
Under review as a conference paper at ICLR 2024

ENCODINGS FOR PREDICTION-BASED
NEURAL ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Predictor-based methods have substantially enhanced Neural Architecture Search
(NAS) optimization, with the efficacy of these predictors largely influenced by
the method of encoding neural network architectures. While traditional encod-
ings used an adjacency matrix describing the graph structure of a neural network,
novel encodings embrace a variety of approaches from unsupervised pretraining
of latent representations to vectors of zero-cost proxies. In this paper, we catego-
rize and investigate neural encodings from three main types: structural, learned,
and score-based. Furthermore, we extend these encodings and introduce unified
encodings, that extend NAS predictors to multiple search spaces. Our analysis
draws from experiments conducted on over 1.5 million neural network architec-
tures on NAS spaces such as NASBench-101 (NB101), NB201, NB301, Net-
work Design Spaces (NDS), and TransNASBench-101. Building on our study,
we present our predictor FLAN: Flow Attention for NAS. FLAN integrates criti-
cal insights on predictor design, transfer learning, and unified encodings to enable
more than an order of magnitude cost reduction for training NAS accuracy predic-
tors. Our implementation and encodings for all neural networks are open-sourced
at https://anonymous.4open.science/r/flan_nas-433F/.

1 INTRODUCTION

In recent years, Neural Architecture Search (NAS) has emerged as an important methodology to
automate neural network design. NAS consists of three components: (1) a neural network search
space that contains a large number of candidate Neural Networks (NNs), (2) a search algorithm that
navigates that search space, and (3) optimization objectives such as NN accuracy and latency. A key
challenge with NAS is its computational cost, which can be attributed to the sample efficiency of the
NAS search algorithm, and the cost of evaluating each NN candidate. A vast array of search algo-
rithms have been proposed to improve NAS sample efficiency, ranging from reinforcement learning
(Zoph & Le, 2017), to evolutionary search (Pham et al., 2018), and differentiable methods (Liu et al.,
2019). To reduce the evaluation cost of each NN candidate, prior work has utilized reduced-training
accuracy (Zhou et al., 2020) zero-cost proxies (Abdelfattah et al., 2021), and accuracy predictors
that are sometimes referred to as surrogate models (Zela et al., 2020). One of the most prevalent
sample-based NAS algorithms utilizes accuracy predictors to both evaluate a candidate NN, and to
navigate the search space. Recent work has clearly demonstrated the versatility and efficiency of
prediction-based NAS (Dudziak et al., 2020; Lee et al., 2021), highlighting its importance. In this
paper, we focus on understanding the makings of an efficient accuracy predictor for NAS, and we
propose improvements that significantly enhance its sample efficiency.

An integral element within NAS is the encoding method to represent NN architectures. Conse-
quently, an important question arises, how can we encode neural networks to improve NAS effi-
ciency? This question has been studied in the past by (White et al., 2020), specifically investigating
the effect of graph-based encodings such as adjacency matrices or path enumeration to represent NN
architectures. However, recent research has introduced a plethora of new methods for encoding NNs
which rely on concepts ranging from unsupervised auto-encoders, zero-cost proxies, and clustering
NNs by computational similarity to learn latent representations. This motivates an updated study
on NN encodings for NAS to compare their relative performance and to elucidate the properties
of effecive encodings to improve NAS efficiency. We identify three key categories of encodings.
Structural encodings (White et al., 2020) represent the graph structure of the NN architecture in the
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Figure 1: The basic structure of an accuracy predictor highlights that many different types of encod-
ings can be fed to the same prediction head to perform accuracy prediction.

form of an adjacency matrix or path enumeration, typically represented by an operation matrix to
identify the operation at each edge or node. Score-based (Akhauri & Abdelfattah (2023)) encodings
map architectures to a vector of measurements such as Zero-Cost Proxies (Lee et al.; Tanaka et al.,
2020; Mellor et al., 2021). Finally, Learned encodings learn latent representations of the architec-
ture space. They can be further bifurcated into ones that explicitly learn representations through
large-scale unsupervised training (Yan et al., 2020; 2021) and ones that co-train neural encodings
during the supervised training of an accuracy predictor (Ning et al., 2022; Guo et al., 2019). Figure 1
illustrates our taxonomy of encoding methods, and their role within a NAS accuracy predictor.

NN encodings are particularly important in the case of prediction-based NAS because they have a
large impact on the effectiveness of training an accuracy predictor. For that reason, and due to the
increasing importance of predictors within NAS, our work provides a comprehensive analysis of the
impact of encodings on the sample-efficiency of NAS predictors. We validate our observations on
13 NAS design spaces, spanning 1.5 million neural network architectures across different tasks and
data-sets. Furthermore, NAS predictors have the capability to extend beyond a single NAS search
space through transfer learning (Akhauri & Abdelfattah, 2023), or more generally metalearning
(Lee et al., 2021). In this regime, pretraining a NAS predictor on a readily-available search space
(for example, a NAS benchmark), then transferring the predictor to a new search space could be
achieved with very few samples on the new search space, resulting in even more efficient NAS. We
posit that encodings play a major role in the efficacy of this approach and therefore, we empirically
evaluate transfer predictors as part of our comprehensive study. Our Contributions are:

1. We categorize and study the performance of many different NN encoding methods in NAS
accuracy prediction across 13 different NAS search spaces.

2. We propose a new hybrid encoder (called FLAN) that outperforms prior methods consis-
tently on multiple NAS benchmarks. We demonstrate a 2.12× improvement in NAS sample
efficiency.

3. We create unified encodings that allow accuracy predictors to be transferred to new search
spaces with a very low number of new accuracy samples. Notably, we are able to im-
prove sample efficiency of predictor training by 46× across three NAS spaces compared to
trained-from-scratch predictors from prior work.

4. We generate and provide open access to structural, score-based, and learned encodings for
over 1.5 million neural network architectures, spanning 13 distinct NAS spaces.

2 RELATED WORK

Predictor-based NAS. NAS consists of an evaluation strategy to fetch the accuracy of an archi-
tecture, and a search strategy to explore and evaluate novel architectures. Predictor-based NAS
involves training an accuracy predictor which guides the architectural sampling using prediction
scores of unseen architectures (Dudziak et al., 2020; White et al., 2021). Recent literature has fo-
cused on the sample efficiency of these predictors, with BONAS (Shi et al., 2020) using a GCN for
accuracy prediction as a surrogate function of Bayesian Optimization, BRP-NAS (Dudziak et al.
(2020)) employing a binary relation predictor and iterative sampling strategy. Recently, TA-GATES
(Ning et al., 2022) employed learnable operation embeddings and introduced a method of updating
embeddings akin to the training process of a NN to achieve state-of-the-art sample efficiency.

NAS Benchmarks. To facilitate NAS research, a number of NAS benchmarks have been released,
both from industry and academia (Ying et al., 2019; Zela et al., 2020; Duan et al., 2021; Mehta et al.,
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Figure 2: Illustration of important encoding methods that are discussed and evaluated in our work.

2022). These benchmarks contain a NAS search space and trained accuracy for each architecture
on a specific task. Even though most of these benchmarks focus on cell-based search spaces for
the image classification, they greatly vary in size (8k – 400k architectures) and NN connectivity.
Additionally, more recent benchmarks have branched out to include other tasks (Mehrotra et al.,
2021) and macro search spaces (Chau et al., 2022). Evaluations on a number of these benchmarks
have become a standard methodology to test and validate NAS improvements without incurring the
large compute cost of performing NAS on a new search space.

NN Encodings. There are several methods for encoding candidate NN architectures. Early NAS re-
search focused on structural encodings, converting the adjacency and operation matrix representing
the DAG for the candidate cell into a flattened vector to encode architectures (White et al., 2020).
Score-based methods such as Multi-Predict (Akhauri & Abdelfattah, 2023) focus more on capturing
broad architectural properties, by generating a vector consisting of zero-cost proxies and hardware-
latencies to represent NNs. There have also been efforts in unsupervised learned encodings such
as Arch2Vec (Yan et al., 2020), which leverages the graph auto-encoders to learn a compressed la-
tent vector used for encoding a NN. Another method, CATE (Yan et al., 2021), leverages concepts
from masked language modeling to learn latent encodings using computational-aware clustering of
architectures using Transformers. Finally, many supervised accuracy predictors implicitly learn en-
codings as intermediate activations in the predictor. These supervised learned encodings have been
generated most commonly with graph neural networks (GNNs) within accuracy predictors (Dudziak
et al., 2020; Shi et al., 2020; Ning et al., 2022; Liu et al., 2022).

3 ENCODINGS

A basic NAS formulation aims to maximize an objective function ℓ : A → R, where ℓ is a measure
of NN accuracy for our purposes but can include performance metrics as well such as hardware
latency (Dudziak et al., 2020). A is a NN search space. During NAS, NN architectures a ∈ A
are encoded using some encoding function e : A → Rd, that represents a NN architecture as a
d-dimensional tensor. While prior work (White et al., 2020) only considered a narrow definition of
encodings wherein e was a fixed transformation that was completely independent of ℓ, we expand
the definition to also consider encoding functions that are parameterized with θ. This includes su-
pervised training to minimize the empirical loss L on predicted values of ℓ to actual measurements:
minθ,ϕ

∑
a∈A′ L(Fϕ(eθ(a)), ℓ(a)), where F : E → R is a prediction head that takes a learned

encoding value e(a) and outputs predicted accuracy ℓ′(a). Simply put, this allows us to evaluate
part of an accuracy predictor as a form of encoding, for example, a learned graph neural network
encoding function that is commonly used in predictor-based NAS (Ning et al., 2022). Our defini-
tion also includes the use of unsupervised training to learn a latent representation r, for example
using an autoencoder which attempts to optimize minθ,ϕ

∑
a∈A′ L(F enc

θ (e(a)), F dec
ϕ (r)) using an

encoder-decoder structure that is trained to recreate the graph-based structure of an NN (e.g. adja-
cency encoding) (Yan et al., 2020). Our broader definition of encodings allows us to compare many
methods of NN encodings that belong to the four categorizations below—important encodings are
illustrated in Figure 2.

Structural encodings capture the connectivity information of a NN exactly. White et al. (2020) in-
vestigate two primary paradigms for structural encodings, Adjacency and Path encodings. A neural
network can have n nodes, the adjacency matrix simply instantiates a n × n matrix, where each
nodes connectivity with the other nodes are indicated. On the other hand, Path encodings represent
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Figure 3: The FLAN predictor architecture showing dual graph flow mechanisms, independent up-
dates of operation embeddings, and the capability to concatenate supplementary encodings.

an architecture based on the set of paths from input-to-output that are present within the architecture
DAG. There are several forms of these encodings discussed further by White et al. (2020), includ-
ing Path truncation to make it a fixed-length encoding. Their investigation reveals that Adjacency
matrices are almost always superior at representing NNs.

Score-based encodings represent a neural network as a vector of measurements related to NN ac-
tivations, gradients, or properties. These metrics were defined to be a vector of Zero-Cost Proxies
(ZCPs) and hardware latencies (HWL) in MultiPredict (Akhauri & Abdelfattah, 2023), and used for
accuracy and latency predictors respectively. Zero-cost proxies aim to find features of a NN that
correlate highly with accuracy, whereas hardware latencies are fetched by benchmarking the archi-
tecture on a set of hardware platforms. Naturally, connectivity and choice of operations would have
an impact on the final accuracy and latency of a model, therefore, these encodings implicitly capture
architectural properties of a NN architecture, but contain no explicit structural information.

Unsupervised Learned encodings are representations that aim to distil the structural properties of
a neural architecture to a latent space without utilizing accuracy. Arch2Vec (Yan et al., 2020) intro-
duces a variational graph isomorphism autoencoder to learn to regenerate the adjacency and opera-
tion matrix. CATE (Yan et al., 2021) is a transformer based architecture that uses computationally
similar architecture pairs (FLOPs or parameter count) to learn encodings. With two computation-
ally similar architectures, a transformer is tasked to predict masked operations for the pairs, which
skews these encodings to be similar for NNs with similar computational complexity. Unsupervised
Learned encodings are typically trained on a large number of NNs because NN accuracy is not used.

Supervised Learned encodings refer to representations that are implicitly learned in a supervised
fashion as a predictor is trained to estimate accuracy of NN architectures. These encodings are
representations that evolve and continually adapt as more architecture-accuracy pairs are used to
train an accuracy predictor. Supervised Learned encodings are more likely to exhibit a high degree
of bias towards the specific task on which they are trained, potentially limiting their generality when
extending/transferring a predictor to a different search space.

Unified Encodings. Multi-Predict (Akhauri & Abdelfattah, 2023) and GENNAPE (Mills et al.,
2022) introduce encodings that can represent arbitrary NNs across multiple search spaces. Further,
CDPLiu et al. (2022) introduces a predictor trained on existing NAS benchmark data-sets, and is
then used to find architectures in large-scale search spaces. In this paper, we look at unified encoding
methods that can work across cell-based search spaces. An approach to unified cell-based NAS can
enable knowledge reuse across several NAS spaces, and enable prototyping of novel search spaces.
To make our encodings unified, we append unique numerical indices to the cell-based encoding of
each search space. This unified operation space can enable training any of our studied encodings
across multiple search spaces.

4 FLAN: FLOW ATTENTION NETWORKS FOR NAS

Our empirical evaluation (yet to be presented in Table 2) shows that Supervised Learned encoders
often out-perform other encoding methods. This is somewhat expected because they have access
to the accuracies of NNs in the search space. However, training candidate NN architectures can be
fairly expensive, and it is not always feasible to obtain accuracies of a sufficient number of NNs,
therefore, we focus on the sample efficiency of the accuracy predictors. In this section, we introduce
FLAN: a hybrid encoding architecture which draws on our empirical analysis to deliver state-of-
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the-art sample efficiency for accuracy prediction. We carefully tune the predictor architecture so
that it can be used reliably as a vehicle to investigate and compare existing and new hybrid encoding
schemes as well as unified encodings. Figure 3 shows the FLAN architecture, described further
in this section. FLAN combines successful ideas from prior graph-based encoders (Dudziak et al.,
2020; Ning et al., 2022) and further improves upon them through dual graph-flow mechanisms. In
addition to learning an implicit NN encoding, FLAN can be supplemented with additional encodings
arbitrarily through concatenation before the predictor head as shown in Figure 3.

4.1 GNN ARCHITECTURE

Compared to Multi-Layer Perceptrons (MLPs), Graph Convolutional Networks (GCN) improve
prediction performance, as shown in Table 2. We employ an architectural adaptation inspired by
(Ming Chen et al., 2020), referred to as ‘Dense Graph Flow’ (DGF) (Ning et al., 2023). Empirical
analysis, detailed in Table 16, reveals that substantial enhancements in predictor performance can
be realized through the integration of residual connections (Kipf & Welling, 2017) within DGF. Fur-
ther, we add another node propagation mechanism based on graph attention to facilitate inter-node
interaction. Empirical results in Table 1 shows that the combination of both graph flows typically
yields the best results.

Dense Graph Flow (DGF): DGF employs residual connections to counteract over-smoothing in
GCNs, thereby preserving more discriminative, localized information. Formally, given the input
feature matrix for layer l as X l, the adjacency matrix A, and the operator embedding O, with
parameter and bias as W l

o, W l
f , and blf respectively, the input feature matrix for the (l + 1)th layer

is computed as follows (σ is the sigmoid activation):
X l+1 = σ(OW l

o)⊙ (A(X lW l
f )) + (X lW l

f ) + blf (1)

Graph Attention (GAT): Unlike DGF, which employs a linear transform W l
o to apply learned

attention to the operation features, GAT (Veličković et al., 2018) evaluates pairwise interactions
between nodes through an attention layer during information aggregation. The input to the lth layer
is a set of node features (input feature matrix) X l, to transform the input to higher level-features, a
linear transform paramterized by the projection matrix W l

p is applied to the nodes. This is followed
by computing the self-attention for the node features with a shared attentional mechanism a. The
output X l+1 is thus calculated as follows:

Attnj(X l) = softmax(LeakyReLU(Aj · a(W l
pX

l ·WpX
l
j))) ·WpX

l
j (2)

X l+1 = LayerNorm

σ(OW l
o)⊙

n∑
j=1

Attnj(X l)

 (3)

where Attnj are the normalized attention coefficients, σ denotes the sigmoid activation function. To
optimize the performance of GATs, we incorporate the learned operation attention mechanism Wo

from Equation 1 with the pairwise attention to modulate the aggregated information and LayerNorm
to improve stability during training.

The primary components of FLAN which significantly boost predictor performance are the DGF
residual connection, the learned operation attention mechanism Wo in DGF and GAT and the pair-
wise attention in the GAT module. These modules are ensembled in the overall network architecture,
and repeated 5 times. Additionally, the NASBench-301 and Network Design Spaces (NDS) search
spaces (Radosavovic et al., 2019) provide benchmarks on large search spaces of two cell architec-
tures, the normal and reduce cells. We train predictors on these search spaces by keeping separate
DGF-GAT modules for the normal and reduce cells, and adding the aggregated outputs.

Forward Backward NB101 NB201 NB301 Amoeba PNAS NASNet DARTSFixWD ENASFixWD TB101

DGF DGF 0.708 0.798 0.712 0.420 0.375 0.419 0.463 0.479 0.793
GAT GAT 0.653 0.772 0.793 0.375 0.357 0.313 0.544 0.459 0.745

DGF+GAT DGF 0.718 0.0.806 0.811 0.385 0.300 0.317 0.552 0.525 0.764
DGF+GAT DGF+GAT 0.732 0.820 0.820 0.459 0.422 0.387 0.557 0.568 0.754

Table 1: Using both node propagation methods within FLAN works best. Table shows Kendall Tau
coeff. of accuracy predictors trained on 128 NNs and tested on the remainder of each search space.
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Classification Encoder

NB101 NB201 NB301 ENAS
(Portion of 7290 samples) (Portion of 7813 samples) (Portion of 5896 samples) (Portion of 500 samples)

1% 5% 10% 0.1% 0.5% 1% 0.5% 1% 5% 5% 10% 25%

Structural ADJ 0.327 0.464 0.514 0.047 0.273 0.382 0.275 0.401 0.537 0.057 0.060 0.089
Path 0.387 0.696 0.752 0.133 0.307 0.396 - - - - - -

Score ZCP 0.591 0.662 0.684 0.248 0.397 0.376 0.286 0.272 0.367 0.387 0.458 0.540

Unsupervised Arch2Vec 0.210 0.346 0.345 0.046 0.165 0.144 0.174 0.228 0.379 0.202 0.228 0.324
Learned CATE 0.362 0.458 0.467 0.462 0.551 0.571 0.388 0.349 0.417 0.200 0.279 0.410

Supervised
Learned

GCN 0.366 0.597 0.692 0.246 0.311 0.408 0.095 0.128 0.267 0.230 0.314 0.428
GATES 0.632 0.749 0.769 0.430 0.670 0.757 0.561 0.606 0.691 0.340 0.428 0.527
FLAN 0.685 0.776 0.782 0.491 0.713 0.781 0.539 0.537 0.698 0.182 0.319 0.474

Hybrid

TAGATES 0.668 0.774 0.783 0.538 0.670 0.773 0.572 0.635 0.712 0.345 0.440 0.548
FLANZCP 0.700 0.788 0.786 0.535 0.716 0.773 0.573 0.656 0.721 0.402 0.504 0.578

FLANArch2V ec 0.653 0.752 0.762 0.501 0.706 0.772 0.417 0.509 0.688 0.138 0.163 0.397
FLANCATE 0.681 0.783 0.778 0.485 0.709 0.783 0.527 0.502 0.702 0.188 0.300 0.479
FLANCAZ 0.677 0.780 0.782 0.503 0.706 0.786 0.517 0.537 0.698 0.354 0.457 0.542

Table 2: A comparative study of accuracy predictors when utilizing different encoding methods.
Table shows Kendall Tau correlation coefficient of predictors. FLANX refers to the FLAN encoder
with supplemental X encodings. 9 trials for FLAN experiments.

4.2 OPERATION EMBEDDINGS

In a NN architecture, each node or edge can be an operation such as convolution, maxpool. GNNs
generally identify these operations with a one-hot vector as an attribute. However, different opera-
tions have widely different characteristics. To model this, TA-GATES (Ning et al., 2022) operation
embedding tables that can be updated independently from predictor training. Figure 3 depicts the
concept of an iterative operation embedding update in more detail. Before producing an accuracy
prediction, there are T time-steps (iterations) in which the operation embeddings are updated and
refined. In each iteration, the output of GNN flow is passed to a ‘Backward GNN Flow’ module,
which performs a backward pass using a transposed adjacency matrix. The output of this backward
pass, along with the encoding is provided to a learnable transform that provides an update to the
operation embedding table. This iterative refinement, conducted over specified time steps, ensures
that the encodings capture more information about diverse operations within the network. Refer to
A.8 for a detailed ablation study focusing on vital aspects of the network design.

4.3 FLAN ENCODINGS

Supplemental Encodings: Supervised learned encodings are representations formed by accessing
accuracies of NN architectures. While structural, score-based and unsupervised learned encodings
do not carry information about accuracy, they can still be used to distinguish between NN architec-
tures. For instance, CATE (Yan et al., 2021) learns latent representations by computational cluster-
ing, thus providing CATE may contextualize the computational characteristics of the architecture.
ZCP provides architectural-level information by serving as proxies for accuracy. Consequently, sup-
plemental encodings can optionally be fed into the MLP prediction head after the node aggregation
as shown in Figure 3. We find that using architecture-level ZCPs can significantly improve the
sample-efficiency of predictors. CAZ refers to the encoding resulting from the concatenation of
CATE, Arch2Vec and ZCP.

Unified Encodings and Transferring Predictors: Transferring knowledge between different
search spaces can enhance the sample efficiency of predictors. However, achieving this is challeng-
ing due to the unique operations and macro structures inherent to each search space. To facilitate
cross-search-space prediction, a unified operation space is crucial. Our methodology is straightfor-
ward; we concatenate a unique search space index to each operation, creating distinctive operation
vectors. These vectors can either be directly utilized by predictors as operation embeddings or be
uniquely indexed by the operation embedding table. Note that the training time for FLAN is less than
10 minutes on a single GPU, it is thus straightforward to regenerate an indexing that supports more
spaces, and re-train the predictor. It is noteworthy that ZCPs inherently function as unified encodings
by measuring broad architectural properties of a neural network (NN). Conversely, Arch2Vec and
CATE are cell-based encoders. To accommodate this, we developed new encodings for Arch2Vec
and CATE within a combined search space of 1.5 million NN architectures from all our NAS bench-
marks. We provide predictor training and NAS results for all spaces in Sections A.9 & A.6, and
provide a sub-set of these results in the experiments section to compare easily to related work. To
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Samples FLAN + Arch2Vec + CATE + ZCP + CAZ FLAN + Arch2Vec + CATE + ZCP + CAZ

NASBench-101 NASBench-201

8 0.381 0.274 0.441 0.459 0.479 0.410 0.419 0.427 0.429 0.429
16 0.507 0.445 0.407 0.550 0.468 0.612 0.616 0.610 0.612 0.618
32 0.572 0.512 0.575 0.602 0.590 0.691 0.692 0.691 0.694 0.688
64 0.635 0.606 0.657 0.694 0.677 0.760 0.765 0.769 0.769 0.757
128 0.717 0.691 0.720 0.758 0.740 0.826 0.823 0.820 0.819 0.827

DARTS DARTSFixWD

8 0.027 0.046 0.044 0.158 0.101 0.100 0.118 0.119 0.121 0.113
16 0.073 0.090 0.085 0.289 0.299 0.172 0.152 0.169 0.175 0.167
32 0.192 0.164 0.182 0.376 0.389 0.321 0.232 0.320 0.392 0.256
64 0.389 0.339 0.425 0.546 0.517 0.475 0.385 0.483 0.479 0.453
128 0.487 0.400 0.531 0.584 0.558 0.554 0.456 0.556 0.562 0.544

ENAS ENASFixWD

8 0.044 0.043 0.045 0.093 0.098 0.165 0.114 0.140 0.161 0.176
16 0.145 0.066 0.146 0.335 0.271 0.267 0.217 0.310 0.350 0.335
32 0.264 0.138 0.264 0.434 0.380 0.387 0.244 0.403 0.415 0.392
64 0.342 0.291 0.373 0.514 0.479 0.470 0.364 0.502 0.504 0.461
128 0.458 0.385 0.486 0.568 0.538 0.528 0.465 0.542 0.563 0.533

Table 3: A study highlighting the benefit of providing supplementary encodings in improving sam-
ple efficiency of FLAN. Table shows Kendall Tau correlation coefficient averaged over 9 trials.

realize such a transfer of predictors from one search space to another, a predictor, initially trained on
the source search space, is adapted using the unified operation encodings and subsequently retrained
on the target design space. This is denoted by a T superscript in our experiments section.

5 EXPERIMENTS

We investigate the efficacy of encodings on neural networks on 13 search spaces, including NB101,
NB201, NB301, 9 search spaces from NDS and TransNASBench-101 Micro. All of our experiments
follow the Best Practices for NAS checklist (Lindauer & Hutter, 2019), detailed in Appendix A.1.
Contrary to prior work, we generate encodings for all architectures in the search space for evalu-
ation. To effectively evaluate encodings on these spaces, we generate and open-source the CATE,
Arch2Vec and Adjacency representations for 1487731 NN architectures. NAS-Bench-Suite-Zero
(Krishnakumar et al., 2022a) introduces a data-set of 13 zero cost proxies across 28 tasks, totalling
44798 architectures. We supplement those with Zero-Cost Proxies for 487731 NN architectures to
facilitate our experiments. Building on previous studies, we adopt Kendall’s Tau (KDT) rank corre-
lation coefficient relative to ground-truth accuracy as the primary measure of predictive ability. We
use a pair-wise hinge ranking loss to train our predictors (Ning et al., 2022). We use these encodings
and input them to a 3-layer MLP prediction head with ReLU nonlinearity except for the output layer.

Encoding Study: Table 2 broadly evaluates the different categories of encoders. To compare ex-
isting literature consistently, we follow the same experimental set-up as TA-GATES (Ning et al.,
2022), using a sub-set of each search space. For each search space, like NB101, we train encoders
on a fraction of the data, such as 1% of 7290 (72 architectures), and then test on all 7290 test sample
architectures for NB101. This method applies the same number of training and test samples for each
space. Our results show that Supervised Learned encodings perform best, especially when supple-
mented with additional encodings with our Hybrid encodings. rbtlrom Figure 9, we can see that
score-based encodings typically help prediction with low sample count but there are diminishing
returns with more training samples. Our best encoding, FLANZCP , delivers up-to a 15% improve-
ment in Kendall-Tau correlation compared to the best previous result from TA-GATES. The results
highlight the efficacy of Supervised Learned encodings, and the importance of GNN enhancements
such as residual connections and the dual graph flow mechanisms introduced in FLAN.

Supplemental Encodings: A key reason for developing FLAN is to test combinations of different
encodings. In Table 3, we look at the impact of supplementing our baseline predictor with Arch2Vec,
CATE and ZCP on 6 different NAS search spaces. Note that ‘CAZ’ means we concatenate all three
encodings. This setting is more challenging than Table 2 because we report test accuracy on the en-
tire NAS search space instead of limiting our tests to ∼500–7000 NNs. We also increase the number
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Samples FLANT + Arch2Vec + CATE + ZCP + CAZ FLANT + Arch2Vec + CATE + ZCP + CAZ

NASBench-201 −→ NASBench-101 NASBench-101 −→ NASBench-201

2 0.525 0.298 0.532 0.470 0.443 0.643 0.483 0.488 0.399 0.590
4 0.511 0.406 0.517 0.459 0.423 0.620 0.523 0.490 0.436 0.529
8 0.536 0.471 0.512 0.517 0.486 0.647 0.567 0.606 0.519 0.605
16 0.580 0.523 0.562 0.542 0.534 0.692 0.645 0.649 0.640 0.716

ENAS −→ DARTS PNASFixWD −→ DARTSFixWD

2 0.494 0.514 0.505 0.581 0.546 0.418 0.294 0.415 0.454 0.355
4 0.503 0.440 0.478 0.543 0.513 0.394 0.312 0.379 0.440 0.419
8 0.506 0.521 0.525 0.585 0.533 0.372 0.353 0.392 0.432 0.385
16 0.515 0.483 0.484 0.594 0.552 0.365 0.369 0.389 0.436 0.416

DARTS −→ ENAS NASNet −→ ENASFixWD

2 0.452 0.479 0.444 0.587 0.439 0.316 0.247 0.435 0.456 0.421
4 0.398 0.359 0.391 0.497 0.374 0.258 0.300 0.386 0.447 0.367
8 0.390 0.431 0.409 0.530 0.418 0.252 0.398 0.380 0.460 0.404
16 0.432 0.403 0.433 0.533 0.368 0.340 0.412 0.389 0.436 0.422

Table 4: A study demonstrating the effectiveness of transferring predictors from one search-space
to another (Source −→ Target) using our Unified encodings. Table shows Kendall Tau correlation
averaged over 9 trials. In this paper, 512 samples are used from the source space.

From Scratch Transfer From TB101 Class Scene

Samples 16 4 6 8 16

AutoEncoder 0.456 0.758 0.788 0.767 0.767
Class Object 0.404 0.807 0.776 0.788 0.775

Jigsaw 0.350 0.757 0.760 0.773 0.736
Room Layout 0.391 0.786 0.782 0.770 0.770

Segment Semantic 0.644 0.794 0.788 0.786 0.776

From Scratch Transfer From NDS CIFAR-10

Samples 16 2 4 8 16

Amoeba 0.053 0.633 0.581 0.574 0.580
DARTS 0.121 0.326 0.332 0.372 0.464
ENAS 0.171 0.519 0.458 0.497 0.545

NASNet 0.103 0.349 0.362 0.376 0.471
PNAS 0.076 0.343 0.350 0.416 0.488

Table 5: A study demonstrating the effectiveness of predictor transfer across tasks within TB101
Micro and from NDS CIFAR10 to ImageNet. Average Kendall Tau correlation over 9 trials.

of NAS spaces to 6 in this experiment, with more comprehensive results on our remaining datasets
available in the appendix. Supplementing FLAN with ZCP encoding has a significant impact on
ranking quality. For the NDS search spaces (NASNet, AmoebaNet, PNAS, ENAS, DARTS), there
is a macro-level network depth d and initial filter width w hyper-parameter that affect model com-
plexity. We incorporate these as a normalized w-d vector to the predictor after the aggregation node,
similar to adding supplemental encodings. This significantly improves ranking quality on the NDS
search spaces, and indicates that providing macro-level context within the network definition helps
prediction. We use this observation in our next experiment when creating Unified Encodings. Over
baseline FLAN, incorporating ZCP encoding improves predictor accuracy by 47% on average.

Cross-Search Space Transfer: As evident in Table 3, the ranking quality for several design spaces
can be really low when training from scratch with very few samples. This is likely because 8
samples are not sufficiently representative to train a generalizable predictor. We therefore study
FLANT , which utilizes Unified encodings as discussed in Section 4.3. ZCP is already unified, as it
is applied on a full NN not just to one cell. From Table 4, we can see that pre-training FLAN on
a source space with unified encodings can enable a significant improvement in accuracy, especially
at very low sample counts. In this table, we report results for a range of source spaces to target
spaces. In the Appendix, we discuss why NASBench-201 −→ NASBench-101 transfer (and vice-
versa) does not benefit from these encodings. We also provide results of transferring to target spaces
from a single source space. For example, training on ENAS and transferring to DARTS can result in
a Kendall Tau of 0.58 with only 1-2 samples, as opposed to a KDT of 0.58 with 128 samples when
training from scratch, a 128× improvement in sample efficiency. This trend holds across search
spaces, as indicated in Table 10. To investigate whether this cross-search space transfer is effective
across tasks, Table 5 presents the effectiveness of transferring from Class Scene to 5 other tasks on
the TransNASBench-101 Micro benchmark. In this, we also present the effectiveness of transferring
predictors from NDS CIFAR-10 to ImageNet all of which outperforms training from scratch with
16 samples. To compare with prior work, we also conduct the same study with the sample-sizes
described in TA-GATES. Figure 8 looks at NB-101, NB-201 and ENAS spaces. On this setting,
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improves performance in low sample count region. Source search-spaces are the same as Table 4.

we improve sample efficiency by 46× on average across the three NAS spaces presented in the
figure. Note that our improvements do not include the cost to pre-train the predictor on the source
space intentionally because this can be considered a one-time cost and can be performed on a NAS
benchmark instead of a real search space.

Neural Architecture Search: To gauge the sample-efficiency of FLAN in practice, we implement
NAS search using the iterative sampling algorithm introduced by Dudziak et al. (2020). With a
budget of n models per iteration and m models in the search space, we use our predictor to rank
the entire search space, and then select the best n

2 models. To have a fair exploration-exploitation
trade-off, we sample the next n

2 models from the top max(512, m
2i ) models, where i is the iteration

counter. Table 6 compares our results to the best sample-based NAS results found in the literature.
We achieve the same test accuracy as Zero-Cost NAS (W) - Rand (3k) Abdelfattah et al. (2021) with
2.12× fewer samples on end-to-end NAS with FLANCAZ . Further, we compare the NAS efficiency
of different encoding methods within our framework in Figure 9. We find that transfer learning helps
in general, with supplemental encodings (FLANT

CAZ) providing the best average performance.

BONAS Aging BRPNAS Zero-Cost NAS (W) FLANCAZ FLANT
CAZEvo. (AE) AE (15k) RAND (3k)

Trained models 1000 418 140 50 34 2 8 16 50 2 8 19 50
Test Acc. [%] 94.22 94.22 94.22 94.22 94.22 91.08 93.58 94.22 94.84 94.16 94.16 94.22 94.34

Table 6: A study on the number of trained models required to achieve a specified Test Accuracy.

6 CONCLUSION

We presented a comprehensive study of NN encoding methods, demonstrating their importance
in enhancing the ranking quality and sample efficiency of NAS accuracy predictors. We found
that Supervised Learned encodings that were co-trained with an accuracy predictor performed best,
when compared to Structural, Score-based, or Unsupervised Learned encodings. This motivated our
design of FLAN: a GNN-based NN encoding architecture with dual node propagation mechanisms
and residual connections—empirically shown to outperform prior methods across different NAS
benchmarks. We used FLAN to test NAS predictors in two new settings. First, we showed that
supplementary encodings could be combined with FLAN to enhance its accuracy by up to 47%.
Score-based supplemental encodings (ZCP) helped most in this setting. We additionally used FLAN
to transfer accuracy predictors from one search space to another, demonstrating a 46× average
improvement in sample efficiency, and a 2.12× improvement in practical NAS sample efficiency.
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A APPENDIX

A.1 BEST PRACTICES FOR NAS

(White et al., 2020; Li & Talwalkar, 2019; Ying et al., 2019; Yang et al., 2020) discuss improving
reproducibility and fairness in experimental comparisons for NAS. We thus address the sections
released in the NAS best practices checklist by (Lindauer & Hutter, 2019).

• Best Practice: Release Code for the Training Pipeline(s) you use: We release code for
our Predictor, CATE, Arch2Vec encoder training set-up.

• Best Practice: Release Code for Your NAS Method: We release our code publicly for
the BRP-NAS style NAS search. We do not introduce a new NAS method.

• Best Practice: Use the Same NAS Benchmarks, not Just the Same Datasets: We
use the NASBench-101, NASBench-201, NASBench-301, NDS and TransNASBench-101
datasets for evaluation. We also use a sub-set of Zero Cost Proxies from NAS-Bench-Suite-
Zero.

• Best Practice: Run Ablation Studies: We run ablation studies for the design of FLAN
in Table 17, Table 21, Table 15 and Table 18. We conduct ablation studies with different
supplementary encodings in the main paper.

• Best Practice: Use the Same Evaluation Protocol for the Methods Being Compared:
We use the same evaluation protocol as TAGATES when comparing encoders across liter-
ature. We provide additional larger studies that all follow the same evaluation protocol.

• Best Practice: Evaluate Performance as a Function of Compute Resources: In this pa-
per, we study the sample efficiency of encodings. We report results in terms of the ’number
of trained models required’. This directly correlates with compute resources, depending on
the NAS space training procedure.

• Best Practice: Compare Against Random Sampling and Random Search: We propose
a predictor - encoder design methodology, not a NAS method. We use SoTA BRP-NAS
style NAS algorithm for comparing with existing literature.

• Best Practice: Perform Multiple Runs with Different Seeds: Our appendix contains
information on number of trials as well as reproduction of tables in the main paper with
standard deviation.

• Best Practice: Use Tabular or Surrogate Benchmarks If Possible: All our evaluations
are done on publicly available Tabular and Surrogate benchmarks.

A.2 NEURAL ARCHITECTURE DESIGN SPACES

In this paper, multiple distinct neural architecture design spaces are studied. Both NASBench-
101(Ying et al., 2019) and NASBench-201(Dong & Yang, 2020) are search spaces based on cells,
comprising 423,624 and 15,625 architectures respectively. NASBench-101 undergoes training on

Search space Tasks Num. ZC proxies Num. architectures Total ZC proxy evaluations

NAS-Bench-101 1 13 423 625 5 507 125
NAS-Bench-201 1 13 15 625 203 125
DARTS 1 13 5000 65000
ENAS 1 13 4999 64987
PNAS 1 13 4999 64987
NASNet 1 13 4846 62998
AmoebaNet 1 13 4983 64779
DARTSFixWD 1 13 5000 65000
DARTSLRWD 1 13 5000 65000
ENASFixWD 1 13 5000 65000
PNASFixWD 1 13 4559 59267
TransNASBench-101 Micro 7 12 4096 344 064
Total 18 13 512 308 6 631 332

Table 7: Overview of ZC proxy evaluations in our work. ZCP for TransNASBench-101 Micro and
NASBench201 are borrowed from Krishnakumar et al. (2022b).
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Figure 6: t-SNE scatterplot of the encodings for a set of architecture families using the ZCP, unified
Arch2Vec and unified CATE encodings. Best viewed in color.

CIFAR-10, whereas NASBench-201 is trained on CIFAR-10, CIFAR-100, and ImageNet16-120.
NASBench-301(Zela et al., 2020) serves as a surrogate NAS benchmark, containing a total of
1018 architectures. TransNAS-Bench-101(Duan et al., 2021) stands as a NAS benchmark that in-
cludes a micro (cell-based) search space with 4096 architectures and a macro search space em-
bracing 3256 architectures. In our paper, we only study TransNASBench-101 Micro as that is
a cell-based search space. These networks are individually trained on seven different tasks de-
rived from the Taskonomy dataset. The NASLib framework unifies these search spaces. The
NAS-Bench-Suite-Zero(Krishnakumar et al., 2022b) further extends this space by incorporating
two datasets from NAS-Bench-360, SVHN, and another four datasets from Taskonomy. Further,
the NDS(Radosavovic et al., 2019) spaces are described in Table 8 borrowed from the original pa-
per. Additionally, the NDS data-set has ‘FixWD’ data-sets which indicate that the width and depth
do not vary in architectures. The NDS data-set has LRWD data-sets which indicate that the learn-
ing rates do not vary in architectures. We do not include learning rate related representations in our
predictor, while it is possible and may benefit performance. We only look at architectural aspects of
the NAS design problem.

num ops num nodes output num cells (B)

NASNet (Zoph et al., 2018) 13 5 L 71,465,842
Amoeba (Real et al., 2019) 8 5 L 556,628
PNAS (Liu et al., 2018) 8 5 A 556,628
ENAS (Pham et al., 2018) 5 5 L 5,063
DARTS (Liu et al., 2019) 8 4 A 242

Table 8: NAS design spaces. NDS (Radosavovic et al., 2019) summarizes the cell structure for
five NAS design spaces. This table lists the number of candidate ops (5×5 conv, 3×3 max pool),
number of nodes (excluding the inputs), and which nodes are concatenated for the output (‘A’ if ‘all’
nodes, ‘L’ if ‘loose’ nodes not used as input to other nodes). Given o ops to choose from, there are
o2·(j+1)2 choices when adding the jth node, leading to o2k·((k+1)!)2 possible cells with k nodes
(of course many of these cells are redundant). The spaces vary substantially; indeed, even exact
candidate ops for each vary.

A.3 ADDITIONAL RESULTS

In this sub-section, we provide more complete versions of some of the graphs in the main paper.

The t-SNE scatterplot showcased in Figure 6 demonstrates distinct clustering patterns associated
with Arch2Vec based on different search spaces. This pattern is attributed to the binary indexing
approach utilized in operations representation. Similar clustering tendencies are also observable for
CATE and ZCP. However, it’s noteworthy that search spaces like ENASFixWD and PNAS tend
to cluster more closely in the CATE representation. This proximity is influenced by the similar-
ities in their parameter counts. In the case of ZCP, DARTS shows a tendency to cluster within
the ENASFixWD and PNAS spaces, which can be attributed to shared zero-cost characteristics.
These observations highlight the distinct nature of the encoding methodologies employed by ZCP,
Arch2Vec, and CATE. Quantitative analysis reveals the correlation of parameter count with the re-
spective representations as 0.56 for ZCP, 0.38 for CATE, and 0.13 for Arch2Vec. This quantitative
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Samples FLANT + Arch2Vec + CATE + ZCP + CAZ FLANT + Arch2Vec + CATE + ZCP + CAZ

NASBench-201 −→ NASBench-101 NASBench-101 −→ NASBench-201

2 0.5252 0.2981 0.5320 0.4702 0.4438 0.6437 0.4835 0.4885 0.3996 0.5902
4 0.5119 0.4066 0.5178 0.4594 0.4236 0.6208 0.5236 0.4902 0.4369 0.5293
8 0.5361 0.4717 0.5127 0.5171 0.4861 0.6474 0.5675 0.6062 0.5197 0.6059
16 0.5803 0.5236 0.5628 0.5422 0.5344 0.6923 0.6451 0.6491 0.6409 0.7162

ENAS −→ DARTS PNASFixWD −→ DARTSFixWD

2 0.4946 0.5141 0.5050 0.5811 0.5464 0.4186 0.2941 0.4151 0.4548 0.3557
4 0.5039 0.4402 0.4789 0.5433 0.5135 0.3944 0.3120 0.3791 0.4400 0.4194
8 0.5061 0.5210 0.5254 0.5852 0.5336 0.3722 0.3534 0.3929 0.4320 0.3859
16 0.5150 0.4836 0.4845 0.5940 0.5526 0.3653 0.3698 0.3898 0.4363 0.4167

DARTS −→ ENAS NASNet −→ ENASFixWD

2 0.4526 0.4797 0.4442 0.5870 0.4391 0.3166 0.2474 0.4352 0.4566 0.4218
4 0.3980 0.3599 0.3916 0.4970 0.3743 0.2581 0.3001 0.3864 0.4471 0.3676
8 0.3908 0.4315 0.4094 0.5308 0.4184 0.2521 0.3984 0.3806 0.4602 0.4044
16 0.4323 0.4037 0.4337 0.5336 0.3688 0.3405 0.4126 0.3899 0.4361 0.4223

Amoeba −→ NASBench-101 Amoeba −→ NASBench-201

2 −0.1169 0.1210 0.1426 0.4690 −0.0658 0.0727 0.2638 0.0058 0.4546 0.1907
4 0.0670 0.1529 0.1822 0.4185 0.1305 0.1156 0.2782 0.1853 0.3994 0.3091
8 0.2265 0.2734 0.2083 0.4113 0.2883 0.2704 0.4022 0.4071 0.3893 0.4343
16 0.2261 0.4310 0.2912 0.5072 0.3608 0.3858 0.4432 0.3893 0.4675 0.4691

Amoeba −→ DARTS Amoeba −→ DARTSFixWD

2 0.5852 0.5269 0.5105 0.4769 0.5165 0.2606 0.1219 0.2261 0.3072 0.3215
4 0.5380 0.4891 0.4880 0.4788 0.5033 0.1904 0.1731 0.1606 0.2998 0.2833
8 0.5490 0.4660 0.5083 0.4825 0.5675 0.2481 0.2676 0.1469 0.3396 0.2983
16 0.5629 0.4929 0.5632 0.5531 0.5651 0.2230 0.2403 0.2354 0.3063 0.2816

Amoeba −→ ENAS Amoeba −→ ENASFixWD

2 0.5225 0.4255 0.5065 0.4745 0.3230 0.3063 0.2317 0.3965 0.4385 0.2940
4 0.4335 0.3989 0.4818 0.4763 0.3221 0.3127 0.2578 0.3942 0.4169 0.2258
8 0.4875 0.4200 0.4790 0.4841 0.3453 0.3602 0.3442 0.3899 0.3949 0.2809
16 0.4492 0.4529 0.4806 0.5027 0.3423 0.3508 0.2963 0.4166 0.4264 0.3310

Table 9: A study demonstrating the effectiveness of transferring predictors from the Amoeba NDS
search-space to a target space using our Unified encodings. Table shows Kendall Tau correlation. 9
trials. Note that the first set of experiments have a different source space (as described by Source
Space −→ Target Space). This is to demonstrate that in cases where source and target spaces are
similar, FLANT may outperform other methods in the low sample count regime. In the same tar-
get spaces, when NDS Amoeba is used, supplementary encodings seem to aid transfer learning.
This can be supported by observing that Amoeba has reduction and normal cells, with operation
sets and macro-architecture quite distinct from NASBench-201 and NASBench-101. Additionally,
we see that Amoeba to DARTS transfer does not necessarily benefit from supplementary encoding,
whereas it does in DARTSFixWD, this is because in both Amoeba and DARTS, the w-d vector
changes, whereas DARTSFixWD is distinct in the sense that its w-d vector is fixed.

insight underscores the differential impact of encoding strategies on the parameter space represen-
tation across various search spaces.

A.4 NEURAL ARCHITECTURE SEARCH ON NASBENCH-201 CIFAR-100

To demonstrate the effectiveness of our predictor on NAS on more search spaces, we compare FLAN
with BRP-NAS to compare predictors, as well as other NAS search methodologies in Figure 7.

A.5 ON RUN-TIME OF OUR PREDICTOR

Training FLAN is extremely efficient, with our median training time being approximately 7.5 min-
utes. This implies that modifications to search space descriptions or indexing can be done trivially
and FLAN can be re-trained trivially. Further, generating the unified Arch2Vec and CATE encodings
can both be done in under an hour on a consumer GPU. The time to transfer to a new search space
depends upon the number of samples, our maximum time for transfer in tests was approximately
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Figure 7: FLAN with the iterative sampling search algorithm (BRP-NAS) outperforms other popular
search methodologies on NASBench-201 CIFAR100.
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Figure 8: Prediction accuracy with different numbers of trained NNs. We investigate the impact
of supplemental and unified encodings with FLAN, and compare to prior work. X-axis is logarith-
mic. Source space for NASBench-201 is NASBench-101 and vice versa. Source space for ENAS is
DARTS.
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Figure 9: End-to-end NAS with different predictors using an iterative sampling search algorithm.
FLANT improves search efficiency in the low sample count region. Source search-space for NAS-
Bench-201 is NASBench-101 and vice versa. Source space for ENASFixWD is PNAS.
1 minute. Finally, for inference during NAS, we can evaluate approximately 160 architectures per
second.

A.6 NAS ON ALL SEARCH SPACES

In Figure 10 and Figure 11, we provide the NAS results a range of samples and representations on
all 13 NAS spaces.

A.7 EXPERIMENTAL SETUP

In this paper, we focus on standardizing our experiments on entire NAS Design spaces. We open
source our code and generated encodings to foster further research. Additionally, we list the primary
experimental hyperparameters in Table 12.

It is important to note that our results for the PATH encoding are generated with the naszilla hyper-
paramaters described in Table 13. Upon reproducing their set-up on our own MLP network archi-
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Figure 10: Neural Architecture Search on all NAS spaces detailed in the paper. Accuracies normal-
ized 0-1.

tecture, adjacency representation was much better than path encoding. This further highlights the
importance of predictor design. In Table 14, we see that their MetaNN ourperforms our NN design,
but only for the PATH encoding.

A.8 ARCHITECTURE DESIGN ABLATION

In this section, we take a deep look at key architectural decisions and how they impact the sample
efficiency of predictors. Table 16 reproduces prior work (Ning et al., 2022) experimental setting
and looks at the impact of ’Timesteps’ (TS), ’Residual Connection’ (RS), ’Zero Cost Symmetry
Breaking’ (ZCSB) and ’Architectural Zero Cost Proxy’ (AZCP). We find that residual connection
’RS’ has a major impact on KDT, causing a dip from 0.66 to 0.59 on the test indicated by 1%
of NASBench-101. We extend this experimental setting to Table 9, where we study the impact
of time-steps on the entire search space. We find that in 3 out of 4 searc hspaces, having
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Figure 11: Neural Architecture Search on all NAS spaces detailed in the paper. Accuracies normal-
ized 0-1 except NB201, NB301. Our NB301 does not have ZCP.

time-steps has a positive impact on accuracy. It is important to note that the impact is lesser than
residual connection. This may indicate the importance of research in network design to avoid the
over-smoothing problem in GCNs.

Finally, we conduct a large scale study on NASBench-101, NASBench-201 and PNAS. In this study,
we look at the impact of having a ’DGF residual’, ’GAT LeakyReLU’ and ’GAT KQV-Projection’.
From Equation 2, we can see that the projection matrix Wp is shared, whereas in typical attention
mechanism, we have different projection matrices for the key, query and value tensors.

Thus, using the ’KQV-Projection’ implies using Wqp, Wkp and Wvp matrices as follows:

Attnj(X
l) = softmax(LeakyReLU(Aj · a(W l

qpX
l ·WkpX

l
j))) ·WvpX

l
j (4)

X l+1 = LayerNorm

σ(OW l
o)⊙

n∑
j=1

Attnj(X l)

 (5)

A.9 PREDICTOR SAMPLE EFFIENCY ON ALL SEARCH SPACES

In Table 10, we provide the kendall-tau for a range of samples and representations on all 13 NAS
spaces.
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Samples 2.0 4.0 5.0 7.0 8.0 16.0 32.0 64.0 128.0
Space Representation

Amoeba
FLAN 0.00840.0003 0.00920.0021 0.08830.0008 0.03540.0001 0.04680.0003 0.04240.0047 0.15780.0116 0.26210.0018 0.42370.0003
FLANT

Arch2V ec 0.12530.0000 0.08580.0015 0.08410.0019 0.09270.0018 0.12550.0008 0.10960.0003 0.09720.0052 0.13980.0007 0.19730.0018
FLANT

ZCP 0.23810.0000 0.19310.0006 0.20300.0023 0.24500.0005 0.27590.0008 0.29080.0022 0.36300.0010 0.41400.0012 0.48070.0008
FLANArch2V ec 0.06630.0007 −0.00350.0002 0.07050.0003 0.03780.0008 0.05260.0001 0.06320.0029 0.21470.0181 0.23900.0023 0.43860.0009
FLANZCP −0.01820.0033 0.05300.0047 0.09270.0009 0.06440.0001 0.09440.0005 0.17020.0051 0.36890.0131 0.42590.0006 0.55520.0001

DARTS
FLAN 0.00610.0236 0.01780.0012 0.01190.0000 0.06120.0012 0.02080.0039 0.08100.0024 0.23800.0045 0.40480.0012 0.51080.0012
FLANT

Arch2V ec 0.62670.0000 0.57650.0002 0.57100.0028 0.53080.0031 0.56610.0008 0.57920.0004 0.56100.0031 0.59270.0018 0.59080.0003
FLANT

ZCP 0.60330.0000 0.60970.0002 0.54570.0018 0.59050.0011 0.54130.0078 0.61140.0012 0.59640.0020 0.64910.0007 0.62500.0000

FLANArch2V ec 0.15810.0009 0.06420.0010 0.01480.0005 0.04830.0003 0.01380.0033 0.08530.0013 0.25130.0030 0.30590.0178 0.47800.0006
FLANZCP 0.00820.0044 0.19040.0196 0.04520.0060 0.22330.0096 0.08950.0087 0.23920.0016 0.45390.0009 0.54580.0014 0.59690.0002

DARTSFixWD

FLAN 0.05530.0007 0.03240.0028 0.05470.0030 0.06040.0078 0.09940.0031 0.06990.0099 0.37580.0001 0.44100.0053 0.56420.0001

FLANT
Arch2V ec 0.32490.0000 0.30640.0015 0.33620.0011 0.26730.0044 0.28200.0087 0.21960.0029 0.38030.0025 0.33800.0012 0.40480.0014

FLANT
ZCP 0.36540.0000 0.29090.0010 0.34730.0002 0.35890.0013 0.39750.0002 0.37560.0000 0.39590.0005 0.40010.0009 0.43040.0017

FLANArch2V ec 0.05740.0086 0.05820.0011 0.07570.0025 0.04770.0007 0.11560.0035 0.07560.0024 0.38160.0000 0.44320.0057 0.55760.0001
FLANZCP −0.03880.0065 0.08450.0006 0.07800.0035 0.07720.0004 0.14280.0019 0.09300.0088 0.37720.0000 0.49690.0025 0.55420.0016

DARTSLRWD

FLAN 0.00340.0005 0.01230.0001 0.00080.0002 −0.02140.0001 −0.00160.0002 0.00560.0004 0.01500.0001 0.03360.0006 0.03240.0000
FLANT

Arch2V ec 0.13350.0000 0.09120.0011 0.08020.0005 0.11690.0000 0.12700.0017 0.08980.0003 0.05840.0003 0.05340.0053 0.03200.0077
FLANT

ZCP 0.12120.0000 0.10200.0035 0.09720.0016 0.03720.0013 0.10010.0004 0.08650.0005 0.09270.0020 0.08770.0009 0.02440.0026
FLANArch2V ec 0.03000.0000 0.00580.0001 0.00330.0001 −0.02260.0001 −0.00190.0001 0.00260.0005 0.01020.0002 0.03660.0003 0.03730.0001
FLANZCP 0.00350.0003 0.00720.0000 0.00580.0000 −0.00330.0006 −0.00210.0001 0.02940.0011 0.02920.0007 0.04740.0004 0.04640.0002

ENAS
FLAN −0.02760.0020 0.07290.0002 0.01140.0006 0.02160.0006 0.01470.0014 0.16270.0108 0.34300.0018 0.40430.0008 0.47530.0008
FLANT

Arch2V ec 0.45680.0000 0.45980.0008 0.45210.0025 0.46140.0017 0.42780.0002 0.41300.0043 0.45650.0032 0.48200.0013 0.51460.0001
FLANT

ZCP 0.52550.0000 0.36460.0149 0.53310.0002 0.48820.0013 0.46950.0055 0.51290.0003 0.52540.0005 0.52960.0009 0.54110.0003
FLANArch2V ec 0.11540.0122 0.03200.0006 0.04280.0016 0.01080.0003 0.00160.0042 0.15830.0183 0.36200.0037 0.38510.0008 0.45940.0012
FLANZCP −0.01920.0031 0.14970.0002 0.13230.0055 0.11880.0077 0.12060.0054 0.32720.0239 0.49510.0002 0.54160.0024 0.57140.0003

ENASFixWD

FLAN 0.03190.0026 −0.02740.0010 0.05700.0120 0.12130.0191 0.06040.0046 0.12980.0092 0.36250.0118 0.50380.0002 0.54250.0002
FLANT

Arch2V ec 0.40060.0000 0.35970.0025 0.30630.0234 0.38610.0021 0.26570.0119 0.40550.0006 0.34800.0070 0.33140.0006 0.41760.0000
FLANT

ZCP 0.42820.0000 0.39960.0001 0.46210.0011 0.41300.0003 0.43890.0013 0.38040.0050 0.39470.0000 0.43150.0002 0.49150.0002
FLANArch2V ec 0.03750.0004 −0.03450.0032 0.06270.0096 0.11160.0149 0.00720.0050 0.14170.0093 0.34010.0148 0.50910.0001 0.54640.0006
FLANZCP −0.06620.0029 −0.03400.0062 0.07320.0013 0.20490.0050 0.11450.0084 0.22160.0087 0.43330.0037 0.52310.0003 0.55110.0001

NASNet
FLAN −0.03220.0002 0.06690.0016 0.04150.0014 0.05610.0027 0.03730.0001 0.05430.0006 0.19970.0005 0.27260.0028 0.40900.0001
FLANT

Arch2V ec 0.35390.0000 0.34210.0004 0.33190.0027 0.38460.0005 0.28750.0018 0.29890.0038 0.31090.0006 0.34660.0005 0.39810.0002
FLANT

ZCP 0.38250.0000 0.37320.0049 0.41370.0041 0.40330.0003 0.38930.0019 0.41150.0014 0.46070.0020 0.42680.0007 0.50200.0001
FLANArch2V ec 0.05120.0027 0.06930.0011 0.04260.0002 0.05640.0126 0.04320.0010 0.04440.0015 0.21860.0011 0.26640.0006 0.44110.0001
FLANZCP −0.05100.0040 0.13790.0029 0.08210.0001 0.15320.0203 0.06710.0102 0.21260.0059 0.37700.0069 0.46020.0014 0.53640.0015

PNAS
FLAN 0.02150.0086 0.00460.0030 0.05420.0004 −0.00850.0042 0.02480.0002 0.02680.0006 0.16170.0022 0.32600.0064 0.49970.0004
FLANT

Arch2V ec 0.07900.0000 0.09540.0239 0.08490.0064 0.13170.0241 0.24320.0023 0.11370.0036 0.23650.0056 0.31050.0012 0.34820.0022
FLANT

ZCP 0.04080.0000 0.15550.0085 0.10870.0001 0.15110.0069 0.21670.0014 0.17890.0021 0.28470.0022 0.34300.0003 0.37250.0034
FLANArch2V ec 0.10100.0000 0.01160.0036 0.05380.0009 −0.01570.0035 0.03540.0008 0.02940.0006 0.18010.0036 0.27020.0007 0.45060.0007
FLANZCP −0.01590.0024 0.11150.0081 0.04560.0001 0.03730.0051 0.04560.0003 0.16750.0052 0.38560.0024 0.45640.0011 0.52980.0001

PNASFixWD

FLAN 0.08060.0024 0.05500.0011 0.06540.0032 0.11310.0011 0.12870.0065 0.32680.0008 0.38150.0075 0.46690.0005 0.58960.0008
FLANT

Arch2V ec 0.11020.0000 0.14100.0016 0.14270.0009 0.09270.0002 0.12250.0102 0.13400.0027 0.20030.0003 0.20680.0048 0.32310.0026
FLANT

ZCP 0.32730.0000 0.15940.0196 0.30850.0008 0.32030.0026 0.27780.0007 0.21690.0004 0.30300.0012 0.32590.0010 0.34220.0026
FLANArch2V ec 0.00630.0054 0.07390.0020 0.04220.0005 0.13080.0025 0.07030.0061 0.29230.0041 0.40660.0031 0.45850.0006 0.58160.0007
FLANZCP −0.03040.0058 0.10990.0013 0.03760.0036 0.12270.0007 0.08050.0062 0.29280.0016 0.35650.0022 0.47520.0002 0.59500.0001

NB101
FLAN 0.12060.0452 0.35250.0150 0.41180.0007 0.43270.0036 0.45720.0014 0.46570.0067 0.56920.0017 0.69050.0000 0.73390.0002
FLANT

Arch2V ec 0.35660.0002 0.35420.0001 0.37570.0016 0.37640.0027 0.34430.0018 0.39900.0003 0.47680.0015 0.55610.0004 0.59170.0011
FLANT

ZCP 0.54320.0001 0.49490.0033 0.55170.0023 0.58520.0003 0.55360.0003 0.59890.0002 0.64380.0006 0.66510.0006 0.69320.0003
FLANArch2V ec −0.07480.0899 0.00090.0781 0.40060.0035 0.14320.0488 0.32560.0531 0.45490.0017 0.57130.0013 0.66790.0002 0.72480.0002
FLANZCP −0.03110.0312 0.49720.0004 0.29950.0059 0.46040.0026 0.30950.0566 0.54520.0024 0.59950.0004 0.67890.0012 0.75670.0001

NB201
FLAN 0.17140.0227 0.16100.0830 0.26000.0828 0.37760.0076 0.51020.0005 0.59280.0019 0.69910.0008 0.73460.0005 0.82910.0002

FLANT
CATE 0.12140.0573 0.54670.0005 0.53060.0035 0.52840.0010 0.51790.0013 0.63520.0006 0.62260.0033 0.73850.0004 0.78850.0005

FLANT
Arch2V ec 0.14440.0049 −0.02010.0058 0.27470.0184 0.22910.0029 0.37590.0254 0.52540.0102 0.62070.0031 0.68790.0003 0.77680.0007

FLANArch2V ec 0.17520.0101 0.14880.0951 0.21650.1043 0.36480.0077 0.50790.0014 0.59450.0018 0.70250.0005 0.73430.0005 0.82060.0001
FLANZCP 0.22550.0284 0.14550.1144 0.25050.0891 0.34410.0128 0.51520.0005 0.56460.0072 0.67230.0026 0.73180.0008 0.82590.0001

NB301
FLAN 0.42880.0029 0.26760.0521 0.48340.0000 0.47830.0081 0.53090.0041 0.55060.0005 0.65820.0001 0.72570.0008 0.73900.0005

FLANT
CATE 0.02410.0135 0.04390.0276 0.07060.0319 0.15330.0174 0.12210.0291 0.30820.0050 0.52300.0021 0.60900.0020 0.73280.0003

FLANT
Arch2V ec 0.27350.0002 0.19400.0031 0.15740.0068 0.26410.0372 0.38430.0022 0.43180.0047 0.49930.0028 0.69060.0015 0.72050.0005

TB101
FLAN 0.00160.0084 0.48240.0042 0.42140.0513 0.63980.0001 0.54750.0109 0.66890.0012 0.63510.0000 0.71500.0002 0.75200.0007
FLANT

ZCP 0.18620.0099 0.40020.0045 0.51090.0086 0.57100.0022 0.62010.0000 0.55990.0037 0.65440.0002 0.70860.0023 0.72980.0015
FLANArch2V ec 0.40610.0075 0.36050.0778 0.52840.0021 0.55060.0002 0.45970.0218 0.55560.0071 0.63640.0038 0.71430.0005 0.76700.0000
FLANZCP 0.39600.0183 0.37930.0750 0.52040.0022 0.55910.0010 0.41450.0137 0.53810.0052 0.64890.0036 0.72190.0011 0.77470.0001

Table 10: Predictor Sample Efficiency of all NAS spaces detailed in the paper. 3 trials.

Source NB201 NB301 NB101 NB201 PNASFixWD ENASFixWD

Target NB101 NB201 NB301 TB101 Amoeba PNASFixWD

Source NASNet DARTS ENAS PNAS DARTSLRWD DARTSFixWD PNAS
Target ENASFixWD NASNet DARTS ENAS PNAS DARTSLRWD DARTSFixWD

Table 11: Source and Target Spaces for Table 10

Hyperparameter Value Hyperparameter Value

Learning Rate 0.001 Weight Decay 0.00001
Number of Epochs 150 Batch Size 8
Number of Transfer Epochs 30 Transfer Learning Rate 0.001
Graph Type ‘DGF+GAT ensemble’ Op Embedding Dim 48
Node Embedding Dim 48 Hidden Dim 96
GCN Dims [128, 128, 128, 128, 128] MLP Dims [200, 200, 200]
GCN Output Conversion MLP [128, 128] Backward GCN Out Dims [128, 128, 128, 128, 128]
OpEmb Update MLP Dims [128] NN Emb Dims 128
Supplementary Encoding Embedder Dims [128, 128] Number of Time Steps 2
Number of Trials 9 Loss Type Pairwise Hinge Loss (Ning et al., 2022)

Table 12: Hyperparameters used in main table experiments.

A.10 RESULTS WITH VARIANCE

In this subsection, we attach results with variance for each experiment. Table ?? compares our
method with existing encoders. Table 19 extends this to the entire search space and highlights the
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Parameter Value Parameter Value

Loss MAE NN Depth 10
NN Width 20 Epochs 200
Batch Size 32 LR 0.01

Table 13: Hyperparameters used to gen-
erate PATH results.

Training Samples Adj MetaNN Adj NN Path MetaNN Path NN

72 0.057 0.3270 0.3875 -0.0315
364 0.1464 0.4647 0.6967 -0.0363
729 0.2269 0.5141 0.7524 -0.0023

Table 14: Study on PATH Encoding for
NASBench-101. Tested on 7290 samples.

NASBench-101
Timesteps DGF Leaky KQV Number Of Samples

Residual ReLU Projection 8 16 32

1 ✓ ✗ ✓ 0.3945 0.4939 0.5340
1 ✗ ✓ ✓ 0.2425 0.4434 0.5448
1 ✓ ✓ ✓ 0.3348 0.5230 0.5829
1 ✓ ✓ ✗ 0.4129 0.5301 0.5442
1 ✗ ✗ ✓ 0.3132 0.4311 0.5454
1 ✗ ✗ ✗ 0.4791 0.4658 0.5123
1 ✗ ✓ ✗ 0.4595 0.5098 0.5904
2 ✓ ✗ ✗ 0.4628 0.5299 0.4825
2 ✗ ✓ ✓ 0.4487 0.4832 0.5582
2 ✗ ✓ ✗ 0.3403 0.5428 0.5495
2 ✗ ✗ ✓ 0.3562 0.4420 0.4737
2 ✗ ✗ ✗ 0.2640 0.5162 0.5316
2 ✓ ✓ ✓ 0.3939 0.5081 0.5684
3 ✓ ✓ ✗ 0.3899 0.4633 0.5446
3 ✓ ✓ ✓ 0.4756 0.5340 0.5484
3 ✓ ✗ ✗ 0.3020 0.5025 0.5616
3 ✗ ✓ ✗ 0.2957 0.3765 0.5607
3 ✗ ✓ ✓ 0.3280 0.4647 0.5552
3 ✗ ✗ ✓ 0.3674 0.5241 0.5291

Table 15: Results of architecture design ablation. Tested on 1000 randomly sampled architectures.
Average over 3 trials. Results depict the Kendall Tau Correlation of FLAN with different DGF GAT
module implementations.

1% of NASBench-101 5% of NASBench-101

TS 1 2 3 1 2 2 2 2 1 2 3 1 1 1 1

RS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ZCSB ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓
AZCP ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

KDT 0.65 0.67 0.66 0.68 0.66 0.65 0.65 0.59 0.78 0.76 0.76 0.79 0.76 0.78 0.78

Table 16: Ablation for training on x% of 7290 samples on NB101, and testing on 7290 samples on
NB101.

Timesteps DARTSFixWD ENASFixWD NB101 TB101

1 0.48700.0002 0.46530.0031 0.70170.0007 0.77890.0002
2 0.46320.0003 0.47990.0010 0.71290.0001 0.79390.0001

4 0.48010.0001 0.48030.0012 0.71330.0001 0.79070.0002

Table 17: We study the importance of time-steps in the FLAN predictor design. 128 samples are
used to train, and tested on the entire NAS space.

effectiveness of adding supplementary encodings. Table 20 highlights the transfer results across
search spaces, and Table 21 looks at module design for FLAN.
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NASBench-201
Timesteps DGF Leaky KQV Number Of Samples

Residual ReLU Projection 8 16 32

1 ✓ ✗ ✓ 0.5550 0.6265 0.6850
1 ✓ ✗ ✗ 0.5415 0.6074 0.6767
1 ✗ ✓ ✓ 0.5425 0.6127 0.6841
1 ✓ ✓ ✓ 0.5437 0.6115 0.6830
1 ✗ ✗ ✓ 0.5529 0.6200 0.6773
1 ✓ ✓ ✗ 0.5563 0.6100 0.6766
1 ✗ ✗ ✗ 0.5460 0.5883 0.6886
1 ✗ ✓ ✗ 0.5303 0.5864 0.6886
2 ✓ ✓ ✓ 0.5295 0.6173 0.6796
2 ✓ ✓ ✗ 0.5431 0.6025 0.6847
2 ✓ ✗ ✓ 0.5452 0.6284 0.6800
2 ✓ ✗ ✗ 0.5545 0.5993 0.6758
2 ✗ ✓ ✓ 0.5512 0.6204 0.6781
2 ✗ ✓ ✗ 0.5396 0.5906 0.6807
2 ✗ ✗ ✓ 0.5280 0.6207 0.6781
2 ✗ ✗ ✗ 0.5470 0.5945 0.6956
3 ✓ ✓ ✓ 0.5488 0.6314 0.6849
3 ✓ ✓ ✗ 0.5644 0.6058 0.6751
3 ✓ ✗ ✗ 0.5529 0.5994 0.6806
3 ✓ ✗ ✓ 0.5457 0.6340 0.6863
3 ✗ ✓ ✗ 0.5579 0.5999 0.6909
3 ✗ ✗ ✓ 0.5429 0.6321 0.6874
3 ✗ ✓ ✓ 0.5372 0.6279 0.6835
3 ✗ ✗ ✗ 0.5436 0.5955 0.6862

PNAS
Timesteps DGF Leaky KQV Number Of Samples

Residual ReLU Projection 8 16 32

1 ✓ ✗ ✗ 0.1887 0.3354 0.4763
1 ✗ ✗ ✓ 0.1436 0.2878 0.3994
1 ✓ ✗ ✓ 0.1612 0.3129 0.4290
1 ✗ ✓ ✓ 0.1526 0.2919 0.4178
1 ✗ ✗ ✗ 0.2085 0.3242 0.4546
1 ✓ ✓ ✗ 0.1823 0.3417 0.4837
1 ✓ ✓ ✓ 0.1472 0.3096 0.4467
1 ✗ ✓ ✗ 0.2031 0.3121 0.4540
2 ✓ ✓ ✗ 0.2417 0.3568 0.4666
2 ✓ ✗ ✗ 0.2448 0.3617 0.4662
2 ✓ ✓ ✓ 0.1804 0.3212 0.4760
2 ✗ ✓ ✗ 0.2337 0.3448 0.4397
2 ✓ ✗ ✓ 0.1822 0.3238 0.4583
2 ✗ ✗ ✗ 0.2183 0.3263 0.4368
2 ✗ ✗ ✓ 0.1912 0.3091 0.4516
2 ✗ ✓ ✓ 0.1866 0.3125 0.4406
3 ✓ ✗ ✗ 0.2523 0.3639 0.4541
3 ✗ ✗ ✗ 0.2271 0.3511 0.4496
3 ✗ ✗ ✓ 0.1802 0.3199 0.4477
3 ✓ ✓ ✗ 0.2586 0.3488 0.4606
3 ✗ ✓ ✗ 0.2100 0.3438 0.4442
3 ✗ ✓ ✓ 0.1814 0.3107 0.4415
3 ✓ ✗ ✓ 0.1770 0.3316 0.4660
3 ✓ ✓ ✓ 0.1894 0.3309 0.4581

Table 18: Results of architecture design ablation. Tested on 1000 randomly sampled architectures.
Average over 3 trials. Results depict the Kendall Tau Correlation of FLAN with different DGF GAT
module implementations.

Samples FLAN FLANArch2V ec FLANCATE FLANZCP FLANCAZ Samples FLAN FLANArch2V ec FLANCATE FLANZCP FLANCAZ

NASBench-101 NASBench-201

8 0.38110.0047 0.27480.0348 0.44170.0120 0.45900.0033 0.47940.0025 8 0.41010.0434 0.41970.0551 0.42760.0512 0.42900.0375 0.42990.0495
16 0.50790.0023 0.44580.0009 0.40760.0050 0.55010.0012 0.46820.0082 16 0.61240.0025 0.61640.0029 0.61080.0023 0.61200.0031 0.61880.0036
32 0.57290.0017 0.51210.0028 0.57550.0029 0.60240.0023 0.59020.0017 32 0.69170.0009 0.69230.0008 0.69120.0010 0.69480.0010 0.68880.0011
64 0.63560.0005 0.60670.0014 0.65790.0007 0.69450.0008 0.67780.0007 64 0.76080.0006 0.76520.0005 0.76930.0006 0.76990.0006 0.75730.0003
128 0.71740.0002 0.69100.0003 0.72050.0003 0.75860.0001 0.74090.0002 128 0.82800.0001 0.82340.0002 0.82040.0002 0.81900.0002 0.82740.0003

DARTS DARTSFixWD

8 0.02700.0009 0.04640.0013 0.04410.0017 0.15890.0034 0.10130.0033 8 0.10060.0097 0.11880.0050 0.11960.0077 0.12170.0086 0.11300.0074
16 0.07340.0005 0.09030.0015 0.08580.0014 0.28900.0112 0.29950.0084 16 0.17240.0104 0.15240.0109 0.16980.0070 0.17590.0074 0.16740.0078
32 0.19280.0041 0.16430.0014 0.18250.0041 0.37670.0033 0.38990.0028 32 0.32140.0047 0.23210.0075 0.32030.0044 0.39270.0057 0.25620.0033
64 0.38930.0040 0.33900.0075 0.42520.0029 0.54680.0003 0.51750.0006 64 0.47500.0011 0.38520.0023 0.48300.0018 0.47910.0014 0.45350.0035
128 0.48720.0014 0.40060.0050 0.53150.0022 0.58450.0005 0.55830.0003 128 0.55460.0008 0.45670.0027 0.55670.0004 0.56260.0009 0.54490.0012

ENAS ENASFixWD

8 0.04430.0016 0.04310.0017 0.04540.0024 0.09390.0028 0.09830.0022 8 0.16550.0149 0.11450.0093 0.14060.0119 0.16120.0225 0.17630.0244
16 0.14500.0235 0.06630.0023 0.14660.0141 0.33500.0122 0.27110.0060 16 0.26720.0147 0.21730.0139 0.31030.0093 0.35090.0038 0.33570.0067
32 0.26450.0085 0.13890.0068 0.26450.0115 0.43480.0039 0.38090.0027 32 0.38710.0087 0.24450.0090 0.40340.0065 0.41550.0044 0.39270.0036
64 0.34290.0027 0.29100.0016 0.37390.0018 0.51450.0020 0.47920.0011 64 0.47040.0027 0.36420.0060 0.50250.0010 0.50480.0013 0.46100.0022
128 0.45850.0016 0.38520.0013 0.48680.0011 0.56830.0003 0.53830.0002 128 0.52880.0004 0.46580.0006 0.54280.0002 0.56350.0002 0.53350.0009

Table 19: We study the effect of supplementing the FLAN with different representations.

Samples FLANT FLANT
Arch2V ec FLANT

CATE FLANT
ZCP FLANT

CAZ Samples FLANT FLANT
Arch2V ec FLANT

CATE FLANT
ZCP FLANT

CAZ

NASBench-201 −→ NASBench-101 NASBench-101 −→ NASBench-201

2 0.52520.0000 0.29810.0285 0.53200.0043 0.47020.0008 0.44380.0015 2 0.64370.0006 0.48350.0041 0.48850.0024 0.39960.0060 0.59020.0005
4 0.51190.0021 0.40660.0071 0.51780.0020 0.45940.0026 0.42360.0061 4 0.62080.0038 0.52360.0038 0.49020.0036 0.43690.0044 0.52930.0130
8 0.53610.0037 0.47170.0040 0.51270.0013 0.51710.0016 0.48610.0016 8 0.64740.0072 0.56750.0118 0.60620.0022 0.51970.0113 0.60590.0078
16 0.58030.0004 0.52360.0054 0.56280.0003 0.54220.0027 0.53440.0028 16 0.69230.0014 0.64510.0031 0.64910.0033 0.64090.0019 0.71620.0031

ENAS −→ DARTS PNASFixWD −→ DARTSFixWD

2 0.49460.0000 0.51410.0000 0.50500.0000 0.58110.0000 0.54640.0000 2 0.41860.0000 0.29410.0000 0.41510.0000 0.45480.0000 0.35570.0000
4 0.50390.0059 0.44020.0087 0.47890.0009 0.54330.0067 0.51350.0045 4 0.39440.0004 0.31200.0124 0.37910.0013 0.44000.0010 0.41940.0016
8 0.50610.0016 0.52100.0022 0.52540.0007 0.58520.0016 0.53360.0036 8 0.37220.0013 0.35340.0034 0.39290.0039 0.43200.0015 0.38590.0030
16 0.51500.0020 0.48360.0025 0.48450.0030 0.59400.0014 0.55260.0019 16 0.36530.0013 0.36980.0035 0.38980.0032 0.43630.0033 0.41670.0008

DARTS −→ ENAS NASNet −→ ENASFixWD

2 0.45260.0000 0.47970.0000 0.44420.0000 0.58700.0000 0.43910.0000 2 0.31660.0000 0.24740.0000 0.43520.0000 0.45660.0000 0.42180.0000
4 0.39800.0044 0.35990.0040 0.39160.0075 0.49700.0011 0.37430.0078 4 0.25810.0023 0.30010.0227 0.38640.0018 0.44710.0018 0.36760.0086
8 0.39080.0064 0.43150.0039 0.40940.0024 0.53080.0007 0.41840.0017 8 0.25210.0209 0.39840.0047 0.38060.0040 0.46020.0011 0.40440.0044
16 0.43230.0012 0.40370.0022 0.43370.0012 0.53360.0018 0.36880.0087 16 0.34050.0038 0.41260.0024 0.38990.0051 0.43610.0028 0.42230.0011

Table 20: Transferring predictors from one search-space to another (Source −→ Target) benefits
from supplementary encodings such as CATE and Arch2Vec.

Forward Backward NB101 NB201 NB301 Amoeba PNAS NASNet DARTSFixWD ENASFixWD TB101

DGF DGF 0.70880.0003 0.79810.0004 0.71290.0001 0.42000.0003 0.37510.0008 0.41910.0038 0.46320.0003 0.47990.0010 0.79390.0001

GAT GAT 0.65350.0000 0.77240.0000 0.79380.0001 0.37510.0018 0.35700.0037 0.31340,0013 0.54410.0005 0.45900.0039 0.74580.0002
DGF+GAT DGF 0.71820.0003 0.0.81060.0000 0.81100.0000 0.385770.0024 0.30090.0064 0.31730.0043 0.55230.0001 0.52570.0021 0.76480.0003
DGF+GAT DGF+GAT 0.73220.0002 0.82000.0004 0.82020.0000 0.45940.0000 0.42250.0004 0.38700.0099 0.55770.0005 0.56850.0016 0.75440.0003

Table 21: We look at different GNN designs on a wider set of design spaces. 128 samples are used
to train, and tested on the entire NAS space.
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