of Lem.21 and Lem.22. Together the lemmas
state that both all directed and all confounding edges of a bijective L2-consistent abstraction are
necessarily equal to those given by the constructive rules of the PCDAG.

B.13. Proof of theorem 23

Theorem 24 (PCDAG⇒ α-Abstraction) Given a PCDAG there exists an equivalent L2-
consistent α-abstraction α : M → M′ with R ⊆ V, φ given by the clustering, and all maps
αC bijective.
Proof The proof follows immediately from the result of Thm.20, showing there exists an L2-
consistent α-abstraction for each PCDAG by taking bijective range maps αC and the set of mecha-
nisms FM′ to be the composite mechanisms as implied by φ.

B.14. Proof of Corollary 25

Corollary 25 (Equivalence α-abstraction and Constructive τ -abstraction) The α-abstraction
is equivalent to the constructive τ -abstraction, if for all settings v ∈ R(V) there exists a u ∈ R(U)
giving rise to v.
Proof In this proof we will first outline the similarities of the two abstractions, by unpacking the
definitions. After that we will show that the frameworks do not as neatly align on mapping the
exogenous variables. In short, the problem arises from the fact that the α-abstraction is not defined
over SCMs but Finite Graphical Models.

25



SCHOOLTINK ZENNARO

Similarities α-abstraction and constructive τ -abstraction. This part will be rather straightfor-
ward, as we will see that all maps that make up the abstractions are equivalent by definition.

Let α :M→M′ be an α-abstraction following definition 6.

1. First note that the map φ : R → VM′ of α is surjective. It follows immediately that φ
induces a partition P over R. Consequently, P together with the set of irrelevant variables
forms a partition over VM, as required by the constructive τ -abstraction.

2. Secondly, given an abstract variable X ′ ∈ VM′ and its pre-image X = φ−1(X ′) the range
mapping R(X) → R(X ′) is surjective by definition. This is immediately equivalent to the
subjectivity requirement imposed on range mappings in the constructive τ -abstraction.

3. thirdly, the constructive τ abstraction requires that the set of allowed interventions at the
high level is equal to the set of all high level interventions. In other words, there must exist
a surjective map from the set of low level interventions to the set of high level interven-
tions. Given an α-abstraction α : M → M′ the intervention map is implicitly given by
P (φ−1(Y ) | do(φ−1(X))) → P (Y | do(X)), for all X,Y ∈ VM′ . It follows from sur-
jectivity of φ and the range maps R(φ−1(X)) → R(X) that the intervention map is also
surjective.

Finite Graphical Model as a minimal SCM. Finally, a constructive τ -abstraction is by definition
a τ -abstraction, which requires that there exists a surjective map from range of the exogenous vari-
ables of the low level model to that of the high level model. Here is the problem, as the exogenous
variables are not explicitly defined for the Finite Graphical Model. However, one can construct a
minimal range for the exogenous variables required to generate the distributions defined by the finite
graphical model:

Let M : ⟨V,U,F , P(U)⟩ be an SCM. Given a setting of the exogenous variables u there
exists exactly one compatible setting of the endogenous variables v, by the fact that all f ∈ F are
deterministic. This means there is a surjective function from the range of U to the range of V.
Consequently, we can define a partition of equivalence classes on the range of U, such that for each
equivalence class all settings of U in that class will map to the same setting of V. Therefore, the
minimal range of U is such that there exists exactly one value for each equivalence class. It follows
immediately that there exists a bijective map from the minimal range of U to the range of V.

let α :M→M′ be an alpha abstraction, by definition we have φ : R(VM)→ R(VM′). Let
U∗

M and U∗
M′ be minimal exogenous variables for M and M′ respectively. There is a bijection

between VM and U∗
M andφ surjective, therefore there exists aφU : U∗

M → U∗
M′ that is surjective.

The τ -abstraction requires a surjective map τU : UM → UM′ , which is not necessary for the
α-abstraction. However, we have shown that the α-abstraction does guarantee a surjective map
U∗

M → U∗
M′ . Diagrammatically this can be described as:
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U∗
M U∗

M′

UM UM′

VM VM′

[sur]

φU

[bij]

FM

[bij]

FM′

[sur]
[sur]

τU

[sur]FM

[sur]

[sur] FM′

[sur]

φ, τ

The inner square represents the constructive τ -abstraction, and the outer square represents the α-
abstraction.

Conclusion. We have illustrated the equivalence of the α-abstraction and the constructive τ -
abstraction. With the one caveat being that the constructive τ -abstraction is more restrictive on
the mapping of exogenous variables.
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