
Under review as a conference paper at ICLR 2024

HARDWARE-FRIENDLY POST-TRAINING
QUANTIZATION: INPUT- AND OUTPUT-CHANNELWISE
SCALE AND OFFSET

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training quantization enables swift quantization of neural networks using a
minimal calibration dataset. Prior approaches to low-bit quantization that use non-
linear mixed-precision methods or different quantization bit allocations for each
layer are not well-suited for hardware acceleration. Specifically, these methods
tend to underperform dramatically on hardware with fixed integer bit width, par-
ticularly in extremely low-bit quantization scenarios. In response, we introduce
an optimization-based method for uniform channel-wise quantization compatible
with existing hardware. This approach does not increase memory requirements
and results in only a marginal increase in computation. This strategy involves
applying a specific multiplier to the result of the weighted activation products,
yielding a more accurate result for the multiply-accumulate (MAC) operation in
convolutional or fully-connected layers. We also present an optimization tech-
nique to determine the optimal channel grouping approach. We conducted tests on
various CNN-based models to affirm the superiority of our proposed quantization
scheme. Our proposed approach enhances accuracy in 2/4-bit weight and feature
quantization by 1-5%p while only increasing the number of integer operations in
convolutional-based networks by less than 1.5%.

1 INTRODUCTION

Among various model compression techniques (Han et al., 2015; Dong et al., 2017; Dong & Yang,
2019; Gou et al., 2021), quantization reduces the precision of the weights and activations which
can significantly reduce the memory requirements and computational cost of a model. Quantization
can be broadly categorized into uniform and non-uniform quantization (Choi et al., 2016; Cai et al.,
2017). The former uses a fixed step size to represent the values, while the latter adapts the step
size based on the distribution of the weight or activation values. Typically, (output) channel-wise
uniform quantization is employed for its hardware-friendly nature (Jacob et al., 2018; Nagel et al.,
2021), ease of fusing with batch normalization, and reduced high-cost floating-point operations by
having different quantization scales for each output channel.

From a training perspective, there are two primary approaches of quantization in deep learning:
Quantization Aware Training (QAT) (Xu et al., 2018; Esser et al., 2019; Kim et al., 2020) and Post-
Training Quantization (PTQ) (Stock et al., 2019; Nagel et al., 2020; Li et al., 2021; Jeon et al., 2022).
QAT trains a model with quantized weights and activations, which allows the model to adapt to the
quantization process during training. In contrast, PTQ applies quantization to a pre-trained model,
resulting in faster model compression but potentially causing a more significant loss in performance.
Recent studies (Nagel et al., 2020; Li et al., 2021; Wei et al., 2022) have shown promising results by
minimizing the difference between the activation mean of the full precision model and the quantized
model (i.e. reconstruction loss). To optimize the reconstruction loss, these approaches determine
whether to round up or down after per-weight-based quantization. Due to the distributional discrep-
ancy between the full precision weights and their quantized counterpart, this rounding scheme is
insufficient for fully optimizing the reconstruction loss in extremely low-bit quantization.

To address this, we introduce new parameters during PTQ that scale and offset the input and output
channels to minimize the distributional gap. However, the input-channel scaling parameters intro-

1

Under review as a conference paper at ICLR 2024

duce computational overhead at inference in its naive form. Through grouping the input channels
and utilizing the shift operation, we can absorb these parameters into the quantized model with a
minimal computation overhead. Using a limited dataset (PTQ), we effectively optimized the layer
through input-channel-wise grouping and verified that performance can be enhanced solely by em-
ploying shift operations, ensuring that all calculations remain within the integer domain. Our main
contributions are as follows:

1. We propose a method that compensates for the discrepancies in full precision and quantized dis-
tributions that occur during the quantization of the product of weights and activations. This approach
utilizes straightforward yet effective channel-wise scaling and offset parameters to tackle these dis-
parities.

2. Our proposed method demonstrates its applicability in channel-wise quantization without requir-
ing additional memory for parameters, with only less than 1.5% computation overhead in most
networks during inference.

3. We show that our approach could be integrated with existing block reconstruction methods (Li
et al., 2021; Wei et al., 2022; Zheng et al., 2022), further improving their performance.

2 PRELIMINARIES

Notations Scalars or vectors are represented in lowercase, while matrices and tensors are denoted
in uppercase. For a real variable a, ā and â signify the integer coded bit and quantized value, re-
spectively. The quantized value â is the reconstructed approximation of the original variable a, i.e.,
â ≈ a. Parenthesized superscript a(·) indicates the layer index. Among superscripts, x, w, y, and z
represent values for the input feature, weight, accumulated output feature, and output feature after
batch normalization, activation, and re-quantization, respectively. Subscripts are used for indicating
an element of a vector or matrix.

2.1 UNIFORM CHANNEL-WISE QUANTIZATION

Uniform channel-wise quantization (Jacob et al., 2018; Zhang et al., 2018; Wu et al., 2020; Nagel
et al., 2021) apply a uniform quantization strategy separately to each output channel of a convo-
lutional or fully-connected layer. This can be implemented using only integer operations. Given a
real-valued r, the coded bit r̄ and quantized value r̂ can be expressed as 1

r̄ = Q(r) = clamp(⌊r/s⌉+ z;min,max), (1)
r̂ = (r̄ − z)× s, (2)

where the constants s ∈ R and z ∈ Z represent the scale and zero-point of quantization, respectively.
Q(·) is the quantization function, ⌊·⌉ denotes rounding to the nearest integer, and clamp(v; a, b)
constrains the value v within the range [a, b]. Generally, quantization aims to make the approxima-
tion r̂ as close as possible to the original value r.

Both the weight and activation must be appropriately quantized to operate a neural network on a
quantized device. For a simpler hardware implementation with improved performance, typically, all
weights corresponding to the same output channel share the same scale value with a zero-point of
zero (symmetric quantization) (Wu et al., 2020), and all features share the same scale and zero-
point (asymmetric quantization). When considering a convolution or fully-connected layer, where
the weight matrix W ∈ Rm×c is multiplied with the input feature x ∈ Rc to produce the output
feature vector y = Wx ∈ Rm, the k-th output feature yk can be computed as

yk =

c∑
i

ŵkix̂i =

c∑
i

(swk w̄ki) · (sx(x̄i − zx)) = swk s
x

c∑
i

w̄kix̄i − zxswk s
x

c∑
i

w̄ki, (3)

where sw ∈ Rm and sx ∈ R are the scales of the weight and input feature, respectively. Note that the
second term zxswk s

x
∑c

i w̄ki can be pre-calculated before inference time. Eq. (3) is for symmetric
weight quantization and if this is not the case, i.e. zw ̸= 0, an additional multiplication and addition
operation will be required.

1As in previous works (Nagel et al., 2021), we omit nonlinear activations such as ReLU in the equation.

2

Under review as a conference paper at ICLR 2024

Figure 1: Fusion of convolutional layer and batch normalization, emphasizing the quantization pro-
cess at different scales. The distinct colors represent the various scales of quantization.

Figure 2: Effect of the scale γ and the offset φ on the ResNet-18 layer1.conv1 layer in the 1/2-
bit weigh/feature quantization example. MSE is the mean squared error between the full-precision
product wx and the quantized product ŵx̂.

Batch normalization (Ioffe & Szegedy, 2015), which typically follows convolution or fully-
connected layers and operates as an affine function per output channel, can be performed in a single
process and can be expressed in an affine form of yk = αk

∑c
i w̄kix̄i + βk when combined with

Eq. (3). The channel-wise parameters αk ∈ Rm and βk ∈ Rm can be prepared before inference
time, contributing to the computational simplicity – the primary reason of why per-output channel-
wise uniform quantization is commonly utilized in hardware (Lin et al., 2016; Jacob et al., 2018;
Krishnamoorthi, 2018; Nagel et al., 2021) (See Appendix A). Note that even without Batch nor-
malization, re-quantization of yk is required, which carries out channel-wise floating point addition
and multiplication due to the expanded bit-width of the output yk compared to those of w̄ and x̄ in
Eq. (3). Fig. 1 illustrates the output feature map Z, which needs to be re-quantized to unify the scale
values across all channels.

2.2 MEAN RECONSTRUCTION ERROR

Recent studies have shown significant improvements in post-training quantization performance (Li
et al., 2021; Jeon et al., 2022; Wei et al., 2022; Zheng et al., 2022) even with a small calibration set
by minimizing the mean reconstruction error of the intermediate feature maps. The loss increment
caused by quantization can be analyzed by the second-order Taylor series expansion as follows:

Ex[∆L] = Ex[L(w +∆w)]− Ex[L(w)] ≈ ∆wT ḡ +
1

2
∆wT H̄∆w. (4)

Assuming that the gradient of the pre-trained model is nearly zero and the effect of higher order
terms is negligible due to small ∆w, the change in loss can be sufficiently approximated by the
Hessian term, i.e., Ex[∆L] ≈ 1

2∆wT H̄∆w. Given a large number of parameters in deep learning
models, directly calculating the Hessian matrix can be challenging and under some assumptions on
Hessian and CNN architecture, it becomes

∆wT H̄∆w =
∑
l

∆w(l)T H̄(l)∆w(l) =
∑
l

||∆W (l)x(l−1)||22 =
∑
l

||∆y(l)||22. (5)

Here, ∆w is the vectorized version of ∆W and y(l) = W (l)x(l−1) for the (l − 1)-th layer’s feature
map x(l−1) and l-th layer’s weight matrix W (l). Thus, minimizing the loss boils down to minimizing
the block reconstruction error of each layer’s output feature map (Li et al., 2021).

3

Under review as a conference paper at ICLR 2024

Figure 3: Overview of the calculation process for the proposed IOSO. Different colors indicate that
each value possesses a distinct quantization scale.

3 PROPOSED METHOD

The distribution of the multiplied quantized weights and inputs can diverge from the actual values
due to accumulated rounding and clipping errors from the clamp function, as well as quantization
errors from the previous layers (Nagel et al., 2019; Finkelstein et al., 2019; Sun et al., 2019; Hubara
et al., 2020). The approaches presented in (Nagel et al., 2020; Yuan et al., 2021; Li et al., 2021; Wei
et al., 2022) sought to minimize the sum of squared differences between original output features and
quantized features by solely adjusting weight rounding. Nevertheless, as quantization modifies both
the weights and input features, solely relying on rounding in low-bit quantization poses limitations
in achieving close approximations to the full-precision values.

Fig. 2 shows an example of 1-bit weight quantization with w̄ ∈ {±1} combined with 2-bit feature
quantization with x̄ ∈ {0, 1, 2, 3}. The four blue bars represent the product of ŵ and x̂. In this
example, w is negative, and ŵ is quantized as −1. During calibration, we train the offset parameter
φ, which shifts the distribution of x̂ŵ by an offset. Simultaneously, the scale parameter γ is adjusted
to modify the spacing between consecutive quantized values. Both γ and φ are trained channel-wise
to find the quantization distribution that best represents the actual value’s distribution. The process
of weight rounding optimization sets specific values for the weights to be used during inference. In
other words, φ and γ are used to find the optimal distribution that quantized ŵx̂ represents, channel-
wisely, and the weight rounding optimization ultimately determines which weights are used, on a
weight-by-weight basis. In our implementation, φ, γ, and rounding are trained simultaneously to
ensure an accurate reconstruction of the full precision value.

Our proposed method, Input- and Output-channelwise Scaling and Offset (IOSO), illustrated in
Fig. 3 reduces this distributional mismatch, thereby mitigating the quantization error without much
computational overhead (less than 1.5%) as will be shown below. Comparison with related works
are included in Appendix B.

3.1 INPUT CHANNEL-WISE SCALE GROUPING (ISG)

On top of the output channel-wise quantization, we use different scales along with c input channels.
As described in Sec. 2.1, employing output channel-wise quantization allows the representation
of the sum of quantized values as an affine form of full precision values αk

∑c
i w̄kix̄i + βk. By

introducing per-input channel scaling factors, denoted as γy ∈ Rc, it becomes αk

∑c
i (γ

y
i w̄kix̄i) +

βk.

4

Under review as a conference paper at ICLR 2024

Figure 4: Comparison of computation processes before and after the permutation of weights from
the previous layer.

However, incorporating a distinct scale value for each input channel inevitably introduces floating
point operations due to different resolutions in different input channels. This leads to a significant
increase in computational complexity. To address this issue, we use ISG, which separates input
channels into multiple groups of different scales and searches for the optimal grouping on an input
channel-by-channel basis. Each input channel belongs to one of the scale groups, {G1, · · · , Gg}
with scale values {γG

1 , · · · , γG
g }. The channels within each group are configured to carry out integer

multiplication and accumulation operations together.

3.2 OUTPUT CHANNEL-WISE SCALE AND OFFSET (OSO)

While AdaQuant (Hubara et al., 2020) learns only the output channel-wise offset, our model simul-
taneously learns the scale and offset for better reconstruction at low bits. The data is affinely trans-
formed before re-quantization using the trainable scale γz ∈ Rm and offset φz ∈ Rm resulting in
zk = γz

kαk

∑c
i (γ

y
i w̄kix̄i)+γz

kβk+φz
k. OSO parameters, γz and φz adjust the distribution of the ac-

tivation outputs to better align with the real values before the activation function and re-quantization.
By making the scaling factor and offset values trainable, the model can learn the optimal reconstruc-
tion parameters during the calibration process, thereby improving the quantization accuracy and the
quantized model’s overall performance.

3.3 COMPUTATIONAL COMPLEXITY AT INFERENCE

Precomputation To perform accumulation within each group, computing each layer becomes

zk = γz
kαk

g∑
p

γG
p

∑
i∈Gp

w̄kix̄i + γz
kβk + φz

k = α′
k

g∑
p

γG
p

c∑
i∈Gp

w̄kix̄i + β′
k. (6)

In Eq. (6), the last two terms in the middle are merged into one variable β′
k. The real-typed variables

γz ∈ Rm and φz ∈ Rm are known before inference time, thus α′
k(= γz

kαk) and β′
k(= γz

kβk + φz
k)

can be pre-computed. To reduce the computational cost associated with high-cost floating-point
operations, we set each γG ∈ Rg value to be computable by integer shift/sum operations, using
values such as 1.0± 2−n, where n ∈ {0, 1, 2, ...}.
Channel Permutation When performing accumulation across input channels, the hardware may not
perform optimally if the values are mixed in an unstructured arrangement, and additional memory
is needed to store information about the selected groups.

As depicted in Fig. 4, by pre-adjusting the order of the output channels of the preceding layer, we
can alter the order of the input channels for the subsequent layer. If we handle this by performing
operations in independent layers per group of input channels and adding independent accumula-
tion values at the accumulation point, we can achieve computational speeds nearly identical to the
original speeds, provided that there are not many groups and no excessively small groups.

Computational Cost per Approach Table 1 illustrates the computational cost associated with each
approach for generating a single output feature. In the absence of quantization, the convolution layer

5

Under review as a conference paper at ICLR 2024

with kh×kw kernel necessitates kh×kw× c multiplication operations and kh×kw× c−1 addition
operations, executed via the MAC process. The conventional output channel-wise quantization (CW-
Quant.) requires integer operation for MAC, coupled with an additional floating MAC operation due
to re-quantization. The per-output channel adjusting scale and offset method proposed in Sec. 3.2
incurs no additional computational cost with precomputation.

Table 1: Computational complexity: MAC op-
erations for different approaches on ResNet-18
layer1.conv1 layer, which have [3×3×64] weights
per one quantized output feature. (g is the number
of groups for our ISG method.)
Approach Floating Point Integer Other

Mul. Add. Mul. Add. Shift

FP32 model 3x3x64 3x3x64-1 - - -
CW-Quant. 1 1 3x3x64 3x3x64-1 -
+OSO 1 1 3x3x64 3x3x64-1 -
+ICWQ 64 64-1 3x3x64 - -
+ISG 1 1 3x3x64 3x3x64-1+g g

When standard input channel-wise quantization
(ICWQ) is incorporated, operations are exe-
cuted in the floating-point domain, which in-
variably leads to an increase in computation.
ICWQ seems like a good compromise because
it only requires the number of input channels
but is excessively expensive as 32-bit float-
ing multiplication consumes x296 times the
power of 4-bit integer multiplication (Horowitz,
2014). On the other hand, our ISG method, as
proposed in Sec. 3.1 only necessitates a shift
operation and an addition operation per group.
Thus, the proposed method can present a better-
performing alternative with almost no computa-
tional overhead compared to the conventional CW-Quant (See Tab. 1).

3.4 OPTIMIZATION PROCESS

Weight Quantization For the purpose of weight quantization, a rounding policy introduced in
Adaround (Nagel et al., 2020) is adopted,

W̄k = Q(Wk) = clamp(⌊Wk/s⌋+ h(Vk);−2n−1, 2n−1 − 1), (7)
where , h(Vk) = clamp(σ(Vk)(ζ − τ) + τ ; 0, 1). (8)

Here, V ∈ Rc×m is a learnable parameter utilized for rounding, while the constants ζ and τ are
employed for stretching the sigmoid function σ(·) and are conventionally set to 1.1 and −0.1 re-
spectively. The function h(V), introduced in (Louizos et al., 2017), guides values to converge to-
wards either 0 or 1. It employs a clipping mechanism to prevent differentiation at extreme values,
thus guaranteeing convergence to either 0 or 1. During the calibration process, this function plays
a critical role in minimizing the reconstruction error between rounding down and up. Instead of the
conventional on/off rounding in standard quantization, the floor function is employed with the on/off
rounding being learned via the rectified sigmoid function, h(V).

Input channel-wise Scale Grouping During calibration, the scale γy
i of the ISG for the input chan-

nel i is calculated and used as follows,

γy
i =

g∑
p

γG
p s(Rip)/

g∑
j

s(Rij)

 , (9)

s(Rip) = clamp

(
σ(Rip)∑g
j σ(Rij)

(ζ − τ) + τ ; 0, 1

)
, (10)

where the learnable parameters R ∈ Rc×g are used to find the probability that the input channel
belongs to a certain scale group G

(l)
p . The rectified softmax function s(Rip)is utilized to express

the probability of inclusion in each group. Similar to h(V), if the probabilities are not fixed during
calibration, as in Fig. 3 and Eq. (9), the γp

G values of the different groups are combined in proportion
to their probabilities. However, if the value of s(Rip) reaches 1, the γy

i is fixed to a specific γG
p

value.

Regularization The values of h(V) used in weight quantization and the value of s(Rip), which
represents the probability of inclusion in each group in input channel grouping, should converge to
0 or 1 during calibration with regularization term presented in (Nagel et al., 2020) as follows:

freg(V,R;λr, λg) = λr

m∑
i

c∑
j

(1− |2h(Vij)− 1|β) + λg

c∑
i

g∑
p

(1− |2s(Rip)− 1|β), (11)

6

Under review as a conference paper at ICLR 2024

Table 2: Evaluation on weight only quantization (top-1 accuracy(%)) on the ImageNet validation
set. * represents the numbers are from BRECQ.

Methods Bits(W/A) ResNet-18 ResNet-50 MobileNetV2 RegNet-600MF RegNet-3.2GF MnasNet-2.0
FullPrec. 32/32 71.08 77.00 72.49 73.71 78.36 76.68

AdaRound* 4/32 68.71 75.23 69.78 71.97 77.12 74.87
AdaQuant* 4/32 68.82 75.22 44.78 - - -
BRECQ* 4/32 70.70 76.29 71.66 73.02 78.04 76.00
IOSO(Ours) 4/32 70.72±0.08 76.37±0.09 72.08±0.05 73.16±0.06 78.20±0.05 76.13±0.04

AdaRound* 3/32 68.07 73.42 64.33 67.71 72.31 69.33
AdaQuant* 3/32 58.12 67.61 12.56 - - -
BRECQ* 3/32 69.81 75.61 69.50 71.48 77.22 74.58
IOSO(Ours) 3/32 70.02±0.11 75.77±0.06 70.43±0.08 72.02±0.13 77.60±0.07 74.96±0.09

AdaRound* 2/32 55.96 47.95 32.54 25.66 24.70 30.60
AdaQuant* 2/32 0.30 0.49 0.11 - - -
BRECQ* 2/32 66.30 72.40 59.67 65.83 73.88 67.13
IOSO(Ours) 2/32 67.22±0.11 72.96±0.13 62.16±0.24 67.01±0.29 74.97±0.07 68.18±0.17

where λr and λg are regularization hyperparameters. We anneal β following (Nagel et al., 2020):
Initially, we assign a high beta value to allow only values at the extremes of 0 or 1 to converge.
Towards the end of the calibration, we implement normalization by assigning lower beta values to
allow values near 0.5 to converge as well.

Loss Function for optimization To identify the optimal parameters V , R, γzs and φz using a small
calibration set, we utilize the block reconstruction loss as described in Sec. 2.2. Our optimization
proceeds at the block level, and parameters V and R are subjected to regularization. The final loss
function can be represented as

argmin
V,R,γz,φz

∥∥∥Z − Ẑ
∥∥∥2
F
+ freg(V,R;λr, λg), (12)

where Z represents the real-valued output feature while Ẑ denotes the approximated reconstructed
output feature from Eq. (6), and ∥·∥2F denotes the Frobenius norm. Note that γG ∈ Rg is a hyperpa-
rameter which determines γy value.

4 EXPERIMENTS

We evaluate the proposed method on various vision models to assess its performance. Our code is
based on an open-source BRECQ (Li et al., 2021) for our implementation. To minimize the impact of
hyperparameters, we set λr = λg . Since too much fragmentation could lead to inefficient processing
in hardware, we designated the number of groups to be 3 and the group scale values γG were set
to (1.0, 1.0-2−4, 1.0+2−4). Consistent with BRECQ, we used a randomly selected calibration set
of 1,024 samples from the ImageNet (Russakovsky et al., 2015) training set and the first and last
layers employed 8-bit precision like (Li et al., 2021; Jeon et al., 2022; Wei et al., 2022; Zheng et al.,
2022), and the weight tuning method was configured identically to that of AdaRound (Nagel et al.,
2020). The calibration process involves 35,000 iterations, taking around 40 minutes to calibrate a
ResNet-18 model on a single RTX 3090 GPU.

4.1 MAIN RESULTS

Table 2 and Table 3 show the results of weight-only and weight-feature quantization experiments
conducted on various CNN-based architectures. We conducted quantization on a variety of net-
work architectures, including ResNet-18,50 (He et al., 2016), MobileNetV2 (Sandler et al., 2018),
MNasNet v2 (Tan et al., 2019), and RegNet (Radosavovic et al., 2020). We report the mean and the
standard deviation on five trials for ours.

For 2-bit weight quantization, our proposed method improves by approximately 0.5-1.5%p com-
pared to the baseline methods AdaRound and BRECQ. As the quantization bit increases to 3-bit and
4-bit, the difference in performance gradually decreases. This can be attributed to the fact that as

7

Under review as a conference paper at ICLR 2024

Table 3: Evaluation of top-1 accuracy (%) in weight and feature quantization; * denotes the number
are from BRECQ (Li et al., 2021)

Methods Bits(W/A) ResNet-18 ResNet-50 MobileNetV2 RegNet-600MF RegNet-3.2GF MnasNet-2.0
FullPrec. 32/32 71.08 77.00 72.49 73.71 78.36 76.68

ZeroQ* 4/4 21.71 2.94 26.24 28.54 12.24 3.89
LAPQ* 4/4 60.3 70.0 49.7 57.71 55.89 65.32
AdaQuant* 4/4 67.5 73.7 34.95 - - -
BRECQ* 4/4 69.60 75.05 66.57 68.33 74.21 73.56
IOSO(Ours) 4/4 69.64±0.06 75.12±0.07 67.88±0.15 70.54±0.08 76.39±0.08 73.63±0.05

ZeroQ* 2/4 0.08 0.08 0.10 0.10 0.05 0.12
LAPQ* 2/4 0.18 0.14 0.13 0.17 0.12 0.18
AdaQuant* 2/4 0.21 0.12 0.10 - - -
BRECQ* 2/4 64.80 70.29 53.34 59.31 67.15 63.01
IOSO(Ours) 2/4 66.00±0.05 71.09±0.19 56.10±0.12 63.60±0.25 72.08±0.08 63.42±0.13

the quantization bit becomes sufficiently large, the accumulated bits can be adequately represented,
reducing the importance of adjusting the scaling and offset. Additionally, our method shows better
results than BRECQ in experiments with 2-bit weight and 2 or 4-bit feature quantization. We also
achieved up to 5% absolute improvement in feature and weight quantization than BRECQ.

We also explored the combination of IOSO with recent rounding-only methods, as detailed in Ap-
pendix D.1. Our method, applied to three different techniques, particularly in low bits, demonstrated
performance improvements of up to 9.3%p. In Appendices D.2 and D.3, which were carried out on
detection tasks and the VIT-B model, we achieved a maximum increase of 0.011 in mAP compared
to other low-bit quantization methods, and we also observed a performance improvement of 0.64%p
in the VIT-B model with 6-bit weight activation.

4.2 ABLATION STUDY

Table 4: Ablation study of OSO and ISG on the
ResNet-18 model using ImageNet calibration data.
Top-1 accuracy comparison on ImageNet test dataset.

Method V γz φz γy R W Quant. W&A Quant.
Round-Only O 66.41(+0.00) 64.80(+0.00)

Out. Offset Only O O 66.65(+0.24) 65.59(+0.79)
Out. Scale Only O O 67.02(+0.59) 65.79(+0.99)
Out. Off.&Scale O O O 67.04(+0.63) 65.87(+1.07)

Inp. Scale O O 67.18(+0.77) 66.04(+1.24)
+Out. Off.&Scale O O O O 67.21(+0.80) 66.05(+1.25)

Inp. Scale Grouped O O 67.02(+0.61) 65.88(+1.08)
+Out. Off.&Scale O O O O 67.19(+0.78) 65.97(+1.17)

We investigate the effect of each proposed
component using ResNet-18 on the W2A4
settings.

Effect of OSO We compare the perfor-
mance with and without each parameter to
examine the effect of scale factor γz and
offset φz . As shown in Table 4, scale γz

helped to improve performance more than
offset φz . In all cases, accuracy was highest
when both variables were learned.

Effect of Grouping To compare the ef-
fect of grouping, we looked at the results
with and without grouping when applying
ICWS. Without grouping, we saw the high-
est accuracy because the model could find the optimal scale value γy for each input channel. How-
ever, we can see that even with grouping, the performance drop is less than 0.1%p, which shows that
the proposed ISG does not significantly sacrifice performance.

4.3 INPUT CHANNEL GROUP

Input Channel Group Granularity While adjusting OSO is a cost-free method to add, ISG has the
disadvantage that hardware performance can be degraded if too many groups become fragmented.
Hardware architectures designed for MAC operations, such as the systolic array, perform a specific
amount of MAC operations on input and output channels simultaneously. This feature is crucial for
computationally intensive tasks. Server hardware like Tensor Processing Units (TPUs (Jouppi et al.,
2017)) can perform 256x256 operations simultaneously, while deep learning accelerators for edge
devices can handle at least 16x16 operations (Genc et al., 2019; Wang et al., 2016) at a time. This
indicates that if the input channel grouping fragments the channels, the hardware cannot efficiently
utilize MAC in the direction of the input channels.

8

Under review as a conference paper at ICLR 2024

Figure 5: Performance change(top-1 accuracy)
on ResNet-18 model using ImageNet for gran-
ularity variation of the input channel group.

Figure 6: Accuracy comparison on ResNet-18
model using ImageNet as the γG value changes.

Our initial approach was to evaluate the accuracy by varying the granularity of the input channel
groups, with grouped channels prioritized. Higher granularity signifies that the number of channels
per group is not limited. That is, each channel can be assigned to its optimal input scale group Gg .
On the other hand, coarse granularity means that the number of channels per group is more balanced,
making it more compatible with certain hardware. As depicted in Fig. 5, we observed that decreasing
the granularity led to a rise in the divergence from the optimal group (learned when granularity
is the highest). However, by leaving the granularity-constrained groups intact and fine-tuning the
remaining variables, we outperformed the traditional rounding method even at a granularity of 256.

Input Channel Scale Factor In Sec 3, we showed that multiplying the ŵx̂ by a γy value can bring
it closer to the real value distribution. To see how performance varies with γy , we varied γy group
from (1, 1 ± 2−1) to very small scale values such as (1, 1 ± 2−7) and compared the accuracy. As
shown in Fig. 6, the weights quantization result was best when changing the value of ŵx̂ by about
6%(2−4), and weight&feature quantization cases improve accuracy when changing ŵx̂ by about
1.5%(2−6).

4.4 COMPUTATION COSTS FOR MODELS

Table 5: Increased giga integer operations
by ISG for each model

Model Baseline ISG Total
ResNet-18 3.005 0.006 3.011(0.20%)
ResNet-50 5.576 0.013 5.589(0.24%)
MobileNetV2 0.338 0.014 0.345(4.03%)
RegNet-600MF 0.777 0.010 0.782(1.28%)
RegNet-3.2GF 4.442 0.030 4.472(0.68%)
MnasNet-2.0 2.217 0.025 2.242(1.11%)

To calculate the cost of each model, we counted the
number of integer operations in the fully-connected and
convolutional layers of each model. We then evaluated
the increase in computation due to ISG compared to the
baseline. We also counted the shift operation as a single
integer operation. For depth-wise convolution (Howard
et al., 2017), ISG is unnecessary because each input
channel corresponds to an individual output channel,
and each channel can use γz individually. Except for
MobileNetV2, the computation cost increased by less
than 1.3%. The cost saving of ISG is greater when
the convolution filter size is large. MobileNetV2 mostly
uses 1x1 convolution, it increased by about 4% compared to the other models. However, even this
number can be made much smaller for hardware that supports shift operations since shift operations
can be made with simple wire connections compared to addition operations.

5 CONCLUSION

In this paper, we introduced IOSO, a novel post-training quantization. IOSO advances feature recon-
struction by finely adjusting scales and offsets in both input and output channel-wisely. Our research
shows that IOSO can be computed using simple integer operations, requiring less than a 1.5% in-
crease in computational resources and, importantly, without additional memory. When applied to a
variety of CNN-based architectures, IOSO significantly improved the accuracy of quantizing 2/4-bit
weights/features by 1-5%p over rounding-only methods.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave gaussian quantization. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5918–5926, 2017.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization.
arXiv preprint arXiv:1612.01543, 2016.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna
Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of narrow pre-
cision inferencing at cloud scale with microsoft floating point. Advances in neural information
processing systems, 33:10271–10281, 2020.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in Neural Information Processing Systems, 30, 2017.

Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. Advances in
Neural Information Processing Systems, 32, 2019.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip HW Leong. Syq: Learning symmet-
ric quantization for efficient deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4300–4309, 2018.

Alexander Finkelstein, Uri Almog, and Mark Grobman. Fighting quantization bias with bias. arXiv
preprint arXiv:1906.03193, 2019.

Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John Wright, Colin Schmidt,
Jerry Zhao, Albert Ou, Max Banister, et al. Gemmini: An agile systolic array generator enabling
systematic evaluations of deep-learning architectures. arXiv preprint arXiv:1911.09925, 3:25,
2019.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129:1789–1819, 2021.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14.
IEEE, 2014.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post
training neural quantization: Layer-wise calibration and integer programming. arXiv preprint
arXiv:2006.10518, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

10

Under review as a conference paper at ICLR 2024

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju Ro. Mr. biq: Post-training non-uniform
quantization based on minimizing the reconstruction error. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12329–12338, 2022.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1–12, 2017.

Jangho Kim, KiYoon Yoo, and Nojun Kwak. Position-based scaled gradient for model quantization
and pruning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 20415–20426. Curran Associates, Inc.,
2020.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable rounding
based on element-wise division for post-training quantization. arXiv preprint arXiv:2306.00317,
2023.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of deep convolu-
tional networks. In International conference on machine learning, pp. 2849–2858. PMLR, 2016.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312, 2017.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1325–1334, 2019.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Marcelo Gennari do Nascimento, Roger Fawcett, and Victor Adrian Prisacariu. Dsconv: efficient
convolution operator. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5148–5157, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit
goes down: Revisiting the quantization of neural networks. arXiv preprint arXiv:1907.05686,
2019.

11

Under review as a conference paper at ICLR 2024

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalak-
shmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit float-
ing point (hfp8) training and inference for deep neural networks. Advances in neural information
processing systems, 32, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. Dlau: A scalable deep learning
accelerator unit on fpga. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 36(3):513–517, 2016.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: randomly dropping
quantization for extremely low-bit post-training quantization. arXiv preprint arXiv:2203.05740,
2022.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quan-
tization for deep learning inference: Principles and empirical evaluation. arXiv preprint
arXiv:2004.09602, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hong-
bin Zha. Alternating multi-bit quantization for recurrent neural networks. arXiv preprint
arXiv:1802.00150, 2018.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training
quantization framework for vision transformers. arXiv preprint arXiv:2111.12293, 2021.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the European conference
on computer vision (ECCV), pp. 365–382, 2018.

DanDan Zheng, Yuanliu Liu, Liang Li, et al. Leveraging inter-layer dependency for post-training
quantization. Advances in Neural Information Processing Systems, 35:6666–6679, 2022.

12

Under review as a conference paper at ICLR 2024

A PRELIMINARIES

A.1 BATCH-NORMALIZATION FUSING

When the weights are symmetrically quantized, and the features are asymmetrically quantized, there
can be yk features per output channel of the layer,

yk =

c∑
i

ŵkix̂i =

c∑
i

(swk w̄ki) · (sx(x̄i − zx)) = swk s
x

c∑
i

w̄kix̄i − zxswk s
x

c∑
i

w̄ki, (13)

when yk passes the batch norms and re-quantization is performed again, it becomes zk,

z̄k = Q(BatchNorm(yk)) = clamp

(⌊(
(γk

yk − µk√
σ2
k + ε

+ δk − zz

)
/sz

⌉
; 0, 2n − 1

)
, (14)

= clamp

(⌊
αk

c∑
i

w̄kix̄i + βk

⌉
; 0, 2n − 1

)
, (15)

where, αk =
γks

w
k s

x

sz
√
σ2
k + ε

and βk = −
γk(z

xswk s
x
∑c

i w̄ki + µk)

sz
√
σ2
k + ε

+
δk − zz

sz
. (16)

Here, µk and σ2
k are the empirical mean and variance of a batch, and γk and δk are the learnable

parameters for batch normalization. By fusing with batch normalization, z̄k can be calculated using
multiply-accumulate (MAC) operations on quantized xi, which are not available before inference.
However, channel-wise parameters αk and βk can be prepared before inference time. This process
significantly optimizes the computational load during inference, improving efficiency. When com-
bined with Eq. (13), batch normalization operates as a per-output channel affine function, allowing
yk to be expressed as an affine form of the accumulated quantized values αk

∑c
i w̄kix̄i + βk.

B RELATED WORK

(a) Systolic array using codebook. (b) Systolic array using input scaling.

(c) Systolic array of our method.

Figure 7: Comparison of a systolic array of each quantization method.

13

Under review as a conference paper at ICLR 2024

To the best of our knowledge, we have developed an approach that enhances performance with a
limited dataset (PTQ) through channel grouping and solely using shift operations without modi-
fying the internals of the systolic array. We have compared the methods related to our previously
researched approach. Fig. 7 depicts the changes in the systolic array for each method. The gray area
represents the original integer systolic array, while the red area indicates the portions that change
when each method is applied. Our method does not alter the internal structure of the systolic array.

Reconstruction Error Minimize Previous studies, which aimed to minimize reconstruction errors,
employed techniques such as rounding up or down weights methods (Nagel et al., 2020; Li et al.,
2021; Wei et al., 2022; Zheng et al., 2022) to find optimal values. AdaQuant (Hubara et al., 2020)
took it further by using the optimal batch normalization bias. However, in extremely low-bit quanti-
zation scenarios, simply relying on weight rounding and bias proved inadequate for reconstruction.
Mr.BiQ (Jeon et al., 2022) employed non-uniform quantization to improve reconstruction, but this
non-linear approach posed challenges for efficient utilization on standard hardware. We further scale
and offset the input and output channels to reduce the reconstruction error to minimize the distribu-
tional gap.

Quantization Grouping Some studies (Stock et al., 2019; Nascimento et al., 2019; Darvish Rouhani
et al., 2020) attempted to optimize the quantization process by extending the scaling group beyond
output channel-wise to the input channels of the model. However, such an approach necessitates us-
ing additional memory or floating-point operation units, significantly increasing power consumption
compared to integer units. Our approach maintains the most computationally intensive parts of the
systolic array in integers without requiring additional memory usage. Furthermore, instead of com-
putationally complex floating-point operations, it only necessitates integer shift operations outside
the systolic array.

Weight/Feature Scaling FlexRound (Lee et al., 2023) placed a learnable parameter that can di-
rectly manipulate the pre-trained weight to modify the weight. Both Data-Free Quantization Through
Weight Equalization and Bias Correction (Nagel et al., 2019) and Smooth Quantization (Xiao et al.,
2023) reduced the size of the Activation and increased the corresponding weight scale to perform
quantization. These methods transform existing input activations and weights into a shape suitable
for quantization. We aimed to keep the variation of the computed product as close to FP32 as possi-
ble without altering the activation and weight as Fig. 7c.

Weight Step Size Learning Research like LSQ (Esser et al., 2019) brought performance improve-
ment by learning the quantization step size and did not approach from the perspective of the product
of weight and feature. Moreover, this approach entails using all datasets and also entails a lengthy
quantization process QAT.

Output Channel-wise biasing AdaQuant (Hubara et al., 2020) applied output channel-wise biasing.
As can be seen in Table 4. In the Ablation Study, our output channel-wise offset also plays an
additional role in mitigating the biasing that can occur through Input Channel Grouping.

Input Channel-wise scaling SYQ (Faraone et al., 2018) proposed a method to learn the pixel/row-
wise scaling value of the convolution weight, but as Fig. 7b it requires using an FP32 accumulator
instead of an integer accumulator due to the use of real-value scaling values. Compared to FP32
multiplication, but our IOSO, integer shift operations use 24 times less power on ASIC (45nm) and
196 times less on FPGA (ZYNQ-7 ZC706) (Horowitz, 2014).

C ALGORITHM

Algorithm 1, shows the overall parameter learning process of IOSO. First, weight quantization is
performed, which optimizes the full-precision model block by block. In weight quantization, the pa-
rameters that minimize block reconstruction are learned through V , which determines the rounding
policy, γz , φz , which determines the output channel-wise scale, offset, and R, which determines the
input channel-wise scale group. After all the blocks in the model are weight quantized, we proceed
to feature quantization. In feature quantization, the scale value of the feature sx is determined using
a straight-through estimator (STE) because it is not related to the rounding policy parameter of the
weight. We do not learn R, which determines the input channel-wise group, because it has already
converged in the weight quantization step. The γz and φz for fitting the offset and scale are still
trained to complete the feature quantization.

14

Under review as a conference paper at ICLR 2024

Algorithm 1 IOSO Post training quantization
1: Inputs : full-precision Model, Calibration Set
2: procedure IOSO PTQ
3: Step 1: Weight Quantization
4: Model← full-precision Model
5: for block in Model do
6: Minimize block reconstruction loss with V , γz , φz , R
7: block← reconstructed block
8: end for
9: Step 2: Feature Quantization

10: for block in Model do
11: Minimize block reconstruction loss with sx, γz , φz

12: block← reconstructed block
13: end for
14: return Model
15: end procedure

Table 6: A comparison of quantization performance when applying IOSO to BRECQ (Li et al.,
2021), QDROP (Wei et al., 2022), and NWQ (Zheng et al., 2022).

Quantized Bits method resnet18 resnet50 mobilenetv2 regnetx600m regnetx3200m mnasnet
weight activation

4 4

BRECQ 68.934 74.846 67.432 70.438 76.404 72.328
BRECQ+IOSO 68.826 74.806 67.864 70.312 76.412 72.556
QDrop 69.138 74.990 67.946 70.870 76.456 73.042
QDrop+IOSO 69.104 75.116 68.470 71.004 76.614 73.206
NWQ 69.026 74.810 67.668 70.574 76.398 72.632
NWQ +IOSO 68.960 74.954 68.000 70.438 76.584 72.596

2

4

BRECQ 63.922 69.582 52.368 61.532 71.050 60.424
BRECQ+IOSO 64.572 70.452 54.414 62.804 71.846 61.428
QDrop 64.462 69.710 53.608 62.806 71.870 61.876
QDrop+IOSO 65.198 70.790 55.446 63.852 72.474 61.870
NWQ 64.508 69.768 53.474 62.328 71.604 61.260
NWQ +IOSO 64.828 70.374 54.830 63.030 72.200 62.256

2

BRECQ 47.616 48.640 5.118 27.878 41.784 10.310
BRECQ+IOSO 47.664 47.994 8.562 27.022 37.854 19.668
QDrop 51.960 55.442 10.108 39.336 54.586 21.970
QDrop+IOSO 52.976 55.874 15.344 41.264 55.862 26.454
NWQ 49.742 52.538 9.066 33.746 50.810 20.854
NWQ +IOSO 50.872 52.770 10.672 35.494 51.196 27.162

3 3

BRECQ 64.980 70.324 51.304 62.626 70.984 61.594
BRECQ+IOSO 64.766 70.492 54.628 62.926 70.530 63.122
QDrop 65.616 71.332 54.836 64.688 71.764 64.276
QDrop+IOSO 65.774 71.440 57.010 65.292 72.328 64.878
NWQ 65.128 70.728 53.750 63.362 71.564 62.758
NWQ +IOSO 65.242 70.888 55.390 63.880 71.874 63.820

D ADDITIONAL RESULTS

D.1 IMAGENET CLASSIFICATION WITH RECENT ROUND-BASED METHOD

Table 6 is from additional experiments conducted to see if performance improvements occur in
low-bit quantization by applying IOSO to the existing latest round-based methods. We achieved
performance enhancement in low-bit quantization by reducing the reconstruction error. We used
the publicly available GitHub code for BRECQ (Li et al., 2021) and QDrop (Wei et al., 2022). We
implemented and tested the Activation Regularization, Annealing Softmax, and Annealing Mixup
as proposed in NWQ (Zheng et al., 2022).

15

Under review as a conference paper at ICLR 2024

Table 7: Performance comparison when quantizing the backbone (ResNet50) of Faster RCNN using
each method

Bits mAP mAP50 mAP75 mAPs mAPm mAPl
BASE 0.403 0.610 0.44 0.24 0.441 0.515

4/4

BRECQ 0.378 0.583 0.410 0.219 0.414 0.489
BRECQ+IOSO 0.378 0.581 0.409 0.222 0.415 0.489
QDROP 0.379 0.584 0.412 0.220 0.415 0.489
QDROP+IOSO 0.381 0.585 0.414 0.225 0.416 0.489

3/3

BRECQ 0.341 0.535 0.364 0.192 0.374 0.451
BRECQ+IOSO 0.342 0.538 0.365 0.189 0.375 0.452
QDROP 0.346 0.545 0.372 0.197 0.378 0.455
QDROP+IOSO 0.352 0.552 0.379 0.203 0.386 0.458

2/4

BRECQ 0.357 0.556 0.386 0.201 0.391 0.469
BRECQ+IOSO 0.365 0.566 0.392 0.213 0.400 0.474
QDROP 0.360 0.560 0.387 0.206 0.396 0.474
QDROP+IOSO 0.369 0.571 0.399 0.215 0.406 0.480

D.2 DETECTION TASK

Table 7 is the detection task result with applying our IOSO to the backbone (resnet50) of the faster
rcnn coco model. IOSO operates orthogonally to the conventional rounding scheme of PTQ research
(BRECQ (Li et al., 2021), QDrop (Wei et al., 2022)). We used regularization weight 0.01 following
QDrop and the result is superior or equivalent to the baselines. Especially, for extreamely low bit
quantization, the performance gain is prominent.

D.3 VIT-B MODEL(IMAGENET DATASET)

We applied IOSO to the VIT-B model using the ImageNet dataset. We set the weight and activation
to 6 bits for the experiment and applied a regularization weight of 1.5. The results revealed that
when both the weight and features were quantized to 6 bits, the BRECQ-only approach achieved an
accuracy of 79.844%, while combining BRECQ and IOSO resulted in an accuracy of 80.482%.

When we quantized the weight to 4 bits and the activation to 6 bits, the BRECQ-only quantiza-
tion achieved an accuracy of 79.826%. However, by including IOSO, we achieved an accuracy of
80.024%.

D.4 REGULARIZATION PARAMETER LAMBDA

In our study, we established the values of λr and λg equal to simplify the hyperparameter tuning
process. The role of λr is to regularize the rounding up or down, essentially influencing the conver-
gence rate for rounding probability. Conversely, λg governs the speed at which the determination of
the input channel-wise scale value reaches convergence. Since rounding and ISG mutually affect one
another, the rate at which each probability converges can produce varying outcomes. It is plausible
that using identical λ values may not consistently deliver optimal results.

Fig. 8 presents the findings of an experiment conducted with differing λr and λg values. As the
figure illustrates, maintaining identical λr and λg values does not necessarily guarantee optimal
performance. The rounding regulating factor, λr, exhibits higher sensitivity, whereas most of the λg

values produced satisfactory results at a value of 0.01. If λr is not set optimally, determining the
appropriate λg becomes more challenging.

D.5 IMPACT OF OSO ON INPUT CHANNEL-WISE SCALE

Table 8 illustrates the impact of output scale γz and offset φz when applying Input Scale γy and
Input Scale Group, respectively. The baseline is established with the policy of rounding only.

When solely applying the Input Scale γy without any grouping, learning the output channel offset
φz improved accuracy. However, when learning the output channel scale γz and the Input Scale γy

16

Under review as a conference paper at ICLR 2024

(a) Weight Quant. (b) Weight&Feature Quant.

Figure 8: Comparison of top-1 accuracy for ResNet-18 on the ImageNet test dataset as two λ values
vary.

Table 8: The effect of output channel-wise scale and offset on input channel-wise scale. ResNet-18
ImageNet calibration is used and is in the top 1% of accuracy.

Method V γz φz γy R W Quant. W&A Quant.
Round-Only O 66.411(+0.000) 64.800(+0.00)

Inp. Scale O O 67.175(+0.765) 66.037(+1.237)
+Out. Offset O O O 67.183(+0.772) 66.061(+1.261)
+Out. scale O O O 67.045(+0.635) 66.001(+1.201)
+Out. Off.&Scale O O O O 67.211(+0.800) 66.052(+1.252)

Inp. Scale Grouped O O 67.022(+0.611) 65.875(+1.075)
+Out. Offset O O O 67.033(+0.623) 65.948(+1.148)
+Out. Scale O O O 67.100(+0.690) 65.934(+1.134)
+Out. Off.&Scale O O O O 67.192(+0.781) 65.973(+1.173)

simultaneously, it decreased accuracy. However, we achieved the best accuracy when both variables
γz and φz were trained simultaneously.

In the case of the grouped Input Scale, there was no significant decrease in performance. However,
the output channel scale γz showed superior results compared to the offset φz . Applying an out-
put scaling without an offset does not seem to contribute significantly. In the case of the grouped
Input Scale, using only the input scale was insufficient to fit the distribution effectively. Therefore,
combining the output scale and offset can lead to improved outcomes.

D.6 INPUT CHANNEL GROUP GRANULARITY

Fig. 9 illustrates the practical group assignment procedure under changes in granularity. Initially, we
trained all input channels to learn groups without group regulation. In the rectified softmax function,
these groups become fixed when their probability surpasses a certain threshold. Fig. 9a exhibits
the input channels that were initially fixed and the groups selected at that stage. In the ResNet-18
architecture, specifically in layer 4.1.conv0, the group initially assigned with the highest number of
fixed input channels was group 2. However, as the process progressed, it turned out that group 1
ended up having the highest number of fixed input channels.

Fig. 9b demonstrates that the maximum number of input channels each group could accommodate
per bundle ranged from 1, 2, 4, up to 128. As shown in Fig. 9a, the input channels that achieved
convergence at a faster rate possessed greater influence and priority, leading them to be chosen first
for the group. The groups determined later had less influence on reducing the loss, regardless of their

17

Under review as a conference paper at ICLR 2024

(a) Changes in granularity and the number of chan-
nels assigned to a group

(b) The order in which the final group was deter-
mined

Figure 9: Channel allocates for groups in the ResNet-18 model’s layer4.1.conv0, to vary the granu-
larity of input channel groups.

group. If a channel could not be assigned to its original group, it was allocated to an unoccupied
group. Therefore, as depicted in Fig. 9a, despite the majority of input channels being assigned to
Group 2 and the fewest to Group 0, the input channels assigned to Group 0 are first assigned 128
groups, and those assigned to Group 2 receive two sets of 128 groups. Hence, Group 1 only has a
group size of 128 when the final group size is 128.

D.7 LOCATION OF THE OSO BEFORE OR AFTER ACTIVATION FUNCTION

(a) Before activation (b) After activation

Figure 10: Location of the OSO before or after activation function.

Table 9: Quantization results de-
pend on the position of the OSO be-
fore and after the activation func-
tion.

W Quant. W+F Quant.

Before Act. 67.199 65.974
After Act. 67.171 44.718

Output channel-wise scale and offset can be applied in two
locations: before and after the activation function. Placing
the output channel-wise scale and offset before the activation
function provides the advantage of capturing a more accurate
representation of the activation input, as some information
may be lost after the activation. On the other hand, placing
it after the activation layer allows it to be positioned closer
to the re-quantization process, resulting in a better represen-
tation of the distribution of the final output features.

However, as shown in Table 9, when we moved the location
of applying the output scale γz and offset φz after activation,
we found that the performance of weight and activation quantization decreased significantly.

We moved the output scale γz and offset φz to the back of the activation and tried ablation to learn
the added parameter. As shown in Table 10, we can see that not learning offset φz shows a similar
performance to the original performance. Negative values can challenge the learning process in most
activation functions because the gradient becomes zero, leading to a vanishing gradient problem. As

18

Under review as a conference paper at ICLR 2024

Table 10: The accuracy of learning each parameter when output scale γz and offset φz are applied
after activation.

γz φz R W Quant. W+F Quant.

O O O 67.140 45.130
O O 67.070 50.056

O O 67.152 65.840
O O 67.210 51.932

O 66.774 49.686
O 67.078 66.016

a result, only positive values can be effectively learned. This limitation can impact the model’s ability
to capture and represent negative values during learning. In the feature quantization step, the scale
value is learned together through the STE, but it seems that the scale γz is not learned well due to
the influence of the offset term and the activation function, resulting in this result.

Also, as shown in Table 9, applying the output channel scale γz and offset φz after activation does
not significantly increase the performance of weight quantization too. So it seems that applying the
output scale and offset before the activation layer can achieve better results.

D.8 INPUT CHANNEL SCALE WITHOUT GROUP CONSTRAINTS

In our experimental setup, we implemented the same group scale across all layers to simplify the
process of hyperparameter tuning. However, using the same group scale may not be optimal as each
layer possesses distinctive characteristics.

To determine the optimal alpha for each layer, we enabled each channel to independently explore the
optimal input channel scale value without any group restrictions. The results of this exploration are
illustrated in Fig. 11, which displays the distribution of input channel scale values across different
layers.

In Fig. 11, the dotted line represents our γG value, which is set at 1 ± 2(−4). It is evident from the
figure that the distribution of the input channel scale varies considerably across different layers.

In particular, for the down-sampling layer, assigning a larger group scale value seems suitable. As
for the fully connected layer, altering the value of the input scale appears challenging due to the high
values of the interrelated input channels.

E ASIC RESULTS

We conducted experiments using the structure of a batch-norm fused systolic array from an NPU
developed for edge devices to compare overhead and latency in ASICs. The table 11 shows the area
of the batch-norm fused systolic array when each method is implemented in ASIC. The synthesis
was done using the TSMC 12nm process and 400 Mhz timing conditions. The MAC has a 16x16
structure, and IOSO, batch norm, and activation can process 8 data in 1 cycle. The sequence is
MAC(−→IOSO)−→ BN−→ACT. The performance time, or latency, was tested only on the resnet-50
layer with 28x28x128 feature 3x3x128x128 kernel layer.

Table 11: ASIC synthesis area of each method and
latency of convolution layer.

Methods integer Quant. +IOSO FP16 quant

Total Area(um2) 429,342 439,762 882,233
Latency(us) 1129.2775 1129.2825 1129.3150

As seen in the table above, IOSO can be im-
plemented with an integer shifter adder without
modifying the MAC structure, resulting in only
a 2.37% increase in area. In addition, the im-
plementation is very simple as it does not al-
ter the existing data path. In contrast, methods
partially implemented with FP16 points for in-
creased accuracy and reduced memory are use-
ful in GPUs that already have FP16 point ker-
nels. However, from an ASIC perspective, these are challenging to use due to significant increases in
MAC’s area and power. The latency results are similar across all three methods because all data oper-

19

Under review as a conference paper at ICLR 2024

Figure 11: Input channel scale values per layer in ResNet-18 when trained without group constraints.

ates in a pipeline. The speed is comparable if the number of MACs is the same. The additional logic
slightly alters the pipeline length, causing a minor increase in latency, but it’s negligible compared
to the overall data.

F CALCULATION COST

F.1 INTEGER OPERATIONS

Tables 12 and 13 illustrate the computation cost calculation process, as discussed in Chapter 4.4,
using ResNet-18 and MobileNetV2 as examples. Initially, each layer is categorized as either Convo-
lution, Fully-connected, or Depthwise-convolution. The number of output features in each layer can
be computed as outputchannel×width× height. The computational effort required to derive the
value of a single output channel is an integer multiplication of the product of the input channel and
the width fx and height fy of the kernel, along with an integer addition of ic× fx× fy− 1 needed
for accumulation.

Therefore, the number of integer operations required before applying ICG can be calculated as
(number of mul + number of sum)× (number of output).

Each output feature requiring ICG will require additional multiplications and additions by the num-
ber of group values. In the case of Chapter 4.4, the number of groups is 3, and two of these groups
have a group scale value that is not equal to 1. Consequently, four multiplications and additions are
required for a single output feature.

In a depth-wise convolution layer, input channel grouping is not necessary. Therefore, the calculation
cost for the grouping operation is not included in the overall computations.

20

Under review as a conference paper at ICLR 2024

Table 12: Number of integer operations with ICG in ResNet-18

Output Feature Weight DW Conv/FC ICG Total

layer oc w h ic fx fy # of output # of mul # of sum # of Op. # of ICG Op. Total # of Op. ICG ratio

1 64 56 56 64 3 3 F 200,704 576 575 231,010,304 802,816 231,813,120 0.35%
2 64 56 56 64 3 3 F 200,704 576 575 231,010,304 802,816 231,813,120 0.35%
3 128 28 28 64 3 3 F 100,352 576 575 115,505,152 401,408 115,906,560 0.35%
4 128 28 28 128 3 3 F 100,352 1,152 1,151 231,110,656 401,408 231,512,064 0.17%
5 256 14 14 128 3 3 F 50,176 1,152 1,151 115,555,328 200,704 115,756,032 0.17%
6 256 14 14 256 3 3 F 50,176 2,304 2,303 231,160,832 200,704 231,361,536 0.09%
7 512 7 7 256 3 3 F 25,088 2,304 2,303 115,580,416 100,352 115,680,768 0.09%
8 512 7 7 512 3 3 F 25,088 4,608 4,607 231,185,920 100,352 231,286,272 0.04%
9 64 56 56 64 3 3 F 200,704 576 575 231,010,304 802,816 231,813,120 0.35%

10 64 56 56 64 3 3 F 200,704 576 575 231,010,304 802,816 231,813,120 0.35%
11 128 28 28 64 3 3 F 100,352 576 575 115,505,152 401,408 115,906,560 0.35%
12 128 28 28 128 3 3 F 100,352 1,152 1,151 231,110,656 401,408 231,512,064 0.17%
13 256 14 14 128 3 3 F 50,176 1,152 1,151 115,555,328 200,704 115,756,032 0.17%
14 256 14 14 256 3 3 F 50,176 2,304 2,303 231,160,832 200,704 231,361,536 0.09%
15 512 7 7 256 3 3 F 25,088 2,304 2,303 115,580,416 100,352 115,680,768 0.09%
16 512 7 7 512 3 3 F 25,088 4,608 4,607 231,185,920 100,352 231,286,272 0.04%
17 1000 1 1 512 1 1 F 1,000 512 511 1,023,000 4,000 1,027,000 0.39%

Total 3,005,260,824 6,025,120 3,011,285,944 0.20%

Table 13: Number of integer operations with ICG in mobileNetV2

Output Feature Weight DW Conv/FC ICG Total

layer oc w h ic fx fy # of output # of mul # of sum # of Op. # of ICG Op. Total # of Op. ICG ratio

1 32 112 112 1 3 3 T 401,408 9 8 6,823,936 0 6,823,936 0.00%
2 96 112 112 16 1 1 F 1,204,224 16 15 37,330,944 4,816,896 42,147,840 12.90%
3 96 56 56 1 3 3 T 301,056 9 8 5,117,952 0 5,117,952 0.00%
4 144 56 56 24 1 1 F 451,584 24 23 21,224,448 1,806,336 23,030,784 8.51%
5 144 56 56 1 3 3 T 451,584 9 8 7,676,928 0 7,676,928 0.00%
6 144 56 56 24 1 1 F 451,584 24 23 21,224,448 1,806,336 23,030,784 8.51%
7 144 28 28 1 3 3 T 112,896 9 8 1,919,232 0 1,919,232 0.00%
8 192 28 28 32 1 1 F 150,528 32 31 9,483,264 602,112 10,085,376 6.35%
9 192 28 28 1 3 3 T 150,528 9 8 2,558,976 0 2,558,976 0.00%

10 192 28 28 32 1 1 F 150,528 32 31 9,483,264 602,112 10,085,376 6.35%
11 192 28 28 1 3 3 T 150,528 9 8 2,558,976 0 2,558,976 0.00%
12 192 28 28 32 1 1 F 150,528 32 31 9,483,264 602,112 10,085,376 6.35%
13 192 14 14 1 3 3 T 37,632 9 8 639,744 0 639,744 0.00%
14 384 14 14 64 1 1 F 75,264 64 63 9,558,528 301,056 9,859,584 3.15%
15 384 14 14 1 3 3 T 75,264 9 8 1,279,488 0 1,279,488 0.00%
16 384 14 14 64 1 1 F 75,264 64 63 9,558,528 301,056 9,859,584 3.15%
17 384 14 14 1 3 3 T 75,264 9 8 1,279,488 0 1,279,488 0.00%
18 384 14 14 64 1 1 F 75,264 64 63 9,558,528 301,056 9,859,584 3.15%
19 384 14 14 1 3 3 T 75,264 9 8 1,279,488 0 1,279,488 0.00%
20 384 14 14 64 1 1 F 75,264 64 63 9,558,528 301,056 9,859,584 3.15%
21 384 14 14 1 3 3 T 75,264 9 8 1,279,488 0 1,279,488 0.00%
22 576 14 14 96 1 1 F 112,896 96 95 21,563,136 451,584 22,014,720 2.09%
23 576 14 14 1 3 3 T 112,896 9 8 1,919,232 0 1,919,232 0.00%
24 576 14 14 96 1 1 F 112,896 96 95 21,563,136 451,584 22,014,720 2.09%
25 576 14 14 1 3 3 T 112,896 9 8 1,919,232 0 1,919,232 0.00%
26 576 14 14 96 1 1 F 112,896 96 95 21,563,136 451,584 22,014,720 2.09%
27 576 7 7 1 3 3 T 28,224 9 8 479,808 0 479,808 0.00%
28 960 7 7 160 1 1 F 47,040 160 159 15,005,760 188,160 15,193,920 1.25%
29 960 7 7 1 3 3 T 47,040 9 8 799,680 0 799,680 0.00%
30 960 7 7 160 1 1 F 47,040 160 159 15,005,760 188,160 15,193,920 1.25%
31 960 7 7 1 3 3 T 47,040 9 8 799,680 0 799,680 0.00%
32 960 7 7 160 1 1 F 47,040 160 159 15,005,760 188,160 15,193,920 1.25%
33 960 7 7 1 3 3 T 47,040 9 8 799,680 0 799,680 0.00%
34 1280 7 7 320 1 1 F 62,720 320 319 40,078,080 250,880 40,328,960 0.63%
35 1000 1 1 1280 1 1 F 1,000 1,280 1,279 2,559,000 4,000 2,563,000 0.16%

Total 337,938,520 13,614,240 351,552,760 4.03%

21

	Introduction
	Preliminaries
	Uniform Channel-wise Quantization
	Mean Reconstruction Error

	Proposed Method
	Input channel-wise Scale Grouping (ISG)
	Output channel-wise Scale and Offset (OSO)
	Computational Complexity at Inference
	Optimization Process

	Experiments
	Main Results
	Ablation Study
	Input Channel Group
	Computation Costs for Models

	Conclusion
	Preliminaries
	Batch-normalization fusing

	Related Work
	Algorithm
	Additional Results
	ImageNet Classification with Recent Round-based method
	Detection Task
	VIT-B model(ImageNet dataset)
	Regularization Parameter Lambda
	Impact of OSO on Input channel-wise Scale
	Input Channel Group Granularity
	Location of the OSO before or after activation function
	Input Channel Scale without Group Constraints

	Asic Results
	Calculation Cost
	Integer operations

