Under review as a conference paper at ICLR 2026

OVERTONE: CycLiC PATCH MODULATION FOR
CLEANER, FASTER PHYSICS EMULATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based PDE surrogates achieve remarkable performance but face two
key challenges: fixed patch sizes cause systematic error accumulation at harmonic
frequencies, and computational costs remain inflexible regardless of problem
complexity or available resources. We introduce Overtone, a unified solution
through dynamic patch size control at inference. Overtone’s key insight is that
cyclically modulating patch sizes during autoregressive rollouts distributes errors
across the frequency spectrum, preventing the systematic harmonic artifacts that
plague fixed-patch models. We implement this through two architecture-agnostic
modules—CSM (using dynamic stride modulation) and CKM (using dynamic
kernel resizing)—that together provide both harmonic mitigation and compute-
adaptive deployment. The harmonic mitigation alone yields up to 40% error
reduction in long rollouts, while the flexible tokenization allows users to trade
accuracy for speed dynamically based on computational constraints. Applied to
challenging 2D and 3D PDE benchmarks, a single Overtone model matches or
exceeds multiple fixed-patch baselines across all compute budgets.

1 INTRODUCTION

Numerical solvers have long been the gold standard for simulating spatio-temporal dynamics in
systems governed by partial differential equations (PDEs). Numerical solvers offer convergence
guarantees, exploit problem sparsity, and provide fine-grained control of the accuracy-compute
trade-off through configurable resolution (Morton & Mayers| |2005; Malalasekera, [2007), driven by
both scientific necessity and computational availability (Berger & Colellal [1989; |Wedi, [2014).

Deep learning has established itself as a powerful framework for training surrogate models of physical
simulations (Caol 2021} [Li et al.| 2023; McCabe et al., 2023; Herde et al.,[2024). Though expensive
to train, relative cheap inference costs result in overall compute savings, which has led deep learning
surrogates to become popular in forecasting (B1 et al.,2023), PDE-constrained optimization (Li et al.|
2022), and parameter inference (Cranmer et al., [2020; Lemos et al.| 2023)). Recent approaches are
often derived from computer vision methods such as Vision Transformers (ViT (Dosovitskiy et al.,
2020)), which segment discretized fields into patches and then tokens. Non-overlapping patches are
used as a means to reduce token count and the associated quadratic attention cost.

However, these surrogates face two major limitations. First, we discover that in autoregressive
rollouts, fixed patch sizes cause systematic error accumulation at harmonic frequencies through
temporal coherence. While patch artifacts themselves are well-known, we show that repeatedly
hitting the same harmonics at every timestep creates a distinct accumulation pattern. When patches
of size k are used consistently during autoregressive rollouts, the artificial boundaries inject errors at
wavenumbers n/k where n is an integer. These errors constructively interfere over time, creating
pronounced spectral spikes (Figure [2) and visible grid-like artifacts. Second, fixed-patch models
have inflexible computational cost. In physical modeling, different applications have hard resolution
thresholds for resolving features like shocks or wave-fronts (Boyd, |2001), yet smaller patches that
improve accuracy (Dosovitskiy et al., [2020; [Wang et al., |2025a) cannot be selected post-training.

We address both challenges through dynamic patch size control during rollout—so far unexplored in
autoregressive modeling. Cyclically alternating patch sizes between k1, k2, and k3 at consecutive
timesteps can mitigate errors from accumulating coherently at single harmonics, instead distributing

Under review as a conference paper at ICLR 2026

L L L

il 2
IR m m eycle repeats

Convolutional Ked s=4 k=8 s=8 k=16 5=16 throughout rollout
Kernel Modulator

" base 16x16 patch
shared via Pl resize

Convolutional

Stride Modulator k=165=4 k=16 5=8 k=165=16

Figure 1: Illustration of Overtone’s CSM (stride modulation) and CKM (kernel modulation). Cyclic
modulation distributes errors across frequencies, preventing error accumulation at harmonics and
enabling accuracy-compute trade-offs at inference time.

them across the frequency spectrum. This same capability enables compute-adaptive deployment
without retraining, allowing users to balance accuracy and computational demands based on available
resources.

Overtone implements this through two modules: Convolutional Stride Modulation (CSM) maintains a
static kernel but dynamically modulates stride, while Convolutional Kernel Modulation (CKM) uses
bicubic interpolation to resize a single kernel (as in [2014; Beyer et al., [2023)) for both
encoder and decoder, all while cyclically modulating these during rollout (Figure|l). We empirically
demonstrate that this cyclic modulation fundamentally alters error accumulation in autoregressive
rollouts, also with motivation of the technique in spectral analysis (Figure[2), to show how temporal
coherence in tokenization has been an unaddressed source of error in spatiotemporal models.

0.060
£ 0.055
E 0.050
3
2,0.045
12}

5 0.040
g 0.035
g 0.

Fixed Patch Size (VRMSE = 0.941)

@ 0.030
=1

<

55)
2 0.025 »; ¢ 2

Q
~ 0.020

0.015+ T T T T T J
0.10 0.15 0.20 0.25 0.30 0.35 0.40

Spatial frequency

Figure 2: Left: Power spectrum at rollout step 20 revealing harmonic error accumulation in fixed-
patch models. The fixed patch 16 model shows pronounced spikes at harmonic frequencies /16,
while CSM and CKM with cyclic modulation distribute errors across the spectrum, supporting our
theoretical motivation (Section[2). Right: Spatial manifestation of harmonic artifacts at rollout step
20 on Turbulent Radiative Layer 2D. Cyclic patch modulation eliminates the grid-like distortions in
the fixed model, showing the practical impact of harmonic error distribution.

Contributions. We present Overtone, a framework that identifies and addresses a fundamental
issue in patch-based surrogates while providing practical compute flexibility:

1. Harmonic Artifact Diagnosis: We identify that fixed-patch tokenization causes systematic error
accumulation at harmonic frequencies k/p, manifesting as spectral spikes and spatial artifacts that
degrade long-term predictions in autoregressive surrogates.

Under review as a conference paper at ICLR 2026

2. Cyclic Rollout Strategy: We introduce cyclic stride/patch modulation during inference. While
adaptive patching exists in vision, we are not aware of prior work that cyclically modulates patches
during autoregressive rollouts in computer vision, video modeling, or PDE applications. This
strategy alternates patch sizes or strides cyclically (4, 8, 16) during rollouts to distribute errors
across the frequency spectrum, preventing coherent accumulation and reducing errors by up to
40% compared to fixed baselines, all without requiring retraining.

3. Architecture Agnostic Controllable Tokenization Modules: We develop CSM (using dynamic
stride adjustment) and CKM (using kernel interpolation (Xu et al. [2014; Beyer et al.| [2023)))
as architecture-agnostic methods for controllable tokenization. These modules operate at the
tokenization level and are compatible with backbones like vanilla ViT |Dosovitskiy et al.| (2020),
axial ViT Ho et al.| (2020), CViT |Wang et al.| (2025b), making them flexible plug-ins for PDE
surrogates.

4. Compute-Adaptive Deployment: Beyond strong accuracy gains, Overtone provides practical trade-
offs between speed and precision at inference. A single model can adjust patch sizes based on
available resources, matching or exceeding multiple fixed-patch baselines across all compute
budgets on challenging 2D/3D PDE benchmarks from the Well (Ohana et al., [2024). Overtone is
also competitive with a range of SOTA non-patch baselines, underscoring its broader significance.

We focus on autoregressive surrogate models for time-evolving PDE systems, where the goal is to
predict the next state of a discretized physical field from a short temporal context.

1.1 BACKGROUND AND RELATED WORK

Architecture-agnostic tokenization for PDE surrogates. CSM and CKM are architecture-agnostic
tokenization strategies applied at the encoder and decoder stages. They control the patch/stride
configuration for spatial downsampling while remaining independent of the transformer architecture.
We show compatibility with standard vanilla ViTs (full attention) (Dosovitskiy et al., 2020) and
axial ViTs (Ho et al., [2019). This modularity makes CSM and CKM flexible plug-ins for diverse
transformer-based PDE surrogates, allowing adaptive deployment without redesign.

Surrogate modeling of PDEs with deep learning. PINNs (Raissi et al.,2019; [Cai et al.,2021; |Han
et al., 2018} |Hao et al., |2023aj [Karniadakis et al.,|2021; |Lu et al., 2021} |Pang et al., [2019; [Sun et al.,
2020; [Zhu et al.|, 2023)) embed physics in loss functions, while CNN- and GNN-based surrogates
operate on structured or unstructured meshes, supporting spatiotemporal tasks such as climate and
fluid modeling (Brandstetter et al., 2022c; |Gupta & Brandstetter, [2022; Janny et al., 2023 |[Li &
Farimanil 2022 |Lotzsch et al., 2022 |Pfaff et al., 2021} [Prantl et al.| [2022; [Sanchez-Gonzalez et al.|
2020; Stachenfeld et al., 2022} [Thuerey et al., 2020; [Ummenhofer et al., 2020; [Wang et al., [2020;
Lam et al.| 2022; Nguyen et al., 2023} |Pathak et al., |2022). Neural operators (Li et al., 2020cib; Lu
et al.| [2019;[2022; Ovadia et al.|[2023; [Brandstetter et al.| [2022a:bj (Caol 20215 Gupta et al.,2021; |Hao
et al.l [2023b; Jin et al., 2022} Kissas et al., 2022} [Kovachki et al., [2021) aim for resolution-invariant
learning, with FNOs (Li et al., 2020a)) using Fourier transforms for global context.

ViTs and compute adaptive models for PDE surrogate modeling. Initially developed for image
recognition tasks, ViTs (Dosovitskiy et al.l 2020) have seen increasing adoption in the PDE surrogate
modeling literature (Caoj 2021 |L1 et al., 2023} [Liu et al., |2023). Despite their strengths, traditional
ViTs rely on fixed patch sizes, which strongly limits their flexibility and adaptability when modeling
PDE-based systems as discussed in the introduction. Examples of kernel interpolation for adaptive
sizing include SiCNN (Xu et al., 2014), which applied bicubic interpolation to CNN kernels and
trained at multiple scales, and FlexiViT (Beyer et al.,|2023)), which applies bicubic interpolation to
ViT kernels for image classification. Although explored in computer vision, adaptive patching for
PDE surrogate modeling has only been explored in (Zhang et al., [2024a), the difference with our
work being that their patchification is data-driven, while ours can be manually controlled based on
compute requirements.

2 METHODS

Overview. CSM and CKM operate as encoder-decoder modules within a ViT based architecture
for autoregressive PDE prediction. The transformer core applies a sequence of temporal attention,

Under review as a conference paper at ICLR 2026

spatial attention, and MLP blocks (Appendix [B.2). Crucially, Overtone’s framework is architecture-
agnostic—we test it with axial attention and vanilla ViTs (and also a recent model—Continuous ViT
(Wang et al., 2025b) in Appendix [D).

Utility of flexible models. As illustrated in Figure 3] increasing the number of tokens—equivalent
to using smaller patch sizes in models with fixed patches—enhances the accuracy of autoregressive
prediction tasks, but at a higher computational cost. The cost for models trained with fixed patch
sizes cannot be controlled at inference time. This limits the utility of these models in budget-
aware production settings and motivate the exploration of flexible models for PDE modeling with
ViT-inspired architectures.

Research in the broader machine learning community has extensively demonstrated the value of scale
(Zhai et al.| [2022; [Hoffmann et al2022)). As transformer-based surrogate models similarly scale in
parameter count, ensuring inference-time scalability is crucial, particularly to ensure these models
are able to be used in compute-constrained environments. To avoid any confusion, by inference
scalability, we mean patching/striding scalability or tunability, and not scalability in mesh resolution.
Training and maintaining multiple fixed-patch models is a burden especially as large pretrained or
foundation models are being built (McCabe et al.l 2023} |Herde et al., [2024; Morel et al., [2025]).
In such a scenario, if Overtone’s flexible strategies can enable training of a single model without
retraining for multiple patch resolutions without any loss in accuracy, these strategies can form the
building blocks for larger scale foundation models for PDE:s.

Patching. Given an input image with height H and width W, ViTs will divide the image into
non-overlapping patches of size k x k, producing N = | H/k] - |W/k] tokens. For global attention,
transformer cost scales as O(N?), and for axial attention, as C’)(N\/N) (Ho et al.l [2019). In
convolutional tokenization, patches are extracted via kernels of size k and stride s, resulting in token
count N = N}, - N, where Nj, = [(H — k)/s| +1and N, = [(W — k)/s| + 1. While most ViT
based architectures use k = s, our CSM and CKM modules decouple these parameters to flexibly
control token count at inference.

Convolutional Stride Modulator (CSM). CSM provides flexible downsampling by modulating
the stride s € {4,8,16} at each forward pass. Consider input x € X7 for some input space
XT C RMXHXWXTXC \with M, T and C being the batch size, time context and input channels
respectively. We pad the input with learned tokens (informed by boundary conditions) to avoid edge
artifacts. During training, the model is trained with random stride sizes sampled from 4, 8, 16 during
the forward pass (Appendix [I.3). At inference, starting from input context #° = (%, ...,z7), CSM
uses a fixed kernel w"*° and computes:

i _ o Sibl Ty,
, Ty = Processor(zy,.), I = Conv (xj,,w

base)
stride s;

z! = Conv (&', w base)

enc .)
stride s;

where we cycle s; = (4,8, 16)(; mod 3)+1 and slide 277} | = &4,

Here, Processor denotes a transformer-based processor that operates on the encoded tokens, Conv "
indicates a transposed convolution, and the output 25 € X1 C REXHXWX1xXC ig the next-step
prediction. CSM is compatible with both single-stage and multi-stage encoder-decoder modules.
Implementation details and code are provided in the supplementary materials.

Convolutional Kernel Modulator (CKM). CKM introduces dynamic patch size selection within
convolutional encoder and decoder blocks, enabling models to select a patch size k € {4, 8,16} for
each forward pass—powers-of-two that reflect standard discretizations in PDE data. Unlike most
ViT-based surrogates that fix patch size at 16 (McCabe et al.,2023; Morel et al.,2025)), CKM provides
flexible tokenization essential for harmonic error mitigation (analyzed in Section [2). This is achieved
using kernel interpolation (Xu et al., 2014; |Beyer et al., 2023)).

At training time, the model sees a random kernel size sampled from 4, 8, 16 (Appendix [J.6).

At inference, starting from #° = (2!, ...,27), CKM resizes a base convolutional kernel w®*° €

[RFbase X kiase X Ox O yging Pl-resize (detailed in Appendix |Jj) and computes:

Under review as a conference paper at ICLR 2026

i A T/ Tt, base
), &7 = Conv (xlat,Bkiw),

, PR ,
2t = Conv (2%, Bl Tw™*), 2l = Processor(z
Pk ¢ Tt ene stride k;

enc .
stride k;

where we cycle k; = (4,8, 16)(; mod 3)+1 and slide 92‘?“%_1 = G

Here, By, € R¥:*Fu« i5 a bicubic interpolation matrix and B kT its pseudoinverse transpose.
K2

Examples of kernel interpolation for adaptive sizing include SiCNN (Xu et al., 2014)), which applied
bicubic interpolation to CNN kernels and trained at multiple scales, and FlexiViT (Beyer et al., 2023,
which applies bicubic interpolation to ViT kernels for image classification. Using kernel interpolation,
we introduce cyclic modulation during rollouts—transforming it from a compute-flexibility tool into
a method for mitigating harmonic error accumulation in long-horizon predictions. In our vanilla ViT
and Axial ViT models, we adopt two-stage convolutional encoders and decoders following the hMLP
architecture (Touvron et al., 2022, which has recently been adopted for large-scale PDE surrogates
(Morel et al., 2025 [McCabe et al., 2023)), and apply CKM independently at each stage.

Together, the Overtone framework offers general strategies for flexifying convolutional tokenization
in ViT-based autoregressive schemes, as well as mitigating accumulating patch artifacts.

Cyclic rollout strategy. In standard autoregressive forecasting, patch sizes remain fixed across
the rollout. By contrast, Overtone’s flexible modules enable patch sizes or strides to alternate across
timesteps, introducing new temporal patterns in tokenization. This test-time capability, decoupled
from training, leads to a striking empirical effect: alternating rollouts consistently suppress patch
artifacts—periodic errors that appear as harmonics in spectral residuals (Figure [2)

These artifacts are ubiquitous in fixed-patch ViT based models, regardless of attention type (vanilla,
axial, Swin), and cannot be removed through training alone (Appendix [E). Alternating rollouts yield
cleaner, more stable long-horizon predictions. Our findings are primarily empirical, though we
provide a mathematical motivation for this phenomenon below. This discovery was only possible due
to the test-time flexibility of Overtone—a capability entirely absent from prior PDE surrogates.

Why cycling mitigates artifacts. Under the simplifying assumption of a linearized error model, the
evolution can be written as ¢, 1 (w) = A(w)e, (w) + a,(w), where A propagates existing errors and
a, injects fresh errors at patch boundaries. With a fixed patch size k, these injections align at harmonic
frequencies m/k, remaining phase-locked across timesteps and leading to rapidly compounding
error—visible as spectral spikes in Figure[2| By contrast, varying k across timesteps disrupts this
temporal coherence, spreading errors more evenly and mitigating growth. This should be understood
as a heuristic explanation consistent with our empirical findings. See Appendix [A]for a more extended
mathematical sketch.

Intuitively, the key effect of alternating patch/stride sizes during rollout can be understood cleanly in
the spatial domain. When a model is rolled out autoregressively with a fixed patch size, local errors
tend to accumulate at the patch boundaries. Since the patch grid is fixed, the same locations see
repeated errors step after step, causing these errors to reinforce and appear as grid-aligned patterns or
“checkerboards” over long horizons.

By contrast, when the patch size changes from one step to the next, the patch boundaries shift. This
redistributes where those local errors are introduced: boundaries from one step do not align with
those in the next step. As a result, error no longer accumulates coherently in the same locations and
is instead spread more evenly across the spatial domain, thereby mitigating the structured buildup
that causes grid artifacts.

3 RESULTS

To evaluate the practical advantages of compute-adaptive inference and validate the harmonic mitiga-
tion benefits, we conduct experiments on 2D and 3D datasets from The Well (Ohana et al., 2024).
Our evaluation shows how a single flexible model can serve multiple deployment scenarios while
also achieving superior accuracy through harmonic error distribution.

Under review as a conference paper at ICLR 2026

Experimental setup. We compare training a single flexible model versus multiple fixed-patch
models. We train three fixed-patch models (patch sizes 4, 8, 16) for 200 epochs each, while training
CSM and CKM models once with the same total compute budget. This setup addresses a practical
question: given finite training resources, is one flexible model superior to multiple static ones? We
test on both axial ViT (Ho et al., 2019) and vanilla ViT (Dosovitskiy et al.,[2020) architectures to
measure generality. The input consists of six time frames, with loss optimized for next-step prediction.
See Appendix [B.T|for dataset details and Appendix [H]for ablations.

Shear Flow Turbulent Radiative Layer 2D Active Matter Rayleigh-Bénard Convection

00451 —e— CSM
5 1 —e— CKM
o 0.20 0.03 . ™ Fixed
E 0.01 . 0.035
* * .
4>_: 0.16
0‘/1) u
=] a 0.02 0.025
0.13
128 512 2048 192 768 3072 256 1024 4096 256 1024 4096
tokens at inference # tokens at inference # tokens at inference # tokens at inference

Figure 3: Next-step prediction test VRMSEs v.s. number of tokens at inference of a 100M parameter
model trained on four 2D datasets. Lower VRMSE is better. Token count is a proxy for required
compute. Note that there are three separate fixed-patch models (green), as each needs to be trained
from scratch. This plot shows the compute-accuracy trade-off, which is also explored more in
Section[3.2

3.1 COMPARISON TO NON-PATCHED BASELINES

Although our focus is not on non-patch architectures, Table [I] and Table 0] provides a reference
comparison to state-of-the-art CNN/Neural-Operator surrogates. It shows that flexible models are
competitive with SOTA PDE surrogate architectures that do not use patch-based tokenization (e.g.,
TFNO (Kossaifi et al.,[2023)), FFNO (Tran et al., 2023)), Transolver (Wu et al.} 2024), SineNet (Zhang
et al.} 2024b))). Overtone’s flexible models often significantly outperform these baselines. This result
reinforces the potential of adaptive patch-based transformers to serve as competitive surrogates for
PDE modeling, without sacrificing accuracy or flexibility. We did this architectural comparison for
two complex physical systems, Shear Flow and Turbulent Radiative Layer 2D from the Well (Ohana
et al.,|2024) (comparisons on two more datasets in Table E]) In the results of the sections to follow,
we will focus mainly on comparisons between our flexible models vs. static patch baselines.

Table 1: 10-step rollout performance comparison with non-patch based PDE surrogates on Shear
Flow and Turbulent Radiative Layer 2D datasets. Our flexible models show competitive performance
while offering compute adaptability.

Model—> TFNO FFNO SineNet Transolver CSM + ViT (Ours) CKM + ViT (Ours)

Parameters— 20M ™ 35M 11M ™ 100M ™ 100M
Shear Flow 0.89 0.11 0.17 >1 0.076 0.053 0.096 0.057
Turbulent Radiative Layer 2D 0.81 0.485 0.65 >1 0.458 0.373 0.477 0.409

3.2 FLEXIBLE INFERENCE

We choose the VRMSE metric (Appendix [B.4) as a measure of accuracy. In Table 2|and Figure 3]
we report VRMSE across a range of 2D and 3D PDE datasets from the Well (Ohana et al., [2024]).
Each model is evaluated at multiple token counts, which correspond to varying stride sizes in CSM or
patch sizes in CKM—revealing the impact of inference-time compression on predictive accuracy.
Importantly, we train the fixed patch size (p.s.) models as separate networks at each patch size, while
we train CSM/CKM only once using random patch/stride schedules and evaluated without retraining.
‘We show results for two different transformer architectures, Axial ViT (Ho et al.,[2019) and vanilla
full attention ViT (Dosovitskiy et al., [2020). Note that the goal is not to compare the two base
architectures against each other, but to show that for both architectures, higher token count implies
greater accuracy, and that CSM/CKM can provide a token count tunability at inference against the
corresponding fixed patch baselines without losing any accuracy.

Under review as a conference paper at ICLR 2026

Axial ViT (50M) Vanilla ViT (100M)
Well
Dataset #Tokens CSM CKM fps. CSM CKM fps. .
Baseline
2048 0.0070 0.0070 0.0085 0.0055 0.0055 0.0067 0.1049
Shear Flow 512 0.0104 0.0098 0.0124 0.0088 0.0086 0.0096

128 0.0134 0.0143 0.0173 0.0110 0.0120 0.0140

3072 0.178 0.153 0.170 0.144 0.133 0.143 0.2269
768 0.178 0.165 0.186 0.178 0.153 0.170
192 0211 0.211 0237 0202 0.200 0.223

4096 0.0230 0.0240 0.0275 0.0172 0.0192 0.0210 0.0330
Active Matter 1024 0.028 0.025 0.033 0.0210 0.0220 0.0240
256 0.0367 0.0369 0.0430 0.029 0.034 0.031

4096 0.0290 0.0277 0.0361 0.0250 0.0250 0.0310 0.2240
Rayleigh-Bénard 1024 0.0398 0.0370 0.0442 0.0350 0.0330 0.0360
256 0.0522 0.0538 0.0581 0.0460 0.0470 0.0470

4096 0.305 0.288 0.288 0.287 0.266 0.272 0.3063
512 0.380 0.370 0392 0380 0.360 0.387
64 0421 0419 0434 0417 0413 0426

Turbulent Radiative
Layer 2D

Supernova
Explosion

4096 0.138 0.124 0.150 0.121 0.103 0.118 0.2096
512 0.197 0.180 0.194 0.182 0.164 0.179
64 0215 0216 0.214 0200 0.202 0.198

Turbulence Gravity
Cooling

Table 2: Test VRMSE across multiple 2D and 3D PDE datasets for next-step prediction using CSM,
CKM, and fixed patch size (f.p.s.) models. We train CSM/CKM models once and evaluate them
across multiple token counts (i.e., patch/stride configurations), whereas we train each fixed p.s. model
separately. Results are shown for two transformer backbones: Axial ViT (50M) (Ho et al., [2019)
and Vanilla ViT (100M) Dosovitskiy et al.|(2020). We also report the best outcomes from the Well
benchmark suite (Ohana et al., 2024).

Across all datasets and token configurations, CSM and CKM consistently match or outperform their
fixed-patch counterparts—despite being single, flexible models. This holds for both axial and vanilla
attention processors. Increasing the number of tokens at inference—by using smaller strides (CSM)
or patch sizes (CKM)—improves VRMSE but increases compute (Table 2] Figure [3). For example,
in the Active Matter dataset (2562), reducing patch/stride size from 16 to 4 increases token count
from 256 to 4096, triples inference time (0.21s/step to 0.63s/step), and increases compute from 5
to 170 GFLOPs—but reduces error by over 30%. Similarly, for 3D datasets (643), decreasing patch
size from 16 to 4 increases token count from 64 to 4096, increases inference time 8x (0.11s/step to
0.8s/step), but improves VRMSE by ~2x.

Token count directly controls the compute-accuracy trade-off. A single CSM/CKM model matches
or outperforms multiple fixed models at every compute budget, without retraining. They excel across
all frequency bands (BSNMSE analysis in Appendix [C)), preserving both coarse and fine features.

Tableincludes Well benchmarks: FNO (L1 et al., 2021)), TENO (Kossaifi et al., [2023)), U-Net, and
CNext-U-Net (Liu et al.; [2022)) (Ohana et al., 2024), re-trained with tuned rates for best accuracy.
Our flexible models outperform these baselines across most tasks and budgets.

We further demonstrate the modularity of our approach by integrating CKM with CViT (Wang
et al.,[2025b), a recent hybrid architecture. Results show flexified CViT consistently outperforms
fixed-patch variants across four 2D PDE datasets. Full details are in Appendix

3.3 HARMONIC ARTIFACT MITIGATION

Our theoretical motivation (Section [2) suggests cyclic patch modulation distributes errors across
frequencies, preventing accumulation at harmonics. We validate this through alternating rollout:
CSM and CKM models cycle through stride/patch sizes of 4, 8, and 16 at each prediction step,

Under review as a conference paper at ICLR 2026

Ground Truth

Fixed Patch Size

./5“

Figure 4: Step 44 rollout for the D, field of the Active Matter dataset.

avoiding the harmonic artifacts at frequencies k/p that plague all fixed-patch ViT variants (vanilla,
axial, Swin) and arise from tokenization mechanics, not training (Appendix [E). This patch variation
actively improves accuracy significantly along with enabling trading speed for precision.

Figure] shows significant checkerboard artifacts at rollout step 44 in Active Matter for static patch
models, largely stabilized by alternating rollout. Quantitatively, Table[3|shows 10-step rollout VRMSE
for all datasets. Across both axial and vanilla backbones, flexible models consistently outperform fixed
patch models—often by large margins—demonstrating greater long-horizon stability. Comparing
with non-patch SOTA models in Table [I] our models often achieve SOTA outcomes. Figure 3]
shows Shear Flow trajectory evolution: fixed patch 16 develops prominent artifacts by step 40,
while CSM/CKM (CKM especially) maintain stable long trajectories. Our models respect physics
constraints over long rollouts, indicating they are not just memorizing patterns (Appendix [G). See
Appendix [for additional visualizations. These improvements emerge without additional training,
achieved purely through inference-time patch modulation.

ses el ()

Figure 5: 100 step rollouts of different models applied to Shear Flow.

WSD

3.4 ABLATIONS

Ablations across model sizes (7M-100M) confirm: smaller patches improve accuracy, single flexible
models outperform multiple fixed ones, and inference adapts without retraining (Appendix [H.I). The
approach remains robust to additional patch options (Appendix [H.2), temporal context (Appendix[H.4),
and underlying base patch size (Appendix [H.3). Reducing patch diversity during training (e.g.,
omitting P = 8) degrades performance at the excluded size, underscoring the value of patch
variety (Appendix [H.5). This ablation notes that we do not claim zero-shot generalization to unseen
patch/stride configurations.

Finally, we compare cyclic vs. random patch switching during rollouts. Random schedules sig-
nificantly hurt performance (Appendix [H.6), yet this test-time flexibility reveals a new capability:
probing rollout behaviors without retraining—an option not available in prior PDE surrogates.

Under review as a conference paper at ICLR 2026

Axial ViT (50M) Vanilla ViT (100M)
Dataset CSM CKM fps. A CSM CKM fps. A
Shear Flow 0.089 0.082 0.143 +42.7% 0.053 0.057 0.107 +50.5%
TRL-2D 0475 0570 0.571 +16.8% 0373 0409 0.446 +16.4%

Active Matter 0.384 0390 0.640 +40.0% 0359 0351 0370 +5.1%
Rayleigh-Bénard 0.166 0.2159 0.217 +23.5% 0.140 0.215 0.2273 +38.4%
Supernova 1.310 1.270 1905 +333% 120 1.14 1.75 +349%
GC 0.667 0.680 0.860 +22.4% 0.559 0.527 0.77 +31.6%

Table 3: 10-step rollout VRMSE comparison across datasets. CSM/CKM vs. fixed patch size (f.p.s)
models. A shows percentage improvement of best flexible model vs fixed patch baseline. Abbre-
viations: TRL-2D: Turbulent Radiative Layer 2D, TGC: Turbulence Gravity Cooling, Supernova:
Supernova Explosion.

Limitations. Our approach requires training with multiple patch sizes to enable inference-time
flexibility—we do not claim zero-shot adaptation to unseen patch configurations. This is a deliberate
design choice rather than a limitation: training with diverse patch sizes ensures robustness across the
operating range. Zero-shot patch adaptation remains an open problem for future work. Additionally,
as is standard for models at the SOM—100M parameter scale, our experiments use single seeds due
to computational constraints. This practice is consistent with recent large-scale PDE models (MPP,
DISCO, CViT, Poseidon) which face similar resource limitations. The breadth of our experiments
across multiple datasets and architectures helps compensate for the lack of error bars.

4 CONCLUSION

We presented Overtone, a unified framework for compute-adaptive inference in transformer-based
PDE surrogates that addresses both practical deployment challenges and fundamental accuracy
limitations. Overtone provides dynamic patch size control at inference time without retraining,
allowing users to balance computational resources and accuracy requirements on demand. This
flexibility solves a key problem in production deployment where different applications have varying
computational budgets and accuracy needs.

Beyond practical compute flexibility, we discovered that cyclic patch modulation fundamentally
improves accuracy by mitigating harmonic artifacts. Fixed patch sizes cause errors that interfere
constructively at frequencies & /p, manifesting as spectral spikes and grid artifacts. By alternating
patch sizes during rollouts, we distribute these errors across the frequency spectrum, preventing
coherent accumulation—reducing errors by up to 40% compared to fixed baselines.

To implement these capabilities, we developed two architecture-agnostic modules for Overtone:
CSM, which uses dynamic stride modulation, and CKM, which uses kernel interpolation for dynamic
kernel control. Across challenging 2D and 3D benchmarks, a single Overtone model matches or
exceeds multiple fixed-patch baselines across all compute budgets. This dual benefit—practical
deployment flexibility plus core accuracy improvement—makes Overtone valuable for both research
and production settings where computational efficiency and prediction quality are paramount.

Future directions. The harmonic error distribution idea extends beyond PDEs to any autoregressive
vision-based model. Future work could explore adaptive (rather than cyclic) modulation strategies,
application of these techniques to patch-based methods beyond transformers (Appendix [I), apply
these insights to video prediction and other spatiotemporal tasks, or integrate Overtone’s modules into
foundation models (McCabe et al., 2023; |Herde et al., 2024; Morel et al., [2025) where both harmonic
mitigation and compute flexibility would benefit diverse downstream applications. Our work with
Overtone establishes flexible tokenization as an essential tool for improving both computational
efficiency and accuracy in autoregressive surrogates.

Under review as a conference paper at ICLR 2026

REFERENCES

Marsha J Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of computational Physics, 82(1):64—84, 1989.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua Zhai,
Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. FlexiVIT:
One model for all patch sizes. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 6 2023. doi: 10.1109/cvpr52729.2023.01393. URL https://doi.org/
10.1109/cvpr52729.2023.01393.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533-538, 2023.

John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Mineola, NY, second
edition, 2001. ISBN 9780486411835.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022a.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural PDE solvers. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 2241-2256. PMLR, 17—
23 Jul 2022b. URL https://proceedings.mlr.press/v162/brandstetter22a.
htmll

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022c.

Keaton J Burns, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin P Brown. Dedalus:
A flexible framework for numerical simulations with spectral methods. Physical Review Research,
2(2):023068, 2020.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727-1738, 2021.

Shuhao Cao. Choose a transformer: Fourier or galerkin. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 24924-24940. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
f11e/d0921d442ee91b896ad95059d13df618-Paper.pdfl

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Drummond B Fielding, Eve C Ostriker, Greg L Bryan, and Adam S Jermyn. Multiphase gas and the
fractal nature of radiative turbulent mixing layers. The Astrophysical Journal Letters, 894(2):L24,
2020.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations, 2021.

10

https://doi.org/10.1109/cvpr52729.2023.01393
https://doi.org/10.1109/cvpr52729.2023.01393
https://proceedings.mlr.press/v162/brandstetter22a.html
https://proceedings.mlr.press/v162/brandstetter22a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/d0921d442ee91b896ad95059d13df618-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d0921d442ee91b896ad95059d13df618-Paper.pdf

Under review as a conference paper at ICLR 2026

Jayesh K. Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling, 2022.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505-8510, 2018.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
Physics-informed machine learning: A survey on problems, methods and applications, 2023a.

Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Songming Liu, Ze Cheng,
Jun Zhu, and Jian Song. Gnot: A general neural operator transformer for operator learning. arXiv
preprint arXiv:2302.14376, 2023b.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-
mar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator transformer for large-scale
PDE pre-training. arXiv preprint arXiv:2403.03542, 2024.

Maximilian Herde, Bogdan Raonié, Tobias Rohner, Roger Képpeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient Foundation Models for PDEs. arXiv
preprint arXiv:2405.19101, 2024.

Keiya Hirashima, Kana Moriwaki, Michiko S Fujii, Yutaka Hirai, Takayuki R Saitoh, and Junichiro
Makino. 3d-spatiotemporal forecasting the expansion of supernova shells using deep learning
towards high-resolution galaxy simulations. Monthly Notices of the Royal Astronomical Society,
526(3):4054-4066, 2023a.

Keiya Hirashima, Kana Moriwaki, Michiko S Fujii, Yutaka Hirai, Takayuki R Saitoh, Junichiro
Makino, and Shirley Ho. Surrogate modeling for computationally expensive simulations of
supernovae in high-resolution galaxy simulations. arXiv preprint arXiv:2311.08460, 2023b.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers, 2019.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidimen-
sional transformers, 2020. URL https://openreview.net/forum?id=Hle5GJBtDr.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Steeven Janny, Aurélien Bénéteau, Madiha Nadri, Julie Digne, Nicolas THOME, and Christian Wolf.
EAGLE: Large-scale learning of turbulent fluid dynamics with mesh transformers. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview,
net/forum?id=mfIX4QpsARJ.

Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor product.
SIAM Journal on Scientific Computing, 44(6):A3490-A3514, 2022.

George Em Karniadakis, loannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422—-440, 2021.

Georgios Kissas, Jacob Seidman, Leonardo Ferreira Guilhoto, Victor M. Preciado, George J. Pappas,
and Paris Perdikaris. Learning operators with coupled attention, 2022.

Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar. Multi-grid
tensorized fourier neural operator for high-resolution pdes. arXiv preprint arXiv:2310.00120,
2023.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew

Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

11

https://openreview.net/forum?id=H1e5GJBtDr
https://openreview.net/forum?id=mfIX4QpsARJ
https://openreview.net/forum?id=mfIX4QpsARJ

Under review as a conference paper at ICLR 2026

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexan-
der Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, Weihua Hu, Alexander
Merose, Stephan Hoyer, George Holland, Jacklynn Stott, Oriol Vinyals, Shakir Mohamed, and
Peter Battaglia. Graphcast: Learning skillful medium-range global weather forecasting, 2022.

Pablo Lemos, Liam Parker, ChangHoon Hahn, Shirley Ho, Michael Eickenberg, Jiamin Hou, Elena
Massara, Chirag Modi, Azadeh Moradinezhad Dizgah, Bruno Regaldo-Saint Blancard, and David
Spergel. Simbig: Field-level simulation-based inference of galaxy clustering, 2023.

Jichao Li, Xiaosong Du, and Joaquim RRA Martins. Machine learning in aerodynamic shape
optimization. Progress in Aerospace Sciences, 134:100849, 2022.

Zijie Li and Amir Barati Farimani. Graph neural network-accelerated lagrangian fluid simulation.
Computers & Graphics, 103:201-211, 2022. ISSN 0097-8493. doi: https://doi.org/10.1016/j.cag.
2022.02.004. URL https://www.sciencedirect.com/science/article/pii/
S0097849322000206.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for PDE surrogate modeling.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https
//openreview.net/forum?id=djyn8Q0ankK.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations, 2020c.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8PINQVtmnO.

Xinliang Liu, Bo Xu, and Lei Zhang. HT-net: Hierarchical transformer based operator learn-
ing model for multiscale PDEs, 2023. URL https://openreview.net/forum?id=
UY5zS00sK2el

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Winfried Létzsch, Simon Ohler, and Johannes Otterbach. Learning the solution operator of boundary
value problems using graph neural networks. In ICML 2022 2nd Al for Science Workshop, 2022.
URLhttps://openreview.net/forum?id=4vx9FQA7wiCl

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208-228, 2021.

12

https://www.sciencedirect.com/science/article/pii/S0097849322000206
https://www.sciencedirect.com/science/article/pii/S0097849322000206
https://openreview.net/forum?id=djyn8Q0anK
https://openreview.net/forum?id=djyn8Q0anK
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=UY5zS0OsK2e
https://openreview.net/forum?id=UY5zS0OsK2e
https://openreview.net/forum?id=4vx9FQA7wiC

Under review as a conference paper at ICLR 2026

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqgiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
393:114778, 2022.

Suryanarayana Maddu, Scott Weady, and Michael J Shelley. Learning fast, accurate, and stable
closures of a kinetic theory of an active fluid. Journal of Computational Physics, 504:112869,
2024.

Weeratunge Malalasekera. An introduction to computational fluid dynamics: the finite volume method.
Pearson Prentice Hall, 2007.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple physics pretraining for physical surrogate models. arXiv preprint arXiv:2310.02994,
2023.

Rudy Morel, Jiequn Han, and Edouard Oyallon. Disco: learning to discover an evolution operator for
multi-physics-agnostic prediction, 2025. URL https://arxiv.org/abs/2504.19496

Keith W Morton and David Francis Mayers. Numerical solution of partial differential equations: an
introduction. Cambridge university press, 2005.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K. Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate, 2023.

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina J. Agocs, Miguel Beneitez,
Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond B. Fielding, Daniel Fortunato,
Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich R. Kerswell, Suryanarayana Maddu,
Jonah Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain Watteaux, Bruno Régaldo-
Saint Blancard, Francgois Rozet, Liam H. Parker, Miles Cranmer, and Shirley Ho. The well: a
large-scale collection of diverse physics simulations for machine learning, 2024. URL https:
//arxiv.org/abs/2412.00568.

Oded Ovadia, Adar Kahana, Panos Stinis, Eli Turkel, and George Em Karniadakis. Vito: Vision
transformer-operator. arXiv preprint arXiv:2303.08891, 2023.

Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural
networks. SIAM Journal on Scientific Computing, 41(4):A2603-A2626, 2019.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-driven
high-resolution weather model using adaptive fourier neural operators, 2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URLhttps://openreview.net/forum?id=roNgYLO_XPl

Lukas Prantl, Benjamin Ummenhofer, Vladlen Koltun, and Nils Thuerey. Guaranteed conservation
of momentum for learning particle-based fluid dynamics, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention—-MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part 111
18, pp. 234-241. Springer, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks, 2020.

13

https://arxiv.org/abs/2504.19496
https://arxiv.org/abs/2412.00568
https://arxiv.org/abs/2412.00568
https://openreview.net/forum?id=roNqYL0_XP

Under review as a conference paper at ICLR 2026

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation, 2022.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data. Computer Methods in Applied
Mechanics and Engineering, 361:112732, 2020.

Nils Thuerey, Konstantin Weiflenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
reynolds-averaged navier—stokes simulations of airfoil flows. AIAA Journal, 58(1):25-36, 2020.

Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Jakob Verbeek, and Herve Jegou. Three things
everyone should know about vision transformers. arXiv preprint arXiv:2203.09795, 2022.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=tmIiMP14IPa.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation
with continuous convolutions. In International Conference on Learning Representations, 2020.
URLhttps://openreview.net/forum?id=B11DoJSYDH.

Feng Wang, Yaodong Yu, Guoyizhe Wei, Wei Shao, Yuyin Zhou, Alan Yuille, and Cihang Xie.
Scaling laws in patchification: An image is worth 50,176 tokens and more. arXiv preprint
arXiv:2502.03738, 2025a.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’20, pp. 1457-1466,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi:
10.1145/3394486.3403198. URL https://doi.org/10.1145/3394486.3403198.

Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris
Perdikaris. CVit: Continuous vision transformer for operator learning. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025b. URL https://openreview.net/
forum?id=cRnCculvyr.

Nils P Wedi. Increasing horizontal resolution in numerical weather prediction and climate simulations:
illusion or panacea? Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 372(2018):20130289, 2014.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A
fast transformer solver for pdes on general geometries. In International Conference on Machine
Learning, 2024.

Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, and Zheng Zhang. Scale-invariant
convolutional neural networks. CoRR, abs/1411.6369, 2014. URL http://arxiv.org/abs/
1411.6369.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104-12113, 2022.

Pei Zhang, M. Paul Laiu, Matthew Norman, Doug Stefanski, and John Gounley. Matey: multiscale
adaptive foundation models for spatiotemporal physical systems, 2024a. URL https://arxiv,
org/abs/2412.20601.

Xuan Zhang, Jacob Helwig, Yuchao Lin, Yaochen Xie, Cong Fu, Stephan Wojtowytsch, and Shuiwang
Ji. Sinenet: Learning temporal dynamics in time-dependent partial differential equations. In
The Twelfth International Conference on Learning Representations, 2024b. URL https://
openreview.net/forum?id=LSYhE2hLWG.

14

https://openreview.net/forum?id=tmIiMPl4IPa
https://openreview.net/forum?id=B1lDoJSYDH
https://doi.org/10.1145/3394486.3403198
https://openreview.net/forum?id=cRnCcuLvyr
https://openreview.net/forum?id=cRnCcuLvyr
http://arxiv.org/abs/1411.6369
http://arxiv.org/abs/1411.6369
https://arxiv.org/abs/2412.20601
https://arxiv.org/abs/2412.20601
https://openreview.net/forum?id=LSYhE2hLWG
https://openreview.net/forum?id=LSYhE2hLWG

Under review as a conference paper at ICLR 2026

Min Zhu, Handi Zhang, Anran Jiao, George Em Karniadakis, and Lu Lu. Reliable extrapolation of
deep neural operators informed by physics or sparse observations. Computer Methods in Applied
Mechanics and Engineering, 412:116064, 2023.

15

Under review as a conference paper at ICLR 2026

A HARMONIC ERROR ANALYSIS

Consider the error between predicted and true fields during autoregressive rollouts. Working in the
Fourier domain under a first-order linearization, let e,, (w) € C denote the Fourier coefficient of error
at step n, frequency w € [—m,]2, The error evolves as:

i1 (@) = Mw)en(w) + an(w), (1)

where \(w) € C is the linearized propagation factor (how the model propagates existing errors) and
an(w) is the fresh error injected at step n > 0 by patch boundaries, which we assume a,, is zero-mean
with finite variance. Throughout this section, E[-] denotes expectation over stochastic realizations of
the injected errors, while (-),, denotes averaging over the rollout step index n.

A fixed patch grid of period k acts as a spatial Dirac comb, concentrating error injection at the
harmonic lattice:
2mmyg 2
O = {w< e, W]::ny):mz,myGZ}. @)

When cycling through patch sizes {k1, k2, k3}, errors are injected on 2y = (J; Q; (the union of
all harmonic lattices). However, only frequencies in 2 = ﬂ Q, (the 1ntersect10n—frequen01es
common to all patch sizes) maintain consistent spatial ahgnment across all steps.

Solving the linear recurrence yields e, (w) = Y"1 ; A(w)" ‘a;(w). The key questlon is: do the
injected errors a;(w) add up constructively or destructively? To quantify this, let 0% (w) = E[|a,, (w)|?]
and define the normalized coherence between errors separated by 7 steps:

e (w) = <E[a”(w£@§ T) <1, 3)

which is the time-averaged correlation coefficient. When 7, =~ 1, errors align constructively; when
- = 0, they are uncorrelated. Regrouping by time-lag gives the exact identity:

Elen()?] = 02(@) 3" M@ +20%(0) 3 (T |A<w>|2’") RAW 3 @) @
r=0

T=1 r=0

When the model neither amplifies nor dampens frequencies significantly (|A\(w)| & 1), this simplifies

to:
n—1

Ellen()[’] = no?(w) + 20%(w) Y (n —)Ry (w)].)
=1
Two regimes emerge: (i) Phase-locked injection (7, = 1) yields O(n?) growth—the harmonic spikes
we observe. (ii) Decorrelated injection (v, = 0) yields only O(n) growth.

With cycling, only frequencies in {2 see consistent alignment at every step. Foracycle k € {4, 8, 16},
we have Q0 = Q6 (the least common multiple lattice). On most frequencies w € Qy \ Qn, the
changing patch grid temporally thins and phase-misaligns injections, reducing R[A" . (w)] in @).
This increased decorrelation shifts a portion of the error growth from quadratic to linear, which might
explain the spectral spike suppression and resultant 40% rollout improvement.

We do not assume independence of a;, claim exact rates for specific w, or assert optimality of our
cycle. We chose powers of two in our patch sizes for computational efficiency and to avoid excess
padding at image boundaries. While coprime sizes and a longer cycle might minimize 2~ further
(reducing the common harmonics), we leave exploration of such potential trade-offs to future work.

Intuitively, the key effect of alternating patch/stride sizes during rollout can be understood cleanly in
the spatial domain. When a model is rolled out autoregressively with a fixed patch size, local errors
tend to accumulate at the patch boundaries. Since the patch grid is fixed, the same locations see
repeated errors step after step, causing these errors to reinforce and appear as grid-aligned patterns or
“checkerboards” over long horizons.

By contrast, when the patch size changes from one step to the next, the patch boundaries shift. This
redistributes where those local errors are introduced: boundaries from one step do not align with
those in the next step. As a result, error no longer accumulates coherently in the same locations and

16

Under review as a conference paper at ICLR 2026

is instead spread more evenly across the spatial domain, thereby mitigating the structured buildup
that causes grid artifacts.

Alternating patch sizes does not inject random noise, but it breaks the deterministic repetition of
errors by varying the discretization pattern. Because the boundaries shift deterministically, the same
spatial locations are no longer repeatedly exposed to boundary errors. This prevents errors from
reinforcing in fixed positions and instead disperses them across the domain, reducing structured
checkerboard artifacts over long rollouts. This leads to a more uniform error distribution (and reduces
checkerboards) without requiring explicit noise.

B EXPERIMENT DETAILS

B.1 DATASETS

The datasets that we benchmarked are taken from The Well collection |(Ohana et al.| (2024). We
selected 2D and 3D datasets with complex dynamics, ranging from biology (Active Matter Maddu
et al.| (2024)) to astrophysics (Supernova Explosion & Turbulence Gravity Cooling [Hirashima et al.
(2023aib); Turbulent Radiative Layer 2D |Fielding et al.[(2020)) and fluid dynamics (Rayleigh-
Bénard & Shear FlowBurns et al|(2020)) . Here is information about their resolution and physical
fields (channels).

Table 4: Dataset specifications including spatial resolution and number of physical fields.

Dataset Resolution # Fields/Channels
Active Matter 256 x 256 11
Rayleigh-Bénard 512 x 128 4
Shear Flow 128 x 256 4
Supernova Explosion 64 x 64 x 64 6
Turbulence Gravity Cooling 64 x 64 x 64 6
Turbulent Radiative Layer 2D 128 x 384 5

B.2 MODEL CONFIGURATION

The core transformer processor consists of multiple stacked processing blocks, each composed of
three key operations: (1) temporal self-attention, which captures dependencies across time steps, (2)
spatial self-attention, which extracts spatial correlations within each frame, and (3) a multi-layer
perceptron (MLP) for feature transformation. The number of such processing blocks varies across
model scales, as detailed in Table[5] The full configuration is visualized in Figure [§]

Table 5: Model architecture configurations across different scales.
Model Embed Dim MLP Dim # Heads # Blocks Patch Rate

7.6M 192 768 3 12 [16, 16]
25M 384 1536 6 12 [16, 16]
100M 768 3072 12 12 [16, 16]

B.3 TRAINING CONFIGURATION - AXIAL VIT AND VANILLA VIT EXPERIMENTS
In the following we list the training parameters and other details:

1. We set batch size at 2 and train the model on 8 GPUs using PyTorch FSDP on A100-80Gb
GPUs. No gradient accumulation

17

Under review as a conference paper at ICLR 2026

xN
spatiotemporal
transformer

block

MLP

TYzA

A

Temporal
self-attention
(causal)

Figure 6: This visualization represents the overall architecture of our models. The CSM/CKM/Fixed
patch are various strategies for the patch encoding and decoding. The patch encoder block is followed
by N transformer based spatio-temporal blocks containing sequential time attention, followed by
full spatial attention, followed by MLP. The embedding dimension column in Table 3] represents the
hidden dimension that the CSM/CKM/Fixed patch strategies embed the real space patches into.

2. Adam Optimizer. learning rate of 10~%, weight decay of 10~*. We have hyperparameter
tuned our learning rates over 104,103,102,

3. We trained all models and datasets using Normalized Mean Squared Error loss averaged
over fields and space during training.

4. Prediction type: delta. “delta” predicts the change in the field from the previous timestep.
This only affects training since validation and test losses are computed on reconstructed
fields.

5. Position embedding: RoPE (Su et al.,|2021). Drop path: 0.1. Epoch size: 100.

6. The Well dataset(Ohana et al.,[2024) comes with a train/valid/test set split, and we use their
split for our experiments also. Within each dataset, for each set of simulation parameters,
we apply an 80/10/10 split along the initial conditions. For example, if we have 100 initial
conditions for each of 5 simulation parameters and capture 200 steps per simulation, we
include 80 of these trajectories of 200 steps per simulation parameter in the training set, 10
in validation, and 10 in test.

7. As mentioned in the checklist, we have provided code for the main architectural blocks
utilized in this paper, i.e. the encoder and decoder blocks of CSM and CKM that were used
for flexifying axial and vanilla ViT architectures.

B.4 VRMSE METRIC

The variance scaled mean squared error (VMSE): it is the MSE normalized by the variance of the
truth. It has been used for the benchmarking of the Well (Ohana et al.| [2024).

(Ju—vf?)

VMSE(u,v) = T 1o

18

Under review as a conference paper at ICLR 2026

We chose to report its square root variant, the VRMSE:
([u— o)/
((lu—al?) +e)t/2°

Note that, since VRMSE(u, @) ~ 1, having VRMSE > 1 indicates worse results than an accurate
estimation of the spatial mean .

VRMSE(u,v) =

19

Under review as a conference paper at ICLR 2026

C BINNED SPECTRAL ERROR ANALYSIS

C.1 DEFINITIONS

We investigate another metric for the robustness of our results, namely the binned spectral mean
squared error (BSMSE). BSNMSE, introduced in (Ohana et al., 2024)), quantifies the mean squared
error after applying a bandpass filter to the input fields over a specific frequency band B. It is defined
as:

BSMSEg(u,v) = (lus — vs|?), (6)

where the bandpass-filtered field uz is given by:

ug = F 1 [Fu]1g]. (7

Here, F represents the discrete Fourier transform, and 15 is an indicator function that selects
frequencies within the band B.

For each dataset, we define three disjoint frequency bands, By, B2, and Bs, which correspond to low,
intermediate, and high spatial frequencies, respectively. We determine these bands by partitioning the
wavenumber magnitudes evenly on a logarithmic scale.

The binned spectral normalized mean squared error (BSNMSE) is a normalized variant of the
BSMSE metric, adjusting for the energy within each frequency band:

2
un — U
BSNMSEg(u, v) = W

A BSNMSE value of 1 or greater indicates that the model performs worse than predicting zero
coefficients at that scale.

®)

C.2 BSNMSE FOR DIFFERENT DATASETS

Figure[/|shows the next-step prediction BSNMSE of the test set FOR Rayleigh-Bénard, Turbulent
Radiative Layer 2D, Shear Flow and Supernova Explosion. The spectrum is divided into three
frequency bins: low, mid and high being the smallest, intermediate and largest frequency bins whose
boundaries are evenly distributed in log space. Crucially, as also emphasized in the main text, we
note that we train the fixed patch models (green) as separate models, while CSM (blue) and CKM
(orange) (here shown is the flexified vanilla ViT model) are single models trained at randomized
patch/strides.

Following our results in Tables 2 and 3 of the main text, our story is reflected in the BSNMSE metric
as well. In other words, it is clear from the BSNMSE plot that CSM/CKM (coupled with vanilla ViT
for this plot) allow the creation of a single flexible model without any loss in accuracy (significant
accuracy gain in fact for a range of cases). This enables a new class of compute aware models for the
PDE surrogate literature.

20

Under review as a conference paper at ICLR 2026

100M model: Rayleigh Benard

Low frequencies Mid frequencies High frequencies
-4
4% 10 csM 1o
3x10™ kM /' 2x107?
— Fixed
w
W v
= -4
z 2x10 10-1 1
o 103
6x 1072
T T T T T T T T T
4 8 16 8 16 4 8 16
100M model: TRL 2D
6x 107!
3x1073
I 5x 1071
=
= -1 4
B 2x1073 n 4107
T T T T T T 3 x 1'07] T T T
4 8 16 4 8 16 4 8 16
Inference patch size Inference patch size Inference patch size
100M: shear flow
2x1075 2x107
1073
1.8 x 1077
w 16x 10-% 6x107* 101
% 1.4x 1073 4x107*
wn _a 6x10°2
om 3x10
1.2 x 1077
2x107* 4% 1072
10_5 L T T T T T T 3 x 1072 T T T
4 8 16 4 8 16 4 8 16
Inference patch size Inference patch size Inference patch size
7.6M model: 3D SN&4 frequency analysis
3x107!
-2
4x10 5x10-1
w
2 2x1071
Z 3x107?
8
2% 1022 4x1071
4 8 16 4 8 16 4 8 16
Inference patch size Inference patch size Inference patch size

Figure 7: BSNMSE of the next-step prediction of the test set in the Rayleigh-Bénard, Turbulent
Radiative Layer 2D, Shear Flow and Supernova Explosion datasets. The spectrum is divided into
three frequency bins: low, mid and high being the smallest, intermediate and largest frequency bins
whose boundaries are evenly distributed in log space. Crucially, as also emphasized in the main text,
we note that we train the fixed patch models (green) as separate models, while CSM (blue) and CKM
(orange) (here shown is the flexified vanilla ViT model) are single models trained at randomized
patch/stride sizes.

21

Under review as a conference paper at ICLR 2026

Table 6: CViT next-step prediction performance across datasets and token counts, comparing CKM
and Fixed patch size (f.p.s.). As before, the f.p.s. models are separately trained models while the
flexible models are one single model capable of handling multiple patch resolutions at inference.
Similar to the vanilla ViT and axial ViT architectures, we find that CViT consistently gains from
smaller patch sizes, can be flexified for practical deployment and an improvement in accuracy.

Dataset Tokens/Patch Flexible CViT Fixed CViT
2048/4 0.120 0.184
Shear Flow 128/16 0.127 0319
.. 3072/4 0.302 0.299
Turbulent Radiative Layer 2D 192/16 0.340 0.364
Active Matter 4096/4 0.054 0.110
256/16 0.065 0.127

D CVIT EXPERIMENTS

CViT experiments. We further evaluate our flexible patching strategy within the Continuous Vision
Transformer (CViT) architecture (Wang et al 2025b)), a recent vision transformer-based model
tailored for PDE surrogate modeling. CViT features a patch-based transformer encoder coupled
with a novel, grid-based continuous decoder that directly queries spatiotemporal locations. As the
decoder operates without patch-based tokenization, we apply our kernel modulation (CKM) only to
the encoder, leaving the rest of the architecture unchanged.

A flexified CViT therefore refers to the encoder being a CKM. For CViT (Wang et al.| 2025b)), whose
original design features a single-stage encoder (instead of multi-stage hMLP we used for our vanilla
ViT and axial ViT experiments) and a decoder based on grid-based querying, CKM is applied only to
the encoder, for the single stage; because the idea is to see if flexification on top of the base fixed
patch architecture helps or not. These use cases show CKM’s modularity and adaptability: it can
flexify arbitrary convolutional patching pipelines, without requiring architectural changes or any
overengineering to the base convolutional or attention mechanism or task head.

Since CViT is designed for 2D problems, we restrict our evaluation to 2D datasets, ensuring a fair
and focused test of patch flexibility without altering any other model components. This experiment
shows that our flexible tokenization strategy is architecture-agnostic and can be modularly integrated
into advanced PDE models like CViT.

Table [6] shows that a flexified CViT consistently outperforms fixed patch size CViT models across
four diverse 2D PDE datasets. As in earlier experiments, reducing patch size (e.g., from 16 to 4)
increases token count and compute, but yields significantly improved accuracy. Importantly, a flexified
CViT provides this accuracy-compute trade-off at inference without retraining, demonstrating the
modularity and architectural agnosticism of Overtone. This result also shows how adaptive patching
can be extended to complex hybrid architectures like CViT, unlocking new modes of inference-time
flexibility in scientific surrogate modeling.

In terms of rollouts, since CViT uses a query based continuous decoder, instead of a patch based
decoder, it does not inherently suffer from the issues of patch artifacts. Even for that case, Table
shows that flexified CViT performs a lot better than the corresponding static patch version. This again
shows that our flexification approach is useful even for cases of hybrid encoder-decoder architectures
where only the encoder is patch based, but the decoder is not. This reinforces the architecture
agnostic-ness and the SOTA performance of our flexible models.

Model details for CViT. For the base CViT architecture, we utilized the CViT-S configuration in
(Wang et al.,[2025b)) (See Table 1 of this paper), setting: Encoder layers = 5, Embedding dim = 384,
MLP width = 384, Heads = 6. We set the embedding grid size for CViT to be the same as the dataset
size.

22

Under review as a conference paper at ICLR 2026

Table 7: 10-step rollout VRMSE comparison across datasets for CViT vs. fixed patch size 16 (f.p.s)
models. A indicates the best percentage improvement (i.e., lowest VRMSE vs. fixed patch baseline).

Dataset Flexible CViT Fixed p.s. 16 A
Shear Flow 0.063 0.2598 +75.7%
Turbulent Radiative Layer 2D 0.540 0.568 +4.9%
Active Matter 0.78 3.33 +76.57%

CViT Patch Embeddings. The ViT encoder takes as input a gridded representation of the input
function u, yielding a spatio-temporal data tensor u € RT*#xWxD with D channels. The model
patchifies the input into tokens u,, € RT* 7 %% %C by tokenizing each 2D spatial frame indepen-
dently, following the process used in standard Vision Transformers (Dosovitskiy et al.,2020). The
patching process involves a single convolutional downsampling layer. We add trainable 1D temporal
and 2D spatial positional embeddings to each token. These are absolute position encodings, unlike
the RoPE encodings we used for vanilla and axial ViT experiments.

Wy = u, +PE; + PE,, PE, € RT*IXIXC pE, ¢ RIXFXFXC, ©)

The original paper (Wang et al., 2025b)) has already detailed the above description of CViT. Our
main experiments were to flexify this CViT architecture and show that under a given compute budget,
training a flexible CViT is much more advantageous than training multiple fixed patch CViT models.
To this end, we adapt CKM to flexify the convolutional layer of CViT, randomizing the patch size
at the encoding stage. Additionally, since base CViT has absolute learned position embedding, we
resized the position embedding at each step of the forward pass as well using bilinear interpolation to
make it compatible with the randomized patch size.

Goals with flexified CViT. Our goal with the CViT experiments is to show that, similar to the
axial ViT and vanilla ViT results, CViT also benefits from flexification. In other words, with a fixed
compute budget, it is much more beneficial to train a flexible CViT model than to train and maintain
multiple static resolution CViT models. This leads to the creation of a flexible CViT, similar to the
flexible versions of axial and vanilla ViTs we created earlier.

First we show that similar to axial and vanilla ViT, CViT also consistently gains in accuracy as
the patch size, aka token counts is decreased (Table[6)). Additionally, we show that our alternating
patch strategy for CViT leads to dramatically better accuracies than the fixed patch models (Table 7).
Through these experiments, we achieve the flexification of this recent architecture. This experiment
further shows the architecture agnostic-ness of Overtone’s methods; meaning we can make flexi-
fication compatible with a range of base architectures, as exemplified by our results in the main
text, augmented the flexification of this advanced hybrid architecture like CViT. Flexified CViT is
compute-adaptive meaning it can adapt to various downstream compute/accuracy requirements at
inference after being trained only once, eliminating the need to train and maintain multiple models.

Training details for CViT experiments. We follow a consistent training protocol to ensure a fair
comparison between fixed-patch and flexified CViT models. All models use the CViT-S architecture
from (Wang et al.,[2025b)), configured with 5 encoder layers, an embedding dimension of 384, MLP
width 384, and 6 attention heads. We match the spatial embedding grid size to the input resolution of
each dataset.

We fix the learning rate at 10~%, chosen after a hyperparameter search over {1072,1073,10~4}. We
set weight decay to 10~°. We choose batch size to fully utilize GPU memory for each dataset. We
conduct training on a single NVIDIA A100 80GB GPU.

Due to compute limitations, training epochs vary across datasets, but remain consistent within each
dataset. Concretely:

* For Shear Flow, we train each fixed-patch model (patch sizes 4, 8, and 16) for 30 epochs.

* For Active Matter, we train each for 40 epochs.

23

Under review as a conference paper at ICLR 2026

* For Turbulent Radiative Layer 2D, we train each for 160 epochs.

We train the corresponding flexified CViT models (i.e., with CKM) with the same total compute
budget as all three fixed-patch models combined. This allows a direct, compute-equivalent comparison.
As described in Section[3.2] this setup addresses a practical question: under a fixed training budget, is
it better to train multiple static models or one flexible model? If the flexible model enables training
without any loss in validation accuracy, we have a flexible model by training only once eliminating

the need to train and maintain multiple fixed patch models.

T+1 T+5 T+10 T+20 T+25

. S
‘ . - " = 2

S

5 ’ . . " w

S SRR A _BE

3

fra

o » . - - Al &

S

g y . - - - »

Figure 8: Rollout for the v, Shear Flow dataset for the CViT model. Top: Ground Truth (G.T.);

Middle: Flexified CViT; Bottom: Fixed Patch 16 (E.P.S. 16) models.

T+1 T+10

T+20

T+25

. 1 T+5 v 2

w‘
: 3 0 5 T

9 ! 7

Figure 9: Rollout for the density Turbulent Radiative Layer 2D dataset for the CViT model. Top:
Ground Truth (G.T.); Middle: Flexified CViT; Bottom: Fixed Patch 16 (F.P.S. 16) models.

24

Under review as a conference paper at ICLR 2026

E PATCH ARTIFACTS

Patch artifacts are widely present in patch based PDE surrogates. In this section, we will provide
extended evidence for the existence of these artifacts. Note that these patch artifacts are a problem
for the architectures where both the encoder and decoder are patch based, so this is not a problem for
an architecture like CViT.

E.1 OUR EXPERIMENTS

We have investigated and found these artifacts to present in a range of patch based ViT architectures.
Below we will show patch artifacts arising in three different types of ViT based architectures, in

different kinds of datasets: axial ViT 2019), full ViT (Dosovitskiy et al.,2020) and Swin
(Liu et al., 2021).

Figures[10]and [TT]reflect the presence of these artifacts in rollouts of two example fields of the Active
Matter and Turbulence Gravity Cooling datasets respectively. Figure[T2]also shows artifacts arising
when the base attention is changed to swin. Note that having a shifted window attention does not
change the fact that the encoder and decoder still patchify with fixed size patches in conventional
ViTs. Therefore even though attention can happen in a shifted-window format this fundamental
limination imposed by the encoding-decoding process still remains.

Ground Truth

Fixed Patch (16)

Figure 10: Artifacts arising in fixed patch models of the axial+ViT fixed patch 16 model. Results are
shown for the E,,, field of Active Matter dataset.

We have additionally tested that these artifacts are a core problem with the standard patch based ViTs,
and they do not simply arise due to training details, such as different learning rates. Figure[I3]shows
that patch artifacts are agnostic to learning rates. This is expected because they arise because of the
inherent limitation of fixed patch grids.

We have additionally tested that these artifacts also arise in neural operator models like AFNO
(Guibas et al, [202T)), which also has a patch based encoder and a decoder. We took the AFNO model
provided as a baseline comparison in the Well benchmark suite (Ohana et al}[2024)), and trained it
on the Turbulent Radiative Layer 2Ddataset, and as expected due to its patch based encoding and
decoding, patch artifacts arise here as well as shown in Figure [T4]

E.2 OTHER PAPERS

These artifacts have also been seen in models where patch based encoders and decoders are used. For
example, a recent study on pretraining on the dataset of the Well by Morel et al. (Morel et al},[2025).
The artifacts can be seen in Figures 10 (3rd and 4th row), Figure 11 (3rd and 7th row), Figure 12 (3rd

25

Under review as a conference paper at ICLR 2026

T+1 T+5 T+10 T+20

Ground Truth

Fixed Patch (16)

Figure 11: Artifacts arising in fixed patch models of the vanilla+ViT fixed patch 16 model. Results
are shown for the v,, field of Turbulence Gravity Cooling dataset.

T+1 T+5 T+10 T+15

Ground Truth

Fixed Patch (16)

Figure 12: Artifacts arising in a swin transformer model where the spatial module is replaced by
a swin transformer, keeping everything else the same. Results are shown for the density field of
Turbulent Radiative Layer 2D dataset.

and 7th row)and Figure 13 (3rd, 4th and 7th row). In this paper, these artifacts are most common in

the Multiple Physics Pretraining, MPP (McCabe et al.| [2023) approach, which has both a patch based
and a decoder.

The broad goal in this section is to show that these patch based artifacts are quite commonly seen in
models that incorporate patch based encoding and decoding. Researchers can incorporate our flexible
patching/striding methods into a wide variety of these models, and we anticipate that the rollout
strategies we discussed in the main text can be improve the overall stability, accuracy and mitigate
patch artifacts in these models. Due to limited compute, experiments with every possible architecture
is difficult, but our study opens up possibilities in exploring this direction.

26

Under review as a conference paper at ICLR 2026

LR=1E-2 LR=1E-3 LR=1E-4

Ground Truth

Fixed Patch (16)

Figure 13: Artifacts in the density field of Turbulent Radiative Layer 2D dataset at rollout step 20.
Artifacts appear regardless of the learning rate used for training.

density

Predicted True

Error
X

Figure 14: Artifacts in the density field of Turbulent Radiative Layer 2D dataset at rollout step
20. This is the AFNO (Guibas et all, 2021)) model. Patch artifacts also arise here because even
though its a neural operator based method, but the encoder and decoder still uses ViT based patch
encoding/decoding.

27

Under review as a conference paper at ICLR 2026

F BASELINES USED AND MORE ROLLOUTS

Section (Table|1) provided baseline comparisons with respect to a range of SOTA models which
are not patch based. On the neural operator side, we included FFNO (Tran et al., | 2023)). We also test
against a SOTA convolution based model, SineNet (Zhang et al.,[2024b). Additionally, we tested
against a recent Physics Attention based scheme, Transolver (Wu et al., [2024). In addition to these
comparisons, we also perform comparisons against baseline models provided with the Well dataset
module, and the well paper (Ohana et al.,|2024). These models were TFNO (Kossaifi et al.| [2023)),
FNO (Li et al.} 2021}, U-Net (Ronneberger et al., 2015) and CNext-U-Net (Liu et al., 2022)). We
reported the best baseline results out of these comparisons against the Well benchmarks. These
non-patch baselines covered diverse comparisons. Below we describe these models and the settings
used to make comparisons:

SineNet: This model consists of multiple sequentially connected U-shaped network blocks called
waves (Zhang et al.||2024b). While traditional U-Net architectures use skip connections to support
multi-scale feature processing, the authors argue that forcing features to evolve across layers leads
to temporal misalignment in these skip connections, ultimately limiting model performance. In
contrast, SineNet progressively evolves high-resolution features across multiple stages, reducing
feature misalignment within each stage and improving temporal coherence. This model has achieved
SOTA performance on a range of complex PDE tasks. Refer to the original paper for more details.

We used their open source code from: |https://github.com/divelab/AIRS/blob/
main/OpenPDE/SineNet/pdearena/pdearena/modules/sinenet_dual.py.

We use the SineNet-8-dual model with configurations outlined in their codebase, taken
from https://github.com/divelab/AIRS/blob/main/OpenPDE/SineNet/
pdearena/pdearena/models/registry.py (sinenet8-dual model). The network has 64
hidden channels with 8 waves. We set the learning rate to 2 x 10™4, set after doing a coarse tuning
among 1074,2 x 10745 x 107%,1073. The resulting model has around 35M parameters. We
performed training on a single Nvidia A100-80GB GPU. We set batch size at 16.

F-FNO: Fourier neural operators (Li et al.,|2021) perform convolutions in the frequency domain
and were originally developed for PDE modeling. We compare to a state-of-the-art variant, the
factorized FNO (Tran et al.,|2023)) which improves over the original FNO by learning features in the
Fourier space in each dimension independently, a process called Fourier factorization. We used the
open source FFNO codebase provided in the original publication. We used a small version of the
FFNO model with 4 layers, 32 fourier modes and 96 channels. This amounted to a model size of ~
7M. During training, a learning rate of 10~2 is utilized after a parameter tuning in the range 1074,
10~ and 10~2. Training was performed on a single Nvidia A100-80GB GPU. We set batch size to
16.

Transolver: In this model (Wu et al.,2024), the authors propose a new Physics-Attention scheme
that adaptively splits the discretized domain into a series of learnable slices of flexible shapes, where
mesh points under similar physical states is ascribed to the same slice. The model achieved SOTA
performance in a range of benchmarks including large-scale industrial simulations, including car
and airfoil designs. We use their open source codebase and adapt it to train on the Well. We used
8 hidden layers, 8 heads, 256 hidden channels, and 128 slices. This amounted to a model of size
11M. This configuration matches the configuration presented in their main experiments. Training was
performed on a single Nvidia A100-80GB GPU. We set batch size to 16.

As shown in Table[I] transolver generally struggled with the PDE tasks we tested on. We tested by
tuning the learning rates varying between 1072, 10~* and 10~2 without any significant improvement
in performance. In the original paper, for autoregressive prediction tasks, they tested on 64 x 64
Navier Stokes, and downsampled their Darcy data into 85 x 85 resolution. Our datasets, on the
other hand all exceed 128 x 128, and therefore the training was much slower. In order to have a fair
comparison, we do not downsample our datasets for training the transolver model. The transolver
code we used, is taken directly from their codebase.

TFNO, FNO, U-Net, CNext-U-Net : The Well benchmarking suite provides these additional
baselines with default configs together (Ohana et al., 2024). We use these default baselines. Neural-

28

https://github.com/divelab/AIRS/blob/main/OpenPDE/SineNet/pdearena/pdearena/modules/sinenet_dual.py
https://github.com/divelab/AIRS/blob/main/OpenPDE/SineNet/pdearena/pdearena/modules/sinenet_dual.py
https://github.com/divelab/AIRS/blob/main/OpenPDE/SineNet/pdearena/pdearena/models/registry.py
https://github.com/divelab/AIRS/blob/main/OpenPDE/SineNet/pdearena/pdearena/models/registry.py

Under review as a conference paper at ICLR 2026

operator v0.3.0 provides TFNO. Defaults are 16 modes, 4 blocks and 128 hidden size. U-net classic
has default configs of: initial dimension = 48, spatial filter size = 3, block per stage = 1, up/down
blocks = 4, bottleneck blocks = 1. CNext-U-Net has configs: spatial filter size = 7, initial dimension
=42, block per stage = 2, up/down blocks = 4 and bottleneck blocks = 1. Finally, the FNO model
has 16 modes, 4 blocks and 128 hidden size. As noted before, the Well baseline package provides
these model configs and more details can be found there. We showed the best benchmark results from
the Well baseline suite and found that Overtone’s models consistently outperformed these baselines.
Table 8| shows the additional baselines.

Table 8: Next-step VRMSE across Well benchmark datasets using baselines provided in the Well.

Dataset FNO TFNO U-Net CNext-U-Net
Active Matter 0.262 0.257 0.103 0.033
Rayleigh-Bénard 0.355 0.300 0.469 0.224
Shear Flow 0.104 0.110 0.259 0.105
Supernova Explosion 0378 0379 0.306 0.318
Turbulence Gravity Cooling 0.243 0.267 0.675 0.209
Turbulent Radiative Layer 2D 0.500 0.501 0.241 0.226

We trained all of the above mentioned baselines with an epoch size = 100, batch size = 16, and
number of epochs = 200. This ensures the same number of observed samples for our flexible models
ensuring that the comparison is fair.

Out of all of these baselines, we found that F-FNO and SineNet gave the most competitive results to
Overtone’s models, as shown in Table|I|on two of our complex 2D datasets. Given the competitive
performance of F-FNO and SineNet on the two datasets shown in the text, we performed additional
comparisons of these baselines on more datasets shown in Table[9] Clearly, these additional compar-
isons tell the same story that out flexible architecture-agnostic models outperform SOTA architectures
on complex physics tasks.

FFNO SineNet Vanilla ViT (Ours) Axial ViT (Ours)
Dataset ™ 35M CSM (7TM) CKM (7M) CSM (45M) CKM (45M)
Rayleigh-Bénard 0.94 >1 0.137 0.192 0.1664 0.215
Active Matter 0.567 0.760 0.563 0.522 0.384 0.390

Table 9: 10-step rollout VRMSE comparison across patch-free models and our patch-based surrogate
variants. We report scores for both 7M and 100M parameter versions of CSM and CKM. Results are
shown for vanilla and axial self-attention scheme.

Figure [T5] visually shows that CSM/CKM + axial ViT models (45M size) are significantly better
visually than the SineNet 35M model in long rollout predictions as well. These rollouts for a
highly complex and chaotic Rayleigh-Bénard dataset. Our flexible models achieve state-of-the-art
performance here.

To prove the effectiveness of Overtone’s flexible models further, we show the 44th step rollout of
all four fields of the highly complex and chaotic Rayleigh-Bénarddataset in Figure [I6] for CSM +
vanilla ViT, Figure[17|for CKM + vanilla ViT and Figure |18|for FFNO. We chose to show FFNO
because it performed best among neural operator models in our baseline suite. All of the models
have a comparable size of about 7M paramaters. Along with the metrics noted in Table 9] we find
compelling visual evidence that CSM/CKM perform dramatically better than a competitive model
like F-FNO at a similar parameter level. This demonstrates Overtone’s strong performance.

More rollouts. Additionally, provide some more rollouts for different datasets for our flexible
models. Figures|19|and Consistent with the message of our paper, we find that the CSM and
CKM strategies help to stabilize and significantly improve rollouts compared to fixed patch models;
along with beating a range of state-of-the art models that we have extensively discussed.

29

Under review as a conference paper at ICLR 2026

T+10 T+20 T+30 T+35 T+40

=
O
=
>
©
X
<C
+
=
A4
@) E e
=
>
©
X
<
+
=
(Vp]
O
E,
R
4 &
Q £
= E
(O] L
=
5

Figure 15: Figure showing a rollout for the Rayl%@gh-Bénard dataset. From top to bottom: ground
truth (G.T.), CSM + axial ViT, CKM + axial ViT, SineNet. They all have comparable sizes in the
order of 40M parameters.

Under review as a conference paper at ICLR 2026

buoyancy
7

0.8

0.6

0.4

0.2

0.8

0.6

Predicted

0.4

0.2

Figure 16: Figure showing the 44th step rollout of the 7M CSM + Vanilla ViT model.

CSM + Vanilla ViT (7M)
rayleigh_benard - Frame 44

pressure

H
H

0.3

0.2

0.1

0.0

0.2

0.1

0.0

31

velocity_x

AWy

|V
-

0.4

0.2

0.0

0.4

0.2

0.0

velocity y

0.4

0.2

0.0

-0.

0.4

0.2

0.0

—0.

Under review as a conference paper at ICLR 2026

Predicted

X

buoyancy
".'

0.8
0.6
0.4

0.2

0.8
0.6
0.4

0.2

Figure 17: Figure showing the 44th step rollout of the 7M CKM + Vanilla ViT model.

CKM + Vanilla ViT (7M)
rayleigh_benard - Frame 44

pressure

ﬂ
!

0.3

0.2

0.1

0.0

32

velocity_x

h*
o)

YA »

Wy

-
-

AN

0.4

0.2

0.0

0.4

0.2

0.0

velocity y
s

'Nr -’4-

&
?.‘;‘.’.

X

'
AN,
o {

W b
l’ L1 .'.“ .-'
" N

.

D

\

Pt

rg)
o)

\y

¥ [] LR
4 | \‘ NG
G <

B

0.4

0.2

0.0

-0.

0.4

0.2

0.0

—0.

Under review as a conference paper at ICLR 2026

buoyancy
o/

0.8

0.6

0.4

0.2

0.8

0.6

Predicted
X

0.4

0.2

FFNO (7M)
rayleigh_benard - Frame 44

pressure

H
[

0.3

0.2

0.1

0.0

0.2

0.1

0.0

velocity_x

Wy

-
-,

0.4

0.2

0.0

0.4

0.2

0.0

velocity y

-

»

\.,"

’A

{

Q,

-
-
L

A z;:(tl
\

VI

ok,
TR

il

| N
LA

4

rAa

Figure 18: Figure showing the 44th step rollout of the 7M F-FNO model.

33

0.4

0.2

0.0

-0.

0.4

0.2

0.0

—0.

Under review as a conference paper at ICLR 2026

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833 Figure 20: Rollouts of the Turbulence Gravity Cooling dataset.
1834

1835

4
¥
Ay

GT.

Y

CKM + Axial VIiT CSM + Axial ViT

Fixed P16

Figure 19: Rollouts of the Active Matter dataset.

G.T.

CSM + Vanilla VIiT

CKM + Vanilla ViT

Fixed P16

34

Under review as a conference paper at ICLR 2026

G PHYSICS INFORMED BEHAVIOR

We investigate whether the models respect physical constraints such as mass and momentum con-
servation. To probe this, we performed new diagnostics on our CSM and CKM models on the
incompressible shear flow dataset and measured the mass conservation,

|V - ul,
and momentum conservation,
|Oyu — vAu+u - Vu+ Vp|,

over 50 autoregressive rollout steps. Averaged over four randomly chosen test set trajectories at

Reynolds number
Re =5 x 10*

(provided in the Well test set), the normalized deviations of these quantities relative to the ground
truth numerical simulations are approximately 0.5% (CSM) and 0.75% (CKM) for momentum, and
7.6% (CSM) and 6.7% (CKM) for mass.

These results show that momentum conservation is tracked very closely, while mass conservation
errors are somewhat larger (as is typical for autoregressive surrogates) but remain bounded (< 10%
error) over long rollouts, which is impressive for long rollouts in emulators.

These results indicate that our models remain stable and preserve conserved quantities (at levels
acceptable for measuring accuracy in fields like astrophysics and fluid dynamics) well over long
horizons.

35

Under review as a conference paper at ICLR 2026

7.6M 25M 100M
2x1072 \
ﬁ \
z ™
>
i 1072 4 1 1 \ -
k) — CSM
CKM
6x 103 { — Fixed patch -
128 512 2048 128 512 2048 128 512 2048
of tokens at inference # of tokens at inference # of tokens at inference

Figure 21: Comparison of next-step test VRMSE as a function of the number of tokens at inference for
convolutional stride modulation models (CSM), convolutional kernel modulation models (CKM), and
individually trained fixed patch models (7.6M, 25M and 100M parameters) for the Shear Flow dataset.

H ABLATION STUDIES

H.1 MODEL SIZE ABLATION

For the Shear Flow dataset, we trained the CSM/CKM and fixed patch (for the vanilla ViT self-
attention) models. The next-step test set VRMSE are shown in Figure 21} The results are to be
interpreted in the same way as Figure[3} i.e. the green points are separately trained static patch models
that we evaluate at the corresponding training patch/size or token counts at inference. CSM and CKM
on the other hand are a single model that we evaluate at different token counts at inference. The plots
show that CSM/CKM outperform the corresponding static patch counterparts consistently at a range
of parameter counts varying from 7M to 100M. This ablation shows that our story is consistent across
scaling parameter count.

For further investigation, we repeated the ablation experiment for the smallest 7M model for our
other benchmark datasets, shown in Table [I0] We find CSM/CKM to be consistently performing
competitively with their fixed patch counterparts across our benchmark datasets. This shows, again
that flexification is valuable to be incorporated into current patch based PDE surrogates, since it
provides a flexible choice of patching/striding parameter allowing tunability with various downstream
tasks and compute adaptivity in PDE surrogates.

Test VRMSE 7M Vanilla ViT

Dataset Patch size
CSM CKM Fixed patch size

3072 0.180 0.187 0.190

Turbulent Radiative Layer 2D 768 0.210 0.210 0.210

192 0.245 0.254 0.26
4096 0.0400 0.0405 0.0409

Active Matter 1024 0.050 0.046 0.043

256 0.066 0.070 0.050

4096 0.044 0.046 0.061

Rayleigh-Bénard 1024 0.060 0.060 0.073

256 0.074 0.080 0.083

4096 0270 0.258 0.261

Supernova Explosion 512 0.343 0.328 0.337

64 0.370 0.364 0.367

4096 0.102 0.096 0.100

Turbulence Gravity Cooling 512 0.152 0.138 0.133
64 0.169 0.169 0.164

Table 10: Test VRMSE for different patch sizes (or, token counts) at inference time for three different
2D datasets using 7.6M parameter models. These values are for next-step prediction.

36

Under review as a conference paper at ICLR 2026

H.2 ROBUSTNESS TO ADDING MORE PATCH/STRIDE OPTIONS

We performed additional experiments to explore the effect of adding more patch size options.
Specifically, we ran our CKM + 50M axial ViT model with the following patch size sequences for
the turbulent_radiative_layer_2D dataset (2, 3, 4 and 5 patch size choices). Note that we
still choose patches as powers of 2, following standard practice in this field. We choose the following
patch options:

[8,16]; [4,8,16]; [4,8,16,32]; [4,8,16,32,64],
(also shown the fixed patch 16 as reference)

We report the next step VRMSE loss on the validation set for these four models when the inference is
performed at a patch size of 16 for consistency across models. As detailed in the paper, note these are
flexible CKM+axial ViT models which is trained only once, and then can be flexibly deployed at
inference with multiple patch sizes.

Patch sequence VRMSE (Inference p.s.=16)

[16] — Fixed patch 0.222
[8, 16] 0.208
[4, 8, 16] 0.204
[4,8, 16, 32] 0.208
[4, 8, 16, 32, 64] 0.221

Based on the results above, the impact of adding additional patch sizes in this range is marginal,
and for all of these models, the key conclusion of our paper holds: that we can achieve flexibility
without a loss of accuracy over fixed patch baselines. We did not notice any training instabilities
when increasing the number of patch sizes/strides shown during training. The loss curves remained
smooth and convergent.

Additionally, as detailed in Appendix [J] the PI-resize mechanism depends only on the base patch size
and the randomly selected patch size, and the resulting pseudo-inverse matrix is a smooth function of
these parameters. Therefore, introducing additional patch options does not introduce any inherent
source of instability — an expectation that is fully supported by these empirical observations.

We additionally performed the same scaling experiment with the CSM+axial ViT model and obtained
similar results. Below we show the next-step scaling VRMSE on the validation set. These new results
show that the models are robust to adding more flexibility.

Stride sequence VRMSE (Inference stride=16)

[16] — Fixed patch 0.222
[8, 16] 0.213
4,8, 16] 0.207
[4,8, 16, 32] 0.209
[4, 8, 16, 32, 64] 0.216

Our method is robust to increased flexibility.

H.3 UNDERLYING PATCH SIZE ABLATION IN CKM

We vary the underlying patch size of CKM (coupled with axial ViT). We use a sequence of base p.s.
between 4, 8, 16 and 32. We tested on the Turbulent Radiative Layer 2Ddataset.

As shown in Table we find that all of the base patch sizes perform comparably to each other.
Our conclusion on the adaptive compute, i.e., our claim that flexible models can provide compute
adaptivity in PDE surrogates without compromising on the accuracy hold at all base patch size
choices.

37

Under review as a conference paper at ICLR 2026

Base patch size Inference patch size

4 8 16
4 0.157 0.181 0.246
8 0.156 0.179 0.244
16 0.160 0.175 0.216
32 0.161 0.179 0.221

Table 11: Ablation study on the effect of the base patch size used in CKM, evaluated on the Turbulent
Radiative Layer 2D dataset with an Axial ViT backbone. Values are for next-step prediction VRMSE.

H.4 TIME CONTEXT LENGTH ABLATION

We kept the number of input time frames to be fixed at 6 because we wanted to isolate the effect of
dynamic patching/striding in our model.

The choice of Mime inpus = 6 i consistent with other choices in the literature. We consider models
that can produce stable long-horizon rollouts from a shorter input context stronger, since they learn
to predict next steps with less ground-truth information. For reference, competitive PDE surrogate
models such as CViT and SineNet use 10 input time steps, neural operator-based models like FNO,
FFNO, and TFNO also commonly use 10, models such as MPP (NeurIPS 2024) and DISCO (ICML
2025) use 16. By using 6 input frames, our setup requires the model to predict longer rollouts from
less context while still remaining broadly consistent with common practice in the literature.

We performed an ablation varying the number of input frames (ninput_steps = 3, 6, 12) for our CKM
+ 50M AViT model. We kept all other settings and hyperparameters fixed. The results (next-step
VRMSE on the validation set) are shown below:

Input time steps Next-step VRMSE

3 0.202
6 (default) 0.201
12 0.213

We find that varying the number of input steps in this range has only a marginal impact on accuracy.
In practice, a smaller input context is also attractive for efficiency, since it reduces both training and
inference cost while still providing stable long-horizon predictions.

H.5 SENSITIVITY TO PATCH DIVERSITY DURING TRAINING

Next we performed an experiment to determine the effect of omitting patch sizes during training. To
this end, we train on patch/stride sizes of 4 and 16 for our flexible models, and then during inference,
we test on patch/stride of 4, 8 and 16. Clearly, as shown in Table[T2] when we perform the evaluation
on the omitted patch size of 8, the performance degrades for both CSM and CKM. This behavior is
expected, and underlines the importance of training on a diverse patch/stride sizes to obtain the best
generalization performance at inference.

Inference p.s.=4 Inference p.s.=8 Inference p.s.=16

CKM + axial ViT 0.158 0.453 0.230
CSM + axial ViT 0.160 0.377 0.222

Table 12: Performance drop when patch size 8 is omitted during training but used at inference. We
trained models only on patch sizes 4 and 16. Results indicate the importance of patch diversity during
training to ensure generalization at inference patch/stride choices.

38

Under review as a conference paper at ICLR 2026

H.6 ALTERNATING VS. RANDOM PATCH/STRIDE ROLLOUT SCHEDULES

Next we experiment on another kind of rollout strategy—where we randomize the patches during
rolling out temporally. We perform the experiment for both CSM and CKM on the vanilla ViT
processor. The result is shown for two example datasets Turbulent Radiative Layer 2D and Active
Matter. We find that alternating schedule generally performs better than randomized schedules.

Dataset Model Alternating Randomized
Aetive Mait CSM + vanilla ViT 0.359 0.364
chive Matter CKM + axial ViT 0.351 0.394
. CSM + vanilla ViT 0.370 0.370
Turbulent Radiative Layer 2D cygnp 4 vanilla VIT 0,409 0.426
. . CSM + vanilla ViT 0.559 0.625
Turbulence Gravity Cooling ~ygnr oy vanilla VIT— 0.527 0.597

Table 13: Rollout performance across datasets comparing alternating vs. randomized patch/stride
schedules.

I NEURAL OPERATOR BASED NON-TRANSFORMER METHODS BENEFITING
FROM SMALLER PATCH SIZES

In this work we focused on patch-based transformer architectures because they currently cover a
broad range of competitive state-of-the-art PDE surrogate models (e.g., CViT (ICLR 2025), MPP
(NeurIPS 2024), DISCO (ICML 2025), and POSEIDON (NeurIPS 2024)). However, non-transformer
models such as AFNO (Guibas et al.|[2021)) share a similar motivation, and patch size turns out to be
an important parameter for them as well.

To demonstrate this, we trained the AFNO baseline provided with the Well package on the Turbulent
Radiative Layer 2D dataset with patch sizes of 16 and 4. Reducing AFNOQO’s patch size from 16
to 4 improved the test VRMSE from 0.298 to 0.211, showing that patch size is a critical design
choice. We also found patch size to be crucial in a recent DPOT (Hao et al., [2024)) model, which
performed large-scale pretraining on PDEs. These results highlight that patch size matters not only
for transformer frameworks but also for other neural operator architectures.

To motivate this direction further, we ran the 20M-parameter fixed-patch-16 AFNO baseline (as
provided in the Well package) on three 2D datasets and compared it with our flexible models and
other baselines:

Model / Dataset Shear_flow TRL_2D Active_matter
AFNO (20M, p=16) 0.689 0.486 0.990
FFNO (7M) 0.110 0.485 0.567
SineNet (35M) 0.170 0.650 0.760
CSM + ViT (7TM) 0.0762 0.458 0.563
CKM + ViT (7TM) 0.096 0.477 0.522

Table 14: Performance of AFNO and other baselines on three 2D datasets.

These benchmarks show that fixed-patch AFNO performs significantly worse than our flexified
transformer-based models, especially on Shear Flow and Active Matter. We also tested a “flexified”
AFNO by adding the CKM module to its patch embedding and de-embedding steps. On Turbulent
Radiative Layer 2D, where AFNO was most competitive, the fixed-patch AFNO (p=16) reached
a 10-step VRMSE of 0.486 with visible checkerboard artifacts. The CKM-flexified AFNO with
alternating patch sizes reduced the VRMSE to 0.460 and mitigated the artifacts as shown below in
Figure. 22] to be compared to artifact filled AFNO model in fig. [I4]

Regarding DPOT, we note that CViT (which we have extensively studied in this paper) already
provides detailed comparisons to DPOT in its original publication, and CViT outperformed DPOT

39

Under review as a conference paper at ICLR 2026

density

Predicted True
X

Error
X

Figure 22: Flexified AFNO model with cyclic patches reduced artifacts, compared to Fig. [T4]

across diverse benchmarks. We therefore chose CViT as the representative strong baseline for our
experiments. These experiments confirm that researchers can incorporate flexible methods into
architectures beyond transformers in a straightforward manner, enabling task-aware, inference-time
control in both pretrained and task-specific surrogate models.

J DERIVATION OF THE PI-RESIZE MATRIX FOR CONVOLUTIONAL KERNEL
MODULATORS

J.1 MOTIVATION FOR KERNEL RESIZING

The CKM-based model dynamically adjusts convolutional kernel sizes at each forward pass while
maintaining a fixed architecture. This allows variable patch sizes (4, 8, 16), which is crucial for
handling different spatial resolutions while ensuring compatibility with the ViT.

However, this flexibility introduces a problem: we train the CNN encoder, which extracts ViT tokens,
with a fixed base convolutional kernel. To ensure that features extracted at different patch sizes remain
aligned, we use a resize transformation, which projects the base kernel to a dynamically selected
kernel size. Examples of resizing kernels through interpolation include (Xu et al.,|2014) and (Beyer
et al.l [2023)).

J.2 MATHEMATICAL FORMULATION
Let:

o Tbase ¢ REXK™ xcixcon be the learned CNN weights for the fixed base kernel size k.
o W € RFXFXenXcun pe the resized kernel for a dynamically selected kernel size k.

* B be an interpolation matrix (e.g., bilinear, bicubic) that resizes input patches from size
k to size kbase,

o 1 € RBXFxEXcn be an input patch, where:

— B is the batch size.
— k X k is the local receptive field defined by the kernel.
— Cip 1s the number of input channels.

Intuitively, the goal is to find a new set of patch- embedding weights W such that the tokens of the
resized patch match the tokens of the original patch

W s 2 ~ W * (Bz), (10)
where * denotes convolution. The goal is to solve for W. Mathematically, this is an optimization

problem.

40

Under review as a conference paper at ICLR 2026

J.3 LEAST-SQUARES OPTIMIZATION FOR PI-RESIZE
J.3.1 EXPANDING THE OBJECTIVE

We aim to expand the expectation:

EmNX [(xTWbase o :Z?TBTW)Q] . (11)
Since inner products can be rewritten as matrix-vector multiplications, we note that:

<1,7 Wbase> _ xTWbase.

Step 1: Expand the Square Using the identity (a — b)? = a? — 2ab + b?, we expand:

(xTWbase _ acTBTW)2 _ (xTWbase)2 _ 2£CTWbaSC(IL‘TBTW) =+ (LUTBTW)Q. (12)
Step 2: Take the Expectation Now, we take expectation over x ~ X:

ExNX [(xTWbase)2 _ 2£ETWbase(£L'TBTW) + ({ETBTW)2] . (13)

Using the definition of the covariance matrix:

¥ = Epox[za’], (14)

we apply the linearity of expectation to each term:

Ew[(xwaaSE)Q] — Wbase’TEWbase, (15)
E.[(z" BTW)? = WP BZB™W, (16)
E, [z WP (2" BTW)] = WPTSBTW. (17)

Step 3: Write in Matrix Form Substituting these into the expectation:

EJJNX [(xTWbase o $TBTW)2:| _ Wbase’TZWbase o 2wbase,TEBTW + WTBEBTW (18)
The above expression can be re-written as:
||Wbase o BTWH% — (Wbase,T o WTB)Z(Wbase o BTW) (19)

Conclusion This result expresses the squared error between the transformed weight matrix W
and the resized weight matrix BT W?*¢, weighted by the covariance matrix Y. The quadratic form
measures the deviation in terms of feature space alignment, ensuring that the transformation remains
consistent with the learned base kernel.

The optimal solution minimizing (I9) is given by
t
W= (\/EBT) VEWbase (20)
¥
where (\/EBT) \/i is the Moore-Penrose pseudoinverse matrix.

41

Under review as a conference paper at ICLR 2026

J.4 FINAL TRANSFORMATION AND IMPLEMENTATION
Thus, at each forward pass, we apply the following steps:

1. Randomly select a kernel size k& € {4,8,16}.
2. Compute the interpolation matrix B that resizes the input patch from k to k%,
3. Transform the kernel weights using:

W = (BT)fwbase, (1)
4. Apply the resized kernel W for convolution.

This ensures that dynamically changing kernel sizes maintain compatibility with the fixed architecture
while enabling flexible patch sizes.

J.5 CSM PSEUDOCODE

Algorithm 1 Convolutional Stride Modulator (CSM)

Il’lpllt: = RBXHXWXTXC
Output: & € REXHXWxIxC
kPase . fixed kernel size

Step 1: Padding
* Pad x with learned tokens based on boundary conditions.

Step 2: Stride selection
* Sample stride(s) s from {4, 8, 16}.
* If the encoder/decoder is multi-stage, split s across stages.

Step 3: Encoding
1. For each encoder stage with assigned s:
s 7+ Conv(x, k% stride = s)

Step 4: Transformer processing
* Pass tokens through transformer processor (architecture-agnostic)

Step 5: Decoding
1. For each decoder stage with assigned s:
* & ¢ ConvTranspose(z, k"° stride = s)
return &

42

Under review as a conference paper at ICLR 2026

J.6 CKM PSEUDOCODE

Algorithm 2 Convolutional Kernel Modulator (CKM)

Input: = RBXHXWXTXC
Output: & € REXHXWx1IxC
wP25¢ : base kernel weights, B : resizing matrix

Step 1: Sample patch size
* Sample patch size k € {4,8,16} once per forward pass.
* If the base encoder/decoder to be flexified is multi-staged, split k£ across stages.

Step 2: Encoding
1. For each encoder stage with assigned k:
* Resize kernel: w < BT Tyt
ez Conv(z,w,stride = k)

Step 3: Transformer processing
* Pass tokens through any transformer processor (architecture-agnostic)

Step 4: Decoding
1. For each decoder stage with assigned k:
* Resize kernel: w « BT Tybe
* I < ConvTranspose(z,w,stride = k)
return &

43

Under review as a conference paper at ICLR 2026

LLM USAGE

We used large language models (LLMs) during this project. We employed them as general-purpose
assistive tools, comparable to an IDE or grammar-checking software. Specifically, we used them
for (i) code assistance, including generating boilerplate, debugging, and suggesting implementation
details, and (ii) language editing, including grammar, clarity, and stylistic improvements to drafts. All
generated content was reviewed, corrected, and verified by the authors, who take full responsibility
for the final text and code.

44

	Introduction
	Background and related work

	Methods
	Results
	Comparison to non-patched baselines
	Flexible inference
	Harmonic artifact mitigation
	Ablations

	Conclusion
	Harmonic Error Analysis
	Experiment details
	Datasets
	Model configuration
	Training configuration - Axial ViT and Vanilla ViT experiments
	VRMSE metric

	Binned spectral error analysis
	Definitions
	BSNMSE for different datasets

	CViT experiments
	Patch artifacts
	Our experiments
	Other papers

	Baselines used and more rollouts
	Physics informed behavior
	Ablation studies
	Model size ablation
	Robustness to adding more patch/stride options
	Underlying patch size ablation in CKM
	Time context length ablation
	Sensitivity to patch diversity during training
	Alternating vs. random patch/stride rollout schedules

	Neural operator based non-transformer methods benefiting from smaller patch sizes
	Derivation of the PI-Resize Matrix for Convolutional Kernel Modulators
	Motivation for Kernel Resizing
	Mathematical Formulation
	Least-Squares Optimization for PI-Resize
	Expanding the Objective

	Final Transformation and Implementation
	CSM pseudocode
	CKM pseudocode

