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ABSTRACT

Causal representation learning is the task of identifying the underlying causal vari-
ables and their relations from high-dimensional observations, such as images. Re-
cent work has shown that one can reconstruct the causal variables from temporal
sequences of observations under the assumption that there are no instantaneous
causal relations between them. In practical applications, however, our measure-
ment or frame rate might be slower than many of the causal effects. This effectively
creates “instantaneous” effects and invalidates previous identifiability results. To
address this issue, we propose iCITRIS, a causal representation learning method
that allows for instantaneous effects in intervened temporal sequences when inter-
vention targets can be observed, e.g., as actions of an agent. iCITRIS identifies the
potentially multidimensional causal variables from temporal observations, while
simultaneously using a differentiable causal discovery method to learn their causal
graph. In experiments on three datasets of interactive systems, iCITRIS accurately
identifies the causal variables and their causal graph.

1 INTRODUCTION

Recently, there has been a growing interest in causal representation learning (Schölkopf et al.,
2021), which aims at learning representations of causal variables in an underlying system from high-
dimensional observations like images. Several works have considered identifying causal variables
from time series data, assuming that the variables are independent of each other conditioned on
the previous time step (Gresele et al., 2021; Khemakhem et al., 2020a; Lachapelle et al., 2022a;b;
Lippe et al., 2022b; Yao et al., 2022a;b). This assumes that within each discrete, measured time step,
intervening on one causal variable does not affect any other variable instantaneously. However, in
real-world systems, this assumption is often violated, as there might be causal effects that act faster
than the measurement or frame rate (Faes et al., 2010; Hyvärinen et al., 2008; Moneta et al., 2006;
Nuzzi et al., 2021). Consider the example of a light switch and a light bulb. When flipping the switch,
there is an almost immediate effect on the light by turning it on or off, changing the appearance of the
whole room instantaneously. In this case, an intervention on a variable (e.g., the switch) also affects
other variables (e.g., the bulb) in the same time step, violating the assumption that each variable is
independent of the others in the same time step, conditioned on the previous time step. In biology,
some protein-protein interactions also occur nearly-instantaneously (Acuner Ozbabacan et al., 2011).

To overcome this limitation, we consider the task of identifying causal variables and their causal graphs
from temporal sequences, even in case of instantaneous cause-effect relations. This task contains two
main challenges: identifying the causal variables from observations, and learning the causal relations
between those variables. We show that, as opposed to temporal sequences without instantaneous
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effects, neither of these two tasks can be completed without the other: without knowing the variables,
we cannot identify the graph; but without knowing the graph, we cannot identify the causal variables,
since they are not conditionally independent. In particular, in contrast to causal relations across time
steps, the orientations of instantaneous edges are not determined by the temporal ordering, hence
requiring to jointly solve the tasks of causal representation learning and causal discovery.

As a starting point, we consider the setting of CITRIS (Causal Identifiability from Temporal Intervened
Sequences; Lippe et al. (2022b)). In CITRIS, potentially multidimensional causal variables interact
over time, and interventions with known targets may have been performed. While in that work all
causal relations were assumed to be temporal, i.e., from variables in one time step to variables in
the next time step, we generalize this setting to include instantaneous causal effects. In particular,
we show that in general, causal variables are not identifiable if we do not have access to partially-
perfect interventions, i.e., interventions that remove the instantaneous parents. If such interventions
are available, we prove that we can identify the minimal causal variables (Lippe et al., 2022b), i.e., the
parts of the causal variables that are affected by the interventions, and their temporal and instantaneous
causal graph. Our results generalize the identifiability results of Lippe et al. (2022b), since if there
are no instantaneous causal relations, any intervention is partially-perfect by definition. As a practical
implementation, we propose instantaneous CITRIS (iCITRIS). iCITRIS maps high-dimensional
observations, e.g., images, to a lower-dimensional latent space on which it learns an instantaneous
causal graph by integrating differentiable causal discovery methods into its prior (Lippe et al., 2022a;
Zheng et al., 2018). In experiments on three different video datasets, iCITRIS accurately identifies
the causal variables as well as their instantaneous and temporal causal graph. Our contributions are:

• We show that causal variables in temporal sequences with instantaneous effects are not
identifiable without interventions that remove instantaneous parents.

• We prove that when having access to such interventions with known targets, the minimal
causal variables can be identified along with their causal graph under mild assumptions.

• We propose iCITRIS, a causal representation learning method that identifies minimal causal
variables and their causal graph even in the case of instantaneous causal effects.

Related Work We provide an extended discussion on related work in Appendix C. Early works on
causal representation learning focused on identifying independent factors of variations (Klindt et al.,
2021; Kumar et al., 2018; Locatello et al., 2019; 2020b; Träuble et al., 2021), in settings similar to
Independent Component Analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001; 2019). In particular,
Lachapelle et al. (2022a;b); Yao et al. (2022a;b) discuss the identifiability of causal variables from
temporal sequences. Yet, in all of these ICA-based setups, causal variables are required to be
conditionally independent. For causally-dependent variables, Yang et al. (2021) learn causal variables
from labeled images in a supervised manner. Ahuja et al. (2022); Brehmer et al. (2022) identify
causal variables with unknown causal relations from pairs of observations that only differ in a subset
of causal factors influenced by an intervention, i.e., having counterfactual observations. As discussed
by Pearl (2009), however, knowing counterfactuals is not realistic in most scenarios. Instead, CITRIS
(Lippe et al., 2022b) focuses on temporal sequences, in which also the variables that are not intervened
upon can still continue evolving over time. On the other hand, in this setting the intervention targets
need to be known. Moreover, within a time step, the causal variables are assumed to be independent
conditioned on the variables of the previous time step, hence not allowing for instantaneous effects.
To the best of our knowledge, iCITRIS is the first method to identify causal variables and their causal
graph from temporal, intervened sequences even for potentially instantaneous causal effects, without
requiring counterfactuals or data labeled with the true causal variables.

2 RELEVANT BACKGROUND AND DEFINITIONS

In this work, we start from the setting of Temporal Intervened Sequences (TRIS) (Lippe et al., 2022b).
For clarity, we provide a brief overview of TRIS and discuss previous identifiability results, before
extending and generalizing the theory to instantaneous effects.

2.1 TEMPORAL INTERVENED SEQUENCES

Temporal intervened sequences (TRIS) (Lippe et al., 2022b) are a latent temporal causal process S
withK causal variables (Ct1, C

t
2, ..., C

t
K)Tt=1 (e.g., the light switch and bulb), representing a dynamic
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Bayesian network (DBN) (Dean et al., 1989; Murphy, 2002). Each causal variable Ci is instantiated at
each time step t, denoted byCti , and its causal parents pa(Cti ) are a subset of the variables at time t−1.

To represent interventions, the causal graph is augmented with binary intervention variables It ∈
{0, 1}K , where Iti = 1 refers to the causal variable Cti having been intervened at time step t. This
setting can model soft interventions (Eberhardt, 2007), i.e., interventions that change the conditional
distribution p(Cti |pa(Cti ), I

t
i = 1) ̸= p(Cti |pa(Cti ), I

t
i = 0) (e.g., flipping the light switch). This

trivially includes also perfect interventions, do(Ci = ci) (Pearl, 2009), which cause the target variable
to be independent of its parents. To allow for arbitrary sets of interventions, the intervention variables
are considered to be confounded by an unobserved variable Rt. While the intervention variables It
are assumed to be observed, the actual values of the intervened variables, e.g., the state of the light
switch, are not. The graph and its parameters are assumed to be time-invariant (i.e., repeat across
time steps), causally sufficient (i.e., no latent confounders besides the variables mentioned before),
and faithful (i.e., no additional independences w.r.t. the ones encoded in the graph).

In this setting, causal variables can be scalar or span over multiple dimensions, i.e., Ci ∈ DMi
i with

the dimensionality Mi ≥ 1 and Di being the domain. For example, a 3d position can be represented
as Ci ∈ R3. The causal variable space is defined as C = DM1

1 × DM2
2 × ...× DMK

K .

Instead of observing the causal variables directly, we measure a high-dimensional observation Xt,
e.g., an image, representing a noisy, entangled view of all causal variables Ct = (Ct1, C

t
2, ..., C

t
K) at

time step t. The observation function is defined as h(Ct1, C
t
2, ..., C

t
K , E

t) = Xt, whereEt ∈ E is any
noise on the observation Xt that is independent of Ct (e.g., pixel or color shifts), and h : C × E → X
is a function from the causal variable space C and the space of the observation noise E = RL to the
observation space X ⊆ RN . To allow unique identification of causal variables from observations, the
observation function h is assumed to be bijective, i.e., there exist a unique inverse of h for all X ∈ X .

2.2 MINIMAL CAUSAL VARIABLES AND IDENTIFIABILITY CLASS

Multidimensional causal variables are not always fully identifiable in TRIS, when interventions only
affect a subset of the variables’ dimensions (Lippe et al., 2022b), e.g., only x in a 3d position [x, y, z].
To account for these interventions, each causal variable Cti can be split into an intervention-dependent
part svari (Cti ), e.g., [x], and an intervention-independent part sinvi (Cti ), e.g., [y, z], where si(Cti ) =
(svari (Cti ), s

inv
i (Cti )) is an invertible function. Under this split, the distribution of Cti becomes:

p
(
si(C

t
i )|pa(Cti ), I

t
i

)
= p

(
svari (Cti )|pa(Cti ), I

t
i

)
· p
(
sinvi (Cti )|pa(Cti )

)
(1)

With this setup, Lippe et al. (2022b) define a minimal causal variable as follows:
Definition 2.1. The minimal causal variable of a causal variable Cti w.r.t. its intervention variable
Iti is the intervention-dependent part svari (Cti ) of the split si(Cti ) = (svari (Cti ), s

inv
i (Cti )), such that

the split maximizes the information content H(sinvi (Cti )|pa(Cti )) in terms of the limiting density of
discrete points (LDDP) (Jaynes, 1957; 1968).

To identify the minimal causal variables from data triplets {xt, xt+1, It+1}, CITRIS approximates
the observation function h by learning an invertible map gθ : X → Z , with Z ∈ RM being a latent
space withM dimensions. For this latent space, CITRIS learns an assignment function ψ : J1..MK →
J0..KK, mapping each dimension of Z to a causal variable C1, ..., CK . The index 0 is used for the
observation noise or intervention-independent variables. We denote the set of latents assigned to the
causal variable Ci with zψi

= {zj |j ∈ J1..MK, ψ(j) = i}. On this latent space, CITRIS models a
prior pϕ,ψ(zt+1|zt, It+1) where each group of latent variables, zt+1

ψi
, is conditioned on the previous

time step zt and its intervention variable It+1
i , but independent among each other within the same

time step. The causal graph can be found by pruning the temporal dependencies in this prior.

Under this model, Lippe et al. (2022b) consider a causal system S to be identified by a model M if
its minimal causal variables are identified up to an invertible transformation, and M recovers the true
causal graph in S . CITRIS is shown to identify S if it maximizes the information content of zψ0

, under
the constraint of maximizing the likelihood of data points {Xt, Xt+1, It+1}, and no intervention
variable Iti is a deterministic function of any other intervention variable. However, if causal effects
occur faster than the observation rate, an intervention influences also other variables in the same time
step in addition to its target, leading CITRIS to potentially identify incorrect variables. In this paper,
we generalize this identifiability result to systems where instantaneous causal relations may exist.
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3 IDENTIFYING CAUSAL VARIABLES WITH INSTANTANEOUS EFFECTS

In this section, we generalize Temporal Intervened Sequences (TRIS) to settings where causal relations
can be potentially instantaneous. First, we discuss the challenges arising from instantaneous effects,
and then present solutions to overcome these challenges. Finally, we derive our identifiability results.

3.1 ITRIS AND CHALLENGES OF INSTANTANEOUS EFFECTS

We extend TRIS to a setting we call instantaneous Temporal Intervened Sequences (iTRIS) which
allows for instantaneous causal effects. In iTRIS, causal variables within the same time step can cause
each other, as long as the graph remains acyclic. This means that, for example, Ct+1

i can cause Ct+1
j

for i ̸= j, as long as there is no directed path Ct+1
i → · · · → Ct+1

i . Figure 1 summarizes this setting.

While the addition of instantaneous effects may seem like a small change, it violates the key
assumption of most previous works (Khemakhem et al., 2020a; Lachapelle et al., 2022a;b; Lippe
et al., 2022b; Yao et al., 2022a;b), namely that causal variables within a time step are independent
conditioned on some external variable. As a consequence, we have to differentiate between causal
models in a much larger function space than before, making identifiability a considerably harder task.

Ct

Ct+1
1 Ct+1

2
· · · Ct+1

K Xt+1

Et+1

Xt

Et

It+1
1 It+1

2
· · · It+1

K

Rt+1

Causal variables

Temporal causal
relations

Instantaneous
causal relations

Intervention
variables

Latent
confounding

Observations

Ct+1

h

h

Figure 1: An example causal graph in iTRIS. A la-
tent causal variable Ct+1

i can have as potential par-
ents a subset of the causal variables at the previous
time step Ct = (Ct1, . . . , C

t
K), instantaneous par-

entsCt+1
j , i ̸= j, and its intervention variable It+1

i .
All causal variables Ct+1 and observation noise
Et+1 cause the observation h(Ct+1, Et+1) =
Xt+1. Rt+1 is a latent confounder allowing for de-
pendencies between intervention variables.

To formalize this intuition, consider the follow-
ing example. Assume we have two latent causal
variables C1 and C2, and, for simplicity, no tem-
poral relations. The causal variables C1 and C2

do not cause each other, and we have an arbi-
trary observation function h(C1, C2) = X and
distributions p1(C1), p2(C2). In this example,
if our method allows for instantaneous effects,
we cannot identify the causal variables or their
graph from px(X) alone, since there are mul-
tiple representations that model px(X) equally
well. For instance, the representation Ĉ1 =

C1, Ĉ2 = C1 + C2 with the causal graph Ĉ1 →
Ĉ2 model the same observation distribution
since p̂2(Ĉ2|Ĉ1) = p̂2(C1 + C2|C1) = p2(C2)

and hence p̂(Ĉ2|Ĉ1)p̂(Ĉ1) = p(C1)p(C2) =
px(X). This happens even under soft interven-
tions, because the causal graph can remain un-
changed. However, if we have interventions on
Ci that remove its instantaneous parents, then
the learned representation of Ci must be inde-
pendent of any instantaneous effects. This elim-
inates Ĉ1, Ĉ2, since Ĉ2 ̸⊥⊥ Ĉ1|I2 = 1. We refer
to these interventions as partially-perfect:

Definition 3.1. A partially-perfect intervention on a causal variable Ci is a soft intervention that
removes all parents in the instantaneous graph: p(Cti |pa(Cti ), I

t
i = 1) = pI(C

t
i |patemp(Cti )) where

patemp(Cti ) = {Ct−1
j |j ∈ J1..KK, Ct−1

j ∈ pa(Cti )} and pI is the post-interventional distribution.

As an example, consider an intervention that sets Cti = Ct−1
i + ϵ, where ϵ is noise. While this

intervention breaks instantaneous relations, the target still depends on the previous time step, making
it partially-perfect. Using the partially-perfect interventions, we can prove the following:

Lemma 3.2. In iTRIS, a causal variable Ci cannot be identified up to an invertible transformation
Ti that is independent of all other causal variables, if Ci can have instantaneous parents and no
partially-perfect interventions on Ci are provided.

We provide the proof for this lemma and an example with temporal relations in Appendix D.2.1. In
the following, we assume that all interventions in iTRIS are partially-perfect. This subsumes the soft
intervention setup in TRIS by definition, since the instantaneous graph is empty in this case.
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3.2 IDENTIFYING THE MINIMAL CAUSAL VARIABLES IN ITRIS

Using partially-perfect interventions, we introduce our identifiability results in iTRIS. For simplicity
of the theoretical analysis, we follow Lippe et al. (2022b) and consider a continuous domain for
causal variables, i.e., D = R, and that distributions have full support. In Section 5, we empirically
extend the results to variables with categorical and circular domains, and distributions with limited
support. Further, we assume that the temporal dependencies and interventions break all symmetries in
the variables’ distributions such that distributional implies functional independence. For a Gaussian,
this entails that the mean cannot be a constant (see Appendix D.2 for details on the assumptions).

Similar to CITRIS, we learn an invertible mapping, gθ : X → Z , and an assignment function
ψ : J1..MK → J0..KK to align latent to causal variables. Differently, however, we also learn a directed,
acyclic graph G on the K + 1 latent variable groups zψ0 , ..., zψK

to model the instantaneous causal
relations. The graphG induces a parent structure denoted by zψpa

i
= {zj |j ∈ J1..MK, ψ(j) ∈ paG(i)}

where paG(0) = ∅, i.e., the variables in zψ0
have no instantaneous parents. Meanwhile, the temporal

causal graph between Ct and Ct+1 is implicitly learned by conditioning zt+1 on all latents of the
previous time step, zt, and can be pruned after training. This results in the following prior:

pϕ,ψ,G
(
zt+1|zt, It+1

)
= pϕ

(
zt+1
ψ0

|zt
)
·
K∏

i=1

pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

)
. (2)

With this setup, we can now formally define our identifiability class that contains the one in CITRIS:

Definition 3.3. A model M = ⟨θ, ϕ, ψ,G⟩ identifies a causal system S = ⟨C,E, h⟩ iff for each
causal variable Ci, i ∈ J1..KK, the following two conditions hold:
(1) each minimal causal variable is identified up to an invertible transformation Ti, i.e., for all
observations x ∈ X : svari (ci) = Ti(zψi

), where ci = [h−1(x)]i is the value of the true causal
variable and zψi

= [gθ(x)]ψi
is the value of the estimated minimal causal variable, and

(2) the estimated parents pa(ztψi
) are the same as the true parents of the minimal causal variable

svari (Cti ), i.e., the estimated parent set contains zτψj
, j ∈ J1..KK, τ ∈ {t−1, t} iff svarj (Cτj ) is a parent

of svari (Cti ), and it contains zτψ0
iff there exist l ∈ J1..KK for which sinvl (Cτl ) is a parent of svari (Cti ).

For the light switch example, this means that the latent variable zψ1
must model the switch’s state,

zψ2
the bulb’s state, and the instantaneous graph is zψ1

→ zψ2
. Compared to ICA-based results, this

identifiability class explicitly aligns the latent variables with the causal variables and, thus, we do not
rely on a permutation equivalence class. To identify S from observations, we consider a dataset of
triplets {xt, xt+1, It+1} with observations xt, xt+1 ∈ X and intervention variables It+1. This dataset
could be created interactively or, for example, recorded by an expert. With this, the objective becomes:

pϕ,ψ,θ,G
(
xt+1|xt, It+1

)
=
∣∣det Jgθ (xt+1)

∣∣ · pϕ,ψ,G
(
zt+1|zt, It+1

)
(3)

where the Jacobian of gθ,
∣∣det Jgθ (xt+1)

∣∣, is introduced due to the change of variables of x to z. If
dim(X ) > dim(C × E), we consider that gθ contains an arbitrary, fixed map from X to the lower
dimensionality. Under the assumption that gθ, pϕ are universal function approximators and the dataset
is unlimited in size, we derive the following identifiability result:

Theorem 3.4. In iTRIS, a model M∗ = ⟨θ∗, ϕ∗, ψ∗, G∗⟩ identifies a causal system S = ⟨C,E, h⟩
(Definition 3.3) if M∗, under the constraint of maximizing the likelihood pϕ,θ,G(Xt+1|Xt, It+1):
(1) maximizes the information content H(zt+1

ψ0
|zt) in terms of the LDDP (Jaynes, 1957; 1968),

(2) minimizes the number of edges in G∗, and
(3) no intervention variables Iti , I

t
j are deterministically related, i.e., ∀j ̸= i : ¬(∃f, ∀t : Iti = f(Itj)).

Intuitively, this theorem shows that we can identify the minimal causal variables, even when instanta-
neous effects are present, under the same constraints as CITRIS. The proof in Appendix D follows
three main steps. First, we show that the true observation function constitutes a global optimum of
Equation (3), but is not necessarily unique. Second, we derive that any global optimum must iden-
tify the minimal causal variables. Finally, we show that optimizing the data likelihood identifies the
complete causal graph, i.e., instantaneous and temporal, between the minimal causal variables.
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4 CAUSAL REPRESENTATION LEARNING WITH INSTANTANEOUS EFFECTS

Based on our theoretical results, we propose iCITRIS, a generalization of CITRIS (Lippe et al., 2022b).
We first review the original CITRIS architecture, and then describe our extensions in iCITRIS.

4.1 BASELINE: CITRIS

CITRIS is build upon a variational autoencoder (VAE) (Kingma et al., 2014), where the (convolutional)
encoder and decoder approximate the invertible map gθ. To promote the identification of the causal
variables in latent space, the prior of the VAE follows Equation (2), excluding the instantaneous
parents. All latent distributions pϕ are usually implemented as conditional Gaussians, with the mean
and std predicted by a small MLP per latent variable. Finally, the VAE is trained via maximum
likelihood on p(Xt+1|Xt, It+1). Alternatively, CITRIS can also be trained on the representations of
a pretrained autoencoder, where the map gθ is replaced by a normalizing flow (Rezende et al., 2015).
We follow the same setup in iCITRIS, but extend CITRIS’ prior to instantaneous effects.

4.2 LEARNING THE INSTANTANEOUS CAUSAL GRAPH

To learn the instantaneous causal graph simultaneously with the causal representation, we incorporate
recent differentiable score-based causal discovery methods in iCITRIS. Given a distribution over
graphs p(G), the conditional distribution over the latent variables zt+1 of Equation (2) becomes:

pϕ,ψ,G
(
zt+1|zt, It+1

)
= pϕ

(
zt+1
ψ0

|zt
)
· EG∼p(G)

[
K∏

i=1

pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

)]
(4)

where the parent sets, zψpa
i

, depend on the graph structure G. The goal is to jointly optimize pϕ and
p(G) under maximizing the likelihood objective of Equation (3), such that p(G) is peaked at the
correct causal graph. To this end, we experiment with two causal discovery methods that allow for
continuous optimization: NOTEARS (Zheng et al., 2018), and ENCO (Lippe et al., 2022a).

NOTEARS (Zheng et al., 2018) casts structure learning as a continuous optimization problem by
providing a continuous constraint on the adjacency matrix to enforce acyclicity. Following Ng et al.
(2022), we model the adjacency matrix with independent edge likelihoods, and differentially sample
from it using the Gumbel-Softmax trick (Jang et al., 2017). We use these samples as graphs in the
prior pϕ

(
zt+1|zt, It+1

)
to mask the parents of the individual causal variables, and obtain gradients

for the graph through the maximum likelihood objective of the prior. In order to promote acyclicity,
we use the constraint as a regularizer, and exponentially increase its weight over training.

ENCO (Lippe et al., 2022a), on the other hand, uses interventional data and two separate parameter
sets: one for the orientation per edge, and one for the existence per edge. By only using interventions
to update the orientation parameters, ENCO converges to the true, acyclic graph under single-target
interventions in the sample limit. Yet, we found it to also work well under multi-target interventions
in iCITRIS. ENCO uses low-variance, unbiased gradients based on REINFORCE (Williams, 1992),
potentially providing a more stable optimization than NOTEARS. For efficiency, we merge the two
learning stages of ENCO and update both the graph and distribution parameters at each iteration.

4.3 STABILIZING THE OPTIMIZATION PROCESS

Simultaneously identifying the causal variables and their graph leads to a chicken-and-egg situation:
without knowing the variables, we cannot identify the graph; but without knowing the graph, we
cannot identify the causal variables. This can cause the optimization to be unstable and to converge
to local minima with incorrect graphs. To stabilize it, we propose the two following approaches.

Graph learning scheduler During the first training iterations, the assignment of latent to causal
variables is almost random, since the gradients for the graph parameters are very noisy and uninfor-
mative. Thus, we use a learning rate schedule for the graph learning parameters such that the graph
parameters are frozen for the first couple of epochs. During those training iterations, the model learns
to fit the latent variables to the intervention variables under an arbitrary graph, leading to an initial,
rough assignment of latent to causal variables. Then, we warm up the learning rate to slowly start the
graph learning process while continuing to separate the causal variables in latent space.
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Mutual information estimator If the provided interventions are fully perfect, i.e., they remove
temporal dependencies as well, we can exploit this independence by masking out the temporal parents
in the prior distribution under interventions. Furthermore, with perfect interventions, we also enforce
the mutual information (MI) (Kullback, 1997) between parents and children under interventions to be
zero as an additional regularization. Following work on neural MI estimation (Belghazi et al., 2018;
Hjelm et al., 2019; van den Oord et al., 2018), we train a network to distinguish between samples
from the joint distribution p(ztψi

, zt
ψpa

i
, zt−1|Iti = 1) and the product of their marginals, p(ztψi

|Iti =
1)p(zt

ψpa
i
, zt−1|Iti = 1). While the MI estimator optimizes its accuracy, the latents are optimized to

do the opposite, effectively forcing ztψi
and its parents to be independent under interventions.

5 EXPERIMENTS

We evaluate iCITRIS on three video datasets with varying difficulties and compare it to common
causal representation methods. We include further dataset details in Appendix E, discuss hyperpa-
rameters in Appendix F, and provide the code at https://github.com/phlippe/CITRIS.

5.1 EXPERIMENTAL SETTINGS

Baselines Since iCITRIS is, to the best of our knowledge, the first method to identify causal variables
with instantaneous effects in this setting, we compare it to methods for identifying conditionally
independent causal variables. Firstly, we use CITRIS (Lippe et al., 2022b) and the Identifiable VAE
(iVAE) (Khemakhem et al., 2020a), which both use the previous time step and intervention targets to
model conditionally independent variables. Further, to compare to a model with dependencies among
latent variables, we evaluate the iVAE with an autoregressive prior, which we denote with iVAE-AR.
All methods share the general model setup, e.g., the encoder network architecture, where possible.

Evaluation metrics To evaluate the identification of the causal variables, we follow Lippe et al.
(2022b) and report the R2 scores for correlations. In particular, R2

ij is the score between the true
causal variable Ci and the latents that have been assigned to the causal variable Cj by the learned
model, i.e., zψj . We denote the average correlation of the predicted variable to its true value with
R2 diag = 1/K

∑
iR

2
ii (optimal 1), and the maximum correlation besides its true variable with

R2 sep = 1/K
∑
imaxj ̸=iR2

ij (optimal 0). Furthermore, to investigate the modeling of the temporal
and instantaneous relations between the causal variables, we perform causal discovery as a post-
processing step on the latent representations since the baselines do not explicitly learn the graph, and
report the Structural Hamming Distance (SHD) between the predicted and true causal graph.

5.2 2D COLORED CELLS WITH CAUSAL EFFECTS: VORONOI BENCHMARK

We first conduct experiments on synthetically generated causal graphs with various instantaneous
structures to investigate the difficulty and challenges of the task. We consider three instantaneous
graph structures: random has a randomly sampled, acyclic graph structure with a probability of 0.5
of two variables being connected by a direct edge, and chain and full represent the minimally-
and maximally-connected DAGs respectively. For each graph, we sample temporal edges with an edge
probability of 0.25 matching the density of the instantaneous causal graph. Based on these graphs, we
create the variable’s observational distributions as Gaussians parameterized by randomly initialized
neural networks, and provide for simplicity single-target, perfect interventions for all variables. The
causal variables are mapped to image space X by firstly applying a randomly initialized, two-layer
normalizing flow, and afterwards plotting them as colors in a 32x32 pixels image of a fixed Voronoi
diagram as an irregular structure. Thus, the representation learning models need to distinguish
between the entanglement by the random normalizing flow and the underlying causal graphs to
identify the causal variables, while also performing causal discovery to find the correct causal graph.

In Figure 2, we show the results of all models on graphs of 4, 6, and 9 variables. For the random and
chain graphs, iCITRIS-ENCO identifies the causal variables and their causal graph with only minor
errors, even for the largest graphs of 9 variables. Even on the challenging full graph, iCITRIS-
ENCO considerably outperforms the other models. In contrast, iCITRIS-NOTEARS struggles with
the edge orientations and converges to edge probabilities noticeably lower than 1.0, with which the
variables cannot be perfectly identified anymore, especially for increasing graph sizes. Meanwhile,
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Figure 2: Results on the Voronoi benchmark over three graph structures and sizes with five seeds (error
bars in Appendix G.1). For all metrics, lower is better. Top row (a-c): Plotting theR2 correlation error
as the average distance between predicted and true causal variables (1-"R2 diag", solid bars), plus the
maximum correlation to any other variable ("R2 sep", striped bars). iCITRIS-ENCO performs well
across graph structures and sizes. Bottom row (d-f): The SHD between predicted and ground truth
causal graph, divided into instantaneous (solid bars) and temporal (striped bars) edges. iCITRIS-
ENCO obtains the lowest error across graphs, with close to zero for the graphs random and chain.

CITRIS and iVAE find K independent dimensions, conditioned on the previous time step and the
intervention targets, instead of the true causal variables, which leads to sparse instantaneous, but
wrongly dense temporal graphs. Finally, the autoregressive baseline, iVAE-AR, naturally entangles
all dimensions in the latent space, on which the true causal graph cannot be recovered anymore. This
underlines the non-triviality of identifying instantaneously-related causal variables. In conclusion,
iCITRIS identifies the causal variables and graph well across graph structures and sizes, with ENCO
outperforming NOTEARS due to more stable optimization, especially for larger, complex graphs.

5.3 3D OBJECT RENDERINGS: INSTANTANEOUS TEMPORAL CAUSAL3DIDENT

As a visually challenging dataset, we use the Temporal Causal3DIdent dataset (Lippe et al., 2022b;
von Kügelgen et al., 2021) which contains 3D renderings (64 × 64 pixels) of different object
shapes under varying positions, rotations, and lights. The dataset has seven causal variables, in-
cluding categorical and circular variables, going beyond iCITRIS’s theoretical setting. To intro-
duce instantaneous effects, we replace all temporal relations with instantaneous edges, except those
on the same variable (Cti → Ct+1

i ). For instance, a change in the rotation leads to an instanta-
neous change in the position of the object, which again influences the spotlight. Overall, we ob-
tain an instantaneous graph of eight edges between the seven multidimensional causal variables.

Table 1: Results on the Instantaneous Temporal
Causal3DIdent dataset over three seeds (standard
deviations in Table 9). iCITRIS-ENCO performs
best in identifying the variables and their graph.

Model R2 (diag ↑ / sep ↓) SHD (instant ↓ / temp ↓)

iCITRIS-ENCO 0.96 / 0.07 1.67 / 5.67
iCITRIS-NOTEARS 0.95 / 0.10 4.33 / 6.33
CITRIS 0.90 / 0.23 5.67 / 12.67
iVAE 0.79 / 0.24 6.00 / 15.00
iVAE-AR 0.74 / 0.29 10.67 / 12.33

We provide partially-perfect interventions that
remove instantaneous parents, but leave the ex-
isting temporal dependencies unchanged. Since
the dataset is visually complex, we use the nor-
malizing flow variant of iCITRIS and CITRIS
applied on a pretrained autoencoder.

Table 1 shows that iCITRIS-ENCO identifies
the causal variables well and recovers most in-
stantaneous relations, with up to two errors on
average. The temporal graph had more false pos-
itive edges due to minor correlations. iCITRIS-
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NOTEARS incorrectly orients several edges during training, underlining the benefit of ENCO as
the graph learning method in iCITRIS. The baselines have a significantly higher entanglement of
the causal variables and struggle with finding the true causal graph. Further, in Appendix G.2, we
apply iCITRIS to the original Temporal Causal3DIdent dataset, which contains only temporal causal
relations and no instantaneous effects. In this setting, iCITRIS performs on par with CITRIS, verify-
ing that iCITRIS generalizes CITRIS across datasets. In summary, iCITRIS-ENCO can identify the
causal variables along with their instantaneous graph well, even in a visually challenging dataset.

5.4 REAL GAME DYNAMICS: CAUSAL PINBALL

Figure 3: Example
of Causal Pinball.

Finally, we consider a simplified version of the game Pinball, which naturally
has instantaneous causal effects: if the paddles are activated when the ball
is close, the ball is accelerated immediately. Similarly, when the ball hits a
bumper, its light turns on and the score increases immediately. This results
in instantaneous effects, especially under common frame rates. In this envi-
ronment, we consider five causal variables: the position of the left paddle, the
right paddle, the ball (position and velocity), the state of the bumpers, and the
score. Interventions again remove instantaneous, but keep temporal parents.
Pinball is closer to a real-world environment than the other two datasets and
has two characteristic differences: (1) many aspects of the environment are
deterministic, e.g., the ball movement, and (2) the instantaneous effects are
sparse, e.g., the paddles do not influence the ball if it is far away of them. Such a setting violates
several assumptions like faithfulness, the full support and potential symmetries in the observational
and interventional distributions, questioning whether iCITRIS empirically works here.

Table 2: Results on the Causal Pinball dataset over
three seeds (see Table 12 for standard deviations).

Model R2 (diag ↑ / sep ↓) SHD (instant ↓ / temp ↓)

iCITRIS-ENCO 0.99 / 0.12 0.67 / 3.00
iCITRIS-NOTEARS 0.98 / 0.18 3.33 / 4.67
CITRIS 0.90 / 0.39 3.00 / 7.67
iVAE 0.44 / 0.05 4.33 / 4.67
iVAE-AR 0.47 / 0.15 8.00 / 3.67

The results in Table 2 suggest that iCITRIS still
works well on this environment. Besides identi-
fying the causal variables well, iCITRIS-ENCO
identifies the instantaneous causal graph with
minor errors. In contrast, CITRIS entangles the
variables much stronger, while iVAE has diffi-
culties identifying all variables in the environ-
ment. This shows that iCITRIS can be applied
in challenging environments beyond our theoret-
ical limitations, even with deterministic causal effects, while maintaining strong empirical results.

6 CONCLUSION AND DISCUSSION

We propose iCITRIS, a causal representation learning framework for temporal intervened sequences
with potentially instantaneous effects. From such sequences, iCITRIS identifies the minimal causal
variables while jointly learning the instantaneous and temporal causal graph. In experiments, iCITRIS
accurately recovers the causal variables and their graph in three video datasets.

Since instantaneous effects are common in real-world settings (Hyvärinen et al., 2008; Nuzzi et al.,
2021), we believe that iCITRIS contributes an important step towards practical causal representation
learning methods. Still, as with most other theoretical results, our identifiability theorem is limited
by the assumptions it takes. The two most crucial assumptions in iCITRIS are having a dataset,
potentially recorded by an expert, that has (1) non-deterministically related, known intervention
targets and (2) partially-perfect interventions, i.e., interventions that can remove instantaneous parents.
Without the first assumption, causal variables may become entangled in the latent space, and without
the latter, instantaneous causal relations may be predicted where none truly exist. However, as
demonstrated in experiments on Causal3DIdent and Causal Pinball, iCITRIS still achieves a strong
empirical performance in settings that violate other assumptions. For instance, in these experiments,
the distributions had limited support and some variables had circular or categorical domains.

To extend iCITRIS to even more settings, future work includes investigating a setup where interven-
tions are not directly available, but can be performed by sequences of actions, and targets must be
learned in an unsupervised manner. Further, iCITRIS is limited to acyclic graphs, while for instanta-
neous effects cycles could occur under low frame rates, which is also an interesting future direction.
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A BROADER IMPACT

The importance of causal reasoning for machine learning applications, especially reinforcement
learning and latent dynamics understanding, has been emphasized by several previous works (De Haan
et al., 2019; Lachapelle et al., 2022b; Pearl, 2009; Schölkopf et al., 2021; Seitzer et al., 2021; Zhang
et al., 2020). Thereby, starting from low-level information like pixels constitutes a considerable
challenge, since we aim at reasoning about objects and abstract concepts instead of low-level pixels.
We believe that this work contributes an important step towards tackling this challenge since it
goes beyond previous work by considering instantaneous effects, a common property in real-world
systems (Faes et al., 2010; Hyvärinen et al., 2008; Moneta et al., 2006; Nuzzi et al., 2021). Besides
providing theoretical identifiability results, we also propose a practical algorithm with which one can
learn the causal variables and their graph from high-level observations. Furthermore, we envision a
reinforcement learning setting as a future application, where a robotic system may be able to interact
with an environment. However, the main assumption that prevent us from doing this so far, is the
availability of interventions with known targets. In many systems, one might not be able to directly
perform such interventions, but rather require several steps of low-level actions. For instance, instead
of being provided the intervention targets, future work could consider a robotic setup where one can
control a robot arm which can perform several interactions (e.g., flipping a switch), and we believe
that our work can constitute the starting point for such extension. Moreover, as we have seen in the
experiments on the Causal3DIdent dataset and the Causal Pinball environment, not all assumptions
must be strictly fulfilled to identify the variables empirically. Moving towards this empirical goal,
recent advances in unsupervised object-centric learning (Engelcke et al., 2020; Kipf et al., 2022;
Locatello et al., 2020c) have shown that objects, which can often be considered as groups of causal
variables like position and velocity, can be identified from high-dimensional data without labels.
A possible combination of such object-centric approaches with our causal representation learning
method can relax further assumptions by using the objects as a prior disentanglement of information,
opening up further possible applications of iCITRIS. Thus, we believe that this work can form the
basis of several future works in this direction.

Since the possible applications of causal representation learning and specifically iCITRIS are fairly
wide-ranging, there might be potential impacts we cannot forecast at the current time. This includes
misuses of the method for unethical purposes. For instance, an incorrect application of the method
can be used to justify false causal relations, such as referencing gender and race as causes for other
characteristics of a person. Hence, the obligation to use this method in a correct way within ethical
boundaries lies on the user, and the outputs of the method should always be critically evaluated. We
will emphasize this responsibility of the user in the public license of our code.

B REPRODUCIBILITY STATEMENT

For reproducibility, the code for all models used in this paper is publicly available at https:
//github.com/phlippe/CITRIS. Further, we provide the code for generating the Voronoi
benchmark, the Instantaneous Temporal Causal3DIdent dataset, and the Causal Pinball environment.
More details on the datasets and visualizations are outlined in Appendix E.

Moreover, for all experiments of Section 5, we have included a detailed overview of the hyperparam-
eters in F.2 and additional implementation details of the evaluation metrics and model architecture
components in Appendix F.1. All experiments have been repeated for at least 3 seeds (5 seeds for the
Voronoi benchmark) to obtain stable, reproducible results. We provide an overview of the standard
deviations, as well as additional results and ablation studies in Appendix G.

Finally, all experiments in this paper were performed on a single NVIDIA TitanRTX GPU with a
6-core CPU. The overall computation time of all experiments together in this paper correspond to
approximately 80 GPU days (excluding hyperparameter search and trials during the research).

C EXPANDED RELATED WORK

Early works on causal representation learning focused on identifying independent factors of variations
(Klindt et al., 2021; Kumar et al., 2018; Locatello et al., 2019; 2020b; Träuble et al., 2021). A related
line of work, Independent Component Analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001), tries
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to recover independent latent variables that were transformed by some invertible transformation.
ICA was extended to non-linear transformations by exploiting auxiliary variables that make latents
mutually conditionally independent (Hyvärinen et al., 2016; Hyvärinen et al., 2019), combined with
deep learning methods like VAEs (Khemakhem et al., 2020a;b; Reizinger et al., 2022; Sorrenson
et al., 2020; Zimmermann et al., 2021) and applied to causality (Gresele et al., 2021; Monti et al.,
2019; Shimizu et al., 2006). In particular, Lachapelle et al. (2022a;b); Yao et al. (2022a;b) discuss the
identifiability of causal variables from temporal sequences. As forms of interventions, Lachapelle
et al. (2022a;b) consider external actions, while Yao et al. (2022a;b) use non-stationary noise. Yet,
in all of these ICA-based setups, causal variables are required to be conditionally independent.
Alternatively, Yang et al. (2021) learn causal variables from labeled images in a supervised manner.

Given a known causal structure, von Kügelgen et al. (2021) demonstrate that common contrastive
learning methods can block-identify causal variables that remain unchanged under augmentations.
Locatello et al. (2020a) identify independent latent causal factors from pairs of observations that
only differ in a subset of causal factors. Brehmer et al. (2022) extend this setup to variables that
are causally related with access to single-target interventions. Similarly, Ahuja et al. (2022) extend
the setup of Locatello et al. (2020a) to variables with interdependencies, relying on interventions
that only affect their target. All these methods require pairs of counterfactual observations, where
only a subset of variables is changed by the intervention, while the rest are frozen, i.e., they keep
the same values before and after an intervention. As discussed by Pearl (2009), however, knowing
counterfactuals is not realistic in most scenarios. Instead, CITRIS (Lippe et al., 2022b) focuses on
temporal sequences, in which also the variables that are not intervened upon at a given time step can
still continue evolving over time. On the other hand, in this setting the intervention targets need to be
known. Moreover, within a time step, the causal variables are assumed to be independent conditioned
on the variables of the previous time step, hence not allowing for instantaneous effects. To the best of
our knowledge, iCITRIS is the first method to identify causal variables and their causal graph from
temporal, intervened sequences even for potentially instantaneous causal effects, without requiring
counterfactuals or data labeled with the true causal variables.
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D PROOFS

In this section, we provide the proof for the identifiability theorem 3.4 in Section 3 and Lemma 3.2.
The section is structured into three main parts. First, in Appendix D.1, we give an overview of
the notation and elements that are used in the proof. Next, we discuss the assumptions needed for
Theorem 3.4, with a focus on why they are needed and what a violation of these assumptions can
cause. Additionally, we provide a proof of Lemma 3.2 in this subsection. Finally, we provide the
proof of Theorem 3.4, structured into multiple subsections as different main steps of the proof. A
detailed overview of the proof is provided in Appendix D.3.

D.1 PRELIMINARIES

Throughout the proof, we will the same notation as used in the main paper, and try to align it as
much as possible with Lippe et al. (2022b). As a summary, we review here an adapted version of the
notation and preliminaries of the proof for CITRIS:

• We denote the K causal factors in the latent causal dynamical system as C1, . . . , CK ;
• The dimensions and space of a causal variable is denoted as Ci ∈ DMi

i with Mi ≥ 1. In the
remainder of the proof, we consider Di to be R, i.e., Ci being a continuous variable;

• We group all causal factors in a single variable C = (C1, . . . , CK) ∈ C, where C is the
causal factor space C = DM1

1 × DM2
2 × ...× DMK

K ;
• The data we base our identifiability on is generated by a latent Dynamic Bayesian network

with variables (Ct1, C
t
2, ..., C

t
K)Tt=1;

• We assume to know at each time step the binary intervention variables It ∈ {0, 1}K+1 where
Iti = 1 refers to an intervention on the causal factor Cti . As a special case It0 = 0 for all t;

• For each causal factor Ci, there exists a minimal causal split svari (Ci), s
inv
i (Ci) such that

svari (Ci) represents only the variable/manipulable part of Ci, while sinvi (Ci) represents the
invariable part of Ci;

• At each time step, we can access observations xt, xt+1 ∈ X ⊆ RN ;
• There exist a bijective mapping between observations and causal/noise space, denoted by
h : C × E → X , where E is the space of the noise variable. The bijective map implies that
the observations, X , live in a lower-dimensional manifold of size dim(C × E) in RN . For
example, in Causal Pinball, we have a limited set of images that can occur. Formally, this
means that there exists an inverse to the observation function, h−1, such that h(h−1(X)) =
X for all X ∈ X , and h−1(h([C;E])) = [C;E] for all C ∈ C, E ∈ E .

• The noise Et ∈ E at a time step t subsumes all randomness besides the causal model which
influences the observations. For example, this could be brightness shifts in Causal3D, or
color shifts in the Causal Pinball environment since in these setups, no causal factor is
encoded in brightness and color respectively. While this setting is quite general, we still
require that the values of the causal factors must be identifiable from single observations.
Hence, the joint dimensionality of the observation noise and causal model is limited to the
image size.

• For any model learning a latent space, we denote the vector of latent variables by zt ∈ Z ⊆
RM , where Z is the latent space of dimension M = dim(E) + dim(C). In practice, we
usually overestimate M , i.e., M > dim(E) + dim(C);

• In iCITRIS, we learn the inverse of the observation function as gθ : X → Z . If dim(X ) >
dim(C × E), we consider that gθ contains an arbitrary, fixed map from X to the lower
dimensionality. This map can, in theory, be trivially found by ensuring invertibility of allX ∈
X while minimizing the number of dimensions. An alternative interpretation is that gθ is a
deterministic variational autoencoder with zero reconstruction loss. In this limit, Nielsen et al.
(2020) showed that the encoder-decoder function as an invertible normalizing flow, which is
what we base our analysis on as well. In practice, we train a deterministic autoencoder with
a latent dimension greater than dim(E) + dim(C), and work on this larger dimensionality;

• In iCITRIS, we learn an assignment from latent dimensions to causal factors, denoted by
ψ : J1..MK → J0..KK;

• The latent variables assigned to each causal factor Ci by ψ are denoted as zψi
= {zj |j ∈

J1..MK, ψ(j) = i} = {gθ(xt)j |j ∈ J1..MK, ψ(j) = i};
• The remaining latent variables that are not assigned to any causal factor are denoted as zψ0

;
• In iCITRIS, we learn a directed, acyclic graph G = (V,E) where V = {zψi |i ∈ J0..KK}

19



Published as a conference paper at ICLR 2023

and the edges represent directed causal relations;
• The graph G induces a parent structure which we denote by zψpa

i
= {zj |j ∈ J1..MK, ψ(j) ∈

paG(i)} where paG(0) = ∅, i.e., the variables in zψ0
having no instantaneous parents;

• The parents of a causal variable within the same time step t+1 are denoted by pat+1(Ct+1
i ),

and the parents of the previous time step t by pat(Ct+1
i );

• As a special case, we denote the function gθ with the parameters θ that precisely model the in-
verse of the true observation function, h−1, as the disentanglement function δ∗ : X → C̃ × Ẽ
with C̃ = DM̃1 × ... × DM̃K and M̃i being the number of latent dimensions assigned to
the causal factor Ci by ψ∗. We denote the output of δ∗ for an observation X as δ∗(X) =

(C̃1, C̃2, ..., Ẽ). The representation of δ∗ as a learnable function is denoted by g∗θ and ψ∗;
• In the following proof, we will use entropy as a measure of information content in a random

variable. To be invariant to possible invertible transformations, e.g., scaling by 2, we use the
notion of the limiting density of discrete points (LDDP) (Jaynes, 1957; 1968). In contrast to
differential entropy, LDDP introduces an invariant measure m(X), which can be seen as a
reference distribution we measure the entropy of p(X) to. The entropy is thereby defined as:

H(X) = −
∫
p(X) log

p(X)

m(X)
dx (5)

In the following proof, we will consider entropy measures over latent and causal variables.
For the latent variables, we considerm(X) to be the push-forward distribution of an arbitrary,
but fixed distribution in X (e.g., random Gaussian if X = Rn) through gθ. For the causal
variables, we consider it to be the push-forward through h−1. For more details on LDDP,
see Lippe et al. (2022b, Appendix A.1.2) and Jaynes (1957; 1968).

D.2 ASSUMPTIONS FOR IDENTIFIABILITY

In this section, we provide a detailed discussion of the assumptions of iCITRIS to enable the
identification of an underlying causal graph with instantaneous effects. We thereby focus on why
these assumptions are necessary, and how a violation of those can lead to scenarios where the causal
variables and graph is not identifiable.

D.2.1 ASSUMPTION 1: THE INTERVENTIONS ON THE CAUSAL VARIABLES REMOVE
INSTANTANEOUS PARENTS

iCITRIS requires interventions on the causal variables that remove instantaneous parents, in order to
separate the variables in latent space, as stated in Lemma 3.2 and copied here for completeness:

Lemma D.1. In iTRIS, a causal variable Ci cannot be identified up to an invertible transformation
Ti that is independent of all other causal variables, if Ci can have instantaneous parents and no
partially-perfect interventions on Ci are provided.

Proof. To prove this Lemma, consider a causal variable Ci that has Cj as an instantaneous parent.
The conditional distribution of Ci, as defined in iTRIS, can be written as pi(Ct+1

i |Ct+1
j , S, It+1

i ),
where S ⊆ Ct ∪Ct+1 \ {Ct+1

i , Ct+1
j }, i.e., any additional parent set without introducing cycles. We

do not put any constraints on the distribution p and also on the provided interventions, except that
we do not have the knowledge whether under It+1 = 1, Ct+1

i becomes independent of Ct+1
j or not.

This implies that one must consider the most general form of interventions for Ci, i.e., modeling the
distribution pi(Ct+1

i |Ct+1
j , S, It+1

i = 1) under interventions with possible unknown independences.
To keep this result general, we consider an arbitrary observation function h(Ct, Et) = Xt.

Under this setting, it is sufficient to show that there exist another representation Ĉ that cannot be
distinguished from C solely based on observation triples {Xt, Xt+1, It+1}, and that there exist no
invertible function f such that f(Ĉti ) = Cti for any t. Note that we exclude a permutation of variables,
since the intervention targets It+1 align the two representations.

As an alternative representation, consider Ĉ = {C1, ..., Ci−1, Ci + Cj , Ci+1, ..., CK} with K being
the number of causal variables. Then, the distribution of p̂(Ĉ) only differs in the conditional of pi as
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follows:

p̂i(Ĉ
t+1
i |Ĉt+1

j , Ŝ, It+1
i ) = p̂i(Ĉ

t+1
i |Ct+1

j , S, It+1
i ) (6)

= p̂i(C
t+1
i + Ct+1

j |Ct+1
j , S, It+1

i ) (7)

Because p̂i is conditioned on Ct+1
j , there exist an invertible, volume-preserving transformation w

from Ct+1
i + Ct+1

j to Ct+1
i , i.e.,, w(c|Ct+1

j ) = c− Ct+1
j . Hence, it follows that:

p̂i(C
t+1
i + Ct+1

j |Ct+1
j , S, It+1

i ) = pi(C
t+1
i |Ct+1

j , S, It+1
i ) (8)

and overall that p̂(Ĉ) = p(C). Furthermore, there exist a function ĥ that maps Ĉ to the same
observations as h does for C:

ĥ(Ĉt, Et) = h({Ĉt1, ..., Ĉti−1, Ĉ
t
i − Ĉtj , Ĉ

t
i+1, ..., Ĉ

t
K}, Et) = h(Ct, Et) (9)

Therefore, both representations, C and Ĉ, can model the same data generation process for
{Xt, Xt+1, It+1}, and are indistinguishable from these observations alone. Finally, it is apparent
that there exist no invertible transformation from Ĉti to Cti that is independent of Ctj . Thus, the causal
variable Ci is not identifiable up to invertible, componentwise transformations.

As an example of how this effects a standard identification problem, consider two random, causal
variables C1, C2 with the causal graph Ct1 → Ct+1

1 , Ct2 → Ct+1
2 . The two causal variables C1, C2

have therefore no instantaneous relations. Further, consider the (soft-interventional) distributions
p1(C

t+1
1 |C1

t , I
t+1
1 ) and p2(Ct+1

2 |C1
2 , I

t+1
2 ) whose form can be arbitrary, but for this example, we

choose them to be Gaussian with constant variance:

p1(C
t+1
1 |Ct1, It+1

1 ) =

{N (Ct+1
1 |µ1(C

t
1), σ1(C

t
1)

2) if It+1
1 = 0

N (Ct+1
1 |µ̃1(C

t
2), σ̃1(C

t
1)

2) if It+1
1 = 1

(10)

p2(C
t+1
2 |Ct2, It+1

2 ) =

{N (Ct+1
2 |µ2(C

t
2), σ2(C

t
2)

2) if It+1
2 = 0

N (Ct+1
2 |µ̃2(C

t
2), σ̃2(C

t
2)

2) if It+1
2 = 1

(11)

where µ1, µ̃1, µ2, µ̃2, σ1, σ̃1, σ2, σ̃2 are arbitrary, potentially non-linear functions of Ct1 and Ct2
respectively. Further, to consider the simplest case, suppose that the observation Xt at a time step t
are the causal variables themselves, Xt = [Ct1, C

t
2], and we observe data points of all intervention

settings, i.e., It+1
i ∼ Bernoulli(q) with 0 < q < 1.

Under this setup, the true generative model follows the distribution:

p(Xt+1|Xt, It+1) = p(Ct+1
1 , Ct+1

2 |Ct1, Ct2, It+1
1 , It+1

2 ) (12)

= p(Ct+1
1 |Ct1, Ct2, It+1

1 , It+1
2 ) · p(Ct+1

2 |Ct1, Ct2, It+1
1 , It+1

2 ) (13)

= p1(C
t+1
1 |Ct1, It+1

1 ) · p2(Ct+1
2 |Ct2, It+1

2 ) (14)

where Ct+1
1 ⊥⊥ Ct+1

2 |Xt, It+1. To show that the causal variables are not uniquely identifiable, we
need at least one other representation which can achieve the same likelihood as the true generative
model under all intervention settings It+1. For this, consider the following distribution:

p(Xt+1|Xt, It+1) = p(Ct+1
1 , Ct+1

2 |Ct1, Ct2, It+1
1 , It+1

2 ) (15)

= p(Ct+1
1 |Ct1, Ct2, It+1

1 , It+1
2 ) · p(Ct+1

2 |Ct1, Ct2, Ct+1
1 , It+1

1 , It+1
2 ) (16)

= p1(C
t+1
1 |Ct1, It+1

1 ) · p̂2(Ct+1
1 + Ct+1

2 |Ct2, Ct+1
1 , It+1

2 ) (17)

= p1(Ĉ
t+1
1 |Ct1, It+1

1 ) · p̂2(Ĉt+1
2 |Ct2, Ĉt+1

1 , It+1
2 ) (18)

with Ĉt+1
1 = Ct+1

1 , Ĉt+1
2 = Ct+1

1 + Ct+1
2 . Note the additional dependency of Ĉt+1

2 on Ĉt+1
1 ,

which is possible in the space of possible causal models with an additional instantaneous causal edge
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(c) Interventional distribution
p(Xt|Xt−1 = C, It1 = 0, It2 = 1)

Figure 4: Example distribution for showcasing the necessity of partially-perfect interventions for
disentangling causal variables with instantaneous effects. Suppose we are given two-dimensional
observations Xt, for which the observational and interventional distributions are plotted in (a)-(c).
The central plot of each subfigure shows a 2D histogram, and the subplots above and on the right
show the 1D marginal histograms. For simplicity, we keep the previous time step, Xt−1, constant
here. From the interventional distribution, one might suggest that we have the latent causal graph
C1 → C2 since under It1 = 1, the distribution of both observational distributions change, while
It2 = 1 keeps X2 unchanged. However, the data has been actually generated from two independent
causal variables, which have been entangled by having Xt = [Ct1, C

t
1 + Ct2]. We cannot distinguish

between these two latent models from interventions that do not reliably break instantaneous causal
effects, showing the need for partially-perfect interventions.

Ĉt+1
1 → Ĉt+1

2 . The new distribution p̂2 is identical to the true distribution, since:

p̂2(C
t+1
1 + Ct+1

2 |Ct2, Ct+1
1 , It+1

2 = 0) = N (Ct+1
1 + Ct+1

2 |Ct+1
1 + µ2(C

t
2), σ2(C

t
2)

2) (19)

=
1√

2πσ2(Ct2)
exp

(
−1

2

(
Ct+1

1 + Ct+1
2 − (Ct+1

1 + µ2(C
t
2))
)2

σ2(Ct2)
2

)

(20)

=
1√

2πσ2(Ct2)
exp

(
−1

2

(
Ct+1

2 − µ2(C
t
2)
)2

σ2(Ct2)
2

)
(21)

= N (Ct+1
2 |µ2(C

t
2), σ2(C

t
2)

2) (22)

= p2(C
t+1
2 |Ct2, It+1

2 = 0) (23)

Similarly, one can show that p̂2(Ct+1
1 + Ct+1

2 |Ct2, Ct+1
1 , It+1

2 = 1) = p2(C
t+1
2 |Ct2, It+1

2 = 1).
Hence, the alternative representation Ĉt+1

1 , Ĉt+1
2 can model the distribution p(Xt+1|Xt, It+1) as

well as the true causal model. In conclusion, from the samples alone, we cannot distinguish between
the two representation C1, C2 and Ĉ1, Ĉ2, and the model is therefore not identifiable up to invertible
transformations.

An alternative example with a non-trivial observation function is visualized in Figure 4, which further
underlines the problem.

This shows that with soft interventions, one cannot distinguish between causal relations introduced by
the observation function and those that are in the true causal model. (Partially-)Perfect interventions,
however, provide an opportunity to do so since if we had known that the intervention on C2 renders it
independent of C1, the second causal model could not have modeled the correct distribution under
I2 = 1. Thus, we can distinguish between the two, allowing us to identify the correct causal model.

Note that under partially-perfect intervention, the intervention-independent part of a causal variable,
sinv(Cti ), automatically cannot have any instantaneous parents, since otherwise, the intervention does
not remove all instantaneous parents and hence is actually not partially-perfect.
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D.2.2 ASSUMPTION 2: THE INTERVENTION VARIABLES ARE NOT A DETERMINISTIC
FUNCTION OF EACH OTHER

iCITRIS builds upon interventions to identify the causal variables. The intervention targets are
not necessarily independent of each other, but can be confounded. For instance, we could have a
setting where we only obtain single-target interventions, or a certain variable Ci can only be jointly
intervened upon with another variable Cj . In this large space of possible experimental settings, we
naturally cannot guarantee identifiability all the time. In particular, we require that intervention
targets for the different causal variables are unique:
Lemma D.2. All information that is strictly dependent on the intervention target Iti , i.e. svar(Ci) -
the minimal causal variable of Ci, cannot be disentangled from another causal variable, Cj with
j ̸= i, if their intervention targets are identical: ∀t, Iti = Itj .

Proof. Lippe et al. (2022b) have shown that two causal variables Ci, Cj cannot be disentangled from
observational data alone if they follow a Gaussian distribution with equal variance over time. Taking
this setup, consider that additionally to observational data, we observe samples where both variables
have been intervened upon, It+1

i = It+1
j = 1. If the interventional distribution of Ci and Cj are both

Gaussian with the same variance, we have the same non-identifiability as in the observational case.
Since the entanglement axes can transfer between the two setups, Ci and Cj cannot be disentangled,
and therefore their minimal causal variables.

In other words, if two variables are always jointly intervened or passively observed, we cannot
distinguish whether information belongs to causal variable Ci or Cj . Since the causal system is
stationary, having one time step t for which Iti ̸= Itj implies that in the sample limit, we will observe
samples with Iti ̸= Itj in the limit as well. Further, when we only observe joint interventions on
two variables, Ci, Cj , the causal graph among the two variable cannot be identified for arbitrary
distributions (Eberhardt, 2007), making the identifiability of the graph and variables impossible.

Following Lippe et al. (2022b), we require that the following independence holds for every causal
variable Ci with observed interventions:

Ct+1
i ̸⊥⊥ It+1

i |Ct, pat+1(Ct+1
i ), It+1

j for any i ̸= j (24)

This also implies that there does not exist a variable Cj for which ∀t, Iti = 1 − Itj . As mentioned
before, under additional assumptions such that every causal variable has at least one parents, it can be
relaxed to unique interventions.

D.2.3 ASSUMPTION 3: DISTRIBUTIONS HAVE FULL SUPPORT

Following several previous works (Brehmer et al., 2022; von Kügelgen et al., 2021), we consider for
the theoretical results that all distributions have full support. If the observational and interventional
distribution do not share the same support, there exist data points for which the intervention targets can
be determined from the observation Xt alone. In such situation, the encoder can change its encoding
depending on the intervention target, as long as the decoder can yet recover the full observation. This
can potentially create representation models that ignore the latent structure, since the intervention
targets are already known. Furthermore, when intervention targets are known from seeing causal
variables, we potentially introduce new independencies from intervention targets. For instance, if we
have the graph C1, C2 → C3 where I3 = 1 only if I1 = 1, I2 = 0, we can induce the intervention
targets from other causal factors, making C3 essential independent of I3. To prevent such degenerate
solutions, we take the assumption that the observational and intervention distributions share the same
support. This assumption implies that any data point could come from either the interventional or
observational regime, ensuring that the intervention target cannot deterministically be found from an
observation Xt.

D.2.4 ASSUMPTION 4: TEMPORAL CONNECTIONS AND INTERVENTIONS BREAK ALL
SYMMETRIES IN THE DISTRIBUTIONS

The temporal and interventional dependencies are an essential part in iCITRIS to guarantee identifia-
bility and disentanglement of the causal variables. Without any of these dependencies, there may
exist multiple representations that model the same distribution p(Xt|Xt−1, It), while following the
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C1 C2 C3

Figure 5: Example instantaneous causal graph between 3 causal variables C1, C2, C3. Without
temporal dependencies, we could encode information of C1 dependent on C3 without needing an
edge in the distribution.

enforced latent structure by iCITRIS. The problem is that variables can functional dependent on each
other, where these dependencies exploit symmetries, leaving the distribution unchanged.

For instance, consider the instantaneous causal graph of three variablesC1, C2, C3 withC1, C3 → C2,
as depicted in Figure 5. Suppose that C1 does not have any temporal parents, and the observational
distribution of it follows a Gaussian: p(Ct1|It1 = 0) = N (Ct1|µ1, σ

2
1) with µ1, σ

2
1 being constants.

Further, suppose that under interventions, only the standard deviation changes, i.e. p(Ct1|It1 = 1) =
N (Ct1|µ1, σ̃

2
1) with σ̃2

1 ̸= σ2
1 . Then, for any pointCt1 = c1, there exists a second point, c′1 = 2µ1−c1,

which has the same probability for any value of It1. This is because both distributions, p(Ct1|It1 = 0)
and p(Ct1|It1 = 1), share a symmetry around the mean µ1.

Now, suppose we have the optimal encoder which maps an observation Xt of this system to the three
causal variables with their ground truth values. Then, there exist an alternative encoder, which flips the
observed value ofCt1 around the mean µ1, deterministically conditioned on the remaining variablesCt2
and Ct3. For instance, we could have the following representation Ĉt1, Ĉ

t
2, Ĉ

t
3 for the causal variables:

Ĉt2 = Ct2, Ĉ
t
3 = Ct3, Ĉ

t
1 =

{
Ct1 if Ĉt3 > 0

2µ1 − Ct1 otherwise
(25)

This alternative representation model shares the same likelihood as the optimal encoder in terms
of p(Xt|Xt−1, It), since flipping the value of Ct1 around the mean does not change its probability.
Further, despite the flipping, the original observation Xt can be recovered from this alternative
representation Ĉt by the decoder, because the possible conditioning factors, i.e. Ĉt3 in this case, are
observable to the decoder. Hence, both representations are equally valid for the causal models. Yet,
one cannot recover the value of the true causal variable, Ct1, from its alternative representation Ĉt1
alone, since Ĉt3 needs to be known to invert the example condition. This shows that we can have
functional dependencies between representations of causal variables while their distributions remain
independent. Thus, there exist more than one representation that cannot be distinguished between
from having samples of p(Xt|Xt−1, It) alone.

More generally speaking, functional dependencies between variables can be introduced if there
exists a transformation that leaves the probability of a variable Ci unchanged for any possible value
of its parents unseen in Xt, i.e. its intervention target Iti and temporal parents Ct−1. Whether
this transformation is performed or not can now be conditioned on other variables at time step t.
Meanwhile, this transformation does not introduce additional dependencies in the causal graph, since
the distribution does not change.

To prevent such transformations from being possible, the temporal parents and intervention targets
need to break all symmetries in the distributions. We can specify it in the following assumption:

Assumption 4: For a causal variable Ci and its causal mechanism
p(Ct+1

i |pat+1(Ct+1
i ), pat(Ct+1

i ), It+1
i ), there exist no invertible, smooth transformation T with

T (Ct+1
i |Ct+1

−i ) = C̃t+1
i besides the identity, for which the following holds:

∀Ct, Ct+1, It+1 :p(Ct+1
i |pat+1(Ct+1

i ), pat(Ct+1
i ), It+1

i ) =∣∣∣∣∣
∂T (Ct+1

i |Ct+1
−i )

∂Ct+1
i

∣∣∣∣∣ · p(C̃
t+1
i |pat+1(Ct+1

i ), pat(Ct+1
i ), It+1

i )
(26)

Intuitively, this means that there does not exist any symmetry that is shared across all possible
values of the parents (temporal and interventions) of a causal variable. While this might first sound
restricting, this assumption will likely hold in most practical scenarios. For instance, if the distribution
is a Gaussian, then the assumption holds as long as the mean is not constant since the intervention
breaks any parent dependencies are broken by the perfect interventions. The same holds in higher
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dimensions, as the new symmetries, i.e. rotations, are yet broken if the center point is not constant.
Note that these symmetries can be smooth transformations, in contrast to the discontinuous flipping
operation on the Gaussian (i.e., either we flip the distribution or not, but there is no step in between).

D.2.5 ASSUMPTION 5: CAUSAL GRAPH STRUCTURE REQUIREMENTS

Besides disentangling and identifying the true causal variables, we are also interested in finding the
instantaneous causal graph. This requires us to perform causal discovery, for which we need to take
additional assumptions. First, we assume that the causal graph is acyclic, i.e., for any causal variable
Cti , there does not exist a path through the directed causal graph that loops back to it. Note that
this excludes different instances over time, meaning that a path from Cti to Ct+τi is not considered
a loop. In real-world setups, there potentially exist instantaneous graphs which are not acyclic,
which essentially model a feedback loop over multiple variables. However, to rely on the graph as
a distribution factorization, we assume it to be acyclic, and leave extension to cyclic causal graphs
for future work. As the second causal graph assumption, we require that the causal graph is faithful,
which means that all independences between causal variables are implications of the graph structure,
not the specific parameterization of the distributions (Hyttinen et al., 2013; Pearl, 2009). Without
faithfulness, the graph might not be fully recoverable. Finally, we assume causal sufficiency, i.e.,
there do not exist any additional latent confounders that introduce dependencies between variables
beyond the ones we model. Note that this excludes the potential latent confounder between the
intervention targets, and we rather focus on confounders on the causal variables C1, ..., CK besides
their intervention targets, the previous time step Ct, and instantaneous parents Ct+1.

D.3 THEOREM 3.4 - PROOF OUTLINE

The goal of this section is to proof Theorem 3.4: the global optimum of iCITRIS will identify the
minimal causal variables and their instantaneous causal graph. The proof follows a similar structure
as Lippe et al. (2022b) used for proofing the identifiability in CITRIS, but requires additional steps to
integrate the possible instantaneous relations. In summary, we will take the following steps:

1. (Appendix D.4) Firstly, we show that the function δ∗ that finds the true latent variables
C1, ..., CK and assigns them to the corresponding sets zψ1

, ..., zψK
constitutes a global, but

not necessarily unique, optimum for maximizing the likelihood p(Xt+1|Xt, It+1).

2. (Appendix D.5) Next, we characterize the class of disentanglement functions ∆∗ which all
represent a global maximum of the likelihood, i.e., get the same score as the true function δ∗.
We do this by proving that all functions in ∆∗ must identify the minimal causal variables.

3. (Appendix D.6) In a third step, we show that based on the identification of the minimal
causal variables, the causal graph on these learned representations must contain at least the
same edges as in the ground truth graph.

4. (Appendix D.7) Finally, we put all parts together and derive Theorem 3.4.

We will make use of Figure 6 summarizing the temporal causal graph, and the notation introduced in
Appendix D.1. For the remainder of the proof, we assume for simplicity of exposition that:

• The invertible map gθ and the prior pϕ
(
zt+1|zt, It+1

)
are sufficiently complex to approxi-

mate any possible function and distribution one might consider in iTRIS. In practice, over-
parameterized neural networks can approximate most functions with sufficient accuracy.

• The sample size for the provided experimental settings is unlimited. This ensures that
dependencies and conditional independencies in the causal graph of Figure 6 transfer to the
observed dataset, and no additional relations are introduced by sample biases. In practice, a
large sample size is likely to give an accurate enough description of the true distributions.

D.4 THEOREM 3.4 - PROOF STEP 1: THE TRUE MODEL IS A GLOBAL OPTIMUM OF THE
LIKELIHOOD OBJECTIVE

We start the identifiability discussion by proving the following Lemma:
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Figure 6: An example causal graph in iTRIS. A latent causal factor Ct+1
i can have as potential

parents the causal factors at the previous time step Ct = (Ct1, . . . , C
t
K), instantaneous parents

Ct+1
j , i ̸= j, and its intervention variables It+1

i . All causal variables Ct+1 and the noise Et+1 cause
the observation Xt+1. Rt+1 is a potential latent confounder between the intervention targets.

Lemma D.3. The true identification function δ∗ that correctly identifies the true causal factors
Ct+1

1 , ..., Ct+1
K from observations Xt, Xt+1 using the true ψ∗ assignment function on the latent

variables Zt+1 and the true causal graph G∗ is one of the global maxima of the likelihood of
p(Xt+1|Xt, It+1).

This lemma ensures that the true model is part of the solution space of maximum likelihood objective
on p(Xt+1|Xt, It+1).

Proof. In order to prove this, we first rewrite the objective in terms of the true causal factors. This
can be done by using the causal graph in Figure 6, which represents the true generative model:

p(Xt, Xt+1, Ct, Ct+1, It+1) = p(Xt+1|Ct+1) ·
[
K∏

i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i )

]
·

p(Xt|Ct) · p(Ct) · p(It+1)

(27)

The context variable Rt+1 is subsumed in p(It+1), since it is a confounder between the intervention
targets and is independent of all other factors given It+1.

In order to obtain p(Xt+1|Xt, It+1) from p(Xt, Xt+1, Ct, Ct+1, It+1), we need to marginalize out
Ct and Ct+1, and condition the distribution on Xt and It+1:

p(Xt+1|Xt, It+1) =

∫

Ct+1

∫

Ct

p(Xt+1|Ct+1) ·
[
K∏

i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i )

]
·

p(Ct|Xt)dCtdCt+1

(28)

In the assumptions with respect to the observation function h, we have defined h to be bijective,
meaning that there exists an inverse h=1 that can identify the causal factors Ct and noise variable Et
from Xt. Using the invertible map, we can write p(Ct|Xt) = δh−1(Xt)=[Ct;·], where δ is a Dirac
delta. We also remove Et from the conditioning set since it is independent of Xt+1. This leads us to:

p(Xt+1|Xt, It+1) =

∫

Ct+1

[
K∏

i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i ), It+1
i )

]
· p(Xt+1|Ct+1)dCt+1

(29)
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We can use a similar step to relateXt+1 withCt+1 andEt+1. However, since we model a distribution
over Xt+1, we need to respect possible non-volume preserving transformations. Hence, we use the
change of variables formula with the Jacobian Jh = ∂h(Ct+1,Et+1)

∂Ct+1∂Et+1) of the observation function h to
obtain:

p(Xt+1|Xt, It+1) = |Jh|−1 ·
[
K∏

i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i )

]
· p(Et+1) (30)

Since Equation (30) is a derivation of the true generative model p(Xt, Xt+1, Ct, Ct+1, It+1), it con-
stitutes a global optimum of the maximum likelihood. Hence, one cannot achieve higher likelihoods
by reparameterizing the causal factors or having a different graph, as long as the graph is directed
and acyclic.

In the next step, we relate this maximum likelihood solution to iCITRIS, more specifically, the prior of
iCITRIS. For this setting, the learnable, invertible map gθ is identical to the inverse of the observation
function, h−1. In terms of the latent variable prior, we have defined our objective of iCITRIS as:

pϕ
(
zt+1|zt, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

)
(31)

Since we know that g∗θ is an invertible function between X and Z , we know that zt must include all
information of Xt. Thus, we can also replace it with zt = [Ct, Et], giving us:

pϕ
(
zt+1|Ct, Et, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|Ct, Et, zt+1
ψpa

i
, It+1
i

)
(32)

Next, we consider the assignment function ψ∗. The optimal assignment function ψ∗ assigns sufficient
dimensions to each causal factor C1, ..., CK , such that we can consider zt+1

ψ∗
i

= Ct+1
i for i = 1, ...,K.

Further, the same graphG is used in the latent space as in the ground truth, except that we additionally
condition zψ∗

i
, i = 1, ...,K on zψ∗

0
. With that, Equation (32) becomes:

pϕ
(
zt+1|Ct, Et, It+1

)
=

[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, zt+1
ψ∗

0
, It+1
i

)]
· p(zt+1

ψ∗
0
|Ct, Et) (33)

where we remove Et from the conditioning set for the causal factors, since know that Ct+1 and Et+1

is independent of Et. Now, zψ∗
0

must summarize all information of zt+1 which is not modeled in the
causal graph. Thus, zψ∗

0
represents the noise variables: zt+1

ψ∗
0

= Et+1.

pϕ
(
zt+1|Ct, Et, It+1

)
=

[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, zt+1
ψ∗

0
, It+1
i

)]
· p(zt+1

ψ∗
0

= Et+1|Ct, Et)

(34)
Finally, by using g∗θ , we can replace the distribution on zt+1 by a distribution on Xt+1 by the change
of variables formula:

pϕ
(
Xt+1|Ct, Et, It+1

)
=

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, zt+1
ψ∗

0
, It+1
i

)]
·

p(zt+1
ψ∗

0
= Et+1|Ct, Et)

(35)

We can simplify this distribution by using the independencies of the noise term Et+1 in the causal
graph of Figure 6:

pϕ
(
Xt+1|Ct, Et, It+1

)
=

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, It+1
i

)]
·

p(zt+1
ψ∗

0
= Et+1)

(36)

With this, Equation (36) represents the exact same distribution as Equation (30). Therefore, we
have shown that the function δ∗ that identifies the true latent variables C1, ..., CK and assigns them
to the corresponding sets zψ1

, ..., zψK
constitutes a global optimum for maximizing the likelihood.

However, this solution is not necessarily unique, and additional optima may exist. In the next steps of
the proof, we will discuss the class of functions and graphs that lead to the same optimum.
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Figure 7: The minimal causal variable in terms of a causal graph under iTRIS. (a) In the original causal
graph, Ct+1

i has as potential parents the causal variables of the previous time step Ct (eventually a
subset), its instantaneous parents pat+1(Ct+1

i ), and the intervention target It+1
i . (b) The minimal

causal variable splits Ct+1
i into an invariable part sinvi

(
Ct+1
i

)
and variable part svari

(
Ct+1
i

)
. The

invariable part sinvi
(
Ct+1
i

)
is independent of the instantaneous parents and the intervention target.

Further, it can be a parent of svari

(
Ct+1
i

)
due to the autoregressive distribution modeling.

D.5 THEOREM 3.4 - PROOF STEP 2: CHARACTERIZING THE DISENTANGLEMENT CLASS

In this section, we discuss the identifiability results of the causal variables in iCITRIS. We first
describe the minimal causal variables in iTRIS, and how they differ to TRIS in CITRIS (Lippe et al.,
2022b). Next, we identify the information that must be assigned to individual parts of the latent
representation. Finally, we discuss the final setup to ensure identification of the variables according
to Definition 3.3, including the additional variables in zψ0

.

D.5.1 MINIMAL CAUSAL VARIABLES

Lippe et al. (2022b) introduced the concept of a minimal causal variable as an invertible split
of a causal variable si(Ci) = (svar(Ci), s

inv(Ci)) into one part that is strictly dependent on the
intervention, svar(Ci), and a part that is independent of it, sinv(Ci) (see Definiton 2.1). In other
words, the minimal causal variable is the smallest part of a causal variable that strictly depends on the
provided intervention.

For iCITRIS, we consider the same concept, but adapt it to the setup of iTRIS. First, iTRIS assumes
the presence of interventions that render a variable independent of its instantaneous parents. Hence,
when given these interventions, we can ensure that sinv(Ci) does not have any instantaneous parents.
Second, the presence of a causal graph in iCITRIS allows dependencies between different parts of the
latent space. Further, zψ0

can be the parent of any other set of variables, thus allowing for potential
dependencies between sinv(Ci) and svar(Ci). Note that those for the same time step, however, must
also be cut off by the intervention. Hence, the split si(Cti ) = (svari (Cti ), s

inv
i (Cti )) must have the

following distribution structure:

p
(
si(C

t+1
i )|Ct, pat+1(Ct+1

i ), It+1
i

)
= p

(
svari (Ct+1

i )|Ct, pat+1(Ct+1
i ), sinvi (Ct+1

i ), It+1
i

)
·

p
(
sinvi (Ct+1

i )|Ct
) (37)

where

p
(
svari (Ct+1

i )|Ct, pat+1(Ct+1
i ), sinvi (Ct+1

i ), It+1
i

)
=

{
p̃
(
svari (Ct+1

i )|Ct
)

if It+1
i = 1

p
(
svari (Ct+1

i )|Ct, pat+1(Ct+1
i ), sinvi (Ct+1

i )
)

otherwise
(38)

Thereby, the minimal causal variable with respect to its intervention variable It+1
i is the split si which

maximizes the information content H(sinvi (Cti )|Ct). These relations are visualized in Figure 7.

Causal variables for which the intervention target is constant, i.e., no interventions have been observed,
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were modeled by sinv(Ci) = Ci, s
var(Ci) = ∅ in CITRIS (Lippe et al., 2022b). Here, this does not

naturally hold anymore since sinv(Ci) is restricted to not having any instantaneous parents. However,
as stated in assumption 1, a variable without interventions cannot be an instantaneous child of any
variable. Hence, for a causal variable Ci, if Iti = 0 for all t, its minimal causal split is defined as
sinv(Ci) = Ci, s

var(Ci) = ∅, as in CITRIS (Lippe et al., 2022b).

D.5.2 IDENTIFYING THE MINIMAL CAUSAL VARIABLES

As a first step, we postulate the following lemma:
Lemma D.4. For all representation functions in the class ∆∗, there exist a deterministic map
from the latent representation zψi to the minimal causal variable svar(Ci) for all causal variables
Ci, i = 1, ...,K.

This lemma intuitively states that the minimal causal variable svar(Ci) is modeled in the latent
representation zψi

for any representation that maximizes the likelihood objective. Note that this does
not imply exclusive modeling yet, meaning that zψi

can contain more information than just svar(Ci).
We will discuss this aspect in Appendix D.5.3.

Proof. In order to prove this lemma, we first review some relations between the conditional and joint
entropy. Consider two random variables A,B of arbitrary space and dimension. The conditional
entropy between these two random variables is defined as H(A|B) = H(A,B) − H(B) (Cover
et al., 2005). Further, the maximum of the joint entropy is the sum of the individual entropy terms,
H(A,B) ≤ H(A)+H(B) (Cover et al., 2005). Hence, we get thatH(A|B) = H(A,B)−H(B) ≤
H(A) + H(B) − H(B) = H(A). In other words, the entropy of a random variable A can only
become lower when conditioned on any other random variable B.

Using this relation, we move now to identifying the minimal causal variables. If a minimal causal
variable is the empty set, i.e., svar(Ci) = ∅, for instance due to not having observed interventions on
Ci, the lemma is already true by construction since no information must be modeled in zψi

. Thus, we
can focus on cases where svar(Ci) ̸= ∅, which implies that Ct+1

i ̸⊥⊥ It+1
i . Therefore, the following

inequality must strictly hold:

H(Ct+1
i |Ct, Ct+1

−i ) < H(Ct+1
i |Ct, Ct+1

−i , I
t+1
i ) (39)

for all i = 1, ...,K. Additionally, based on the assumption that the observational and interventional
distributions share the same support, we know that the intervention posterior, i.e., p(It+1|Xt+1),
cannot be deterministic for any data point Xt+1 and intervention target It+1

i . Thus, we cannot
derive It+1

i from the observation Xt+1. Thirdly, because every latent variable is only conditioned
on exactly one intervention target in iCITRIS and there exist no deterministic function between any
pair of intervention targets, one cannot identify It+1

i in any latent variables except zψi
. Therefore,

the only way in iCITRIS to fully exploit the information of the intervention target It+1
i is to model

its dependent information in zψi
. As this information corresponds to the minimal causal variable,

svar(Ci), any representation function must model the distribution p(svar(Ci)|...) in p(zψi |It+1
i , ...) to

achieve the maximum likelihood solution. This is independent of the modeled causal graph structure,
meaning that if there exist representation functions with different graphs in ∆∗, then all of them must
model svar(Ci) in zψi

. Finally, using assumption 4 (Appendix D.2.4), we obtain that this distributional
relation implies a functional independence of svar(Ci) in zψi

to any other latent variable. Thus, there
exists a deterministic map from zψi

to svar(Ci) in any of the maximum likelihood solutions.

D.5.3 DISENTANGLING THE MINIMAL CAUSAL VARIABLES

The previous subsection showed that zψi models the minimal causal variable svar(Ci). This, however,
is not necessarily the only information in zψi

. For instance, for two random variables A,B ∈ R, the
following distributions are identical:

p(A) · p(B|A) = p(A) · p(B +A|A) = p(A) · p(B,A|A) (40)

The second distribution can add additional information about A arbitrarily to B without changing
the likelihoods. This is because the distribution is conditioned on A, and the conditional entropy
of a random variable to itself is H(A|A) = H(A,A) −H(A) = H(A) −H(A) = 0. Hence, for
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C1 C2

C3

(a) Observational regime

C1 C2

C3

(b) C1 intervened

C1 C2

C3

(c) C2 intervened

C1 C2

C3

(d) C3 intervened

Figure 8: Example instantaneous causal graph between 3 causal variables C1, C2, C3, and the aug-
mented graphs under different single-target interventions that remove instantaneous parent dependen-
cies. The augmented graphs have the edges to the intervened variables removed. For readability, the
intervened variables are colored in red in the graphs.

arbitrary autoregressive distributions, we cannot identify the variables from each other purely by
looking at the likelihoods.

However, in iTRIS, we are given interventions under which variables are strictly independent of their
instantaneous parents. With this, we postulate the following lemma:

Lemma D.5. For all representation functions in the class ∆∗, zψi
does not contain information

about any other minimal causal variable svar(Cj), j ̸= i, except svar(Ci), i.e., H(zψi
|svar(Ci)) =

H(zψi
|svar(Ci), svar(Cj)).

Proof. In order to prove this lemma, we consider all augmented graph structures that are induced by
the provided interventions on the instantaneous causal graph. Specifically, given a graph G = (V,E)
with V being its vertices and E its edges, and a set of binary intervention targets I = {I1, ..., I|V |},
we construct an augmented DAGG′ = (V ′, E′), where V ′ = V andE′ = E\{{paG(Vi) → Vi}|i =
1, ..., |V |, Ii = 1}. In other words, the augmented graph G′ has all its input edges to intervened
variables removed. An example for a graph of three variables and its three single-target interventions
is shown in Figure 8.

A representation function in the class ∆∗ must model the optimal likelihood for all intervention-
augmented graphs of its originally learned graph Ĝ, since it cannot achieve lower likelihood for any
of the graphs than the ground truth. For every pair of variables Ci, Cj , assumption 2 (Appendix D.2.2)
ensures that there exist one out of three possible experiment sets: (1) we observe Iti = 1, Itj = 0

and Iti = 0, Itj = 1, (2) Iti = 0, Itj = 0, Iti = 1, Itj = 0, and Iti = 1, Itj = 1, or (3) Iti = 0, Itj = 0,
Iti = 0, Itj = 1, and Iti = 1, Itj = 1. In all cases, there exist at least one augmented graph in which
Cti ⊥⊥ Ctj , and hence ztψi

⊥⊥ ztψj
, must hold since (2) and (3) observe joint interventions on both

variables (Iti = 1, Itj = 1). In (1), a constant connection between the two variables would require
both edges Ci → Cj and Cj → Ci to be present in the graph, which implies a cycle in a graph
violating our acyclicity assumption 5. Under the augmented graph, where ztψi

⊥⊥ ztψj
, the optimal

likelihood can only be achieved if the distribution of ztψi
is actually independent of ztψj

, thus not
containing any information about svar(Cj). The same holds for zψj

. Hence, a representation function
in the class ∆∗ must identify the minimal causal variables in the latent space.

D.5.4 DISENTANGLING THE REMAINING VARIABLES

In Appendix D.5.2 and Appendix D.5.3, we have shown that for any solution in the class ∆∗, we
can ensure that zψi

models the minimal causal variable svar(Ci), and none other. Still, there exist
more dimensions that need to be modeled. The causal variables without interventions, the invariant
parts of the causal variables, sinv(Ci), as well as the noise variables Et are part of the generative
model that influence an observation Xt. All these variables share the property that they are not
instantaneous children of any minimal causal variable, and can only be parents of them. This leads to
the situation that any of these variables could be modeled in the latent representation of zψi

for an
arbitrary i = 1, ...,K as long as Ci is the parent of the same variables. The reason for this is that the
distribution modeling of such variables is independent of interventions.
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To exclude them from the causal variable modeling, we follow the same strategy as in CITRIS (Lippe
et al., 2022b) by taking the representation function that maximizes the entropy of zψ0

:

Lemma D.6. For all representation functions in the class ∆∗ that maximize the information content
of p(zψ0 |Ct) according to LDDP, the latent representation zψi models exclusively the minimal causal
variable svar(Ci) for all causal variables Ci, i = 1, ...,K.

Proof. Using Lemma D.4 and Lemma D.5, we know that the only remaining information be-
sides the minimal causal variables are the causal variables without interventions, invariant parts
of the causal variables, sinv(Ci), as well as the noise variables Et. All these variables cannot
be children of the observed, intervened variables, as the assumption 1 (Appendix D.2.1) states.
Thus, the remaining information M = {sinv(C1), ..., s

inv(CK), Et} can be optimally modeled
by p(M|zt)p(zψ1

, ..., zψK
|M, zt, It+1). This implies that there exist a solution where zψ0

= M,
which can be found by searching for the solution with the maximum entropy of p(zψ0

|Ct). In this
solution, the latent representation zψ1

, ..., zψK
does not model any subset of M, hence modeling the

minimal causal variables exclusively.

The overall result is that we identify the minimal causal variables in zψ1
, ..., zψK

, and all remaining
information is modeled in zψ0

. Note that the causal variables without interventions, the noise variables
and the invariant part of the causal variables can be arbitrarily entangled in zψ0

. Furthermore, since
there exist variables in zψ0

that may not have any temporal parents (e.g., the noise variables and
invariable parts of the intervened causal variables), we cannot rely on assumption 4 (Appendix D.2.4)
to ensure functional independence. Hence, while the distribution of p(zψ0

|zt) is independent of
zψ1 , ..., zψK

, there may exist dependencies such that for a single data point, a change in zψi can result
in a change of the noise or invariable parts of the causal variables in the observational space.

D.6 THEOREM 3.4 - PROOF STEP 3: IDENTIFIABILITY OF THE CAUSAL GRAPH

In this step of the proof, we discuss the identifiability of the causal graph under the previous findings.
In the first subsection, we discuss what graph we can optimally find under the identification of the
minimal causal variables. In the second part, we then show how the maximum likelihood objective is
sufficient for identifying the instantaneous causal graph. Finally, we discuss the identifiability of the
temporal causal graph.

D.6.1 CAUSAL GRAPH ON MINIMAL CAUSAL VARIABLES

The identification of the causal graph naturally depends on the learned latent representations of the
causal variables. In Appendix D.5, we have shown that one can only guarantee to find the minimal
causal variables in iTRIS. Thus, we are limited to finding the causal graph on the minimal causal
variables svar(C1), s

var(C2), ..., s
var(CK) and the additional variables modeled in zψ0

. The graph
between the minimal causal variables is not necessarily equal to the ground truth graph. For instance,
consider a 2-dimensional position (x, y) and the color of an object as two causal variables. If the x-
position causes the color, but the minimal causal variable of the position is only svar(C1) = y, then
the color has only sinv(C1) as parent, not svar(C1). In the learned graph on the latent representation,
it would mean that we do not have an edge between zψ1

and zψ2
, but instead zψ0

→ zψ2
. Hence, we

might have a mismatch between the ground truth graph on the full causal variables, and the graph on
the modeled minimal causal variables.

Still, there are patterns and guarantees that one can give for how the optimal, learned graph looks
like. Due to the nature of the interventions, the invariable part of a causal variable, sinv(Ci), cannot
have any instantaneous parents. Thus, the instantaneous parents of a minimal causal variable svar(Ci)
are the same ground truth causal variables as in the true graph, i.e., pa(Ci) = pa(svar(Ci)). The
difference is how the parents are represented. Since each parent Cj ∈ pa(Ci) is split into a variable
and invariable part, any combination of the two can represent a parent of svar(Ci). Thus, the learned
set of parents for svar(Ci), i.e., pa(zψi

), must be a subset of {svar(Cj)|Cj ∈ pa(Ci)} ∪ {zψ0
}. This

implies that if there is no causal edge between two causal variables Ci and Cj in the ground truth
causal graph, then there is also no edge between their minimal causal variables svar(Ci) and svar(Cj).
The causal graph between the true variables and the minimal causal variables therefore shares a lot of
similarities, and in practice, is often almost the same.
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C1 C2

(a) Causal graph

Exp. I1 I2

E0 1 0
E1 0 1

(b) Experimental setting 1

Exp. I1 I2

E0 0 0
E1 1 0
E2 1 1

(c) Experimental setting 2

Exp. I1 I2

E0 0 0
E1 0 1
E2 1 1

(d) Experimental setting 3

Figure 9: Identifiability of a causal relation between two variables C1, C2 under different interven-
tional settings. (a) The causal relation to consider. The discussion is identical in case of the reverse
orientation by switching the variable names C1 and C2. (b-d) The tables describe the minimal sets of
experiments, i.e., unique combinations of I1, I2 in the dataset, that guarantee the intervention targets
to be unique, i.e., not ∀t, It1 = It2. Under each of these sets of experiments, we show that the maxi-
mum likelihood solution of p(C1, C2|I1, I2) uniquely identifies the causal orientation.

The additional latent variables zψ0 summarize all invariable parts of the intervened variables, the
remaining causal variables without interventions, and the noise variables. Therefore, zψ0

cannot be
an instantaneous child of any minimal causal variable, and we can predefine the orientation for those
edges in the instantaneous graph.

Next, we can discuss the identifiability guarantees for the graph on the minimal causal variables. For
simplicity, in the rest of the section, we refer to identifying the causal graph on the minimal causal
variables as identifying the graph on C1, ..., CK .

D.6.2 OPTIMIZING THE MAXIMUM LIKELIHOOD OBJECTIVE UNIQUELY IDENTIFIES THE
INSTANTANEOUS CAUSAL GRAPH UNDER INTERVENTIONS

Several causal discovery works have shown before that causal graphs can be identified when given
sufficient interventions (Brouillard et al., 2020; Eberhardt, 2007; Lippe et al., 2022a; Pearl, 2009).
Since the identification of the causal variables already requires interventions that render variables
independent of their instantaneous parents, we can exploit these interventions for learning and
identifying the graph as well. In assumption 5 (Appendix D.2.5), we have assumed that the causal
graph to identify is faithful. This implies that any dependency between two variables, C1, C2, which
have a causal relation among them (C1 → C2 or C2 → C1), cannot be replaced by conditioning C1

and/orC2 on other variables. In other words, in order to optimize the overall likelihood p(C1, ..., CK),
we require a graph that has a causal edge between two variables if they are causally related. Now, we
are interested in whether we can identify the orientation between every pair of causal variables that
have a causal relation in the ground truth graph, which leads us to the following lemma:

Lemma D.7. In iTRIS, the orientation of an instantaneous causal effect between two causal variables
Ci, Cj can be identified by solely optimizing the likelihood of p(Ci, Cj |Ii, Ij).

Proof. To discuss the identifiability of the causal direction between two variables C1, C2, we need to
consider all possible minimal sets of experiments that fulfill the intervention setup in assumption 2
(Appendix D.2.2). These three sets are shown in Figure 9. For all three sets, we have to show
that the maximum likelihood of the conditional distribution p(C1, C2|I1, I2) can only be achieved
by modeling the correct orientation, here C1 → C2. For cases where the true graph is C2 → C1,
the same argumentation holds, just with the variables names C1 and C2 swapped. As an overview,
Table 3 shows the distribution p(C1, C2|I1, I2) under all possible experiments and causal graphs.

Experimental setting 1 (Figure 9b) In the first experimental setting, we are given single target
interventions on C1 and C2. In the experiment E0 which represents interventions on C1 and
passive observations on C2, the dependency between C1 and C2 persists in the ground truth, i.e.,
C1 ̸⊥⊥ C2|I1 = 1, I2 = 0. Hence, only causal graphs that condition C2 on C1 under interventions on
C1 can achieve the maximum likelihood in E0. From Table 3, we see that the only causal graph that
does this is C1 → C2. Thus, when single-target interventions on C1 are observed, we can uniquely
identify the orientation of its outgoing edges.

Experimental setting 2 (Figure 9c) The second experimental setting provides the observational
regime (E0), interventions on C1 with C2 being passively observed (E1), and joint interventions on
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Table 3: The probability distribution p(C1, C2|I1, I2) for all possible causal graphs among the two
causal variables C1, C2 under different experimental settings. Observational distributions are denoted
with p(...), and interventional with p̃(...). Note that under interventions, it is enforced that p̃(...) is
not conditioned on any parents, since we work on the instantaneous graph.

Interventions Causal graph
I1 I2 C1 → C2 C2 → C1 C1 ⊥⊥ C2

0 0 p(C1)p(C2|C1) p(C2)p(C1|C2) p(C1)p(C2)
1 0 p̃(C1)p(C2|C1) p(C2)p̃(C1) p̃(C1)p(C2)
0 1 p(C1)p̃(C2) p̃(C2)p(C1|C2) p(C1)p̃(C2)
1 1 p̃(C1)p̃(C2) p̃(C1)p̃(C2) p̃(C1)p̃(C2)

C1 and C2 (E2). Since the experiment E1 gives us the same setup as in experimental setting 1, we
can directly conclude that the causal orientation C1 → C2 is yet again identifiable.

Experimental setting 3 (Figure 9d) In the final experimental setting, C1 is only observed to be
jointly intervened upon with C2, not allowing for the same argument as in the experimental settings 1
and 2. However, the causal graph yet remains identifiable because of the following reasons. Firstly,
the experiment E0 with its purely observational regime cannot be optimally modeled by a causal
graph without an edge between C1 and C2, reducing the set of possible causal graph to C1 → C2

and C2 → C1. Under the joint interventions E2, both causal graphs model the same distribution.
Still, under the experiment E1 where only C2 has been intervened upon, the two distributions differ.
The graph with the anti-causal orientation compared to the true graph, C2 → C1, uses the same
distribution as in the observational regime to model C1, i.e., p(C1|C2). In order for this to achieve
the same likelihood as the true orientation, it would need to be conditioned on I2 as the following
derivation from the true distribution p(C1, C2|I1, I2) shows:

p(C1, C2|I1, I2) = p(C2|I1, I2) · p(C1|C2, I1, I2) (41)

p(C1|C2, I1, I2) =

{
p(C1|I1) if I2 = 1

p(C1|C2, I1) if I2 = 0
(42)

This derivation shows that p(C1|C2, I1, I2) strictly depends on I2 if p(C1|C2, I1, I2 = 1) ̸=
p(C1|C2, I1, I2 = 0), which is ensured by C1, C2 not being conditionally independent in the ground
truth graph. As the causal graph C2 → C1 models C1 independently of I2, it therefore cannot achieve
the maximum likelihood solution in this experimental settings. Hence, the only graph achieving the
maximum likelihood solution is C1 → C2, such that the orientation can again be uniquely identified.

All other, possible experimental settings must contain one of the three previously discussed experi-
ments as a subset, due to assumption 2 (Appendix D.2.2). Hence, we have shown that for all valid
experimental settings, optimizing the maximum likelihood objective uniquely identifies the causal
orientations between pairs of variables under interventions.

Based on these orientations, we can exclude all additional edges that could introduce a cycle in the
graph, since we strictly require an acyclic graph. The only remaining non-identified parts of the
graph are edges among variables that are independent, conditioned on their parents. In terms of
maximum likelihood, these edges do not influence the objective since for two variables C1, C2 with
C1 ⊥⊥ C2, p(C1) · p(C2) = p(C1|C2) · p(C2) = p(C1) · p(C2|C1). Hence, the equivalence class in
terms of maximum likelihood includes all graphs that at least contain the true edges, and are acyclic.
By requiring structural minimality, i.e., taking the graph with the least amount of edges that fully
describes the distribution, we can therefore identify the full causal graph between C1, ..., CK .

D.6.3 IDENTIFYING THE TEMPORAL CAUSAL RELATIONS BY PRUNING EDGES

So far, we have shown that the instantaneous causal relations can be identified between the minimal
causal variables. Besides the instantaneous graph, there also exist temporal relations between Ct and
Ct+1, which we also aim to identify:

Lemma D.8. In iTRIS, the temporal causal graph between the minimal causal variables can be
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identified by removing the edge between any pair of variables ztψi
, zt+1
ψj

with i, j ∈ J0..KK, if
ztψi

⊥⊥ zt+1
ψj

|ztψ−i
, pat+1(zt+1

ψj
).

Proof. The prior in Equation (2) conditions the latents variables zt+1 on all variables of the previous
time step, zt. Thus, this corresponds to modeling a fully connected graph from ztψ0

, ztψ1
, ..., ztψK

to
zt+1
ψ0

, zt+1
ψ1

, ..., zt+1
ψK

. Since any temporal edge must be oriented from zt to zt+1, it is clear that the true
temporal graph, GT , must be a subset of this graph. Further, since in assumption 5 (Appendix D.2.5),
we have stated that the true causal model is faithful, we know that two variables, ztψi

and zt+1
ψj

,
are only connected by an edge, if they are not conditionally independent of each other: ztψi

̸⊥⊥
zt+1
ψj

|ztψ−i
, pat+1(zt+1

ψj
). This implies that all redundant edges must be between two, conditionally

independent variables with: ztψi
⊥⊥ zt+1

ψj
|pat(zt+1

ψj
), pat+1(zt+1

ψj
) with pat(zt+1

ψj
) being a subset of

ztψ−i
. Thus, we can find the true temporal graph by iterating through all pairs of variables ztψi

and zt+1
ψj

,
and remove the edge if both of them are conditionally independent given ztψ−i

, pat+1(zt+1
ψj

).

D.7 THEOREM 3.4 - PROOF STEP 4: FINAL IDENTIFIABILITY RESULT

Using the results derived in Appendix D.4, Appendix D.5 and Appendix D.6, we are finally able
to derive the full identifiability results. In Appendix D.5, we have shown that any solution that
maximizes the likelihood pϕ,θ,G(xt+1|xt, It+1) identifies the minimal causal variables of C1, ..., CK
in zψ1

, ..., zψK
. Further, we are able to summarize all remaining variables in zψ0

by maximizing the
entropy (LDDP) of pϕ(zt+1

ψ0
|zt). In Appendix D.6, we have used this disentanglement condition to

show that the causal graph that maximizes the likelihood must have at least the same edges as the
ground truth graph on the minimal causal variables. To obtain the full ground truth graph, we need to
pick the one with the least edges.

These aspects together can be summarized into the following theorem:
Theorem D.9. In iTRIS, a model M∗ = ⟨θ∗, ϕ∗, ψ∗, G∗⟩ identifies a causal system S = ⟨C,E, h⟩
(Definition 3.3) if M∗, under the constraint of maximizing the likelihood pϕ,θ,G(Xt+1|Xt, It+1):
(1) maximizes the information content H(zt+1

ψ0
|zt) in terms of the LDDP (Jaynes, 1957; 1968),

(2) minimizes the number of edges in G∗, and
(3) no intervention variables Iti , I

t
j are deterministically related, i.e., ∀j ̸= i : ¬(∃f, ∀t : Iti = f(Itj)).
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4 variables

6 variables

9 variables

Figure 10: Example sequences of the Voronoi benchmark for the different graph sizes. Each image of
32×32 is partitioned intoK patches. The values of theK true causal variables have been transformed
by a two-layer normalizing flow, which result into the hues of the K patches in

[
− 7

8π,
7
8π
]
. The hues

are finally mapped into the RGB space, resulting in the images above.

E DATASETS

The following section gives a detailed overview of the dataset and used hyperparameters in all settings.
Appendix E.1 contains the description of the Voronoi benchmark, for which the experimental results
are shown in Section 5.2. Appendix E.2 discusses the Instantaneous Temporal Causal3DIdent dataset,
and Appendix E.3 the Causal Pinball dataset.

E.1 VORONOI BENCHMARK

The purpose of the Voronoi benchmark is to provide a flexible, synthetic dataset where we can
evaluate causal representation learning models on various settings, such as number of variables and
graph structure (both instantaneous and temporal). For each dataset, we generate one sequence with
150k time steps, in between which single-target interventions may have been performed. We sample
the interventions with 1/(K+2) for each variable, and with 2/(K+2) a purely observational regime.
A visual example of the Voronoi benchmark is shown in Figure 10, and we describe its generation
steps below.

E.1.1 NETWORK SETUP

In the Voronoi benchmark, we need a data generation mechanism for the conditional distributions
p(Ct+1

i |pa(Ct+1
i )) that support any set of parents. For this, we deploy randomly initialized neural

networks which models arbitrary, non-linear relations between any parent set and a causal variable.
We visualize the network architecture in Figure 11. As a simplified setup, we use the neural networks
to parameterize a Gaussian distribution. Specifically, the neural networks take as input a subset of
Ct, Ct+1 according to the given graph structure (see next subsection for the graph generation), and
output a scalar representing the mean of the conditional distribution N (Ct+1

i |µ(pa(Ct+1
i )), σ2) where

the standard deviation is set to σ = 0.3. We have also experimented with having the (log) standard
deviation as an additional output of the network. However, we experienced that this leads to the
true causal variables to be the optimal solution when modeling K conditionally independent factors.
Hence, both iCITRIS and the baselines were able to identify the causal variables well, making the task
easier than anticipated. The interventional distribution is thereby set to N (0, 1) for all causal variables.

On the causal variables, we apply a normalizing flow which consisted of six layers: Activation
Normalization, Autoregressive Affine Coupling, Activation Normalization, Invertible 1x1 convolution,
Autoregressive Affine Coupling, Activation Normalization. The Activation Normalization (Kingma
et al., 2018) layers are initialized once after the Batch Normalizations of the distribution neural
networks have been set, and ensure that all outputs roughly have a zero mean and standard deviation
of one. The Autoregressive Affine Coupling layers use randomly initialized neural networks, with the
average standard deviation of the outputs being 0.2. The coupling layer is volume preserving, i.e., we
do not use a scaling term in the affine coupling, to prevent any issues with the image quantization.
The Invertible 1x1 convolution (Kingma et al., 2018) is initialized with a random, orthogonal matrix,
entangling all causal variables across dimensions. Hence, each output of the normalizing flow is
influenced by all causal variables.
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Figure 11: Network architecture of the randomly initialized neural networks in the Voronoi benchmark,
modeling the conditional distributions p(Ct+1

i |pa(Ct+1
i ), It+1

i = 0) = N (Ct+1
i |µ(pa(Ct+1

i )), σ2)
with σ = 0.3. The BatchNorm layers (Ioffe et al., 2015) are initialized by sequentially sampling
100 batches of the causal variables, using each as the input to the next batch. This ensures that the
marginal distribution p(Ct+1

i ) has a mean close to zero and standard deviation of one.

C1 C2

C3C4

(a) Graph structure random

C1 C2

C3C4

(b) Graph structure chain

C1 C2

C3C4

(c) Graph structure full

Figure 12: Example instantaneous causal graphs with four variables for the three graph structures.
The causal ordering for the causal variables is randomly sampled for each graph to prevent any
structural biases.

Finally, the outputs of the normalizing flow are transformed by the function f(x) = 7
8π · tanh

(
x
2

)
.

This function maps all values to a range of
[
− 7

8π,
7
8π
]
, which we can use as hues in the patches of

the Voronoi diagram. The division by 2 of x is performed to reduce the number of data points in
the saturation points of the tanh. The Voronoi diagrams are generated by sampling K points on the
image, which have a distance of at least 5 pixels between each other, and are fixed within a dataset. In
contrast to just mapping the colors into a grid, the Voronoi diagram is an irregular structure. Hence,
the mapping from images to the K color is non-trivial and does not transfer across datasets. Once the
Voronoi diagram was created, we have used matplotlib (Hunter, 2007) to visualize the structure as an
RGB image.

E.1.2 GRAPH GENERATIONS

For the instantaneous causal graph, we have considered three graph structures: random, chain,
and full. An example of each is visualized in Figure 12.

The random graph samples an edge for every possible pair of variables Ci, Cj , i ̸= j with a chance
of 0.5. Thereby, we ensure that the graph is acyclic by sampling undirected edges, and directing them
according to a randomly sampled ordering of the variables. This way, the average number of edges
in the graph is K(K−1)

4 . For small graphs of size 4, this results in variables to eventually having no
incoming or outgoing edges, testing also the model’s ability on conditionally independent variables.

The chain graph connects the variables in a sequence, where each variable is the parent of the next
one in the sequence. This leads to each graph having K − 1 edges, i.e., the sparsest, yet continuously
connected graph.

The full graph represents the densest directed acyclic graph possible. We first sample an ordering
of variables, and then add an edge from each variable to all others that follow it in the sequence. Thus,
it has the most possible edges in a DAG, namely K(K−1)

2 .

Finally, the temporal graph is sampled similar to the random graph. However, the orientations are
pre-determined by the temporal ordering, and no cycles can occur. We therefore sample a directed
edge between any pair of variables Cti , C

t+1
j , including i = j, with a chance of 0.25. This leads to an
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Figure 13: Example sequence from the training set of the Instantaneous Temporal Causal3DIdent
dataset (from left to right, top to bottom). Each image is of size 64 × 64 pixels. One can see the
instantaneous effects of the background influencing the object color, for instance, or the object color
again influencing the rotation of the object.

average number of edges of K
2

4 . Additionally, we ensure that every variable has at least one temporal
parent, to prevent variance collapses in the neural network distributions.

E.2 INSTANTANEOUS TEMPORAL CAUSAL3DIDENT

The creation of the Instantaneous Temporal Causal3DIdent dataset closely followed the setup of
Lippe et al. (2022b); von Kügelgen et al. (2021), and we show an example sequence of the dataset in
Figure 13. We used the code provided by Zimmermann et al. (2021)1 to render the images via Blender
(Blender Online Community, 2021), and used the following seven object shapes: Cow (Crane, 2021),
Head (Rusinkiewicz et al., 2021), Dragon (Curless et al., 1996), Hare (Turk et al., 1994), Armadillo
(Krishnamurthy et al., 1996), Horse (Praun et al., 2000), Teapot (Newell, 1975). As a short recap,
the seven causal factors are: the object position as multidimensional vector [x, y, z] ∈ [−2, 2]3; the
object rotation with two dimensions [α, β] ∈ [0, 2π)2; the hue of the object, background and spotlight
in [0, 2π); the spotlight’s rotation in [0, 2π); and the object shape (categorical with seven values).
We refer to Lippe et al. (2022b, Appendix C.1) for the full detailed dataset description of Temporal
Causal3DIdent, and describe here the steps taken to adapt the datasets towards instantaneous effects.

The original temporal causal graph of the Temporal Causal3DIdent dataset contains 15 edges, of
which 8 are between different variables over time. Those relations form an acyclic graph, which
we can directly move to instantaneous relations. Thus, the adjacency matrix of the temporal graph
is an identity matrix, while the instantaneous causal graph is visualized in Figure 14. The causal
mechanisms remain unchanged, except that the inputs may now be instantaneous. For instance, the
spotlight rotation is adapted as follows:

Previous version: rot_st+1 = f
(
atan2(pos_xt, pos_yt), rot_st, ϵtrs

)
(43)

Instantaneous version: rot_st+1 = f
(
atan2(pos_xt+1, pos_yt+1), rot_st, ϵtrs

)
(44)

where f(a, b, c) = a−b
2 + c. The causal parents of other variables, here pos_x and pos_y, are now

instantaneous instead of the previous time step. Hence, an intervention on the position will lead to an
instantaneous effect on the rotation of the spotlight.

In the original dataset, all interventions have been perfect with a uniform distribution. To relax these
interventions to partially-perfect interventions, we instead use interventions that are centered around

1https://github.com/brendel-group/cl-ica
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pos_o rot_orot_s

hue_o

hue_b hue_s

obj_s

Figure 14: The instantaneous causal graph in the Instantaneous Temporal Causal3DIdent dataset.
The graph contains several common sub-structures, such as a chain (rot_o→pos_o→rot_s), a fork
(hue_o,hue_b→rot_o), and confounders (hue_b→hue_s,hue_o). The most difficult edges to recover
include rot_o→pos_o since the object orientation has a complex, non-linear relation to the observation
space which is difficult to model and prone to noise. Further, the edge hue_b,hue_s→hue_o only
holds for two object shapes (Hare and Dragon), for which the background and spotlight hue have an
influence on the object color. For the other five object shapes, the object color is independent of the
other two parents.

Figure 15: An example sequence of the Pinball dataset, from left to right, top to bottom. The paddles,
i.e., the two gray rectangles in the bottom center, are accelerated forwards under interventions
such that they make a large jump within an image. For instance, in image 5, the right paddle has
been intervened upon and hits the ball (gray circle). It is accelerated immediately, showcasing the
instantaneous effect between the two. When no interventions on the paddles are given, they slowly
move backwards. In image 8, the ball hits a bumper (5 circle centers with light red filling) which
lights up. This represents the scoring of a point, as the instantaneous increase in points shows in
image 8 (the digits in the bottom right corner). Note that technically, there is no winning or losing
state here since we do not focus on learning a policy, but instead a causal representation of the
components. Further, not shown here, there exist a fourth channel representing the ball’s velocity.

the previous time step value. Specifically, for circular values, we use Ct+1
i ∼ N (Cti , σ

2
i ) with σi = 2.

For the position variables, we use Ct+1
i ∼ N T (0.5 ·Cti , σ2

i ) with N T denoting a truncated Gaussian
at [−2, 2] to prevent objects leaving the canvas, and σi = 1.5. All remaining aspects of the dataset
generation are identical to the Temporal Causal3DIdent dataset.

E.3 CAUSAL PINBALL

The Causal Pinball dataset is a simplified environment of the popular game Pinball, as shown in
Figure 15. In Pinball, the user controls two fixed paddles on the bottom of the playing field, and tries
to hit the ball such that it collides with various objects for scoring points. There are several versions
of Pinball, but for this dataset, we limit it to the essential parts representing the five, multidimensional
causal variables:

• The ball is defined by four dimensions: the position on the x- and y-axis, and its velocity in
x and y. Both are continuous values, with the position being limited to the available spots on
the field.

• The left paddle y-position (paddle_left) describes the position of the left paddle. Its

38



Published as a conference paper at ICLR 2023

paddle_left

paddle_right

ball bumpers score

Figure 16: The instantaneous causal graph in the Causal Pinball dataset. An intervention on the
paddles can have an immediate effect on the ball by changing its position and velocity. A change in
the ball’s position again influences the bumpers, whether their light is activated or not. Finally, when
the bumpers are activated, the score increases in the same time step.

maximum is close-to the top of the black border next to it (e.g., image 7 in Figure 15), and
its minimum is close to the bottom (e.g., image 10 in Figure 15).

• The right paddle y-position (paddle_right) is similar to paddle_left, just for the right paddle.
• The bumpers represent the activation, i.e., the light, of all 5 bumpers. It is a five-dimensional

continuous variable, each dimension being between 0 (light off, e.g., image 1 in Figure 15)
and 1 (light fully on, e.g., image 8 in Figure 15).

• The score is a categorical variable summarizing the number of points the player has scored.
Its value ranges from 0 to a maximum of 20.

The dynamics between these causal factors resembles the standard game dynamics of Pinball, which
results in the instantaneous causal graph in Figure 16. The ball can collide with the paddles, borders,
and bumpers. When it collides with the borders, it is simply reflected, and we reduce its velocity by
10% (i.e., multiply by 0.9). Under collisions with the paddles, we distinguish between a collision
where the paddle has been static or moving backwards, versus a collision where the paddle was
moving. When the paddle was static, we use the same collision dynamics as the borders, except
that we reduce its y-velocity by 70% to reduce oscillations around the paddle position. When the
paddle was moving, we instead set the y-velocity of the ball to the y-velocity of the paddle. Finally,
when the ball collides with a bumper, it activates the bumper’s light and reflects from it, similar to the
borders. When a bumper’s light is turned on, we increase the score by one, but include a 5% chance
that the score is not increased to introduce some stochastic elements and faulty components in the
game. Next to the collisions, the ball is influenced by a gravity towards the bottom, adding a constant
every time step to its y-velocity, and friction that reduces its velocity by 2% after each time step.

In terms of interventions, we sample the interventions on the five elements independently, but with a
chance that would correspond more closely to the game dynamics. Specifically, we intervene on the
paddles in 20% of the frames, 10% on the ball, and 5% each the score and bumpers. An intervention
of the paddle represents it moving forwards, from its previous position, to a randomly sampled
position between the middle and maximum paddle position. Its velocity is set to the difference
between the previous position and new position. Since these interventions are usually elements of
the standard Pinball game play, we sample them rather often with 20%. An intervention on the ball
represents stopping it at the position it is, and give it slightly random velocity towards the bottom. In
real-life, this would correspond to a player interfering with the ball by stopping it with their hand. To
prevent instantaneous effects from the paddles, we move the ball slightly up if it is in reach of the
paddles. An intervention on the bumpers is that we randomly activate a bumper with a 25% chance,
while leaving others untouched and maintaining their original dynamics. Finally, an intervention on
the score resets it to a random value between 0 and 4.

To render the images, we use matplotlib (Hunter, 2007) and a resolution of 64 × 64 pixels. The
images are generated by having a single sequence of 150k images.
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Algorithm 1 Pseudocode of the training algorithm for the prior and graph learning in iCITRIS with
NOTEARS as graph learning method. For efficiency, all for-loops are processed in parallel in the code.

Require: batch of observation samples and intervention targets: B = {xt, xt+1, It+1}Nn=1
1: for each batch element xt, xt+1, It+1 do
2: Encode observations into latent space: zt = gθ(x

t), zt+1 = gθ(x
t+1)

3: Differentiably sample one graphs G: Gij ∼ GumbelSoftmax(1− σ(γij), σ(γij))
4: Sample latent to causal assignments from ψ for each batch element
5: for each causal variable Ci do
6: Determine parent mask from G: S ∈ {0, 1}M , Sj = Gψ(j),i

7: Calculate nlli = − log pϕ

(
zt+1
ψi

|zt, zt+1 ⊙ S, It+1
i

)

8: end for
9: Backpropagation loss Ln =

∑K
i=1 nlli

10: end for
11: Acyclicity regularizer: Lcycle = tr (exp(σ(γ)))−K

12: Sparsity regularizer: Lsparse = 1
K2

∑K
i=1

∑K
j=1 σ(γij)

13: Update parameters ϕ, ψ, γ with ∇ϕ,ψ,γ

[
λcycle · Lcycle + λsparse · Lsparse + 1

N

∑N
n=1 Ln

]

F EXPERIMENTAL DETAILS

In this section, we give further details on implementation details of iCITRIS and hyperparameters
that were used for the experiments in Section 5.

F.1 ICITRIS - MODEL DETAILS

Similar to CITRIS, iCITRIS can be either implemented as a VAE or as a normalizing flow trained on
the representation of a pretrained autoencoder. The core elements to implement in iCITRIS are:

• The map gθ from observations xt to latents zt and back (iCITRIS-VAE: convolutional
encoder-decoder of the VAE | iCITRIS-NF: an autoregressive normalizing flow)

• The assignment function ψ of latents to causal variables (matrix of RM×(K+1) from which
we sample via Gumbel softmax)

• The prior distributions pθ (MLPs for conditional Gaussians)
• The continuous-optimization causal discovery method for learning the instantaneous causal

graph (ENCO or NOTEARS, see below)

The first three are the same as in CITRIS, with the last being novel in iCITRIS. Thus, we discuss
implementation details of this graph learning below, as well as the mutual information estimator,
which is only necessary for perfect interventions and extra optimization stability. For the two graph
learning methods, we additionally discuss the specific setup used to learn the prior distributions pθ.

Graph Learning - NOTEARS The full training algorithm of iCITRIS with the NOTEARS
graph parameterization is shown in Algorithm 1. The adjacency matrix is parameterized by γ ∈
R(K+1)×(K+1), where σ(γij), with σ being the sigmoid function, represents the probability of having
the edge zψi → zψj in the instantaneous graph. To prevent self-loops, we set γii = −∞, i = 0, ...,K,
and γi0 = −∞, i = 1, ...,K to guarantee an empty instantaneous parent set for zψ0 . At each training
iteration, we sample an adjacency matrix per batch element using the Gumbel Softmax trick (Jang
et al., 2017). These matrices are used to mask out the inputs to the prior, and therefore obtain gradi-
ents by optimizing the likelihood of the prior. Further, NOTEARS requires two regularizers. First,
the acyclicity regularizer takes the matrix exponential of the edge probabilities, σ(γ). The trace of
this matrix exponential has a minimum of K, which is only achieved if the matrix does not contain
any cycles. All operations in this regularizer are differentiable, and we weigh this regularizer in the
loss by λcycle. This weighting factor follows a scheduling over training, which starts with a value of
exp(−6) ≈ 2.5e− 3, and reaches a maximum of exp(4) ≈ 54.6. In our experiments, this maximum
factor ensured the graph to be approximately acyclic. Finally, the second regularizer is a sparsity regu-
larizer, that removes redundant edges and is implemented as a L1 regularizer on the edge probabilities.
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iCITRIS: CRL for Instantaneous and Temporal Effects
Architecture
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, It
i

�
(1)

where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify

Figure 17: A visualization of iCITRIS as a VAE framework with using ENCO in its prior. Similar to
CITRIS, iCITRIS uses an encoder-decoder structure to map images xt+1 to latents zt+1 and back.
The assignment function ψ splits the latent vector zt+1 into K parts (here K = 3), one per causal
variable. Between these, we learn a causal graph with ENCO, and condition the variables additionally
on the intervention targets It+1 according to ψ, and the previous time step zt.

Graph Learning - ENCO The full training algorithm of iCITRIS with the ENCO graph parame-
terization is shown in Algorithm 2. The adjacency matrix is parameterized by two sets of parame-
ters, with γ ∈ R(K+1)×(K+1) representing the edge existence parameters, and θ ∈ R(K+1)×(K+1)

the orientation parameters, with θij = −θji. The probability of an edge zψi
→ zψj

in the instanta-
neous graph is determined by σ(γij) · σ(θij). Similar to NOTEARS, we prevent self-loops by set-
ting γii = −∞, i = 0, ...,K, and fix the orientations of the edges of zψ0

by setting θi0 = −θ0i =
−∞, i = 1, ...,K. In contrast to NOTEARS, this parameterization leads to initial edge probabilities
of 0.25. We found it beneficial to initialize the edge probabilities closer to 0.5, which we implement
by initializing γij = 4, i ̸= j, i, j ∈ J1..KK (σ(4) ≈ 0.98). At each training iteration, we sample L
graphs from ENCO. For all experiments, we found L = 8 to be sufficient. For each of these graphs,
we evaluate the negative log likelihood of all variables. Note that in contrast to NOTEARS, this does
not need to be differentiable with respect to γ and θ. Once all graphs are evaluated, we can determine
the average negative log likelihood of a zψj

under graphs with the edge zψi
→ zψj

, versus graphs
where this edge was missing. We use this to determine the gradients of γij and θij , if zψj

has not
been intervened upon. For the gradients of θij , we further mask out gradients for batch samples in
which zψi

has not been intervened upon. With these gradients, we can update the graph parame-
ters, while the distribution parameters are updated based on the differentiable negative log likelihood.
Note that the sparsity regularizer, λsparse, is integrated in the update of the γ parameters.

Prior networks Both graph learning algorithms use a prior network of the form
pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

)
. To implement this efficiently in a neural network setting, we consider for

each latent zm,m ∈ 1M a 2-layer neural network (hidden size 32 in all experiments), that take as in-
put zt, zt+1, It+1, and a mask on zt+1 and It+1. Therefore, its input size isM+M+K+M+K =
3M + 2K. The mask on It+1 depends on which causal variable the latent zm has been assigned to,
i.e., zt+1

ψi
should only depend on It+1

i . The mask on zt+1 depends on the graph that was sampled, in
combination with the causal variable assignment, i.e., only leave zt+1

ψpa
i

unmasked. Further, we can use

an autoregressive prior over the potentially multiple dimensions of zt+1
ψi

by leaving previous latents
unmasked that have been assigned to the causal variable Ci. We use this autoregressive variant for
the Instantaneous Temporal Causal3DIdent and Causal Pinball dataset, since the multiple dimensions
in those causal factors may not be independent.

Mutual information estimator The full training algorithm of the mutual information estimator is
shown in Algorithm 3. The MI estimator is a 2 layer network, that takes as input the latent parents of
a causal variable, and its current value, and has a single output value. This value indicates whether
the current causal variable and its parents match or not, i.e., is zt+1

ψi
the value of Ci at time step t+ 1

based on observing the parents zt and zt+1
ψpa

i
, or not. We train this network by a binary classification
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Algorithm 2 Pseudocode of the training algorithm for the prior and graph learning in iCITRIS with
ENCO as graph learning method. For efficiency, all for-loops are processed in parallel in the code.

Require: batch of observation samples and intervention targets: B = {xt, xt+1, It+1}Nn=1
1: for each batch element xt, xt+1, It+1 do
2: Encode observations into latent space: zt = gθ(x

t), zt+1 = gθ(x
t+1)

3: Sample L graphs G1, ..., GL from Glij ∼ σ(θij)σ(γij)
4: Sample latent to causal assignments from ψ for each batch element
5: for each graph Gl do
6: for each causal variable Ci do
7: Determine parent sets for graph Gl: zt+1

ψpa
i

= {zt+1
j |j ∈ J1..MK, ψ(j) ∈ paGl(i)}

8: Calculate nllli = − log pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

)

9: end for
10: end for
11: Backpropagation loss Ln = 1

L

∑K
i=1

∑L
l=1 nllli

12: Average nll for Ci → / ̸→ Cj : pos_nllnij =
∑L

l=1G
l
ijnlllj∑L

l=1G
l
ij

, neg_nllnij =
∑L

l=1(1−Gl
ij)nlllj

L−∑L
l=1G

l
ij

13: end for
14: Theta gradients: ∇(θij) = σ(γij)σ

′(θij)
(

1
N

∑N
n=1 I

n
i (1− Inj )(pos_nllnij − neg_nllnij)

)

15: Gamma gradients: ∇(γij) = σ(θij)σ
′(γij)

(
1
N

∑N
n=1(1− Inj )

(
pos_nllnij − neg_nllnij + λsparse

))

16: Update theta and gamma with the gradients calculated above
17: Update distribution and assignment parameters ϕ, ψ with ∇ϕ,ψ

1
N

∑N
n=1 Ln

problem, where the model compares the true set of values, i.e., zt+1
ψi

, zt, zt+1
ψpa

i
, to a randomly picked

time step τ , zτ+1
ψi

, zt, zt+1
ψpa

i
. Since the model does not have the precise time step t or τ as input, it has

to deduce from the values of the causal variables whether they match or not. Under interventions,
we know that for the true causal variables, the optimal performance of this binary classifier is 0.5,
because Ct+1

i is independent of all its parents under perfect interventions. Thus, the gradients of the
latents is to move the classifier closer to 0.5, which is equal to trying to increase the misclassification
rate of the MI estimator. During training, we need to sample instantaneous graphs G from our graph
parameterization. Since especially in the beginning, this graph is close to random, and the true causal
variables still depend on their children, for instance, under interventions, it can lead to unstable
behavior to train the MI estimator on all parents from the start. Thus, instead, we initially train the
MI estimator with an empty instantaneous causal graph and try to make zt+1

ψi
independent of zt, i.e.,

its temporal parents. Over the progress of training, we introduce the instantaneous parents, similar to
the graph learning scheduling, such that at the end of training, the MI estimator is fully trained on
both temporal and instantaneous parents.

F.2 HYPERPARAMETERS

We have summarized an overview of all hyperparameters in Table 4. Additionally, we discuss the
main hyperparameter choices for all models here.

Base VAE architecture For all VAE-based methods, we have applied the same VAE to have a fair
comparison between methods. In particular, we have used a VAE with a normalizing flow prior
(Rezende et al., 2015), inspired by the inverse autoregressive flows (Kingma et al., 2016). The encoder
outputs the parameters for M independent Gaussian distributions. A sample of these Gaussians
is used as input to the decoder to reconstruct the original image, but also as input to a four-layer
autoregressive normalizing flow. This flow consists of a sequence of Activation Normalization
(Kingma et al., 2018), Invertible 1× 1 Convolutions (Kingma et al., 2018), and autoregressive affine
coupling layers. The outputs of the flow are used as input to a prior, which is conditioned on the
latents of the previous time step and the intervention targets. For iCITRIS, this prior follows the
structure of Equation (2) including causal discovery. For CITRIS, this prior is similar to Equation (2),
except that no instantaneous parents are modeled. For the iVAE, the prior is a 3-layer MLP that
outputs M independent Gaussian distributions. Finally, for the iVAE-AR, the prior is a 2-layer
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Algorithm 3 Pseudocode of the training algorithm for the mutual information estimator in iCITRIS.
For efficiency, all for-loops are processed in parallel in the code.

Require: batch of observation samples and intervention targets: B = {xt, xt+1, It+1}Nn=1
1: Encode all observations into latent space: zt = gθ(x

t), zt+1 = gθ(x
t+1)

2: Sample an instantaneous graph G from graph parameterization
3: Sample latent to causal assignments from ψ
4: for each causal variable Ci do
5: Filter out all batch elements for which It+1

i = 0
6: for each element in the filtered batch do
7: Determine parent sets for graph G: zt+1

ψpa
i

= {zt+1
j |j ∈ J1..MK, ψ(j) ∈ paGl(i)}

8: Calculate logits of positive pairs: epos = NNMI(z
t+1
ψi

, zt, zt+1
ψpa

i
)

9: For each batch element, sample a different, random time step in the batch, τ
10: Calculate logits of negative pairs: eneg = NNMI(z

τ+1
ψi

, zt, zt+1
ψpa

i
)

11: Calculate loss for MI estimator: LNNMI
i = −epos + log [exp(epos) + exp(eneg)]

12: Calculate loss for latents: LzMI
i = −eneg + log [exp(epos) + exp(eneg)]

13: end for
14: end for
15: Update parameters of NNMI according to avg loss LNNMI

i
16: Backpropagate gradients of latents according to avg loss LzMI

i

autoregressive NN predicting N Gaussian distributions in sequence. The reconstruction loss is based
on the Mean-Squared Error (MSE) objective, which provided much better results than learning a
flexible distribution over the output images. The specific architecture of the encoder and decoder
depends on the dataset, where we used simpler models where possible to reduce computational cost
without losing significant performance. For the Voronoi benchamrk, we use a 5-layer CNN. For the
Instantaneous Temporal Causal3DIdent dataset and the Causal Pinball dataset, we used a 10-layer
CNN for the encoder, and a 5-layer ResNet (He et al., 2016) as decoder.

Autoencoder + Normalizing flow architecture For iCITRIS and CITRIS, we use the variation of
training a normalizing flow on a pretrained autoencoder for the Instantaneous Temporal Causal3DIdent
and Causal Pinball dataset. The autoencoder uses the same encoder and decoder architecture as
the VAE, except that we increase the decoder size since it can be trained much faster than the VAE
(does not require any temporal dimension), and, in contrast to the VAE, lead to improvements in
the reconstruction for the two datasets. The autoencoder is trained on reconstructing the input
images, where we add Gaussian noise with a small standard deviation (0.05) to the latents to simulate
a distribution. Additionally, we apply a small L2 regularizer on the latents to prevent that the
autoencoder counteracts the noise in the latents by artificially scaling up the standard deviation of
the latents. For Causal3DIdent, we use a weight of 1e-5 on this regularizer, and 1e-6 for the Causal
Pinball since its reconstructions obtain much lower losses. The normalizing flow, applied on it,
follows the same architecture as in the VAE.

Optimizer For all models, we use the Adam optimizer (Kingma et al., 2015) with a learning rate
of 1e-3. Additionally, we warmup the learning rate for the first 100 steps. Afterwards, we follow a
cosine annealing learning rate scheduling, that, over the course of the training, decreases the learning
rate to 5e-5.

Frameworks All models have been implemented and trained using PyTorch v1.10 (Paszke et al.,
2019) and PyTorch Lightning v1.6.0 (Falcon et al., 2019).

F.3 EVALUATION METRICS

For the details on the correlation matrix evaluation, we refer to Lippe et al. (2022b, Appendix C.3.1).
The causal graph evaluation is performed for each model in the same way. For each model, we use
the checkpoint of the best training loss, and encode all observations to the latent space. Next, we
need to separate the latent space into the causal variables. For iCITRIS and CITRIS, we use the
learned assignment function ψ to assign latent variables to causal variables. Since the iVAE models
do not learn such a latent-to-causal assignment, we instead assign each latent variable to the causal
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Table 4: Summary of the hyperparameters for all models evaluated on the Voronoi benchmark,
Instantaneous Temporal Causal3DIdent dataset, and the Causal Pinball dataset.For all methods, we
performed a hyperparameter search over the individual, most crucial hyperparameters (e.g. KLD
factor in iVAE). The smaller networks in the latter two datasets for the iVAE architectures were chosen
because they require training the full encoder, decoder, and NF at the same time, and larger networks
did not show any noticeable improvements. The graph learning warmup in iCITRIS is equal for all
datasets, although deviations to e.g. 5k, 15k or 20k often work equally well. Further, the weighting
parameters of target classifier and mutual information estimator for iCITRIS , such that, for instance,
equally good results were achieved with smaller (5) or higher (20) weights on the Voronoi benchmark.
For the graph sparsity regularizer, we used the same value for all graph structures of the same size.

Voronoi benchmark
Hyperparameter iCITRIS-ENCO iCITRIS-NOTEARS CITRIS iVAE iVAE-AR

Learning rate —- 1e-3 —-
Learning rate warmup —- 100 steps —-
Optimizer —- Adam (Kingma et al., 2015) —-
Batch size —- 512 —-
Number of epochs —- 400 —-
KLD Factor (β) —- 10 —-
Num latents —- 2x number of causal variables —-
Model variant —- VAE with NF prior —-
Encoder —- 5 layer CNN + 2 linear layers —-
NF-based prior —- 4 layer, autoregressive affine coupling (Kingma et al., 2016) —-
Prior dependencies — Independent Gaussians — Autoregressive
Decoder —- 5 layer (deconv-)CNN + 2 linear layers —-
Hidden dimensionality —- 32 —-
Activation function —- Swish (Ramachandran et al., 2017) —-
Target classifier weight – 10 – n.a. n.a.
MI weight – 10 – n.a. n.a. n.a.
Graph learning warmup – 10k – n.a. n.a. n.a.
Graph sparsity reg. 0.02 (K=4,6) / 0.004 (K=9) 0.002 (K=4,6) / 0.0004 (K=9) n.a. n.a. n.a.

Instantaneous Temporal Causal3DIdent dataset
Hyperparameter iCITRIS-ENCO iCITRIS-NOTEARS CITRIS iVAE iVAE-AR

Learning rate —- 1e-3 —-
Learning rate warmup —- 100 steps —-
Optimizer —- Adam (Kingma et al., 2015) —-
Batch size —- 512 —-
Number of epochs —- 500 —- —- 250 —-
KLD Factor (β) —- 1 —-
Num latents —- 32 —-
Model variant — AE + NF — – VAE with NF prior –
Encoder —- 10-layer CNN (AE) —- —- 10-layer CNN (VAE) —-
Num flow layers — 6 layers — — 4 layers —
Prior dependencies — Autoregressive per zψi — Independent Autoregressive
Decoder —- 10-layer ResNet —- —- 5-layer ResNet —-
Hidden dimensionality —- 64 (VAE/AE) / 32 (NF) —-
Activation function —- Swish (Ramachandran et al., 2017) —-
Target classifier weight – 3 – 2 n.a. n.a.
MI weight – 2 – n.a. n.a. n.a.
Graph learning warmup – 10k – n.a. n.a. n.a.
Graph sparsity reg. 0.02 0.0004 n.a. n.a. n.a.

Causal Pinball dataset
Hyperparameter iCITRIS-ENCO iCITRIS-NOTEARS CITRIS iVAE iVAE-AR

Learning rate —- 1e-3 —-
Learning rate warmup —- 100 steps —-
Optimizer —- Adam (Kingma et al., 2015) —-
Batch size —- 512 —-
Number of epochs —- 500 —- —- 250 —-
KLD Factor (β) —- 1 —-
Num latents —- 24 —-
Model variant — AE + NF — – VAE with NF prior –
Encoder —- 10-layer CNN (AE) —- —- 10-layer CNN (VAE) —-
Num flow layers — 6 layers — — 4 layers —
Prior dependencies — Autoregressive per zψi

— Independent Autoregressive
Decoder —- 10-layer ResNet —- —- 5-layer ResNet —-
Hidden dimensionality —- 64 (VAE/AE) / 32 (NF) —-
Activation function —- Swish (Ramachandran et al., 2017) —-
Target classifier weight – 4 – 2 n.a. n.a.
MI weight – 0 – n.a. n.a. n.a.
Graph learning warmup – 10k – n.a. n.a. n.a.
Graph sparsity reg. 0.02 0.001 n.a. n.a. n.a.

factor that it has the highest correlation to. This requires using the ground truth values of the causal
variables, and hence gives the iVAE an advantage over iCITRIS and CITRIS. With this separation,
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we apply ENCO (Lippe et al., 2022a) to learn the temporal and instantaneous graph. Since iCITRIS
already learns an instantaneous graph, we reuse the learned orientations of the model, and only relearn
the edge existence parameters, γ, for potential pruning. In general, we found that the graphs predicted
by iCITRIS have a few redundant edges between ancestors and descendants, which occur due to
correlations in the early training iterations, and can easily be removed in this post-processing step.

As an additional metric to jointly evaluate the disentanglement of the causal variables and the learned
causal graph, we use the learned causal graph and distributions by ENCO to sample new data point
under novel interventional settings. For each data point in the test dataset, we use the trained model
to sample the latents in the next time step, and map them back to the true causal variable space. This
mapping is done by a small neural network, trained on the latents of the training dataset. To evaluate
how well these samples match the interventional distributions of the true causal model, we train a small
discriminator network which tries to distinguish between the true data points in the test set, and the
newly generated ones from our model. Only a model that has disentangled the causal variables, and
learned the correct causal graph, can perform well on this metric. We show the results for this metric
on the Voronoi benchmark and the Instantaneous Temporal Causal3DIDent dataset in Appendix G.
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Table 5: Experimental results of the large-scale study on the Voronoi benchmark with standard
deviations over 5 seeds. We report the R2 correlation (R2 diag / R2 sep), the SHD between the
predicted and ground truth graph (instantaneous / temporal), and the accuracy of a discriminator
distinguishing between true intervention samples and generated ones from the individual models
(optimal 50%).

Model #variables
Graph structure

Random Chain Full
R2 SHD Disc. R2 SHD Disc. R2 SHD Disc.

iCITRIS-ENCO

4

0.99 / 0.00 0.00 / 0.00 55.71% 0.99 / 0.00 0.00 / 0.20 55.61% 0.97 / 0.00 0.00 / 0.60 56.25%
(±0.00) / (±0.00) (±0.00) / (±0.00) (±1.52) (±0.01) / (±0.00) (±0.00) / (±0.45) (±0.25) (±0.01) / (±0.01) (±0.00) / (±0.89) (±1.56)

iCITRIS-NOTEARS 0.96 / 0.01 0.00 / 0.40 57.43% 0.89 / 0.08 1.40 / 1.60 65.28% 0.94 / 0.02 0.00 / 3.20 56.42%
(±0.01) / (±0.00) (±0.00) / (±0.55) (±4.41) (±0.14) / (±0.12) (±1.67) / (±2.07) (±16.51) (±0.03) / (±0.03) (±0.00) / (±2.39) (±0.40)

CITRIS 0.86 / 0.09 1.00 / 2.60 59.10% 0.83 / 0.12 2.00 / 4.20 60.77% 0.73 / 0.17 2.80 / 5.80 63.06%
(±0.09) / (±0.08) (±1.22) / (±1.52) (±3.47) (±0.08) / (±0.08) (±1.58) / (±2.17) (±2.68) (±0.12) / (±0.11) (±0.84) / (±1.64) (±2.95)

iVAE 0.74 / 0.20 1.00 / 4.20 65.41% 0.75 / 0.19 2.80 / 6.40 66.28% 0.60 / 0.24 3.60 / 6.80 68.62%
(±0.18) / (±0.18) (±0.71) / (±3.63) (±8.14) (±0.14) / (±0.16) (±1.92) / (±1.52) (±5.97) (±0.20) / (±0.13) (±1.34) / (±1.79) (±6.84)

iVAE-AR 0.84 / 0.21 1.80 / 3.00 69.85% 0.92 / 0.17 3.20 / 2.40 70.76% 0.86 / 0.32 4.60 / 3.60 77.60%
(±0.15) / (±0.18) (±1.64) / (±2.35) (±6.78) (±0.04) / (±0.09) (±1.92) / (±1.67) (±5.06) (±0.07) / (±0.12) (±1.14) / (±1.95) (±12.68)

iCITRIS-ENCO

6

0.97 / 0.00 0.20 / 1.00 59.86% 0.98 / 0.00 0.00 / 0.20 59.31% 0.93 / 0.01 0.80 / 4.20 60.67%
(±0.01) / (±0.00) (±0.45) / (±1.22) (±3.17) (±0.00) / (±0.00) (±0.00) / (±0.45) (±1.84) (±0.03) / (±0.01) (±1.10) / (±4.38) (±2.57)

iCITRIS-NOTEARS 0.95 / 0.01 0.80 / 3.40 61.48% 0.96 / 0.02 0.80 / 1.00 65.17% 0.81 / 0.07 4.75 / 7.75 73.34%
(±0.03) / (±0.01) (±1.30) / (±3.51) (±3.93) (±0.03) / (±0.03) (±1.30) / (±2.24) (±12.64) (±0.14) / (±0.07) (±5.91) / (±4.57) (±13.32)

CITRIS 0.80 / 0.13 5.00 / 11.20 65.61% 0.80 / 0.15 2.80 / 9.80 65.54% 0.70 / 0.14 11.20 / 12.40 67.63%
(±0.04) / (±0.03) (±3.54) / (±2.59) (±2.48) (±0.05) / (±0.05) (±2.05) / (±2.77) (±2.82) (±0.03) / (±0.03) (±2.59) / (±2.70) (±1.18)

iVAE 0.70 / 0.22 5.40 / 14.60 69.99% 0.70 / 0.23 3.40 / 13.20 69.44% 0.61 / 0.18 12.00 / 17.20 70.14%
(±0.08) / (±0.08) (±3.36) / (±4.10) (±3.11) (±0.04) / (±0.04) (±1.14) / (±3.19) (±2.76) (±0.08) / (±0.04) (±1.87) / (±2.59) (±3.01)

iVAE-AR 0.77 / 0.24 8.20 / 9.20 79.28% 0.84 / 0.23 4.60 / 8.20 80.84% 0.75 / 0.24 12.60 / 9.00 83.75%
(±0.12) / (±0.11) (±1.30) / (±3.49) (±2.87) (±0.08) / (±0.11) (±0.89) / (±2.86) (±11.49) (±0.09) / (±0.08) (±0.55) / (±4.06) (±9.15)

iCITRIS-ENCO

9

0.96 / 0.00 0.20 / 1.20 63.29% 0.97 / 0.00 0.00 / 0.00 62.91% 0.89 / 0.02 1.20 / 9.60 65.70%
(±0.01) / (±0.00) (±0.45) / (±1.10) (±0.99) (±0.00) / (±0.00) (±0.00) / (±0.00) (±1.17) (±0.03) / (±0.01) (±2.17) / (±5.86) (±1.32)

iCITRIS-NOTEARS 0.88 / 0.05 1.40 / 2.40 64.92% 0.93 / 0.04 0.40 / 0.20 62.52% 0.74 / 0.09 14.50 / 9.00 70.71%
(±0.06) / (±0.04) (±2.61) / (±5.37) (±3.86) (±0.03) / (±0.02) (±0.89) / (±0.45) (±0.86) (±0.05) / (±0.02) (±0.71) / (±0.00) (±2.49)

CITRIS 0.71 / 0.17 14.00 / 18.40 70.79% 0.84 / 0.10 3.00 / 13.00 67.44% 0.68 / 0.11 32.40 / 22.40 73.62%
(±0.10) / (±0.08) (±4.47) / (±5.90) (±1.26) (±0.03) / (±0.02) (±1.22) / (±1.58) (±1.33) (±0.03) / (±0.02) (±1.52) / (±2.41) (±1.07)

iVAE 0.65 / 0.22 13.60 / 24.00 71.78% 0.71 / 0.21 4.80 / 27.60 71.86% 0.61 / 0.15 32.40 / 29.20 74.22%
(±0.09) / (±0.07) (±2.88) / (±3.81) (±1.27) (±0.04) / (±0.03) (±1.48) / (±5.27) (±3.20) (±0.06) / (±0.05) (±1.14) / (±5.72) (±1.85)

iVAE-AR 0.69 / 0.22 17.60 / 21.00 90.25% 0.80 / 0.18 7.80 / 16.00 79.12% 0.70 / 0.21 34.00 / 16.40 85.85%
(±0.10) / (±0.03) (±2.97) / (±7.28) (±8.73) (±0.12) / (±0.11) (±3.56) / (±9.25) (±2.51) (±0.05) / (±0.03) (±1.73) / (±4.83) (±0.40)

G ADDITIONAL EXPERIMENTAL RESULTS AND ABLATION STUDIES

In this section, we list the detailed results of the experiments in Section 5, including the standard
deviations over multiple seeds. We further provide results on the metric for predicting intervention
outcomes, as described in Appendix F.3. Moreover, we present ablation studies on the Voronoi
benchmark to further investigate the limitations of iCITRIS. Finally, we include a visualization of the
predicted graph by all models on the Instantaneous Temporal Causal3DIdent dataset and the Causal
Pinball environment.

G.1 VORONOI BENCHMARK

The full experimental results for the Voronoi benchmark can be found in Table 5. Compared to the
results in Figure 2, we also show the results of the discriminator that is trained on newly generated
samples from the models. It is apparent that a crucial factor for simulating the true intervention
distributions is to have low entanglement across other factors (R2 sep). Both iVAE and especially
iVAE-AR have a strong entanglement between factors, and show a significant gap between the true
distribution and their modeled ones. For instance, on the random graphs of size 9, 90% of the
samples can be correctly classified from iVAE-AR, indicating that the distributions do not overlap
much. In comparison, iCITRIS achieves close-to optimal scores on the small graphs with 55%
accuracy only. Note that 50% is already random performance, i.e., the optimum that could be
achieved. Still, with larger graphs, we see that the performance also goes down for iCITRIS, although
it still outperforms all baselines.

Furthermore, to show the specific failure types of the different models on graph prediction, we
additionally list the recall and precision of the graph prediction (instantaneous - Table 6, temporal
- Table 7). A high recall (max 1.00) reflects that the models are able to recover all edges, while a
high precision (max 1.00) shows that the model do not overpredict false positive edges. One key
characteristic on all models is that they tend to have a higher recall than precision for the temporal
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Table 6: Experimental results of the large-scale study on the Voronoi dataset for predicting the
instantaneous graph, including the recall and precision to highlight false negative and positive
predictions.

Model #variables
Graph structure

Random Chain Full
SHD recall precision SHD recall precision SHD recall precision

iCITRIS-ENCO

4

0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00
(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)

iCITRIS-NOTEARS 0.00 1.00 1.00 1.40 0.73 0.80 0.00 1.00 1.00
(±0.00) (±0.00) (±0.00) (±1.67) (±0.28) (±0.30) (±0.00) (±0.00) (±0.00)

CITRIS 1.00 0.60 0.55 2.00 0.73 0.62 2.80 0.53 0.90
(±1.22) (±0.55) (±0.51) (±1.58) (±0.28) (±0.26) (±0.84) (±0.14) (±0.22)

iVAE 1.00 0.57 0.75 2.80 0.47 0.38 3.60 0.40 0.95
(±0.71) (±0.43) (±0.43) (±1.92) (±0.45) (±0.41) (±1.34) (±0.22) (±0.11)

iVAE-AR 1.80 0.33 0.40 3.20 0.40 0.58 4.60 0.23 0.42
(±1.64) (±0.47) (±0.55) (±1.92) (±0.28) (±0.43) (±1.14) (±0.19) (±0.40)

iCITRIS-ENCO

6

0.20 0.98 1.00 0.00 1.00 1.00 0.80 0.95 1.00
(±0.45) (±0.04) (±0.00) (±0.00) (±0.00) (±0.00) (±1.10) (±0.07) (±0.00)

iCITRIS-NOTEARS 0.80 0.92 1.00 0.80 0.92 0.93 4.75 0.68 1.00
(±1.30) (±0.13) (±0.00) (±1.30) (±0.11) (±0.15) (±5.91) (±0.39) (±0.00)

CITRIS 5.00 0.48 0.70 2.80 0.64 0.80 11.20 0.25 0.95
(±3.54) (±0.20) (±0.28) (±2.05) (±0.26) (±0.25) (±2.59) (±0.17) (±0.11)

iVAE 5.40 0.36 0.70 3.40 0.56 0.66 12.00 0.20 0.85
(±3.36) (±0.15) (±0.30) (±1.14) (±0.30) (±0.25) (±1.87) (±0.12) (±0.15)

iVAE-AR 8.20 0.19 0.26 4.60 0.44 0.60 12.60 0.16 0.65
(±1.30) (±0.11) (±0.19) (±0.89) (±0.26) (±0.25) (±0.55) (±0.04) (±0.23)

iCITRIS-ENCO

9

0.20 1.00 0.99 0.00 1.00 1.00 1.20 0.97 1.00
(±0.45) (±0.00) (±0.03) (±0.00) (±0.00) (±0.00) (±2.17) (±0.06) (±0.00)

iCITRIS-NOTEARS 1.40 0.96 0.96 0.40 1.00 0.96 14.50 0.60 1.00
(±2.61) (±0.06) (±0.10) (±0.89) (±0.00) (±0.09) (±0.71) (±0.02) (±0.00)

CITRIS 14.00 0.25 0.68 3.00 0.82 0.81 32.40 0.10 1.00
(±4.47) (±0.20) (±0.30) (±1.22) (±0.14) (±0.08) (±1.52) (±0.04) (±0.00)

iVAE 13.60 0.27 0.68 4.80 0.55 0.66 32.40 0.10 0.96
(±2.88) (±0.13) (±0.22) (±1.48) (±0.19) (±0.20) (±1.14) (±0.03) (±0.09)

iVAE-AR 17.60 0.13 0.30 7.80 0.33 0.55 34.00 0.06 0.35
(±2.97) (±0.08) (±0.20) (±3.56) (±0.14) (±0.34) (±1.73) (±0.05) (±0.15)

Table 7: Experimental results of the large-scale study on the Voronoi dataset for predicting the
temporal graph, including the recall and precision to highlight false negative and positive predictions.

Model #variables
Graph structure

Random Chain Full
SHD recall precision SHD recall precision SHD recall precision

iCITRIS-ENCO

4

0.00 1.00 1.00 0.20 1.00 0.97 0.60 1.00 0.92
(±0.00) (±0.00) (±0.00) (±0.45) (±0.00) (±0.06) (±0.89) (±0.00) (±0.11)

iCITRIS-NOTEARS 0.40 1.00 0.94 1.60 0.93 0.81 3.20 1.00 0.68
(±0.55) (±0.00) (±0.09) (±2.07) (±0.15) (±0.21) (±2.39) (±0.00) (±0.21)

CITRIS 2.60 1.00 0.70 4.20 1.00 0.60 5.80 1.00 0.51
(±1.52) (±0.00) (±0.14) (±2.17) (±0.00) (±0.13) (±1.64) (±0.00) (±0.08)

iVAE 4.20 0.87 0.63 6.40 0.85 0.48 6.80 0.63 0.39
(±3.63) (±0.22) (±0.24) (±1.52) (±0.20) (±0.10) (±1.79) (±0.41) (±0.23)

iVAE-AR 3.00 0.89 0.69 2.40 1.00 0.73 3.60 1.00 0.64
(±2.35) (±0.18) (±0.20) (±1.67) (±0.00) (±0.15) (±1.95) (±0.00) (±0.15)

iCITRIS-ENCO

6

1.00 1.00 0.92 0.20 1.00 0.98 4.20 0.98 0.75
(±1.22) (±0.00) (±0.10) (±0.45) (±0.00) (±0.04) (±4.38) (±0.04) (±0.19)

iCITRIS-NOTEARS 3.40 1.00 0.79 1.00 1.00 0.93 7.75 1.00 0.59
(±3.51) (±0.00) (±0.18) (±2.24) (±0.00) (±0.15) (±4.57) (±0.00) (±0.21)

CITRIS 11.20 0.94 0.50 9.80 0.92 0.52 12.40 0.98 0.45
(±2.59) (±0.06) (±0.04) (±2.77) (±0.17) (±0.12) (±2.70) (±0.04) (±0.11)

iVAE 14.60 0.79 0.42 13.20 0.91 0.44 17.20 0.87 0.36
(±4.10) (±0.21) (±0.09) (±3.19) (±0.13) (±0.13) (±2.59) (±0.19) (±0.07)

iVAE-AR 9.20 0.85 0.55 8.20 0.98 0.56 9.00 0.90 0.54
(±3.49) (±0.21) (±0.12) (±2.86) (±0.03) (±0.09) (±4.06) (±0.18) (±0.10)

iCITRIS-ENCO

9

1.20 1.00 0.94 0.00 1.00 1.00 9.60 1.00 0.71
(±1.10) (±0.00) (±0.06) (±0.00) (±0.00) (±0.00) (±5.86) (±0.00) (±0.15)

iCITRIS-NOTEARS 2.40 1.00 0.92 0.20 1.00 0.99 9.00 0.95 0.72
(±5.37) (±0.00) (±0.19) (±0.45) (±0.00) (±0.02) (±0.00) (±0.00) (±0.02)

CITRIS 18.40 0.84 0.55 13.00 1.00 0.62 22.40 0.92 0.48
(±5.90) (±0.15) (±0.09) (±1.58) (±0.00) (±0.04) (±2.41) (±0.08) (±0.03)

iVAE 24.00 0.82 0.48 27.60 0.99 0.44 29.20 0.86 0.41
(±3.81) (±0.15) (±0.08) (±5.27) (±0.02) (±0.07) (±5.72) (±0.16) (±0.05)

iVAE-AR 21.00 0.89 0.51 16.00 0.85 0.60 16.40 0.91 0.57
(±7.28) (±0.17) (±0.04) (±9.25) (±0.18) (±0.17) (±4.83) (±0.06) (±0.07)

graph. In other words, many mistakes are due to predicting too many edges, which easily occurs
when causal variables are entangled. However, on the instantaneous graphs, we clearly see that the
baselines, CITRIS and iVAE, predict a sparse graph by having a low recall. This also underlines that
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Table 8: Results of three ablation studies on the Voronoi benchmark, performed on the random
graph with 6 variables. Left (Intervention noise): We introduce noise on the intervention targets by
introducing 10% false positive cases in the intervention targets, i.e., Iti = 1 although Ci is sampled
from the observation distribution. iCITRIS-ENCO performs almost as well as before. Middle (No
instantaneous): We apply all methods on graphs with an empty instantaneous graph. iCITRIS-
ENCO obtains almost perfect disentanglement along with CITRIS and iVAE, showing that iCITRIS
can be used as a replacement of them under perfect interventions. Right (No temporal): The most
difficult setup is when the variables have purely instantaneous relations and samples between time
steps are independent. In this case, no method can disentangle the variables well, showing that
different optimization strategies than iCITRIS are needed in this setting.

Model
Ablation study

Intervention noise No instantaneous No temporal
R2 SHD R2 SHD R2 SHD

iCITRIS-ENCO 0.96 / 0.00 0.20 / 4.00 0.99 / 0.00 0.00 / 0.00 0.55 / 0.21 6.80 / 0.00
(±0.01) / (±0.00) (±0.45) / (±1.87) (±0.00) / (±0.00) (±0.00) / (±0.00) (±0.08) / (±0.06) (±2.39) / (±0.00)

CITRIS 0.78 / 0.14 5.00 / 10.60 0.99 / 0.00 0.00 / 0.00 0.54 / 0.21 6.80 / 0.00
(±0.09) / (±0.09) (±4.58) / (±4.51) (±0.00) / (±0.00) (±0.00) / (±0.00) (±0.06) / (±0.06) (±2.39) / (±0.00)

iVAE 0.69 / 0.22 5.40 / 15.00 0.99 / 0.00 0.00 / 0.00 0.49 / 0.20 7.00 / 0.00
(±0.10) / (±0.11) (±3.36) / (±3.39) (±0.00) / (±0.00) (±0.00) / (±0.00) (±0.05) / (±0.02) (±2.24) / (±0.00)

iVAE-AR 0.84 / 0.22 7.40 / 8.60 0.79 / 0.23 2.80 / 9.00 0.54 / 0.28 7.80 / 0.00
(±0.10) / (±0.06) (±2.07) / (±3.44) (±0.13) / (±0.06) (±0.45) / (±4.42) (±0.05) / (±0.02) (±3.27) / (±0.00)

the false positive edges in the temporal graph cannot be simply removed by increasing the sparsity
regularizer in the causal discovery method, since otherwise, even more edges would be lost in the
instantaneous graph. iVAE-AR, on the other hand, has a low precision and recall on the instantaneous
graphs; showcasing that it predicts a very different graph with anticausal edges. Meanwhile, only
iCITRIS-ENCO obtains a higher recall and precision across the different graph structures and sizes.

Next, we look at ablation studies that investigate the applications and limitations of iCITRIS.

G.1.1 ABLATION 1: NOISY INTERVENTION TARGETS

In the first ablation study, we focus on the dependency of iCITRIS on accurate intervention targets.
In practice, performing perfect interventions is a difficult task, and is prone to noise. While we can
easily observe whether we pushed a button or did external actions to influence a dynamical system,
we do not know for sure whether the intervention succeeded or not. This corresponds to a case
where the intervention targets, It, are noisy and tend to have false positives, i.e., Iti = 1 although the
intervention did not succeed. How sensitive is iCITRIS to such noise?

To investigate this question, we repeat the experiments of the Voronoi benchmark on the random
graphs of size 6, but simulate that in 10% of the cases when Iti , we actually do not intervene on
Ci and instead sample the value from its observational distribution. The results are summarized in
Table 8 (left two columns), and clearly show that iCITRIS can yet work well in this setting. The
variables are almost as well as before disentangled as before. The additional temporal variables are
partially also because of noisy interventions in the post-processing causal discovery setting.

G.1.2 ABLATION 2: EMPTY INSTANTANEOUS GRAPH

The main aspect of iCITRIS in contrast to the baselines is that supports instantaneous effects.
However, in practice, we might not know whether instantaneous effects are in the data or not. Thus,
this ablation study investigates, whether iCITRIS can yet be used as a replacement of the baselines
like CITRIS, when perfect interventions are provided. For this, we repeat the experiments of the
Voronoi benchmark on causal models with an empty instantaneous of size 6. As the results in Table 8
show, iCITRIS, CITRIS, and iVAE all are able to identify the causal variables and the graph. This
show that iCITRIS can indeed be used as a replacement of CITRIS and iVAE, even in the setting that
the variables are independent, conditioned on the previous time step.
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Table 9: Experimental results on the Instantaneous Temporal Causal3D dataset, with standard
deviations across three seeds.

Model R2 Spearman Triplets SHD (Instant) SHD (Temp)

iCITRIS-ENCO 0.96 / 0.07 0.96 / 0.12 0.11 1.67 5.67
(±0.00) / (±0.01) (±0.00) / (±0.01) (±0.01) (±0.58) (±1.15)

iCITRIS-NOTEARS 0.95 / 0.10 0.95 / 0.14 0.15 4.33 6.33
(±0.01) / (±0.02) (±0.01) / (±0.01) (±0.02) (±1.15) (±1.15)

CITRIS 0.90 / 0.23 0.89 / 0.26 0.20 5.67 12.67
(±0.01) / (±0.02) (±0.01) / (±0.02) (±0.01) (±0.58) (±0.58)

iVAE 0.79 / 0.24 0.76 / 0.24 0.27 6.00 15.00
(±0.02) / (±0.04) (±0.03) / (±0.02) (±0.00) (±1.00) (±1.00)

iVAE-AR 0.74 / 0.29 0.72 / 0.36 0.31 10.67 12.33
(±0.02) / (±0.03) (±0.04) / (±0.06) (±0.00) (±0.58) (±4.51)

G.1.3 ABLATION 3: EMPTY TEMPORAL GRAPH

As a final ablation study, we consider the most difficult setup, namely having no temporal relations
at all. In this case, all relations between causal variables are purely instantaneous, and we cannot
use any information of the previous time step, i.e., zt, as an initial guidance for disentangling the
variables. Once more, we repeat the experiments of the Voronoi benchmark on the random graphs of
size 6, but with an empty instantaneous graph, and summarize the results in Table 8 (right columns).
Due to the difficulty of the task, none of the methods was able to identify the causal variables. Since
the probabilities of the edges in iCITRIS are initially around 0.5, the model focuses on finding K
independent factors of variations instead of the causal variables. The balance that is crucial for the
temporal setup is that the knowledge of the interventions and previous time step is more important
than the instantaneous effects for some variables, which, in this case, does not hold. Hence, to
overcome this problem, different optimization strategies than the ones discussed in Section 4.3 are
needed. Interestingly, even the autoregressive iVAE fails at going beyond finding K independent
factors, underlining the difficulty of the task.

G.2 INSTANTANEOUS TEMPORAL CAUSAL3DIDENT

We report the full experimental results for the Instantaneous Temporal Causal3DIdent, including
standard deviations across three seeds for all models, are shown in Table 9. Next to the correlation
and graph prediction metrics, we also list the results of the triplet evaluation, following Lippe et al.
(2022b). The triplet distance measures how well we can perform combinations of causal factors in
latent space without causing correlations among different factors.

G.2.1 ABLATION STUDY 4: ORIGINAL TEMPORAL CAUSAL3DIDENT WITHOUT
INSTANTANEOUS EFFECT

To verify that iCITRIS can be used as a replacement to CITRIS, even in environments where no
instantaneous effects are present, we apply iCITRIS to the original Temporal Causal3DIdent dataset.
This dataset has the same causal variables and relations, but instead of instantaneous effects, all
effects are over temporal time steps. The results are shown in Table 10. iCITRIS achieves almost
identical results to CITRIS, verifying that iCITRIS generalizes CITRIS. In terms of the causal graph
prediction, iCITRIS occasionally predicted an instantaneous edge between the object shape and the
object rotation; an edge that CITRIS incorrectly predicted over time. This is to be expected due to the
visual complexity of the dataset.

G.2.2 ABLATION STUDY 5: PERFECT INTERVENTIONS IN INSTANTANEOUS TEMPORAL
CAUSAL3DIDENT

As an ablation to the shown dataset, we conduct an experiment on the Causal3DIdent dataset, where
all interventions are perfect. The experimental results for this dataset, including standard deviations
across three seeds for all models, are shown in Table 11. We additionally show the discriminator
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Table 10: Experimental results on the original Temporal Causal3DIdent dataset. Results for CITRIS
and iVAE are taken from Lippe et al. (2022b). iCITRIS performs on par with CITRIS, despite not
assuming an empty instantaneous causal graph.

Model R2 Spearman Triplets

iCITRIS-ENCO 0.97 / 0.04 0.97 / 0.09 0.08
CITRIS 0.98 / 0.04 0.97 / 0.08 0.07
iVAE 0.80 / 0.29 0.77 / 0.28 0.27

Table 11: Experimental results on the Instantaneous Temporal Causal3D dataset, with standard
deviations across three seeds. The results for iCITRIS-ENCO are shown with and without using the
Mutual Information Estimator.

Model R2 Spearman Triplets SHD (Instant) SHD (Temp) Disc. Acc.

iCITRIS-ENCO 0.96 / 0.05 0.96 / 0.10 0.09 1.33 5.00 55.41%
(±0.00) / (±0.00) (±0.00) / (±0.00) (±0.00) (±1.15) (±1.73) (±0.87%)

iCITRIS-ENCO - No MI 0.96 / 0.15 0.95 / 0.21 0.13 3.00 8.33 60.85%
(±0.00) / (±0.00) (±0.01) / (±0.01) (±0.00) (±1.00) (±2.00) (±2.34%)

iCITRIS-NOTEARS 0.95 / 0.09 0.95 / 0.14 0.14 4.00 5.00 61.05%
(±0.00) / (±0.01) (±0.01) / (±0.01) (±0.00) (±1.00) (±1.73) (±4.43%)

CITRIS 0.92 / 0.19 0.90 / 0.22 0.19 4.67 10.00 67.51%
(±0.01) / (±0.02) (±0.01) / (±0.01) (±0.01) (±0.58) (±2.00) (±5.90%)

iVAE 0.82 / 0.20 0.80 / 0.22 0.27 6.67 15.33 86.87%
(±0.02) / (±0.01) (±0.02) / (±0.01) (±0.01) (±2.52) (±1.53) (±2.71%)

iVAE-AR 0.79 / 0.29 0.78 / 0.33 0.27 11.00 12.67 87.07%
(±0.01) / (±0.03) (±0.02) / (±0.00) (±0.01) (±1.00) (±1.53) (±0.90%)

accuracy of distinguishing between true and fake interventional samples. The results indicate that
while this makes the task in general a bit easier, iCITRIS-ENCO still performs the best. The small
differences in entanglement between iCITRIS-ENCO and iCITRIS-NOTEARS lead to considerable
difference for generating new combinations of causal factors, highlighting the importance of strong
disentanglement between causal factors. Similarly, the discriminator accuracy shows that iCITRIS-
ENCO can accurately model the distribution of the true causal model, while clear differences to the
VAE-based baseline, iVAE and iVAE-AR, are visible.

To get an intuition on what graphs the different models identify, we have visualized on example
of each model in Figure 18. In general, we see that iCITRIS-ENCO misses only one edge which
is sparse anyway, since hue_b affects hue_o only for two shapes. Similarly to the results of Lippe
et al. (2022b), we find that the object shape is a false positive parent of the rotation of the object.
For CITRIS, we see that it starts to predict incorrect orientations due to correlations among factors.
Finally, iVAE and iVAE-AR predict graphs that have little in common with the ground truth one.

To show the importance of the mutual information estimator in iCITRIS, we experiment with iCITRIS
but without the MI estimator. The results in Table 11 show that the MI estimator is indeed a crucial
performance to reach iCITRIS’s strong performance. Without the MI estimator, we experience higher
correlations between different latent representations and causal variables. In the end, this also leads
to a worsened graph estimation for both instantaneous and temporal effects.

G.3 CAUSAL PINBALL

Finally, the full experimental results for the Causal Pinball environment can be found in Table 12.
Besides the correlation and graph metrics, we again report the triplet evaluation, which shows once
more that iCITRIS and CITRIS both work well here.

G.3.1 ABLATION STUDY 6: PERFECT INTERVENTIONS IN CAUSAL PINBALL

As an ablation study, we simulate a Causal Pinball environment where all partially-perfect interven-
tions are replaced by perfect interventions. With this, we can make use of the Mutual Information es-
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Figure 18: Learned instantaneous graphs in the Instantaneous Temporal Causal3DIdent dataset for
all five models for a single seed. Red arrows indicate false positive edges, and dashed red arrows
false negatives. (a) The ground truth of the dataset. (b) iCITRIS-ENCO achieves for one score a
perfect recovery of the graph, and for the other two graphs, we miss one edge to hue_o since hue_b
only affects it for certain object shapes, and have an additional from the object shape to the rotation
due to the complexity of the problem. (c) iCITRIS-NOTEARS had more false positive and negative
edges than iCITRIS-ENCO. However, all orientations were correct. (d) CITRIS had in general a
sparser graph than the true graph, but in contrast to iCITRIS, also obtained wrong orientations several
times (e.g. between pos_o and rot_o). (e) The iVAE obtains very different graphs from the ground
truth, with many incorrectly edges. (f) Due to the autoregressive prior in iVAE-AR, we observed a
significant amount of false positive edges, with occasional incorrect orientation as well.

Table 12: Experimental results on the Causal Pinball dataset over three seeds.

Model R2 Spearman Triplets SHD (Instant) SHD (Temp)

iCITRIS-ENCO 0.99 / 0.12 0.99 / 0.25 0.03 0.67 3.00
(±0.00) / (±0.01) (±0.00) / (±0.02) (±0.01) (±1.15) (±0.71)

iCITRIS-NOTEARS 0.98 / 0.18 0.99 / 0.38 0.18 3.33 4.67
(±0.00) / (±0.01) (±0.00) / (±0.03) (±0.03) (±1.52) (±0.58)

CITRIS 0.90 / 0.39 0.95 / 0.50 0.11 3.00 7.67
(±0.06) / (±0.07) (±0.01) / (±0.08) (±0.01) (±1.00) (±2.31)

iVAE 0.44 / 0.05 0.47 / 0.05 0.61 4.33 4.67
(±0.09) / (±0.00) (±0.10) / (±0.01) (±0.04) (±0.58) (±0.58)

iVAE-AR 0.47 / 0.15 0.52 / 0.40 0.63 8.00 3.67
(±0.10) / (±0.04) (±0.11) / (±0.16) (±0.04) (±2.00) (±1.53)

timator in iCITRIS. The results on this dataset are shown in Table 13. Besides identifying the causal
variables well, iCITRIS-ENCO identifies the instantaneous causal graph with minor errors. Interest-
ingly, CITRIS obtains a good correlation score as well here. This is likely due to the instantaneous ef-
fects being very sparse, and perfect interventions giving a very strong preference towards independent
variables in this case. Yet, there is still a gap between iCITRIS-ENCO and CITRIS in the instanta-
neous SHD, showing the benefit of learning the instantaneous graph jointly with the causal variables.
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Table 13: Perfect interventions in the Causal Pinball dataset. Experimental results are shown over
three seeds.

Model R2 Spearman Triplets SHD (Instant) SHD (Temp)

iCITRIS-ENCO 0.98 / 0.04 0.99 / 0.17 0.02 0.67 3.67
(±0.00) / (±0.01) (±0.00) / (±0.03) (±0.00) (±0.58) (±1.15)

iCITRIS-NOTEARS 0.98 / 0.06 0.99 / 0.19 0.02 2.33 3.67
(±0.00) / (±0.04) (±0.00) / (±0.06) (±0.00) (±0.58) (±0.58)

CITRIS 0.98 / 0.04 0.99 / 0.18 0.02 2.67 4.00
(±0.01) / (±0.01) (±0.00) / (±0.02) (±0.00) (±1.53) (±1.00)

iVAE 0.55 / 0.04 0.58 / 0.14 0.55 2.33 4.33
(±0.08) / (±0.03) (±0.09) / (±0.06) (±0.06) (±0.58) (±1.15)

iVAE-AR 0.53 / 0.15 0.55 / 0.30 0.56 4.33 6.33
(±0.08) / (±0.09) (±0.09) / (±0.08) (±0.06) (±1.53) (±1.53)
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Figure 19: Learned instantaneous graphs in the Causal Pinball dataset for all five models for a single
seed. Red arrows indicate false positive edges, and dashed red arrows false negatives. (a) The ground
truth of the dataset. (b) iCITRIS-ENCO recovered the graph for one seed perfectly, and for the
other two seeds, incorrectly oriented an edge between the ball and paddles. (c) iCITRIS-NOTEARS
commonly has some incorrect orientations between the paddles and the ball. (d) CITRIS, similar to
other experiments, tends to have a sparser instantaneous graph. (e) iVAE has a sparser graph, similar
to CITRIS, but with additional false positive edges. (f) iVAE-AR predicts a causal graph that has no
edge in common with the true graph.

Further, we visualize the predicted causal graphs of the different methods. In general, we found that
the most difficult relations are between the paddles and the ball, in particular their orientation. This is
due to the deterministic relations between the two factors, such that if the ball has been hit by the
paddle, we can already predict it just from the ball position. Further, in many states, the ball and
paddle do not affect each other, such that a state where the paddle would have hit the ball, but the ball
was intervened upon in the same time step, is extremely rare. Overall, all models suffered from this
problem, but iCITRIS showed to handle it.
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