Under review as a conference paper at ICLR 2024

FUSIONFORMER: A MULTI-SENSORY FUSION IN
BIRD’S-EYE-VIEW AND TEMPORAL CONSISTENT
TRANSFORMER FOR 3D OBJECT DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-sensor modal fusion has demonstrated strong advantages in 3D object de-
tection tasks. However, existing methods that fuse multi-modal features require
transforming features into the bird’s eye view space and may lose certain infor-
mation on Z-axis, thus leading to inferior performance. To this end, we propose
a novel end-to-end multi-modal fusion transformer-based framework, dubbed Fu-
sionFormer, that incorporates deformable attention and residual structures within
the fusion encoding module. Specifically, by developing a uniform sampling
strategy, our method can easily sample from 2D image and 3D voxel features
spontaneously, thus exploiting flexible adaptability and avoiding explicit trans-
formation to the bird’s eye view space during the feature concatenation pro-
cess. Through extensive experiments on a popular autonomous driving benchmark
dataset, nuScenes, our method achieves state-of-the-art single model performance
of 72.6% mAP and 75.1% NDS in the 3D object detection task without test time
augmentation.

1 INTRODUCTION

Autonomous driving technologies typically rely on multiple sensors for safety considerations, such
as LiDAR (Chen et al.| 2023} [Yin et al., 2021 [Wang et al., [2020; Lang et al.,[2019), cameras (Wang
et al.,[2021b; 2022), and radar (Meyer & Kuschkl 2019; Meyer et al., 2021). These sensors possess
distinct characteristics. For example, LIDAR can provide accurate yet sparse point clouds with 3D
information, while images have dense features but lack such depth information. To enhance perfor-
mance, multi-modal fusion can be used to integrate the strengths of these sensors. By combining
information from multiple sensors, autonomous driving systems can achieve better accuracy and
robustness, making them more reliable for real-world applications. Concatenating multi-modality
features via simple concatenation in bird’s eye view (BEV) space becomes a defacto standard to
achieve state-of-the-art performance. As shown in Figure[I] current fusion framework fuses features
from LiDAR point cloud and images in BEV space via simple concatenation (Liu et al.}, 2023} |Liang
et al.} 2022) or a certain transformer architecture (Yan et al.| [2023). However, we conjecture that
these approaches has certain two limitations.

In order to fuse information at BEV level, we must first transform the 2D image features into 3D
via certain geometry view transformation (Philion & Fidler, 2020). This process requires using
a monocular depth estimation module which is an ill-posed problem and can generate inaccurate
feature alignment. We believe that a superior approach is to exploit features from sparse point cloud
to assist this process. Concurrently, |Yan et al.| (2023) proposes a transformer to leverage positional
encoding to encode image features, which can be viewed as an alternative approach to alleviate this
issue. However, all aforementioned methods explicitly transform the point voxel features into BEV
space before the fusion module by compressing the Z-axis dimensional features into vectors. This
may hinder the performance of downstream tasks that involves height information, such as 3D object
detection where one needs to predict the height of the bounding box.

To tackle above problems, we propose a novel multimodal fusion framework for 3D object detec-
tion, dubbed FusionFormer to address these challenges. As shown in Figure [T] (¢c), FusionFormer
can generate fused BEV features by sequentially fusing LIDAR and image features with deformable
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Figure 1: Comparison between state-of-the-art methods and our FusionFormer. (a) In
BEVFusion-based methods, the camera features and points features are transformed into BEV space
and fused with concatenation. (b) In CMT, the points voxel features are first compressed into BEV
features. And the LiDAR BEV features and image features are encoded with the same positional
encoding and tokenized as the Key and Value. Then, each object Query is passed into a transformer
decoder to directly generate the prediction result. (¢) In FusionFormer, the fusion of multi-modal
features is achieved by sequentially interacting BEV queries with original point cloud voxel features
and image features. This interaction leverages the depth references provided by point cloud features
for the view transformer of image features, while the image features complement the sparsity of
point cloud features. As a result, more accurate and dense fused BEV representations are obtained.
Additionally, FusionFormer incorporates a temporal fusion encoding module, enabling the fusion of
BEV features from historical frames.

attention (Zhu et al.| |2020), which inherently samples features at the reference points correspond-
ing to the BEV queries. By developing a uniform sampling strategy, our FusionFormer can easily
sample from 2D image and 3D voxel features at the same time thus exhibits flexible adaptabil-
ity across different modality inputs, and avoids explicit transformation and the need of monocular
depth estimation. As a result, multi-modal features can be input in their original forms avoiding
the information loss when transforming into BEV features. During the fusion encoding process, the
point cloud features can serve as depth references for the view transform of image features, while the
dense semantic features from images reciprocally complement the sparsity of point cloud features,
leading to the generation of more accurate and dense fused BEV features. Notably, FusionFormer
performs well even in the presence of missing point cloud or image features. We also propose a
plug-and-play temporal fusion module along with our FusionFormer to support temporal fusion of
BEV features from previous frames.

In addition, to verify the effectiveness and flexibility of our approaches, we use voxel features ob-
tained from monocular depth estimation of only images to replace the features obtained from LiDAR
point clouds to construct a FusionFormer that only uses camera modality.

In summary, we present the following contributions in this paper:

* We notice that state-of-the-art multi-modality frameworks need explicitly compressing the voxel
features into BEV space before fusing with image features might lead to inferior performance,
and propose a novel transformer based framework with a uniform sampling strategy to address
this issue.

* We also demonstrate that our method is flexible and can be transformed into a camera only 3D ob-
ject detector by replacing the LiDAR features to image features with monocular depth estimation.

 Our method achieves state-of-the-art single model performance of 72.6% mAP and 75.1% NDS
in the 3D object detection task of the nuScenes dataset without test time augmentation.
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2 RELATED WORK

Visual-centric 3D Object Detection. In recent years, camera-based 3D object detection has
gained increasing attention in the field of autonomous driving. Early approaches relied on pre-
dicting the 3D parameters of objects based on the results of 2D object detection (Park et al.| 2021}
Wang et al.,[2021b). Recently, BEV-based 3D object detection has become a hot research topic (Xie
et al.,|2022). Compared to previous methods, BEV-based 3D object detection can directly output 3D
object detection results around the vehicle using multi-view camera images, without requiring post-
processing of detection results in overlapping regions. Inspired by LSS (Philion & Fidler 2020),
recent works like BEVDet (Huang et al., 2021) and BEVDepth (Li et al., |2023) have used bin-
based depth prediction to transform multi-view camera features into BEV space. PETR (Liu et al.,
2022a)) achieves a camera-based BEV method with transformer by adding 3D position encoding.
DETR3D (Wang et al.| [2022)) and BEVFormer (Li et al., 2022c) use deformable attention to make
the query under BEV space interact with local features related to its position projection range during
the transformer process, achieving the transformation from multi-view camera space to BEV space.

LiDAR-centric 3D Object Detection. LiDAR-based 3D object detection methods can be cate-
gorized into different types based on the representation form of point cloud features. Point-wise
methods extract features directly from individual points and output 3D object detection results end-
to-end (Q1 et al.l 2018}, [Paigwar et al., 2019). BEV-based methods, on the other hand, construct in-
termediate feature forms before transforming them into BEV space (Yin et al., 2021). For instance,
VoxelNet (Zhou & Tuzel, [2018) voxelizes the raw point cloud and applies sparse 3D convolutions
to obtain voxel features. These features are subsequently compressed along the Z dimension to ob-
tain BEV features. In contrast, Pointpillar (Lang et al.,|2019) projects the point cloud into multiple
pillars and pools the points within each pillar to extract features for BEV-based detection.

Temporal-aware 3D Object Detection. Temporal fusion has emerged as a hot research topic in
the field of 3D object detection for its ability to enhance detection stability and perception of tar-
get motion. BEVFormer (Li et al., [2022¢)) uses spatiotemporal attention to fuse the historical BEV
features of the previous frame with current image features. BEVDet4D (Huang & Huang, [2022)
employs concatenation to fuse temporally aligned BEV features from adjacent frames. SOLOFu-
sion (Park et al., [2022)) further leverages this approach to achieve long-term temporal fusion. Some
methods perform temporal information fusion directly on the original feature sequences based on
query. For instance, PETRv2 (Liu et al., |2022b) employs global attention and temporal position
encoding to fuse temporal information, while Sparse4D (Lin et al., 2022) models the relationship
between multiple frames based on sparse attention. Additionally, StreamPETR (Wang et al.,|2023b)
introduces a method for long-term fusion by leveraging object queries from past frames.

Multi-modal 3D Object Detection. Fusing multi-sensory features becomes a de-facto standard in
3D perception tasks. BEVFusion-based methods (Liu et al.,[2023}|Liang et al.,[2022;|Cai et al., 2023)
obtain image BEV features using view transform (Philion & Fidler, [2020; [Li et al.| [2022c) and con-
catenates them with LIDAR BEYV features via simple concatenation. However, such simple stragety
may fail to fully exploit the complementary information between multi-modal features. Another line
of approaches construct transformer (Bai et al [2022; [Wang et al.| [2023a; Yang et al.,|[2022) based
architectures to perform interaction between image and point-cloud features. These methods relies
simultaneously on both image and point cloud modal features, which presents challenges in cases
of robustness scenarios when missing a modality data. Concurrently, Yan et al.| (2023) proposes a
method, dubbed CMT, which adopts 3D position encoding to achieve end-to-end multimodal fusion-
based 3D object detection using transformer. Nonetheless, the aforementioned fusion methods rely
on compressing point cloud voxel features into BEV representations, which can result in the loss
of the height information. To tackle this, UVTR (Li et al., 2022b) introduced knowledge transfer
to perform voxel-level multi-modal fusion by directly combining LiDAR voxel features with image
voxel features obtained through LSS. However, this approach did not yield notable improvements in
performance. Unlike these approaches, FusionFormer demonstrates enhanced adaptability to the in-
put format of multimodal features, allowing direct utilization of point cloud features in voxel form.
Moreover, by incorporating deformable attention and residual structures within the fusion encod-
ing module, FusionFormer can achieve both multimodal feature complementarity and robustness in
handling missing modal data.
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Figure 2: (a) The framework of the FusionFormer. The LiDAR point cloud and multi-view
images are processed separately in their respective backbone networks to extract voxel features and
image features. These features are then inputted into a multi-modal fusion encoder (MMFE) to
generate the fused BEV features. The fused BEV features of the current frame, along with the BEV
features from historical frames, are jointly fed into a temporal fusion encoder (TFE) to obtain the
multi-modal temporal fused BEV features. Finally, the features are utilized in the detection head
to produce the final 3D object detection results. (b) The architecture of the Multi-modal Fusion
Encoder (MMFE). The BEV queries are initialized and subsequently subjected to self-attention.
They are then sequentially utilized for cross-attention with the point cloud voxel features and image
features. The resulting BEV queries, updated through a feed-forward network, are propagated as
inputs to the subsequent encoder layers. Following multiple layers of fusion encoding, the ultimate
fused BEV feature is obtained.

3 METHOD

Here we present our method in detail. Figure[2](a) illustrates our proposed FusionFormer for mul-
timodal temporal fusion. By utilizing a fusion encoder based on deformable attention (Lin et al.,
2022), LIDAR and image features are transformed into fused BEV features. Compared to previous
approaches such as BEVFusion (Liu et al.|[2023; [Liang et al.| [2022), FusionFormer can adapt to dif-
ferent feature representations of different modalities without requiring pre-transformation into BEV
space. The image branch can retain its original 2D feature representation, while the point cloud
branch can be represented as BEV features or voxel features. Detailed information regarding the
image branch and point cloud branch can be found in the A.1 section of the appendix. The tempo-
ral fusion module utilizes deformable attention to fuse BEV features from the current and previous
frames that have been temporally aligned. Then the processed multimodal temporal fusion BEV
features are input into the detection task head to obtain 3D object detection results.

3.1 MULTI-MODAL FUSION ENCODER

As illustrated in Figure [2] (b), the fusion encoding module consists of 6 layers, each incorporat-
ing self-attention, points cross-attention, and images cross-attention. In accordance with the stan-
dard transformer architecture, the BEV queries are subjected to self-attention following initializa-
tion. Subsequently, points cross-attention is executed to facilitate the integration of LiDAR features,
which is further enhanced through images cross-attention to fuse image features. The encoding layer
outputs the updated queries as input to the next layer after being processed through a feed-forward
network. After 6 layers of fusion encoding, the final multimodal fusion BEV features are obtained.

BEV Queries. We partition the BEV space within the surrounding region of interest (ROI) range
around the vehicle’s center into a grid of H x W cells. Correspondingly, we define a set of learnable
parameters () to serve as the queries for the BEV space. Each ¢ corresponds to a cell in the BEV
space. Prior to inputting Q into the fusion encoder, the BEV queries are subjected to position
encoding based on their corresponding BEV spatial coordinates (Li et al., 2022c|).

Self-Attention. To reduce computational resource usage, we implemented the self-attention based
on deformable attention. Each BEV query interacts only with its corresponding queries within the
ROI range. This process is achieved through feature sampling at the 2D reference points for each
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query as illustrated below:
SA(Qp) = DefAttn(Qp,p, Q) (1)

where @, represents the BEV query at point p = (z,y).

Points Cross-Attention. The points cross-attention layer is also implemented based on de-
formable attention, but the specific manner in which points cross-attention is implemented varies
depending on the form of the LiDAR points features. For the case where BEV features are used as
input, we implement the points cross-attention layer as follows:

PCA2D(Qp7 Bpts) = DefAttn(pr P2D7 Bpts) (2)

where B, represents the BEV features output by the LiDAR branch, and Pop = (z2p,Y2D)
represents the 2D projection of the coordinate p = (z, y) onto the point cloud BEV space.

For the case where voxel features are used as input, the points cross-attention layer is implemented

as follows:
Nyey

PCAsp(Qp, Vots) = D, DefAttn(Qp, Pap(p,i), Vpts) 3)

i=1
where V), represents the voxel features output by the LiDAR branch.

To obtain the 3D reference points, we first expand the grid cell corresponding to each BEV query
with a height dimension, similar to the pillar representation (Lang et al., 2019). Then, from each
pillar corresponding to a query, we sample a fixed number of N,.; reference points, which are
projected onto the point cloud voxel space using the projection equation P3p. Specifically, for

ref

each query located at p = (z,y), a set of height anchors {zz}i\[=1 are defined along its Z-axis.

Consequently, for each BEV query @, a corresponding set of 3D reference points (z, y, zL)ivzf s

obtained. And the projection equation is as follow:
P3D (pv Z) = (xptsa Ypts, Zpts) (4)

where Psp(p,4) is the projection of the i-th 3D reference point of BEV query @), in the LIDAR
space.

Images Cross-Attention. The implementation of the images cross-attention is similar to the points
cross-attention with voxel features as input. Since the images have multi views, the 3D reference
points of each query can only be projected onto a subset of the camera views. Following BEV-
Former (L1 et al.,|2022c), we denote the views that can be projected as Vj;;. Therefore, the images
cross-attention process can be expressed as:

NTef Vvh'it
1 ..
[CAQp F) = =3 3 DefAtin(Qp, P(p.i.j), F) ©)
®oi=1 j=1

where j is the index of the camera view, F; represents the image features of the j-th camera, and
P(p, 1, j) represents the projection point of the i-th 3D reference point (x,y, z;) of query @, in the
image coordinate system of the j-th camera.

3.2 TEMPORAL FUSION ENCODER

As shown in Figure [3] the temporal fusion encoder (TFE) consists of three layers, each comprising
BEV temporal-attention and feedforward networks. At the first layer, the queries are initialized with
the BEV features of the current frame and then updated through temporal-attention using historical
BEV features. The resulting queries are passed through a feedforward network and serve as input
to the next layer. After three layers of fusion encoding, the final temporal fusion BEV features are
obtained. The temporal-attention process can be expressed as:

T
TCA(Qp,B) = > DefAttn(Qp, P, Bi_;) (6)

=0

where B;_; represents the BEV feature at time ¢ — 4.
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Figure 4: Fusion with depth prediction. Af-
ter being processed by the backbone network,
the multi-view image features are split into two
branches. One branch utilizes a feature pyra-
mid network (FPN) to extract multi-scale image
features. The other branch employs a monocu-
lar depth prediction network to estimate depth
and utilizes 3D convolution to encode the depth
predictions. The multi-scale image features and
the depth embedding are jointly input into the

the temporally fused BEV feature. encoder to obtain the BEV features.

3.3 FUSION WITH DEPTH PREDICTION

The flexibility of FusionFormer enables us to approximate the point cloud branch in scenarios where
only camera images are available by adding an image-based monocular depth prediction branch.
As illustrated in Figure [d] we propose a depth prediction network to generate interval-based depth
predictions from input image features. 3D convolution is utilized to encode the depth prediction
results as voxel features in each camera frustum. Depth cross-attention is then employed to fuse the
depth features. The process of depth cross-attention is defined as follows:

Nref Viir
1 ..
DCA(Qy D) = 5 3 3 Def Attn(Qp, P(p.i ). Dy) ™
"oi=1 j=1

where D, denotes the encoded depth prediction features of the j-th camera, and P(p, i, j) represents
the projection point of the i-th 3D reference point (x, y, z;) of query @, onto the frustum coordinate
system of the j-th camera.

4 EXPERIMENTS

This section presents the performance of our proposed FusionFormer on the task of 3D object detec-
tion, along with several ablation studies that analyze the benefits of each module in our framework.

4.1 EXPERIMENTAL SETUPS

Datasets and metrics. We conducted experiments on the nuScenes dataset (Caesar et al., [2020)
to evaluate the performance of our proposed method for 3D object detection in autonomous driving.
The nuScenes dataset consists of 1.4 million 3D detection boxes from 10 different categories, with
each frame of data containing 6 surround-view camera images and LiDAR point cloud data. We
employ the nuScenes detection metrics NDS and mAP as evaluation metrics for our experiments.

Implementation details. We conducted algorithmic experiments using the open-source project
MMDetection3D (Contributors| [2020) based on PyTorch. Specifically, we selected VoVNet-99 (Lee
& Parkl, 2020) as the backbone for the image branch, generating multi-scale image features through
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Table 1: Performance comparison on the nuScenes test set. "L” is LiDAR. ”C” is camera. ~T”
is temporal. The results are evaluated using a single model without any test-time-augmentation or
ensembling techniques.

Methods Modality| NDST mAPTmATE| mASE| mAOE] mAVE| mAAE]
PointPainting(Vora et al.) CL 61.0 54.1 | 38.0 26.0 54.1 29.3 13.1
PointAugmenting(Wang et al.)) CL 71.1 668 | 253 235 354 26.6 12.3
MVP(Chen et al.) CL 70.5 664 | 263 23.8 32.1 31.3 13.4
FusionPainting(Xu et al.) CL 71.6 68.1 | 25.6 23.6 34.6 27.4 13.2
TransFusion(Bai et al.) CL 717 689 | 259 24.3 35.9 28.8 12.7
BEVFusion(L1u et al.) CL 729 702 | 26.1 23.9 32.9 26.0 13.4
BEVFusion(Liang et al.) CL 733 713 | 25.0 240 359 254 13.2
UVTR(Li et al.) CL 71.1 67.1 | 306 245 35.1 22.5 12.4
CMT(Yan et al.) CL 74.1 720 | 279 235 30.8 25.9 11.2
Deeplnteraction(Yang et al.) CL 73.4 708 | 25.7 24.0 32.5 24.5 12.8
BEVFusiondD-S(Cai et al.) CL 73.7 71.9 - - - - -
BEVFusion4D(Cai et al.) CLT 747 733 - - - - -
FusionFormer-S CL 73.8 70.8 | 26.7 23.4 28.9 25.8 10.7
FusionFormer CLT 751 72.6 | 26.7 23.6 28.6 22.5 10.5

Table 2: Performance comparison on the nuScenes val set. ”L” is LiDAR. ”C” is camera. ~T”
is temporal. The ”-S” indicates that the model only utilizes single-frame BEV features without
incorporating temporal fusion techniques. The results are evaluated using a single model without
any test-time-augmentation or ensembling techniques.

Methods Image Backbone | LiDAR Backbone | Modality | mAPT NDS?t
TransFusion(Bai et al.) DLA34 voxel0075 CL 67.5 71.3
BEVFusion(Liu et al.) Swin-T voxel0075 CL 68.5 71.4
BEVFusion(Liang et al.)) Swin-T voxel0075 CL 67.9 71.0
UVTR(Li et al.) R101 voxel0075 CL 65.4 70.2
CMT(Yan et al.) VoV-99 voxel0075 CL 70.3 72.9
Deeplnteraction(Yang et al.) R50 voxel0075 CL 69.9 72.6
BEVFusiondD-S(Cai et al.) Swin-T voxel0075 CL 70.9 72.9
BEVFusion4D(Cai et al.) Swin-T voxel0075 CLT 72.0 73.5
FusionFormer-S VoV-99 voxel0075 CL 70.0 73.2
FusionFormer VoV-99 voxel0075 CLT 71.4 74.1

FPN (Lin et al., 2017). The input image size was set to 1600x640. For the LiDAR point cloud
branch, VoxelNet (Zhou & Tuzell |2018) was used as the backbone. The input LiDAR point cloud
was voxelized with a size of 0.075m. The size of the BEV queries was set to 200x200. During the
training process, we loaded the pre-trained weights of the image branch backbone on Fcos3D (Wang
et al., [2021b)). The point cloud branch did not require pre-trained weights and was directly trained
end-to-end with the model. We present a 3D detection head based on Deformable DETR (Zhu et al.}
2020) that outputs 3D detection boxes and velocity predictions directly from BEV features without
the need for non-maximum suppressing. To address the unstable matching problem encounterined
in DETR-like detection heads and accelerate training convergence, we applied the query denoising
strategy (Li et al.} [2022a) during the training process. The model was trained for 24 epochs with the
class-balanced grouping and sampling (CBGS) strategy (Zhu et al., 2019).

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

As shown in Table [I} FusionFormer achieves 75.1% NDS and 72.6% mAP on the nuScenes test
dataset for 3D object detection, outperforming state-of-the-art methods. We used a single model
fused with 8 frames of historical BEV features without any test-time-augmentation or ensem-
bling techniques. We also compared the performance of FusionFormer with other methods on the
nuScenes val dataset as shown in Table 2] Our proposed FusionFormer achieves state-of-the-art
performance on both single-frame and temporal fusion scenarios with NDS scores of 73.2% and
74.1%. Several detection results on the nuScenes test set of FusionFormer are shown in Figure
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Figure 5: Qualitative detection results in the nuScenes test set. Bounding boxes with different
colors represent Cars(*), Pedestrians(®), Bus(®) and Truck(®).

Table 4: Robustness performance on the nuScenes

Table 3: Results of camera based 3D de- val set. "L” is LIDAR. ”C” is camera.

tection fused with depth prediction.

Method Modality mAPT NDS?T
Method . mAPT NDST g onFormer C 343 455
BEVFormer(Lietal)) 41.6 51.7 FusionFormer L 62.5 68.6
FusionFormer-Dept! 43.9 53.3 FusionFormer CL 71 4 74: 1

4.3 CAMERA BASED 3D DETECTION FUSED WITH DEPTH PREDICTION

As shown in Table [3] FusionFormer achieves 53.3% NDS and 43.9% mAP on the nuScenes val
dataset with only camera images input by fused with the depth prediction results. Compared with
the baseline BEVFormer, the NDS and mAP increased by 1.6% and 2.3% respectively. In particular,
we found that after introducing the depth prediction branch, the BEV features output by the encoder
can converge better. This may be because the depth information carried by the depth prediction
branch allows the model to focus more accurately on the target location. As shown in Figure [f] (),
compared to BEVFormer, the BEV features obtained through FusionFormer-Depth are noticeably
more focused on the target location.

4.4 ROBUSTNESS STUDY

During the training process, we incorporated modality mask (Yan et al.} 2023} [Yu et al., 2023) to
Table 4} o

enhance the model’s robustness to missing modality data. As demonstrated in ur model
can produce desirable results even in scenarios where image or point cloud data is missing, show-
casing its strong robustness. These findings highlight the potential of our approach for addressing
challenges in multi-modal learning and its potential for practical real-world applications.

4.5 ABLATION STUDY

In this section, we investigate the influence of each module on the performance of our proposed
multi-modal fusion model for 3D detection. We adopted ResNet-50 as the back-
bone for the image branch, with an input resolution of 800x320 for the image and a voxel size of
0.1m for the point cloud branch, outputting 150x 150 BEV features. It is noteworthy that, all the
experiments presented in this section were based on single frame without incorporating temporal
fusion techniques. The models were trained for 24 epochs without utilizing the CBGS

[2019) strategy.

LiDAR Features. In order to evaluate the impact of fusing voxel features from point cloud, we
conducted experiments by comparing the model’s performance with LiDAR features using BEV
and voxel representations. Table[5]presents the results of all models. In contrast to inputting LIDAR
features in the form of BEV, the use of voxel input format leads to superior model performance.
Notably, the prediction errors for object center location and orientation are significantly reduced.
This may be attributed to the preservation of more object structural information of the Z-axis in the
voxel format, resulting in more accurate detection outcomes.
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Figure 6: (a) Visualization of the camera BEV features of BEVFormer and FusionFormer-
Depth. The BEV features obtained through FusionFormer-Depth are noticeably more focused on
the target location than BEVFormer. (b) Illustrations of the fused BEV features and LiDAR BEV
features of different fusion methods. The car labeled in the image are not annotated in the ground
truth because they are far away and the LiDAR captures fewer points. FusionFomer is capable of
better integrating multimodal features and can detect distant objects using image information even
when the point cloud is sparse.

Table 6: Ablation study of the modality fu-

Table 5: Study for the representation of the sion module on the nuScenes val set.

LiDAR feature on the nuScenes val set.

Fusion Method mAPT NDS?T

LiDAR | mAPT NDST | mATE] mAOE] Addition 503 64.6
\I?EVI 2;3 23; gi Z gg?l concatenation ~ 59.2  64.5
oxe . . - ' Ours 62.7 67.3

Modality Fusion. We conducted a comparative analysis of our proposed modality fusion method
with other fusion methods to evaluate their performance. In the case of the fusion methods of addi-
tion and concatenation, the image BEV features were obtained through BEVFormer(Li et al., 2022¢).
The experimental results are presented in Table |6l As shown in Figure [6](b), compared to other fu-
sion methods, the fused BEV features obtained through FusionFormer exhibit a stronger response
to the targets. Specifically, the distant cars labeled in the image are excluded from the ground truth
(GT) annotations due to the limited points captured by LiDAR. Consequently, conventional mul-
timodal fusion methods, such as simple addition and concatenation, fail to effectively incorporate
these distant objects. In contrast, our proposed method, FusionFormer, enables enhanced fusion of
multimodal features. It leverages the complementary information from image data to detect distant
objects even in scenarios with sparse point cloud data.

5 CONCLUSION

In this paper, we propose a novel transformer-based framework with a uniform sampling strategy
that overcomes the limitations of existing multi-modality frameworks. Our approach eliminates the
need for compressing voxel features into BEV space before fusion with image features, resulting
in superior performance. We demonstrate the versatility of our method by transforming it into a
camera-only 3D object detector, utilizing image features obtained through monocular depth estima-
tion instead of LiDAR features. Our method achieves state-of-the-art performance in the 3D object
detection task on the nuScenes dataset. In future, we will explore the applications of FusionFormer
in other tasks, such as map segmentation.
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