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ABSTRACT

We present GRAPE (Group RepresentAtional Position Encoding), a unified
framework for positional encoding based on group actions. GRAPE brings to-
gether two families of mechanisms: (i) multiplicative rotations (Multiplicative
GRAPE) in SO(d) and (ii) additive logit biases (Additive GRAPE) arising from
unipotent actions in the general linear group GL. In Mul-GRAPE, a position
n ∈ Z (or t ∈ R) acts as G(n) = exp(nωL) with a rank-2 skew generator
L = ab⊤−ba⊤ ∈ so(d), yielding a relative, compositional, norm-preserving
map with a closed-form matrix exponential. RoPE is recovered exactly when the
d/2 planes are the canonical coordinate pairs with log-uniform spectrum. Learned
commuting subspaces and compact non-commuting mixtures strictly extend this
geometry at O(d) and O(rd) cost per head, respectively. In Additive GRAPE, ad-
ditive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and
the Forgetting Transformer (FoX) as exact special cases while preserving an exact
relative law and streaming cacheability. Altogether, GRAPE supplies a principled
design space for positional geometry in long-context models, subsuming RoPE
and ALiBi as special cases.

1 INTRODUCTION

Positional information is essential for sequence modeling with Transformers (Vaswani et al., 2017),
whose self-attention is otherwise permutation-invariant. Early work injected absolute positional
codes (sinusoidal or learned) into token representations (Vaswani et al., 2017). Later, relative en-
codings depending on offsets (Shaw et al., 2018) and linear logit biases such as ALiBi (Press et al.,
2021) were introduced, the latter offering strong length extrapolation with negligible overhead.

Rotary Position Embedding (RoPE) (Su et al., 2021) realizes relative positions as orthogonal planar
rotations of queries and keys, preserving norms and yielding exact origin invariance of attention
scores. Despite its appeal, RoPE fixes coordinate planes and typically a log-uniform spectrum, lim-
iting cross-subspace coupling and contextual warping of phase. More broadly, absolute codes break
translation equivariance; table-based relatives add window-dependent overhead. These observations
motivate a unified formulation that (i) preserves RoPE’s orthogonality and exact relativity when
desired, (ii) also covers additive/forgetting mechanisms such as ALiBi (Press et al., 2021) and For-
getting Transformer (FoX) (Lin et al., 2025), and (iii) admits learned and contextual generalizations
with clean streaming.

We therefore propose Group RepresentAtional Position Encoding (GRAPE), a group-theoretic
framework that unifies two complementary families of positional mechanisms. The multiplica-
tive family (Multiplicative GRAPE) models positions as norm-preserving rotations in SO(d) acting
on (q,k); the additive family (Additive GRAPE/Path-Integral Additive GRAPE) models positions
as unipotent actions in the general linear group GL that yield linear-in-offset logit biases (includ-
ing content-gated and path-integral forms). This perspective recovers RoPE and ALiBi as exact
special cases, proves that FoX is an exact instance of Additive-GRAPE, and supplies principled,
streaming-friendly contextual extensions on both sides.

Concretely: (a) Multiplicative GRAPE encodes n∈Z (or t∈R) as an element of SO(d) via a rank-2
skew generator; and (b) Additive GRAPE (and Path-Integral Additive GRAPE) lifts to the general
linear group GL using homogeneous coordinates to produce linear-in-offset logit biases (recovering
ALiBi and FoX).
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For Multiplicative GRAPE, positions are mapped as

G(n) = exp
(
nωL

)
∈ SO(d), L = ab⊤ − ba⊤ ∈ so(d),

where a,b ∈ Rd define a rank-2 skew generator L and ω > 0 is a frequency. The action is an isom-
etry, and G(n+m) = G(n)G(m) guarantees exact origin invariance of attention logits. We derive
a closed-form Rodrigues-type formula (Rodrigues, 1840; Hall, 2013), enabling fast linear-time ap-
plication with stable derivatives and no explicit matrix materialization. RoPE is recovered when d/2
commuting rank-2 generators act on disjoint coordinate planes with prescribed frequencies.

For Additive GRAPE, positions are mapped via the matrix exponential Gadd(n) = exp(nωA) =
I + nωA in a lifted homogeneous space. Here, the generator A ∈ gl(d + 1) is a nilpotent matrix
of rank one. While this additive transformation is not an isometry, it preserves the exact relative
law, ensuring attention scores depend only on position offsets. This formulation provides a rigorous
group-theoretic foundation for additive biases, recovering ALiBi and FoX as exact instances.

Our contributions are highlighted as follows:

1. We propose GRAPE as a unified group-theoretic view that subsumes multiplicative orthogonal
rotations in SO(d) and additive unipotent (all eigenvalues equal to 1) mechanisms in general
linear group GL, recovering RoPE and ALiBi as exact special cases and proving FoX is an exact
instance (Appendix A).

2. Multiplicative GRAPE. We derive a closed-form rank-2 matrix exponential with fast application
and stable differentiation; we show RoPE equals commuting MS-GRAPE in a possibly learned
orthogonal basis.

3. Additive GRAPE. We show that linear-in-offset logit biases arise from rank-1 (or low-rank)
unipotent actions in the general linear group GL with an exact relative law and streaming
cacheability. This includes query- or key-gated slopes, a commuting dictionary of additive com-
ponents, and exact recoveries of ALiBi and FoX in closed form (Sections 5, 5.2, Appendix A).
We also formalize path-integral additive biases that remain causal and support efficient training.
(Section 6).

2 MULTIPLICATIVE GROUP REPRESENTATIONAL POSITION ENCODING

We propose the Multiplicative GRAPE, as a Lie-group positional map with a closed-form rank-2
matrix exponential, an exact relative law, and a streaming/cache methodology. The core intuition
is to encode position as a norm-preserving rotation in the special orthogonal group SO(d) (Hall,
2013). A single skew-symmetric generator L ∈ so(d) produces the entire family of rotations via the
matrix exponential. We begin with notation and the rank-2 generator.

2.1 PRELIMINARIES AND RANK-2 GENERATOR

The generator L is formally defined as an element of the corresponding Lie algebra, so(d). Let
so(d) = {L ∈ Rd×d : L⊤ = −L} denote the Lie algebra of SO(d). The simplest non-trivial
generator defines a rotation within a single 2D plane. We construct such a rank-2 generator from
two vectors, a and b, that span this plane of action. For a,b ∈ Rd, define the rank-2 generator
L ≡ L(a,b) as

L(a,b) = ab⊤ − ba⊤, α = ∥a∥2, β = ∥b∥2, γ = a⊤b,∆ = αβ − γ2 ≥ 0, s =
√
∆. (2.1)

Rank-2 structure. Let U = span{a,b}. The rank-2 generator L has a useful geometric property:
applying it twice projects onto the action plane U and scales. A direct calculation shows

L2 = − s2 PU ,

where PU is the orthogonal projector to the space U . Hence spectrum of L (the set of its eigen-
values), denoted σ(L), is {±is, 0, . . . , 0} and the minimal polynomial is λ(λ2 + s2). A detailed
derivation is given in Appendix D.

Gauge symmetries and initialization. Write A ≜ [a b] ∈ Rd×2 and J =
(
0 −1
1 0

)
so that L =

AJA⊤. For any M ∈ SL(2), MJM⊤ = J and thus A 7→ AM leaves L invariant; for general
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M ∈ GL(2), L scales by det(M). Therefore the oriented plane U = span{a,b} and the scalar
s =

√
αβ − γ2 determine the action. We fix a gauge at initialization by ∥a∥ = ∥b∥ = 1 and

a⊤b = 0 (absorbing scale into ω) and optionally enforce it softly via penalties during training.

Canonical 90◦ rotation operator. Fix a block-diagonal complex structure J ∈ so(d) with J⊤ =
−J and J 2 = −I (for odd d, act on the top-left 2⌊d/2⌋ coordinates and leave the final coordinate
unchanged). Concretely, J =

⊕⌊d/2⌋
i=1

(
0 −1
1 0

)
. For any a ∈ Rd, write a⊥ := J a, which equals “a

rotated by 90◦” within the canonical 2D blocks and satisfies a⊤a⊥ = 0 and ∥a⊥∥ = ∥a∥.

2.2 EXACT RELATIVE LAW

For a fixed L ∈ so(d), define G(n) = exp(nL) ∈ SO(d), which forms a one-parameter subgroup.
The exact relative law property for positional encoding implies:

G(t−s) = G(s)⊤G(t), G(n)⊤G(n) = I.

This algebraic property underpins relative positional encoding: interactions depend only on offsets.
In Multiplicative GRAPE, we introduce a frequency ω to scale the generator. The resulting operator
obeys the following position law:

G(n) = exp(nωL), G(n+m) = G(n)G(m), G(0) = I, and G(−n) = G(n)⊤.

2.3 CLOSED-FORM MATRIX EXPONENTIAL

Based on the minimal polynomial mentioned in Section 2.1, the exponential map exp(L) for a rank-2
generator can be expressed as a quadratic in L. This yields a convenient closed-form solution, often
referred to as a Rodrigues-type formula (Rodrigues, 1840; Hall, 2013):

exp(L) = I+
sin s

s
L+

1− cos s

s2
L2.

Geometrically, the formula is best understood via L2 as a projector onto U . Since L2 = −s2PU ,
the exponential can be written as

exp(L) = I− (1− cos s)PU +
sin s

s
L,

which reveals its action explicitly: it is a rotation by angle s within the plane U = span{a,b} and
the identity on the orthogonal complement U⊥. The vectors a and b thus define the plane of action
for the positional rotation.

Cost of application. For a single rank-2 plane, computing y = G(n)x requires two inner products
u = ⟨a,x⟩, v = ⟨b,x⟩, followed by y = x+f1(n)(av−bu)+f2(n)[γ(av + bu)− βau− αbv],
where (α, β, γ) are plane scalars and f1,2 are trigonometric scalars (with series guards as s → 0).
This is O(d) flops with a small constant and no materialization of G(n); derivative expressions are
in Appendix D.

2.4 THE b = J a CONSTRAINT

We now consider an important special case by setting b = J a. This constraint, which makes the
plane vectors a and b orthogonal and equal in norm, significantly simplifies the generator’s structure
and reveals a direct connection to the canonical RoPE formulation. With this constraint, the scalars
simplify: γ = a⊤b = a⊤J a = 0, β = ∥b∥2 = ∥a∥2 = α, and hence s =

√
αβ − γ2 = α.

Moreover, on the 2D subspace U = span{a,J a} one has

L(a,J a)a = −(J a)α, L(a,J a)J a = α a,

so L(a,J a)|U = −αJ |U and L(a,J a)|U⊥ = 0. Therefore

exp
(
nωL(a,J a)

)
= I−

(
1− cos(nωα)

)
PU − sin(nωα)JPU ,

which is a pure planar rotation by angle nωα on U and the identity on U⊥.
Corollary 2.1 (Frequency–norm coupling). If ∥a∥ = 1, the rotation angle reduces to nω. Without
normalization, the effective frequency is ωeff = ω∥a∥2, so the scale of a can be absorbed into ω.
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2.5 APPLICATION TO RELATIVE ENCODING AND EQUIVARIANCE

We now demonstrate how the Mul-GRAPE operator G(n) is applied in practice. As established in
Section 2.2, the operator’s group structure guarantees the exact relative law. We first transform the
query and key vectors, qi and kj , into position-aware representations, q̃i and k̃j :

q̃i := G(i)qi, k̃j := G(j)kj .

It follows from the exact relative law established in Section 2.2 that the attention score between these
position-aware vectors simplifies to:

q̃⊤
i k̃j = q⊤

i G(i)⊤G(j)kj = q⊤
i G(j − i)kj .

Hence, the attention score depends solely on the relative offset j − i, not on the absolute positions.

Streaming and caching. At inference, cache k⋆
j = G(j)kj once when token j arrives. At step

t, form q̃t = G(t)qt and compute logits q̃⊤
t k

⋆
j . No cache rotation is needed when t increments;

complexity matches RoPE. A full integration into multi-head attention (per-head formulation, logits,
and streaming) is detailed in Section 4.

3 MULTI-SUBSPACE MULTIPLICATIVE GRAPE

A single rank-2 generator acts on a 2D subspace, leaving the rest of the d-dimensional space un-
touched. To encode position across the entire hidden dimension, we can combine multiple genera-
tors. This leads to the Multi-Subspace (MS) Mul-GRAPE model, which forms the basis for both
RoPE and more expressive types. Detailed rank-2 algebra appears in Appendix D.

3.1 COMMUTING MS-MUL-GRAPE AND ROPE AS A SPECIAL CASE

The simplest way to combine generators is to ensure they act on mutually orthogonal subspaces,
which guarantees they commute. Let d be even. For i = 1, . . . , d/2, we can define a set of rank-
2 generators {Li}, each acting on a distinct 2D plane. RoPE is the canonical example of this
construction.

Let the 2 × 2 canonical skew matrix be J =
(
0 −1
1 0

)
and the coordinate selector be Ui =

[e2i−1 e2i] ∈ Rd×2. We set the rank-2 generators as Li = UiJU
⊤
i = L(e2i−1, e2i) and assign

per-plane frequencies θi > 0. The total generator is the commuting sum:

LRoPE =

d/2∑
i=1

θiLi with [Li,Lj ] = 0 for i ̸= j.

Then

G(n) = exp
(
nLRoPE

)
=

d/2∏
i=1

exp(nθiLi) = blockdiag
(
R2(nθ1), . . . ,R2(nθd/2)

)
, (3.1)

where R2(·) is a standard 2 × 2 rotation matrix, and the last equality holds because each term
exp(nθiLi) is identity except for a single 2×2 rotation block on its diagonal. Eq. (3.1) is precisely
the RoPE mapping: a block-diagonal product of planar rotations with per-subspace angles nθi.

Equality holds when the planes {Ui} are the coordinate 2D blocks and {θi} follow the canonical
log-uniform spectrum.
Proposition 3.1 (RoPE via J -paired planes). Choose d/2 mutually orthogonal vectors {ai}
and set bi = J ai with per-plane angles θi. Then the commuting MS-GRAPE G(n) =∏d/2

i=1 exp(nθiL(ai,J ai)) equals the standard RoPE map in a (possibly learned) orthogonal ba-
sis. If the planes are the canonical coordinate pairs and {θi} follow the log-uniform spectrum, we
recover the canonical RoPE exactly.

Spectral parameterization. Classical RoPE chooses θi on a log-uniform grid across i. In
GRAPE, θi can be learned or shared/tied across heads or layers. The MS-GRAPE view also al-
lows replacing the coordinate selectors Ui by a learned orthogonal basis B ∈ SO(d) so that
L =

∑
i θiBUiJU

⊤
i B

⊤, preserving commutativity while learning subspaces.

4
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Theorem 3.2 (RoPE is commuting MS-Mul-GRAPE). Let LRoPE =
∑d/2

i=1 θiUiJU
⊤
i with mutu-

ally orthogonal planes. Then for any n ∈ Z, exp
(
nLRoPE

)
=

⊕d/2
i=1 R2(nθi).

Proof. Orthogonality implies [Li,Lj ] = 0 for i ̸= j. Hence exp(n
∑

i θiLi) =
∏

i exp(nθiLi);
each factor is a 2× 2 rotation on its plane.

4 APPLICATION IN MULTI-HEAD ATTENTION

Building upon the algebraic foundation for relative encoding established in Section 2.5, this section
details the concrete integration of the rotational map G(n) into the full Multi-Head Attention (MHA)
architecture, covering the per-head formulation, streaming policy, and implementation complexity.

Per-head formulation. Let H be the number of heads and d the per-head width. For head h ∈ [H],
let (qt,h,kt,h,vt,h) ∈ Rd denote the query/key/value at position t. A Mul-GRAPE position map is
realized as an orthogonal operator Gh,t ∈ SO(d) applied to (qt,h,kt,h):

q̃t,h = Gh,t qt,h, k̃t,h = Gh,t kt,h, ṽt,h = vt,h (unchanged).

The headwise attention logits and outputs are then

ℓt,j,h =
q̃⊤
t,hk̃j,h√
d

=
q⊤
t,h

(
G⊤

h,tGh,j

)
kj,h√

d
, yt,h =

∑
j≤t

softmax
(
ℓt,·,h

)
j
ṽj,h, (4.1)

with the usual output projection applied after concatenation across heads.

Exact relative law. If Gh,t arises from a one-parameter subgroup Gh(n) = exp(nLh) (commuting
MS-Mul-GRAPE, including RoPE and learned commuting bases), then

G⊤
h,tGh,j = Gh(j−t) =⇒ ℓt,j,h =

q⊤t,hGh(j−t)kj,h√
d

,

so logits depend only on the offset j−t (exact origin invariance).

Streaming cache policy. Applying the rotational map G(t) independently to each query and key
vector is the core property that enables an efficient streaming cache policy. For any Type where Gt

is known at token arrival (non-contextual and phase-modulated), cache k̃j = Gjkj once and never
rewrite it; at step t, compute q̃t = Gtqt and use logits ℓt,j,h = q̃⊤

t k̃j/
√
d.

5 ADDITIVE GROUP REPRESENTATIONAL POSITION ENCODING

This section shows that additive positional mechanisms (absolute shifts of features and additive logit
biases, including ALiBi (Press et al., 2021)) also admit a group-theoretic formulation as GRAPE.
The key is a homogeneous lift to an augmented space and a one-parameter subgroup of the general
linear group GL that acts by unipotent (all eigenvalues equal to 1) transformations. This yields an
exact relative law and streaming/cache rules analogous to Section 2.5.

5.1 HOMOGENEOUS LIFT AND A UNIPOTENT ACTION

To produce additive biases from a multiplicative group action, we employ the homogeneous lift.
This is a standard method in linear algebra for representing affine transformations (such as trans-
lations) as linear transformations in a higher-dimensional space. Let x̂ := [x; 1] ∈ Rd+1 denote a
homogeneous augmentation of x ∈ Rd. We now work within the general linear group GL(d + 1)
and its corresponding Lie algebra gl(d+ 1), which is the set of all (d+ 1)× (d+ 1) real matrices.
Fix a generator

A =

[
0d×d u
01×d 0

]
∈ gl(d+1), A2 = 0, (5.1)

where u ∈ Rd. Its exponential is unipotent:

Gadd(n) := exp(nωA) = Id+1 + nωA =

[
Id nω u
0⊤ 1

]
∈ GL(d+1),

5
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Gadd(n+m) = Gadd(n)Gadd(m).

Application and exact relative law in GL. For queries/keys augmented as q̂i = [qi; 1] and k̂j =
[kj ; 1], define

q̃i := Gadd(i) q̂i, k̃j := Gadd(j)
−⊤ k̂j , (5.2)

and score with the standard inner product on Rd+1. The key is transformed using the inverse trans-
pose (Gadd(j)

−⊤). This is necessary because for a general linear group GL, the simple transpose
is no longer the inverse (unlike in SO(d)), and the inverse transpose is required to recover the exact
relative law: Gadd(i)

⊤Gadd(j)
−⊤ = Gadd(j−i)−⊤ for any one-parameter subgroup in GL. This

composition results in the final form:

q̃⊤
i k̃j = q̂⊤

i Gadd(j−i)−⊤k̂j , depending only on j−i. (5.3)

Streaming matches Section 2.5: cache k̂⋆
j = Gadd(j)

−⊤k̂j once; at step t form q̃t = Gadd(t)q̂t

and compute q̃⊤
t k̂

⋆
j .

Closed form and content-gated additive term. Since A⊤ =
(

0 0
u⊤ 0

)
and (A⊤)2 = 0,

Gadd(m)−⊤ = Id+1 −mωA⊤ =

[
Id 0

−mω u⊤ 1

]
, m = j−i, (5.4)

whence

q̃⊤
i k̃j = q⊤

i kj + 1 − (j−i)ω u⊤kj . (5.5)

The constant “+1” is softmax-shift invariant; the final term is an additive, linear-in-offset bias whose
slope is key-gated by u⊤kj . A symmetric generator for the query, Aqry =

(
0 0
v⊤ 0

)
applied anal-

ogously produces a query-gated slope (j−i)ω v⊤qi. Using both the key-gated and query-gated
components yields a combined bias of the form (j−i)ω (v⊤qi − u⊤kj), still obeying the exact
relative law Eq. (5.3).

5.2 EXACT ALIBI AS A RANK-1 UNIPOTENT IN GL(d+2)

ALiBi adds a head-specific scalar slope βh(j−i) to the logits that is independent of content. This is
captured exactly by augmenting with two constant coordinates:

q̂i = [qi; 1; 0] ∈ Rd+2, k̂j = [kj ; 0; 1] ∈ Rd+2,

and choosing the rank-1 nilpotent generator

A⊤
h = βh ed+1 e

⊤
d+2 ⇐⇒ Ah = βh ed+2 e

⊤
d+1, (A⊤

h )
2 = 0. (5.6)

Then Gadd,h(m)−⊤ = I−mA⊤
h and

q̂⊤
i Gadd,h(j−i)−⊤k̂j = q⊤

i kj − (j−i)βh,

i.e., the ALiBi term emerges as a unipotent GL(d+2) action with exact relative composition.

FoX as Add-GRAPE. Let ft ∈ (0, 1] be per-token forget scalars and set ωt := log ft. Using the
rank-1 generator of Section 5.2, the resulting additive bias is b(t, j) =

∑t
ℓ=j+1 ωℓ, which coin-

cides with FoX’s forgetting bias Dij . A full derivation and the unipotent path product are given in
Appendix A.

6 PATH-INTEGRAL ADDITIVE GRAPE

Additive GRAPE (Add-GRAPE) (Section 5) realizes exactly relative additive logits via a
one-parameter unipotent action in the general linear group GL; the bias depends only on an off-
set m = j−i (or a contextual phase difference Φj−Φi when using cumulative phases). In practice,
we sometimes want the amount of additive encouragement/suppression between a key at j and a

6
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query at t to depend on the endpoint t (e.g., the current syntactic or semantic needs of the query to-
ken), while preserving causality, boundedness, and clean composition with the orthogonal GRAPE
acting on (q,k). We formalize this by a rigorously defined path-integral sum, deriving conditions
under which the exact relative law of Additive GRAPE is recovered.

Definition (Path-integral bias). Fix a head h and per-head scale αh > 0. For each time u, let
pu,h ∈ Rd be a “positional probe” obtained from token-local features (a linear projection followed
by RMS normalization in our implementation). Let J be the canonical block-diagonal 90◦ operator
(Section 2.4), and define Rℓ := exp(ℓJ ) (a fixed commuting rotation). For a link function g : R→
(−∞, 0) that is monotone increasing and 1-Lipschitz1, define the edge potential

ψh(t, ℓ) := αh g

(
1

d

〈
pt,h, Rℓ pℓ,h

〉)
≤ 0, ℓ < t. (6.1)

The path-integral additive bias from key position j to query position t is the causal sum

bh(t, j) :=

t∑
ℓ=j+1

ψh(t, ℓ) ≤ 0. (6.2)

The attention logit combines this additive term with either the raw or orthogonally-rotary bilinear
part:

ℓt,j,h =
1√
d
q⊤
t,hkj,h + bh(t, j) or ℓt,j,h =

1√
d
q⊤
t,hGh(j−t)kj,h + bh(t, j). (6.3)

Group-theoretic formalization and path composition. Let E ∈ R(d+2)×(d+2) be a fixed rank-1
nilpotent with E2 = 0 (e.g., E = ed+2e

⊤
d+1 as in Section 5.2). For each fixed endpoint t, define

endpoint-indexed unipotent factors

H
(t)
h (ℓ) := I+ ψh(t, ℓ)E.

Since E2 = 0, the path product along (j, t] collapses additively:

t∏
ℓ=j+1

H
(t)
h (ℓ) = I+

( t∑
ℓ=j+1

ψh(t, ℓ)

)
E = I+ bh(t, j)E. (6.4)

Scoring in homogeneous coordinates as in Section 5 with the paired inverse-transpose removes
multiplicative anisotropy and yields exactly the additive term bh(t, j), cf. Eq. (5.3). The rowwise
semigroup law is preserved (Eq. (6.4)), while the t-dependence of the factors intentionally relaxes
the global one-parameter group law.

Relation to Add-GRAPE. PI-Add-GRAPE strictly contains Add-GRAPE as the special case in
which edge potentials do not depend on the endpoint:

ψh(t, ℓ) ≡ θh aℓ =⇒ bh(t, j) = θh

t∑
ℓ=j+1

aℓ = θh
(
At −Aj

)
, Au :=

∑
ℓ<u

aℓ.

Two important instances follow directly:

• Exact ALiBi. aℓ ≡ 1 gives bh(t, j) = θh(t−j); this is exactly the ALiBi term recovered via the
rank-1 unipotent lift in Section 5.2.

• Phase-modulated Additive GRAPE. If aℓ = ωℓ with ωℓ = g(xℓ) ≥ 0, then bh(t, j) = θh(Φt −
Φj) with Φu =

∑
ℓ<u ωℓ.

In both cases, bh(t, j) depends only on a (possibly contextual) phase difference and thus obeys
the exact relative law with the same streaming/cache policy as Section 5. Outside these endpoint-
independent regimes, PI-Add-GRAPE provides strictly more expressive, path-integral biases while
preserving row-wise path composition (Eq. (6.4)).

1Our experiments take g(z) = log(Sigmoid(z)); then g′(z) = 1 − Sigmoid(z) ∈ (0, 1), ensuring 1-
Lipschitzness.
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Computation and streaming. For each head h and decoding step t, compute the row {ψh(t, ℓ)}ℓ≤t

by a single similarity sweep ℓ 7→ ⟨pt,h, Rℓpℓ,h⟩ (the rotated probes Rℓpℓ,h can be cached on
arrival), apply the link g, and take a prefix sum to obtain j 7→ bh(t, j). This yields O(t) per-step
overhead with O(1) recomputation per cached key; memory is O(L) per head for the cached probes
(or O(d) if the per-ℓ rotations are recomputed on the fly).

Spectral and stability. Each factor H(t)
h (ℓ) = I+ψh(t, ℓ)E is unipotent with all eigenvalues 1 and

at most two singular values deviating from 1; the full path product equals I+ bh(t, j)E (Eq. (6.4)).
As in Appendix E.3, the paired inverse-transpose used for scoring cancels multiplicative distortions
and delivers exactly the additive bias bh(t, j); operator norms remain controlled linearly in |bh(t, j)|.
A more extensive spectral analysis, including eigenvalue structure and singular-value behavior
across GRAPE variants, is provided in Appendix E. There, we also give an explicit comparison
to PaTH Attention (Yang et al., 2025), which is shown to be contractive and near singular. These
properties may impair PaTH’s effectiveness in long-context modeling.

7 EXPERIMENTS

In this section, we will evaluate the performance of GRAPE on the language modeling task in
comparison with baseline positional encoding mechanisms, including RoPE (Su et al., 2021), Al-
iBi (Press et al., 2021) as well as Forgetting Transformer (FoX) (Lin et al., 2025).

7.1 IMPLEMENTATION DETAILS

Based on nanoGPT code framework (Karpathy, 2022), our experiment are implemented on Llama
model (Touvron et al., 2023a). We only change the positional encoding mechanism and keep the
rest of the model architecture same with Llama. We choose FineWeb-Edu 100B dataset (Lozhkov
et al., 2024), which contains 100 billion training tokens and 0.1 billion validation tokens, and we
randomly choose 50B tokens for training. Our models are with 36 layers and 10 heads, with a hidden
size of 1280 and head dimension of 128. The context length is set to 4,096 and the batch size is 480.
All the models are optimized by AdamW optimizer (Loshchilov & Hutter, 2019), with a maximum
learning rate of 2× 10−4, (β1, β2) = 0.9, 0.95, and a weight decay of 0.1. We use a cosine learning
rate scheduler with 2,000 warm-up iterations and the minimum learning is 1 × 10−5. We also clip
the gradient to 1.0 for stabler training. The frequency of RoPE is set to 10,000. Moreover, for fair
comparison, we do not use FoX-Pro and disabled the KV-shift module within it.

7.2 RESULT ANALYSIS

The curves for training and validation loss of models with variant positional encoding mechanism
are displayed in Figure 1. It can be observed that GRAPE can keep a persistent edge over other
mechanisms, including RoPE and FoX. Moreover, model with RoPE suffers from a great spike
while the model with GRAPE embedding steadily improves during the training process.

8 RELATED WORK

Positional information in Transformers mainly can be categorized into these classes: (a) absolute
encodings (sinusoidal or learned) (Vaswani et al., 2017; Devlin et al., 2019; Neishi & Yoshinaga,
2019; Kiyono et al., 2021; Likhomanenko et al., 2021; Wang et al., 2020; Liu et al., 2020; Wang
et al., 2021; Sinha et al., 2022; Wennberg & Henter, 2021; Ke et al., 2020); (b) relative encodings
that depend on offsets (Shaw et al., 2018; Dai et al., 2019; Raffel et al., 2020; He et al., 2020);
and (c) linear logit biases with strong length extrapolation (Press et al., 2021; Chi et al., 2022a;b;
Li et al., 2023; Ruoss et al., 2023), all shaping recency/extrapolation behavior (Haviv et al., 2022;
Kazemnejad et al., 2023).

Multiplicative position encoding. RoPE realizes offsets as block-diagonal planar rotations of
queries/keys, preserving norms and exact origin invariance; it is widely deployed across LLMs
and modalities (Su et al., 2021; Touvron et al., 2023a;b; Heo et al., 2024). Angle/spectrum designs
improve long-context fidelity (e.g., xPos) (Sun et al., 2022); LRPE formalizes separable relative

8
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Figure 1: The training and validation loss of large-size models (770M), with different positional
encoding mechanisms on the FineWeb-Edu 100B dataset.

transforms for linear attention models (Qin et al., 2023); mechanistic work analyzes frequency us-
age (Barbero et al., 2025). These methods are also compatible with sparse/linear attentions (Beltagy
et al., 2020; Zaheer et al., 2020; Katharopoulos et al., 2020; Choromanski et al., 2020) and with
context-scaling procedures (Xiong et al., 2023; Chen et al., 2023; Peng et al., 2023; Zhu et al., 2023;
Jin et al., 2024). Mul-GRAPE identifies RoPE as commuting rank-2 exponentials in SO(d) and
extends it to learned subspaces and compact non-commuting mixtures in closed form.

Additive position encoding and forgetting mechanisms. Additive schemes such as ALiBi (Press
et al., 2021) and related kernelized/randomized forms (Chi et al., 2022a;b; Li et al., 2023; Ruoss
et al., 2023) are captured exactly by Add-GRAPE as unipotent actions inthe general linear group
GL that preserve the same relative law and streaming cacheability. Importantly, forgetting mech-
anisms are additive: the Forgetting Transformer (FoX) implements a learnable per-head exponen-
tial decay in the attention logits and is a specific Add-GRAPE / PI-Add-GRAPE instance impos-
ing distance-dependent attenuation (Lin et al., 2025). FoX’s data-dependent forget gates yield a
path-additive bias D that we show is exactly the endpoint-independent PI-Add-GRAPE case; see
Appendix A for a constructive equivalence and its streaming implementation (Lin et al., 2025).

Contextual position encoding. Content-adaptive position modulates effective phase or distance via
token features through gating/scaling and algebraic parameterizations (Wu et al., 2020; Zheng et al.,
2024; Kogkalidis et al., 2024), and contextual counting (CoPE) (Golovneva et al., 2024). GRAPE
introduces phase-modulated and dictionary-based contextual variants that replace a linear phase
with cumulative token-adaptive phases (single or multi-subspace) while retaining exact headwise
relativity and streaming caches. Finally, models can length-generalize without explicit encodings
(“NoPE”) under suitable training (Wang et al., 2024), which corresponds to the trivial generator
L = 0 in our view.

9 CONCLUSION

GRAPE provides a general framework for positional encoding based on group actions, unifying mul-
tiplicative and additive mechanisms. Multiplicative GRAPE offers a closed-form, rank-2 exponen-
tial that is relative, compositional, and norm-preserving; it recovers RoPE and yields learned-basis
and non-commuting extensions at controlled cost. Additive GRAPE realizes ALiBi and FoX ex-
actly via unipotent general linear group GL lifts with the same streaming/cache policy. The GRAPE
framework integrates seamlessly with existing Transformer models and offers a principled, extensi-
ble design space for future architectures.

9
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dans l’espace, et de la variation des coordonnées provenant de ces déplacemens considérés
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A FORGETTING TRANSFORMER AS A SPECIAL ADDITIVE GRAPE

The Forgetting Transformer (FoX) introduces a scalar forget gate ft ∈ (0, 1] per head and timestep
and adds the cumulative log-gate as an additive bias in the attention logits. Concretely, for a head h,

ft,h = σ(w⊤
f,hxt + bf,h), Fij,h =

i∏
ℓ=j+1

fℓ,h, Dij,h = logFij,h =

i∑
ℓ=j+1

log fℓ,h,

and the attention is
Oh = softmax

(
1√
d
QK⊤ +Dh

)
V. (FoX)

We now show that Eq. (FoX) is exactly realized by our Add-GRAPE framework using the
endpoint-independent path-additive specialization of Section 6.

FoX as PI-Add-GRAPE with endpoint-independent edges. In PI-Add-GRAPE (Section 6), a
head-wise additive logit bh(t, j) arises as a causal path sum

bh(t, j) =

t∑
ℓ=j+1

ψh(t, ℓ).

If the edge potentials do not depend on the endpoint, i.e. ψh(t, ℓ) ≡ aℓ,h, then bh(t, j) reduces to a
difference of per-time potentials:

bh(t, j) =

t∑
ℓ=j+1

aℓ,h = Ut,h − Uj,h, Uu,h :=
∑
ℓ<u

aℓ,h.

FoX corresponds to the choice aℓ,h = log fℓ,h ≤ 0, yielding

bh(t, j) ≡ Dij,h =

t∑
ℓ=j+1

log fℓ,h.

Thus the FoX forgetting bias Dh is precisely the PI-Add-GRAPE path-integral additive bias with
endpoint-independent edges.

Unipotent GL lift (Add-GRAPE view). Let E := ed+2e
⊤
d+1 be the rank-1 nilpotent used in

Section 5.2. For a fixed head h and endpoint t, define per-link unipotent factors

H
(t)
h (ℓ) = I+ ψh(t, ℓ)E, ψh(t, ℓ) = log fℓ,h.

Since E2 = 0, the path product collapses:
t∏

ℓ=j+1

H
(t)
h (ℓ) = I+

( t∑
ℓ=j+1

log fℓ,h

)
E = I+Dij,hE.

Scoring in homogeneous coordinates as in Section 5 with the paired inverse-transpose,

q̃⊤
t,h k̃j,h = q̂⊤

t,h

(
I+Dij,hE

)−⊤
k̂j,h = q⊤

t,hkj,h + Dij,h,

recovers Eq. (FoX) exactly (up to the standard 1/
√
d factor we include throughout). Hence

FoX is an exact Add-GRAPE / PI-Add-GRAPE instance realized by a rank-1 unipotent path with
endpoint-independent edges.

Streaming and complexity. Compute prefix sums Ut,h =
∑

ℓ<t log fℓ,h once per step; then
Dij,h = Ui,h−Uj,h is obtained by subtraction, preserving theO(L) rowwise cost and the streaming
cache policy from Section 5–Section 6. The headwise gates ft,h addO(1) parameters and negligible
computation.

Special cases and composition. If ft,h ≡ e−βh (constant per head), then Dij,h = −βh(i−j)
and FoX reduces to exact ALiBi (Section 5.2). More generally, FoX composes additively with the
multiplicative (orthogonal) GRAPE acting on (q,k) as in Eq. (6.3), preserving norm-preservation
of the rotational part while adding bounded, non-positive, content-adaptive path biases.
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B COMPOSITION OF ADDITIVE GRAPE AND MULTIPLICATIVE GRAPE

For the unipotent forms of Additive GRAPE, applying Gadd(m)−⊤ requires one inner product and
one axpy per active component (no trigonometry; gradients are polynomial in m). Thus, the per-
head overhead isO(d) and typically negligible relative to attention matmuls. Multiplicative GRAPE
(Section 3) and GRAPE-Additive (GRAPE-Add) compose naturally, either additively at the logit
level

ℓt,j,h = 1√
d
q⊤
t,hGh(j−t)kj,h +

[
q̂⊤
t,hGadd,h(j−t)−⊤k̂j,h − q⊤

t,hkj,h

]
,

or as a single block-upper-triangular GL action in homogeneous coordinates (semidirect produc-
t/semidirect sum view). Concretely, define the joint lift

q̂ = [q; 1], k̂ = [k; 1], Ĝ(m) =

[
exp(mL) mω u

0⊤ 1

]
∈ GL(d+1),

which combines the orthogonal rotation exp(mL) on features with a unipotent “translation” along
the homogeneous axis. Scoring with the paired inverse-transpose as in (5.2) yields

q̂⊤ Ĝ(m)−⊤k̂+ = q⊤ exp(mL)k − mω u⊤k + const,

exactly reproducing the sum of multiplicative (rotary) and additive (bias) components up to a
softmax-invariant constant. In both formulations, exact relativity and streaming caches are retained.

C ALGORITHMIC DETAILS AND PSEUDO CODE

This appendix contains the detailed pseudocode.

Algorithm 1 Commuting Multi-Subspace Mul-GRAPE

Require: Q,K ∈ RB×L×H×d, orthogonal E ∈ Rd×d, frequencies {ωh,j}d/2j=1, positions n ∈ ZL

1: for h = 1 to H do
2: Q′[:, :, h, :]← Q[:, :, h, :]E; K′[:, :, h, :]← K[:, :, h, :]E
3: for ℓ = 0 to L− 1 do
4: for j = 1 to d/2 do
5: θ ← nℓ ωh,j ; apply 2 × 2 rotation G2(θ) to coords (2j−1, 2j) of Q′[:, ℓ, h, :] and

K′[:, ℓ, h, :]
6: end for
7: end for
8: Q̃[:, :, h, :]← Q′ E⊤; K̃[:, :, h, :]← K′ E⊤

9: end for
10: return (Q̃, K̃)
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Algorithm 2 Fast On-contextual Non-commuting MS-Mul-GRAPE via Schur-Mode Rotation
Require: Q,K ∈ RB×L×H×d; planes {(ah,j ,bh,j , ωh,j)}mj=1; positions n

1: for h = 1 to H do ▷ one-time per head
2: Build Uh = span{ah,j ,bh,j}; orthonormalize bh ∈ Rd×rh

3: LU,h ← b⊤
h

(∑m
j=1 ωh,jL(ah,j ,bh,j)

)
bh ∈ so(rh)

4: Orthogonally Schur-decompose: LU,h = Th

(⊕rh/2
t=1 θh,tJ

)
T⊤

h

5: Eh ← bhTh ∈ Rd×rh ; precompute (ch,t, sh,t) = (cos θh,t, sin θh,t)
6: end for
7: for ℓ = 0 to L− 1 do ▷ token loop
8: for h = 1 to H do
9: yQ ← E⊤

hQ[:, ℓ, h, :]; yK ← E⊤
hK[:, ℓ, h, :]

10: for t = 1 to rh/2 do
11: (Ch,t,Sh,t)← PHASETO(nℓ; ch,t, sh,t) ▷ (C,S) from (cos θ, sin θ) via

angle-addition or binary exponentiation
12: Apply

(
Ch,t −Sh,t

Sh,t Ch,t

)
to coordinates (2t−1, 2t) of yQ, yK

13: end for
14: Q̃[:, ℓ, h, :]← Q[:, ℓ, h, :] +Eh(yQ −E⊤

hQ[:, ℓ, h, :])

15: K̃[:, ℓ, h, :]← K[:, ℓ, h, :] +Eh(yK −E⊤
hK[:, ℓ, h, :])

16: end for
17: end for
18: return (Q̃, K̃)

Algorithm 3 GRAPE-Additive (GRAPE-Add) with streaming cache
Require: Q,K ∈ RB×L×H×d; per-head additive generators {Ah} with A2

h = 0; positions n ∈
ZL

1: Augment: Q̂← [Q;1;0], K̂← [K;0;1] as needed (Section 5.2)
2: for j = 0 to L−1 do ▷ cache once on arrival
3: for h = 1 to H do
4: K̂⋆[:, j, h, :]←

(
I− nj A

⊤
h

)
K̂[:, j, h, :]

5: end for
6: end for
7: for t = 0 to L−1 do
8: for h = 1 to H do
9: Q̃[:, t, h, :]←

(
I+ nt Ah

)
Q̂[:, t, h, :]

10: Compute additive logits: λt,j,h ← Q̃[:, t, h, :]⊤K̂⋆[:, j, h, :]
11: end for
12: end for
13: return {λt,j,h} (to be added to orthogonal GRAPE/RoPE logits)

D DIFFERENTIATION AND FAST APPLICATION OF RANK-2 MATRIX
EXPONENTIAL

Differentiation and stability. Let f1(z) = sin z
z and f2(z) = 1−cos z

z2 with z = nωs. Then

exp(nωL) = I+ f1(z)L+ f2(z)L
2.

For any scalar parameter θ ∈ {ω} ∪ {entries of a, b},

∂θ exp(nωL) = f1(z) ∂θL+ f2(z) (L ∂θL+ ∂θLL) + ∂θz
(
f ′1(z)L+ f ′2(z)L

2
)
,

∂θz = nω ∂θs+ ns ∂θω, ∂θs =
1
2s

−1∂θ(αβ − γ2).

Use series for |z| < ε: f1(z) = 1 − z2

6 + O(z4) and f2(z) = 1
2 −

z2

24 + O(z4). These formulas
enable mixed-precision backprop with small-s guards.
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Fast application. For any x ∈ Rd,

Lx = a⟨b,x⟩ − b⟨a,x⟩, L2x = γ(a⟨b,x⟩+ b⟨a,x⟩)− β a⟨a,x⟩ − αb⟨b,x⟩.

Thus G(n)x = x+ f1Lx+ f2L
2x with f1 = sin(nωs)

s and f2 = 1−cos(nωs)
s2 , which is evaluable in

O(d) time via a few inner products. By the minimal polynomial λ(λ2+s2), L3 = −s2L; expanding
exp(ηL) and regrouping yields the rank-2 update form used throughout

E SPECTRAL ANALYSIS OF GRAPE AND OTHER METHODS

In this section, we discuss eigenvalue-level results for Mul-GRAPE generators/exponentials and
summarize the unipotent spectra of Add-GRAPE/PI-Add-GRAPE. Throughout, L(a,b) = ab⊤ −
ba⊤ ∈ so(d), and α = ∥a∥2, β = ∥b∥2, γ = a⊤b, ∆ = αβ − γ2, s =

√
∆ as in Section 2.

E.1 RANK-2 PLANE: EXACT SPECTRUM AND GEOMETRIC INTERPRETATION

Lemma E.1 (Rank-2 spectrum). For L = L(a,b), the eigenvalues are {±is} ∪ {0}d−2, and there
exists B ∈ SO(d) such that

B⊤LB =

[
sJ 0
0 0d−2

]
, J =

(
0 −1
1 0

)
.

Moreover, s = ∥a∥∥b∥ sinϕ, where ϕ ∈ [0, π] is the angle between a and b.

Proof. From Section 2, L2 = −s2PU with U = span{a,b}, whence the minimal polynomial is
λ(λ2 + s2) and σ(U) = {±is, 0}. Choosing an orthonormal basis aligned with U ⊕ U⊥ yields the
claimed form. Finally, ∆ = αβ − γ2 = ∥a∥2∥b∥2(1− cos2 ϕ) = (∥a∥∥b∥ sinϕ)2.

Corollary E.2 (Phase bounds and orthogonality). The per-step rotation angle of exp(ηK) on U
equals θ = ηs and satisfies 0 ≤ θ ≤ η∥a∥∥b∥, with equality when a ⊥ b. If b = J a (Section 2.4)
and ∥a∥ = 1, then s = 1 and θ = η.

Exponential spectrum. For any n ∈ Z,

σ
(
exp(nL)

)
= {e±ins} ∪ {1}d−2.

Hence ρ(exp(nL)) = 1, the map is unitary (orthogonal), and all Lyapunov exponents are zero.
Periodicity holds with fundamental period T = 2π/s when s/π ∈ Q; otherwise, the trajectory is
quasi-periodic on the unit circle.

E.2 COMMUTING MULTI-SUBSPACE MUL-GRAPE AND ROPE

Let L =
∑m

j=1 θjLj with mutually orthogonal planes (hence [Li,Lj ] = 0 for i ̸= j) and Lj =

UjJU
⊤
j . Then

B⊤LB =

m⊕
j=1

θjJ⊕ 0d−2m, σ(L) = {±iθj}mj=1 ∪ {0}d−2m,

for some Q ∈ SO(d). Consequently,

σ
(
exp(nL)

)
= {e±inθj}mj=1 ∪ {1}d−2m.

This recovers RoPE when the planes are the coordinate pairs and {θj} follow the canonical log-
uniform spectrum (Theorem 3.2).
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E.3 ADD-GRAPE AND PATH-INTEGRAL ADDITIVE (PI-ADD-GRAPE)

We now analyze the spectral properties of the additive lifts in GL introduced in Sections 5 and 6.
The key structural fact is unipotency: all per-step factors are identity plus a rank-1 (or few-rank)
nilpotent update of index 2.

Setup. Let A ∈ gl(d+1) (or gl(d+2) for ALiBi) satisfy A2 = 0 as in (5.1) and (5.6). For a scalar
path parameter s ∈ R, define the unipotent factor

H(s) := exp(sA) = I+ sA, H(s)−1 = I− sA, detH(s) = 1.

For GRAPE-Additive (GRAPE-Add) with offset m = j−i, s = mω; for GRAPE-PA, s =
sh(t, j) :=

∑t
ℓ=j+1 ψh(t, ℓ) from (6.2).

Proposition E.3 (Eigenvalues and Jordan structure of additive lifts). Let A ∈ gl(D) satisfy A2 = 0
and A ̸= 0. Then for every s ̸= 0,

σ
(
H(s)

)
= {1}D, (H(s)− I)2 = 0, detH(s) = 1, ρ(H(s)) = 1.

Hence, the minimal polynomial of H(s) is (λ − 1)2, and the Jordan form consists of size-2 Jordan
blocks for the 1-eigenspace, with the number of nontrivial blocks equal to rank(A).

Proof. Since A2 = 0, exp(sA) = I + sA and (H(s) − I)2 = s2A2 = 0. The characteristic
polynomial is (λ− 1)D for H(s), so all eigenvalues equal 1. The determinant equals the product of
eigenvalues, hence 1; the spectral radius is therefore 1.

Dictionary closure. If {Ar}Rr=1 satisfy A2
r = 0 and ArAs = 0 for all r, s, then(∑

r

θrAr

)2

=
∑
r

θ2rA
2
r +

∑
r ̸=s

θrθsArAs = 0,

so the combined generator is also index-2 nilpotent and yields the same unipotent spectrum.

Singular values. Although H(s) is not orthogonal, its deviation from I is rank-limited and exactly
analyzable. We first give a sharp, explicit formula for the canonical rank-1 case (ALiBi block), then
a general bound.
Lemma E.4 (Exact singular-value pair for a canonical rank-1 unipotent). Let E := ep e

⊤
q with

p ̸= q and define H(s) := I+ sE ∈ RD×D. Then D− 2 singular values equal 1, and the remaining
two are

σ±(H(s)) =

√
1 + s2

2 ± |s|
√

1 + s2

4 , σ+(H(s))σ−(H(s)) = 1. (E.1)

In particular, κ2(H(s)) = σ+(H(s))/σ−(H(s)) = 1 + 2|s|+O(s2) as s→ 0.

Proof. The action of H(s)⊤H(s) is identity on span{ep, eq}⊥. In the basis {eq, ep} it equals(
1+s2 s

s 1

)
, whose eigenvalues are 1 + s2

2 ± |s|
√

1 + s2

4 . Taking square roots yields (E.1). The

product equals
√
det(H⊤H) = |detH| = 1.

Corollary E.5 (ALiBi and GRAPE-Additive (GRAPE-Add) conditioning numbers). For the exact
ALiBi generator in (5.6), E = ed+2e

⊤
d+1 and s = mβh, so the only nontrivial singular values of

Gadd,h(m) = I+ sE are given by (E.1). For the single-vector additive lift (5.1) with A =
(

0 u
0⊤ 0

)
and ∥u∥ = 1, the same formula holds with E replaced by an orthogonally similar rank-1 update and
s = mω.
Lemma E.6 (General operator-norm bounds for index-2 unipotents). For any A with A2 = 0 and
any s ∈ R,

1− |s| ∥A∥2 ≤ σmin(I+ sA) ≤ σmax(I+ sA) ≤ 1 + |s| ∥A∥2.

When rank(A) = 1 and ∥A∥2 = 1, these bounds are tight and coincide with Lemma E.4 at first
order in |s|.
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Proof. Use the triangle inequality ∥(I + sA)x∥2 ≤ ∥x∥2 + |s| ∥A∥2∥x∥2 and its reverse form
applied to (I + sA)−1 = I − sA; see also Weyl inequalities for singular values under rank-1
perturbations.

Cancellation in the relative logit. While H(s) can be anisotropic (Lemma E.4), the GRAPE-
Additive (GRAPE-Add) scoring uses a paired inverse-transpose (Eq. (5.2)), which cancels all mul-
tiplicative distortions and yields a pure additive term:

q̃⊤
i k̃j = q̂⊤

i

(
I+ iA

)⊤(
I− jA⊤) k̂j = q̂⊤

i

(
I+ (i−j)A⊤)k̂j = q̂⊤

i Gadd(j−i)−⊤k̂j ,

since (A⊤)2 = 0. This reproduces the exact relative law (5.3) and the closed form (5.4) (e.g.
Eq. (5.5)), independently of σ±(H(s)).

PI-Add-GRAPE as a path-integral unipotent. Fix a head h and endpoint t. The per-row path
product in Section 6 is

t∏
ℓ=j+1

(
I+ ψh(t, ℓ)E

)
= I+

( t∑
ℓ=j+1

ψh(t, ℓ)
)
E = I+ sh(t, j)E,

because E2 = 0. Thus PI-Add-GRAPE inherits the unipotent spectrum of Prop. E.3 with row-
dependent s = sh(t, j) ≤ 0 (since ψh ≤ 0 by construction). Its only two nontrivial singular values
are exactly (E.1) with s 7→ sh(t, j); the rest equal 1. Consequently,

κ2
(
PA factor

)
=

σ+
(
sh(t, j)

)
σ−

(
sh(t, j)

) = 1 + 2 |sh(t, j)|+O
(
sh(t, j)

2
)
,

while the determinant remains 1 and eigenvalues are all 1. As in GRAPE-Additive (GRAPE-Add),
the paired inverse-transpose used in the bilinear scoring removes any multiplicative anisotropy, leav-
ing the bounded additive term bh(t, j) in Eq. (6.2).

Implications. Now we summarize the implications of previous results. For all s, H(s) is invertible
with H(s)−1 = I − sA; eigenvalues do not grow with offset length (spectral radius = 1). The
operator norm grows at most linearly in |s| (Lemma E.6) and is exactly characterized in the rank-1
canonical cases (Lemma E.4).

Secondly, detH(s) = 1 implies no net volume change; any expansion along one direction is exactly
balanced by contraction along its paired direction (product σ+σ− = 1). Despite anisotropy, the
Add-GRAPE and PI-Add-GRAPE logits remain exactly relative because the key transform uses
H(s)−⊤, algebraically eliminating multiplicative distortion and yielding the closed-form additive
bias (Eqs. (5.3), (5.4), (6.2)).

E.4 COMPARISON TO PATH ATTENTION

PaTH Attention (Yang et al., 2025) proposes a contextual multiplicative position map given by a
cumulative product of identity-plus-rank-one matrices

Ht = I− βt wtw
⊤
t , ∥wt∥2 = 1, βt ∈ (0, 2),

applied along the path between key position j and query position i as
∏i

s=j+1 Hs (see Section 2 of
the PaTH paper). In contrast to Mul-GRAPE factors, each Ht is not orthogonal unless βt ∈ {0, 2}.
This has immediate spectral consequences.

Per-step spectrum. Since Ht is symmetric rank-1 perturbation of the identity with projector Pt :=
wtw

⊤
t ,

σ(Ht) = { 1− βt, 1, . . . , 1︸ ︷︷ ︸
d−1

}, det(Ht) = 1− βt, ∥Ht∥2 = max{1, |1− βt|} = 1.

Thus Ht is norm nonexpansive (operator norm 1) but not norm-preserving unless βt ∈ {0, 2}.
Singular values equal the absolute eigenvalues because Ht is symmetric; the component along wt

is scaled by |1 − βt| < 1 for any βt ∈ (0, 2) \ {0, 2}, and flips sign when βt > 1 (a design choice
in PaTH to allow negative eigenvalues for state-tracking).
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Path product is contractive and near-singular. Let Pj→i =
∏i

s=j+1 Hs. Submultiplicativity of
singular values gives

σmax(Pj→i) ≤
i∏

s=j+1

∥Hs∥2 = 1, σmin(Pj→i) ≥
i∏

s=j+1

σmin(Hs) =

i∏
s=j+1

|1− βs|.

Hence Pj→i is (at best) nonexpansive, with a worst-case exponential lower bound on the smallest
singular value governed by the path-length product of |1 − βs|. Whenever some βs is close to 1,
Hs is nearly singular (and exactly singular if βs = 1), driving σmin(Pj→i) toward zero. Volume
contraction is quantified by

det(Pj→i) =

i∏
s=j+1

(1− βs),

which typically decays exponentially in i − j unless βs concentrates at the orthogonal endpoints
{0, 2}.
Aligned-plane special case. If the directions are time-invariant, ws ≡ w, then Pt = ww⊤ is an
idempotent projector and the factors commute:

i∏
s=j+1

Hs =

i∏
s=j+1

(
I− βsP

)
= I−

(
1−

i∏
s=j+1

(1− βs)
)
P,

so the eigenvalue along w is exactly
∏i

s=j+1(1− βs), making the contraction along w explicit and
exponential in path length unless βs ∈ {0, 2}.
Implications for long-context modeling. Because the PaTH transport multiplies the Q/K bilinear
by Pj→i, any persistent deviation of βt from {0, 2} yields cumulative energy loss along a moving
one-dimensional subspace. This concentrates mass in progressively fewer directions and can flatten
or attenuate long-range logits q⊤

i Pj→ikj as i − j grows, unless additional renormalizations or
forget-gates are introduced. In contrast, Mul-GRAPE maps lie in SO(d), so for both non-contextual
and contextual types, all singular values are 1; volumes and norms are preserved, and Lyapunov
exponents are 0, avoiding contraction-induced degradation of long-range interactions.
Lemma E.7 (Orthogonality condition for PaTH factors). For Ht = I − βtwtw

⊤
t with ∥wt∥ = 1,

Ht is orthogonal iff βt ∈ {0, 2}. For βt ∈ (0, 2) \ {0, 2}, Ht is symmetric, diagonalizable with
eigenvalues in (−1, 1] ∪ {1}, and strictly contractive on span{wt}.
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