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ABSTRACT

We present GRAPE (Group RepresentAtional Position Encoding), a unified
framework for positional encoding based on group actions. GRAPE brings to-
gether two families of mechanisms: (i) multiplicative rotations (Multiplicative
GRAPE) in SO(d) and (ii) additive logit biases (Additive GRAPE) arising from
unipotent actions in the general linear group GL. In Multiplicative GRAPE, a
position n ∈ Z (or t ∈ R) acts as G(n) = exp(nωL) with a rank-2 skew gen-
erator L ∈ Rd×d, yielding a relative, compositional, norm-preserving map with a
closed-form matrix exponential. RoPE is recovered exactly when the d/2 planes
are the canonical coordinate pairs with log-uniform spectrum. Learned commut-
ing subspaces and compact non-commuting mixtures strictly extend this geome-
try to capture cross-subspace feature coupling at O(d) and O(rd) cost per head,
respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank)
unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as ex-
act special cases while preserving an exact relative law and streaming cacheability.
Altogether, GRAPE supplies a principled design space for positional geometry in
long-context models, subsuming RoPE and ALiBi as special cases.

1 INTRODUCTION

Positional information is essential for sequence modeling with Transformers (Vaswani et al., 2017),
whose self-attention is otherwise permutation-invariant. Early work injected absolute positional
codes (sinusoidal or learned) into token representations (Vaswani et al., 2017). Later, relative en-
codings depending on offsets (Shaw et al., 2018) and linear logit biases such as ALiBi (Press et al.,
2021) were introduced, the latter offering strong length extrapolation with negligible overhead.

Rotary Position Embedding (RoPE) (Su et al., 2021) realizes relative positions as orthogonal planar
rotations of queries and keys, preserving norms and yielding exact origin invariance of attention
scores. Despite its appeal, RoPE fixes coordinate planes and typically a log-uniform spectrum,
limiting cross-subspace coupling and contextual warping of phase. More broadly, absolute codes
break translation equivariance; table-based relatives add window-dependent overhead. A new for-
mulation is needed because current methods isolate the essential properties of stability, monotonic
distance penalty, and expressivity. These observations motivate a unified formulation that (i) pre-
serves RoPE’s orthogonality and exact relativity when desired, (ii) also covers additive/forgetting
mechanisms such as ALiBi (Press et al., 2021) and Forgetting Transformer (FoX) (Lin et al., 2025),
and (iii) admits learned and contextual generalizations with clean streaming.

We therefore propose Group RepresentAtional Position Encoding (GRAPE), a group-theoretic
framework that unifies two complementary families of positional mechanisms. The multiplica-
tive family (Multiplicative GRAPE) models positions as norm-preserving rotations in SO(d) acting
on (q,k); the additive family (Additive GRAPE/Path-Integral Additive GRAPE) models positions
as unipotent actions in the general linear group GL that yield linear-in-offset logit biases (includ-
ing content-gated and path-integral forms). This perspective recovers RoPE and ALiBi as exact
special cases, proves that FoX is an exact instance of Additive GRAPE, and supplies principled,
streaming-friendly contextual extensions on both sides.

Concretely: (a) Multiplicative GRAPE (GRAPE-M) encodes n ∈ Z (or t ∈ R) as an element
of SO(d) via a rank-2 skew generator; and (b) Additive GRAPE (GRAPE-A) and Path-Integral
Additive GRAPE (GRAPE-AP) lifts to the general linear group GL using homogeneous coordinates
to produce linear-in-offset logit biases (recovering ALiBi and FoX).
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GRAPE
Group Representational Position Encoding

General Relative Law: G(t− s) = G(s)−1G(t)

G(n) = exp(n · ω ·Generator)

Multiplicative GRAPE

Operation: Rotation
Manifold: SO(d)

Generator: L (Rank-2 Skew)

L = ab⊤ − ba⊤ ⇒
exp(L) = I+ sin s

s L+ 1−cos s
s2 L2

xi

xj

θij

Norm-preserving Isometry
Fast Matrix Exponentials

Additive GRAPE
Operation: Translation

Manifold: GL(d+k) (Unipotent Lift)
Generator: A (Low-rank Nilpotent)

A2 = 0 =⇒
exp(A) = I+A

pos

bias

Linear Decay

Homogeneous Space Lift
Additive Translations

Recovers: RoPE Extensions: Learned Basis Recovers: ALiBi, FoX Extensions: Path Integral

Also extends to contextual forms via state-dependent generators

Figure 1: Overview of the GRAPE Framework. We unify positional encodings via group actions
G(n) = exp(nωL). Left: Multiplicative GRAPE recovers RoPE via rank-2 skew generators in
SO(d). Right: Additive GRAPE recovers ALiBi and FoX via low-rank nilpotent generators in the
unipotent subgroup of GL(d+ k) (k = 1 or 2).

For Multiplicative GRAPE, positions are mapped as

G(n) = exp
(
nωL

)
∈ SO(d), L = ab⊤ − ba⊤ ∈ so(d),

where a,b ∈ Rd define a rank-2 skew generator L and ω > 0 is a frequency. The action is an isom-
etry, and G(n+m) = G(n)G(m) guarantees exact origin invariance of attention logits. We derive
a closed-form Rodrigues-type formula (Rodrigues, 1840; Hall, 2013), enabling fast linear-time ap-
plication with stable derivatives and no explicit matrix materialization. RoPE is recovered when d/2
commuting rank-2 generators act on disjoint coordinate planes with prescribed frequencies.

For Additive GRAPE, positions are mapped via the matrix exponential Gadd(n) = exp(nωA) =
I + nωA in a lifted homogeneous space. Here, the generator A ∈ gl(d + 1) is a nilpotent matrix
of rank one. While this additive transformation is not an isometry, it preserves the exact relative
law, ensuring attention scores depend only on position offsets. This formulation provides a rigorous
group-theoretic foundation for additive biases, recovering ALiBi and FoX as exact instances.

Our contributions are highlighted as follows:

1. We propose GRAPE as a unified group-theoretic view that subsumes multiplicative orthogonal
rotations in SO(d) and additive unipotent (all eigenvalues equal to 1) mechanisms in general
linear group GL, recovering RoPE and ALiBi as exact special cases and proving FoX is an exact
instance (Appendix B).

2. Multiplicative GRAPE. We derive a closed-form rank-2 matrix exponential with fast application
and stable differentiation; we show RoPE is a special multiplicative GRAPE in a possibly learned
orthogonal basis.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. Additive GRAPE. We show that linear-in-offset logit biases arise from rank-1 (or low-rank)
unipotent actions in the general linear group GL with an exact relative law and streaming
cacheability. This includes query- or key-gated slopes, a commuting dictionary of additive com-
ponents, and exact recoveries of ALiBi and FoX in closed form (Sections 4, 4.2, Appendix B).
We also formalize path-integral additive biases that remain causal and support efficient training.
(Section 5).

2 MULTIPLICATIVE GROUP REPRESENTATIONAL POSITION ENCODING

We propose the Multiplicative GRAPE, as a Lie-group positional map with a closed-form rank-2
matrix exponential, an exact relative law, and a streaming/cache methodology. The core intuition
is to encode position as a norm-preserving rotation in the special orthogonal group SO(d) 1(Hall,
2013). A single skew-symmetric generator L ∈ so(d) produces the entire family of rotations via the
matrix exponential. We begin with notation and the rank-2 generator.

2.1 PRELIMINARIES AND RANK-2 GENERATOR

The generator L is formally defined as an element of the corresponding Lie algebra, so(d). Let
so(d) = {L ∈ Rd×d : L⊤ = −L} denote the Lie algebra of SO(d). The simplest non-trivial
generator defines a rotation within a single 2D plane. We construct such a rank-2 generator from
two vectors, a and b, that span this plane of action. For a,b ∈ Rd, define the rank-2 generator
L ≡ L(a,b) as

L(a,b) = ab⊤ − ba⊤, α = ∥a∥2, β = ∥b∥2, γ = a⊤b,∆ = αβ − γ2 ≥ 0, s =
√
∆. (2.1)

Rank-2 structure. Let U = span{a,b}. The rank-2 generator L has a useful geometric property:
applying it twice projects onto the action plane U and scales. A direct calculation shows

L2 = − s2 PU ,

where PU is the orthogonal projector to the space U . Hence spectrum of L (the set of its eigen-
values), denoted σ(L), is {±is, 0, . . . , 0} and the minimal polynomial is λ(λ2 + s2). A detailed
derivation is given in Appendix H.

Initialization. Write A ≜ [a b] ∈ Rd×2 and J =
(
0 −1
1 0

)
so that L = AJA⊤. For any M ∈ SL(2)

(the 2 × 2 real matrices with determinant 1, see Table 3), MJM⊤ = J and thus A 7→ AM leaves
L invariant; for general M ∈ GL(2) (the group of invertible 2 × 2 matrices), L scales by det(M).
Therefore the oriented plane U = span{a,b} and the scalar s =

√
αβ − γ2 determine the action.

We fix a gauge at initialization by ∥a∥ = ∥b∥ = 1 and a⊤b = 0 (absorbing scale into ω).

Canonical 90◦ rotation operator. Fix a block-diagonal complex structure J ∈ so(d) with J⊤ =
−J and J 2 = −I (for odd d, act on the top-left 2⌊d/2⌋ coordinates and leave the final coordinate
unchanged). Concretely, J =

⊕⌊d/2⌋
i=1

(
0 −1
1 0

)
. For any a ∈ Rd, write a⊥ := J a, which equals “a

rotated by 90◦” within the canonical 2D blocks and satisfies a⊤a⊥ = 0 and ∥a⊥∥ = ∥a∥.

2.2 EXACT RELATIVE LAW

For a fixed L ∈ so(d), define G(n) = exp(nL) ∈ SO(d), which forms a one-parameter subgroup.
The exact relative law property for positional encoding implies:

G(t−s) = G(s)⊤G(t), G(n)⊤G(n) = I.

Here G(n) ∈ SO(d) so the transpose coincides with the group inverse, G(n)⊤ = G(n)−1; the
identity above is exactly the relative-position law for a one-parameter subgroup. A concise
summary of SO(d), GL(d) and SL(d) is collected in Table 3. This algebraic property enables
relative positional encoding: interactions depend only on offsets.

G(n) = exp(nωL), G(n+m) = G(n)G(m), G(0) = I, and G(−n) = G(n)⊤.

Crucially, this exact relative property relies solely on the one-parameter subgroup structure (G(n+
m) = G(n)G(m)), holding true regardless of whether the generator implies commuting or coupled
non-commuting subspaces.

1Definitions of SO(d) and other mathematical terms are postponed to Table 3 in the Appendix.
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2.3 CLOSED-FORM FAST MATRIX EXPONENTIAL

Based on the minimal polynomial mentioned in Section 2.1, the exponential map exp(L) for a rank-2
generator can be expressed as a quadratic in L. This yields a convenient closed-form solution, often
referred to as a Rodrigues-type formula (Rodrigues, 1840; Hall, 2013):

exp(L) = I+
sin s

s
L+

1− cos s

s2
L2.

Geometrically, the formula is best understood via L2 as a projector onto U . Since L2 = −s2PU ,
the exponential can be written as

exp(L) = I− (1− cos s)PU +
sin s

s
L,

which reveals its action explicitly: it is a rotation by angle s within the plane U = span{a,b} and
the identity on the orthogonal complement U⊥. The vectors a and b thus define the plane of action
for the positional rotation.

Cost of application. For a single rank-2 plane, computing y = G(n)x requires two inner products
u = ⟨a,x⟩, v = ⟨b,x⟩, followed by y = x+f1(n)(av−bu)+f2(n) [γ(av + bu)− βau− αbv],
where (α, β, γ) are plane scalars and f1,2 are trigonometric scalars (with series guards as s → 0).
This is O(d) flops with a small constant and no materialization of G(n); derivative expressions are
in Appendix H.

2.4 THE b = J a CONSTRAINT

We now consider an important special case by setting b = J a. This constraint, which makes the
plane vectors a and b orthogonal and equal in norm, significantly simplifies the generator’s structure
and reveals a direct connection to the canonical RoPE formulation. With this constraint, the scalars
simplify: γ = a⊤b = a⊤J a = 0, β = ∥b∥2 = ∥a∥2 = α, and hence s =

√
αβ − γ2 = α.

Moreover, on the 2D subspace U = span{a,J a} one has

L(a,J a)a = −(J a)α, L(a,J a)J a = α a,

so L(a,J a)|U = −αJ |U and L(a,J a)|U⊥ = 0. Therefore

exp
(
nωL(a,J a)

)
= I−

(
1− cos(nωα)

)
PU − sin(nωα)JPU ,

This expression follows by substituting L|U = −αJ |U and L2 = −α2PU into the Rodrigues
formula exp(nωL) = I+ sin(nωs)

s L+ 1−cos(nωs)
s2 L2 with s = α; see Appendix H for the algebraic

steps. It is a pure planar rotation by angle nωα on U and the identity on U⊥.
Corollary 2.1 (Frequency–norm coupling). If ∥a∥ = 1, the rotation angle reduces to nω. Without
normalization, the effective frequency is ωeff = ω∥a∥2, so the scale of a can be absorbed into ω.

2.5 APPLICATION TO RELATIVE ENCODING AND EQUIVARIANCE

We now demonstrate how the GRAPE-M operator G(n) is applied in practice. As established in
Section 2.2, the operator’s group structure guarantees the exact relative law. We first transform the
query and key vectors, qi and kj , into position-aware representations, q̃i and k̃j :

q̃i := G(i)qi, k̃j := G(j)kj .

It follows from the exact relative law established in Section 2.2 that the attention score between these
position-aware vectors simplifies to:

q̃⊤
i k̃j = q⊤

i G(i)⊤G(j)kj = q⊤
i G(j − i)kj .

Hence, the attention score depends solely on the relative offset j − i, not on the absolute positions.

Streaming and caching. At inference, cache k⋆
j = G(j)kj once when token j arrives. At step

t, form q̃t = G(t)qt and compute logits q̃⊤
t k

⋆
j . No cache rotation is needed when t increments;

complexity matches RoPE. A full integration into multi-head attention (per-head formulation, logits,
and streaming) is detailed in Section A.
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3 MULTI-SUBSPACE MULTIPLICATIVE GRAPE

A single rank-2 generator acts on a 2D subspace, leaving the rest of the d-dimensional space un-
touched. To encode position across the entire hidden dimension, we can combine multiple genera-
tors. This leads to the Multi-Subspace (MS) Multiplicative GRAPE (GRAPE-M) model, which
forms the basis for both RoPE and more expressive types. Detailed rank-2 algebra appears in Ap-
pendix H.

3.1 MULTI-SUBSPACE GRAPE-M AND ROPE AS A SPECIAL CASE

The simplest way to combine generators is to ensure they act on mutually orthogonal subspaces,
which guarantees they commute. Let d be even. For i = 1, . . . , d/2, we can define a set of rank-
2 generators {Li}, each acting on a distinct 2D plane. RoPE is the canonical example of this
construction. We further discussed non-commuting multiplicative GRAPE in Appendix C.

Let the 2 × 2 canonical skew matrix be J =
(
0 −1
1 0

)
and the coordinate selector be Ui =

[e2i−1 e2i] ∈ Rd×2. We set the rank-2 generators as Li = UiJU
⊤
i = L(e2i−1, e2i) and assign

per-plane frequencies θi > 0. The total generator is the commuting sum:

LRoPE =

d/2∑
i=1

θiLi with [Li,Lj ] = 0 for i ̸= j.

Then

G(n) = exp
(
nLRoPE

)
=

d/2∏
i=1

exp(nθiLi) = blockdiag
(
R2(nθ1), . . . ,R2(nθd/2)

)
, (3.1)

where R2(θ) denotes the standard 2× 2 rotation matrix introduced in Table 3, and the last equality
holds because each term exp(nθiLi) is identity except for a single 2×2 rotation block on its diag-
onal. Eq. (3.1) is precisely the RoPE mapping: a block-diagonal product of planar rotations with
per-subspace angles nθi.

Equality holds when the planes {Ui} are the coordinate 2D blocks and {θi} follow the canonical
log-uniform spectrum.
Proposition 3.1 (RoPE is a multiplicative GRAPE). Choose d/2 mutually orthogonal vectors
{ai} and set bi = J ai with per-plane angles θi. Then the commuting MS-GRAPE G(n) =∏d/2

i=1 exp(nθiL(ai,J ai)) equals the standard RoPE map in a (possibly learned) orthogonal ba-
sis. If the planes are the canonical coordinate pairs and {θi} follow the log-uniform spectrum, we
recover the canonical RoPE exactly.

Spectral parameterization. Classical RoPE chooses θi on a log-uniform grid across i. In
GRAPE, θi can be learned or shared/tied across heads or layers. The MS-GRAPE view also al-
lows replacing the coordinate selectors Ui by a learned orthogonal basis B ∈ SO(d) so that
L =

∑
i θiBUiJU

⊤
i B

⊤, preserving commutativity while learning subspaces.

Multimodal GRAPE. Please refer to Appendix F for 2D and 3D GRAPE for Vision and Multimodal
Position Encoding.

4 ADDITIVE GROUP REPRESENTATIONAL POSITION ENCODING

This section shows that additive positional mechanisms (absolute shifts of features and additive logit
biases, including ALiBi (Press et al., 2021)) also admit a group-theoretic formulation. The key is a
homogeneous lift to an augmented space and a one-parameter subgroup of the general linear group
GL that acts by unipotent (all eigenvalues equal to 1) transformations. This yields an exact relative
law and streaming/cache rules analogous to Section 2.5.

4.1 HOMOGENEOUS LIFT AND A UNIPOTENT ACTION

To produce additive biases from a multiplicative group action, we employ the homogeneous lift.
This is a standard method in linear algebra for representing affine transformations (such as trans-

5
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lations) as linear transformations in a higher-dimensional space. Let x̂ := [x; 1] ∈ Rd+1 denote a
homogeneous augmentation of x ∈ Rd. We now work within the general linear group GL(d + 1)
and its corresponding Lie algebra gl(d+ 1), which is the set of all (d+ 1)× (d+ 1) real matrices.
Fix a generator

A =

[
0d×d u
01×d 0

]
∈ gl(d+1), A2 = 0, (4.1)

where u ∈ Rd. Its exponential is unipotent:

Gadd(n) := exp(nωA) = Id+1 + nωA =

[
Id nω u
0⊤ 1

]
∈ GL(d+1),

Gadd(n+m) = Gadd(n)Gadd(m).

Application and exact relative law in GL. For queries/keys augmented as q̂i = [qi; 1] and k̂j =
[kj ; 1], define

q̃i := Gadd(i) q̂i, k̃j := Gadd(j)
−⊤ k̂j , (4.2)

We use the shorthand Gadd(j)
−⊤ := (Gadd(j)

−1)⊤ to emphasize that we first take the group
inverse in GL(d+1) and then transpose it. and score with the standard inner product on Rd+1. The
key is transformed using the inverse transpose (Gadd(j)

−⊤). This is necessary because for a general
linear group GL, the simple transpose is no longer the inverse (unlike in SO(d)), and the inverse
transpose is required to recover the exact relative law: Gadd(i)

⊤Gadd(j)
−⊤ = Gadd(j−i)−⊤ for

any one-parameter subgroup in GL. This composition results in the final form:

q̃⊤
i k̃j = q̂⊤

i Gadd(j−i)−⊤k̂j , depending only on j−i. (4.3)

Streaming matches Section 2.5: cache k̂⋆
j = Gadd(j)

−⊤k̂j once; at step t form q̃t = Gadd(t)q̂t

and compute q̃⊤
t k̂

⋆
j .

Closed form and content-gated additive term. Since A⊤ =
(

0 0
u⊤ 0

)
and (A⊤)2 = 0,

Gadd(m)−⊤ = Id+1 −mωA⊤ =

[
Id 0

−mω u⊤ 1

]
, m = j−i, (4.4)

whence

q̃⊤
i k̃j = q⊤

i kj + 1 − (j−i)ω u⊤kj . (4.5)

The constant “+1” is softmax-shift invariant; the final term is an additive, linear-in-offset bias whose
slope is key-gated by u⊤kj . A symmetric generator for the query, Aqry =

(
0 0
v⊤ 0

)
applied anal-

ogously produces a query-gated slope (j−i)ω v⊤qi. Using both the key-gated and query-gated
components yields a combined bias of the form (j−i)ω (v⊤qi − u⊤kj), still obeying the exact
relative law Eq. (4.3).

4.2 EXACT ALIBI AS A RANK-1 UNIPOTENT IN GL(d+2)

ALiBi adds a head-specific scalar slope βh(j−i) to the logits that is independent of content. This is
captured exactly by augmenting with two constant coordinates:

q̂i = [qi; 1; 0] ∈ Rd+2, k̂j = [kj ; 0; 1] ∈ Rd+2,

and choosing the rank-1 nilpotent generator

A⊤
h = βh ed+1 e

⊤
d+2 ⇐⇒ Ah = βh ed+2 e

⊤
d+1, (A⊤

h )
2 = 0. (4.6)

Then Gadd,h(m)−⊤ = I−mA⊤
h and

q̂⊤
i Gadd,h(j−i)−⊤k̂j = q⊤

i kj − (j−i)βh,
i.e., the ALiBi term emerges as a unipotent GL(d+2) action with exact relative composition.

FoX as GRAPE-A. Let ft ∈ (0, 1] be per-token forget scalars and set ωt := log ft. Using the rank-1
generator of Section 4.2, the resulting additive bias is b(t, j) =

∑t
ℓ=j+1 ωℓ, which coincides with

FoX’s forgetting biasDij . A full derivation and the unipotent path product are given in Appendix B.
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5 PATH INTEGRAL ADDITIVE GRAPE

Additive GRAPE (GRAPE-A) realizes exactly relative additive logits via a one-parameter unipotent
action in the general linear group GL; the bias depends only on an offset m = j−i (or a contextual
phase difference Φj−Φi when using cumulative phases). Here the “phase” Φt is a scalar path
variable, typically defined as a cumulative sum Φt =

∑
ℓ<t ωℓ of per-token frequencies ωℓ, so

that Φj − Φi plays the role of an effective relative position. In practice, we sometimes want the
amount of additive encouragement/suppression between a key at j and a query at t to depend on
the endpoint t (e.g., the current syntactic or semantic needs of the query token), while preserving
causality, boundedness, and clean composition with the orthogonal GRAPE acting on (q,k). We
formalize this by a rigorously defined path-integral sum, deriving conditions under which the exact
relative law of Additive GRAPE is recovered.

Definition (Path-integral bias). Fix a head h and per-head scale αh > 0. For each time u, let
pu,h ∈ Rd be a positional embedding obtained from token-local features (a linear projection fol-
lowed by RMS normalization in our implementation). Let J be the canonical block-diagonal 90◦
operator (Section 2.4), and define Rℓ := exp(ℓJ ) (a fixed commuting rotation). For a link function
g : R→ (−∞, 0) that is monotone increasing and 1-Lipschitz2, define the edge potential

ψh(t, ℓ) := αh g

(
1

d

〈
pt,h, Rℓ pℓ,h

〉)
≤ 0, ℓ < t. (5.1)

The vectors pt,h and pℓ,h here are the positional embedding. The path-integral additive bias from
key position j to query position t is the causal sum

bh(t, j) :=

t∑
ℓ=j+1

ψh(t, ℓ) ≤ 0. (5.2)

The attention logit combines this additive term with either the raw or orthogonally-rotary bilinear
part:

ℓt,j,h =
1√
d
q⊤
t,hkj,h + bh(t, j) or ℓt,j,h =

1√
d
q⊤
t,hGh(j−t)kj,h + bh(t, j). (5.3)

Group-theoretic formalization and path composition. Let E ∈ R(d+2)×(d+2) be a fixed rank-1
nilpotent with E2 = 0 (e.g., E = ed+2e

⊤
d+1 as in Section 4.2). For each fixed endpoint t, define

endpoint-indexed unipotent factors

H
(t)
h (ℓ) := I+ ψh(t, ℓ)E.

Since E2 = 0, the path product along (j, t] collapses additively:

t∏
ℓ=j+1

H
(t)
h (ℓ) = I+

( t∑
ℓ=j+1

ψh(t, ℓ)

)
E = I+ bh(t, j)E. (5.4)

Scoring in homogeneous coordinates as in Section 4 with the paired inverse-transpose removes
multiplicative anisotropy and yields exactly the additive term bh(t, j), cf. Eq. (4.3). The rowwise
semigroup law is preserved (Eq. (5.4)), while the t-dependence of the factors intentionally relaxes
the global one-parameter group law.

Relation to GRAPE-A. GRAPE-AP strictly contains GRAPE-A as the special case in which edge
potentials do not depend on the endpoint:

ψh(t, ℓ) ≡ θh aℓ =⇒ bh(t, j) = θh

t∑
ℓ=j+1

aℓ = θh
(
At −Aj

)
, Au :=

∑
ℓ<u

aℓ.

Two important instances follow directly:

2Our experiments take g(z) = log(Sigmoid(z)); then g′(z) = 1 − Sigmoid(z) ∈ (0, 1), ensuring 1-
Lipschitzness.
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• Exact ALiBi. aℓ ≡ 1 gives bh(t, j) = θh(t−j); this is exactly the ALiBi term recovered via the
rank-1 unipotent lift in Section 4.2.

• Phase-modulated Additive GRAPE. If aℓ = ωℓ with ωℓ = g(xℓ) ≥ 0, then bh(t, j) = θh(Φt −
Φj) with Φu =

∑
ℓ<u ωℓ.

In both cases, bh(t, j) depends only on a (possibly contextual) phase difference and thus obeys
the exact relative law with the same streaming/cache policy as Section 4. Outside these endpoint-
independent regimes, GRAPE-AP provides strictly more expressive, path-integral biases while pre-
serving row-wise path composition (Eq. (5.4)).

Computation and streaming. For each head h and decoding step t, compute the row {ψh(t, ℓ)}ℓ≤t

by a single similarity sweep ℓ 7→ ⟨pt,h, Rℓpℓ,h⟩ (the rotated probes Rℓpℓ,h can be cached on
arrival), apply the link g, and take a prefix sum to obtain j 7→ bh(t, j). This yields O(t) per-step
overhead withO(1) recomputation per cached key; memory isO(L) per head for the cached position
embeddings pt,h.

Spectral and stability. Each factor H(t)
h (ℓ) = I+ψh(t, ℓ)E is unipotent with all eigenvalues 1 and

at most two singular values deviating from 1; the full path product equals I+ bh(t, j)E (Eq. (5.4)).
As in Appendix I.3, the paired inverse-transpose used for scoring cancels multiplicative distortions
and delivers exactly the additive bias bh(t, j); operator norms remain controlled linearly in |bh(t, j)|.
A more extensive spectral analysis, including eigenvalue structure and singular-value behavior
across GRAPE variants, is provided in Appendix I. There, we also give an explicit comparison
to PaTH Attention (Yang et al., 2025b), which is shown to be contractive and near singular. These
properties may impair PaTH’s effectiveness in long-context modeling.

6 EXPERIMENTS

In this section, we evaluate the performance of GRAPE on the language modeling task in comparison
with baseline positional encoding mechanisms, including RoPE (Su et al., 2021), AliBi (Press et al.,
2021) as well as Forgetting Transformer (FoX) (Lin et al., 2025).

6.1 IMPLEMENTATION DETAILS

Based on the nanoGPT codebase (Karpathy, 2022), our experiments are implemented based on
the Llama model (Touvron et al., 2023a). We only change the positional encoding mechanism
and keep the rest of the model architecture the same as Llama. We choose FineWeb-Edu 100B
dataset (Lozhkov et al., 2024), which contains 100 billion training tokens and 0.1 billion validation
tokens, and we randomly choose 50B tokens for training. Our models are with 36 layers and 10
heads, with a hidden size of 1280 and head dimension of 128. We applied QK RMSNorm for
training stability (Yang et al., 2025a). The context length is set to 4,096, and the batch size is 480.
All the models are optimized by AdamW optimizer (Loshchilov & Hutter, 2019), with a maximum
learning rate of 2× 10−4, (β1, β2) = 0.9, 0.95, and a weight decay of 0.1. We use a cosine learning
rate scheduler with 2,000 warm-up iterations, and the minimum learning rate is 1 × 10−5. We also
clip the gradient to 1.0 for stabler training. The frequency of RoPE is set to 10,000. Moreover, for
fair comparison, we do not use FoX-Pro and disabled the KV-shift module within it.

6.2 RESULT ANALYSIS

The curves for training and validation loss of models with a variant positional encoding mechanism
are displayed in Figures 2 and 3. This analysis provides specific insight into the source of the
framework’s stability and performance. It can be observed that GRAPE can keep a persistent edge
over other mechanisms, including RoPE and FoX. Moreover, the model with RoPE suffers from a
great spike, while the model with GRAPE embedding steadily improves during the training process.

7 RELATED WORK

Positional information in Transformers mainly can be categorized into these classes: (a) absolute
encodings (sinusoidal or learned) (Vaswani et al., 2017; Devlin et al., 2019; Neishi & Yoshinaga,

8
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Figure 2: The training and validation loss of medium-size models (355M), with different positional
encoding mechanisms on the FineWeb-Edu 100B dataset.
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Figure 3: The training and validation loss of large-size models (770M), with different positional
encoding mechanisms on the FineWeb-Edu 100B dataset.

Table 1: The evaluation results of medium models with different positional encoding mechanisms
pre-trained using the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best
scores in each column are bolded.

Method ARC-E ARC-C BoolQ HellaSwag OBQA PIQA WinoGrande SciQ Avg.

RoPE 59.34 30.89 61.22 45.46 34.00 69.42 52.49 74.70 53.44
AliBi 57.07 30.80 61.16 46.98 34.60 69.48 52.96 79.70 54.09
FoX 56.78 29.01 59.11 43.07 32.80 67.74 51.07 76.10 51.96
FoX (w/ KV-shift) 57.11 30.55 60.34 44.32 33.80 69.31 52.17 78.40 53.25
GRAPE-A 59.68 31.91 60.06 46.27 35.00 69.64 53.83 79.90 54.54
GRAPE-M (Ctx) 56.02 29.35 58.81 44.88 35.00 68.61 52.09 76.50 52.66
GRAPE-M (nonCtx) 56.31 30.55 61.77 44.82 34.40 68.44 53.67 75.20 53.15

Table 2: The evaluation results of large models with different positional encoding mechanisms pre-
trained using the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores
in each column are bolded.

Method ARC-E ARC-C BoolQ HellaSwag OBQA PIQA WinoGrande SciQ Avg.

RoPE 62.25 33.02 58.23 50.92 37.60 70.89 55.88 80.50 56.16
AliBi 63.43 34.81 59.69 52.88 36.80 71.33 56.20 82.40 57.19
FoX 59.22 32.00 59.69 49.78 38.00 71.00 54.62 79.20 55.44
FoX (w/. KV-shift) 60.77 32.85 62.51 49.38 38.00 70.62 54.78 81.40 56.29
GRAPE-A 62.79 33.19 59.11 53.18 36.00 71.98 57.62 84.10 57.25
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2019; Kiyono et al., 2021; Likhomanenko et al., 2021; Wang et al., 2020; Liu et al., 2020; Wang
et al., 2021; Sinha et al., 2022; Wennberg & Henter, 2021; Ke et al., 2020); (b) relative encodings
that depend on offsets (Shaw et al., 2018; Dai et al., 2019; Raffel et al., 2020; He et al., 2020);
and (c) linear logit biases with strong length extrapolation (Press et al., 2021; Chi et al., 2022a;b;
Li et al., 2023; Ruoss et al., 2023), all shaping recency/extrapolation behavior (Haviv et al., 2022;
Kazemnejad et al., 2023).

Multiplicative position encoding. RoPE realizes offsets as block-diagonal planar rotations of
queries/keys, preserving norms and exact origin invariance; it is widely deployed across LLMs
and modalities (Su et al., 2021; Touvron et al., 2023a;b; Heo et al., 2024). Angle/spectrum designs
improve long-context fidelity (e.g., xPos) (Sun et al., 2022); LRPE formalizes separable relative
transforms for linear attention models (Qin et al., 2023); mechanistic work analyzes frequency us-
age (Barbero et al., 2025). These methods are also compatible with sparse/linear attentions (Beltagy
et al., 2020; Zaheer et al., 2020; Katharopoulos et al., 2020; Choromanski et al., 2020) and with
context-scaling procedures (Xiong et al., 2023; Chen et al., 2023; Peng et al., 2023; Zhu et al., 2023;
Jin et al., 2024). Beyond 1D language modeling, 2D RoPE and variants adapt rotary encodings to
2D grids by applying rotations along spatial axes, and have been shown to improve high-resolution
extrapolation in Vision Transformers and related vision models (Heo et al., 2024). Recently,
LieRE (Ostmeier et al., 2025) learns dense skew-symmetric generators whose exponentials pro-
duce high-dimensional rotations for multi-modal, n-dimensional inputs, while STRING (Schenck
et al., 2025) designs separable, translation-invariant RoPE-style encodings that scale to 2D and 3D
coordinates in vision and robotics settings (Ostmeier et al., 2025; Schenck et al., 2025). GRAPE-M
identifies RoPE as commuting rank-2 exponentials in SO(d) and extends it to learned subspaces and
compact non-commuting mixtures in closed form and a much faster way. Compared with LieRE,
which parameterizes a dense skew-symmetric generator and applies a numerical matrix exponen-
tial (e.g., torch.matrix exp) with O(d3) time and O(d2) parameters per head, Multiplicative
GRAPE decomposes the action into rank-2 subspaces and uses the closed-form Rodrigues-type
formulas from Section 2.3, so we only need vector–vector operations with O(d) cost per head (a
detailed comparison between LieRE and GRAPE is presented in Appendix E.)

Additive position encoding and forgetting mechanisms. Additive schemes such as ALiBi (Press
et al., 2021) and related kernelized/randomized forms (Chi et al., 2022a;b; Li et al., 2023; Ruoss
et al., 2023) are captured exactly by GRAPE-A as unipotent actions inthe general linear group
GL that preserve the same relative law and streaming cacheability. Importantly, forgetting mech-
anisms are additive: the Forgetting Transformer (FoX) implements a learnable per-head expo-
nential decay in the attention logits and is a specific GRAPE-A / GRAPE-AP instance impos-
ing distance-dependent attenuation (Lin et al., 2025). FoX’s data-dependent forget gates yield a
path-additive bias D that we show is exactly the endpoint-independent GRAPE-AP case; see Ap-
pendix B for a constructive equivalence and its streaming implementation (Lin et al., 2025).

Contextual position encoding. Content-adaptive position modulates effective phase or distance via
token features through gating/scaling and algebraic parameterizations (Wu et al., 2020; Zheng et al.,
2024; Kogkalidis et al., 2024), and contextual counting (CoPE) (Golovneva et al., 2024). GRAPE
introduces phase-modulated and dictionary-based contextual variants that replace a linear phase
with cumulative token-adaptive phases (single or multi-subspace) while retaining exact headwise
relativity and streaming caches. Finally, models can length-generalize without explicit encodings
(“NoPE”) under suitable training (Wang et al., 2024), which corresponds to the trivial generator
L = 0 in our view.

8 CONCLUSION

GRAPE provides a general framework for positional encoding based on group actions, unifying mul-
tiplicative and additive mechanisms. Multiplicative GRAPE offers a closed-form, rank-2 exponen-
tial that is relative, compositional, and norm-preserving; it recovers RoPE and yields learned-basis
and non-commuting extensions at controlled cost. Additive GRAPE realizes ALiBi and FoX ex-
actly via unipotent general linear group GL lifts with the same streaming/cache policy. The GRAPE
framework integrates seamlessly with existing Transformer models and offers a principled, extensi-
ble design space for future architectures.
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USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) as assistive tools to polish part of this paper, and the roles
of LLMs in this work are restricted to improving presentation.
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Table 3: Summary of Notation and Definitions.
Symbol Definition
GL(d) General Linear Group: The group of all d× d invertible matrices.

SO(d) Special Orthogonal Group: The group of d× d orthogonal matrices
with determinant 1 (R⊤R = I, det(R) = 1).

SL(d) Special Linear Group: The group of d× d matrices with determinant 1.

gl(d) general linear algebra: The Lie algebra of GL(d), consisting of all d× d matrices.

so(d) special orthogonal algebra: The Lie algebra of SO(d), consisting of all d× d
skew-symmetric matrices (L⊤ = −L).

exp(·) Exponential Map: A map from a Lie algebra (generator) to a Lie group (operator).

R2(θ) 2D Rotation Matrix: The matrix
(
cos θ − sin θ
sin θ cos θ

)
.

G(n)⊤ Transpose (in SO(d)): For G ∈ SO(d), the transpose is the group inverse (G⊤ = G−1).

G(n)−⊤ Inverse Transpose (in GL(d)): The transpose of the matrix inverse, (G−1)⊤.

Unipotent Unipotent Transform: A linear transformation whose eigenvalues are all 1.

pu,h Positional Probe: A vector derived from token-local features, obtained via a
linear projection followed by RMS normalization.

A APPLICATION IN MULTI-HEAD ATTENTION

Building upon the algebraic foundation for relative encoding established in Section 2.5, this section
details the concrete integration of the rotational map G(n) into the full Multi-Head Attention (MHA)
architecture, covering the per-head formulation, streaming policy, and implementation complexity.

Per-head formulation. Let H be the number of heads and d the per-head width. For head h ∈ [H],
let (qt,h,kt,h,vt,h) ∈ Rd denote the query/key/value at position t. A GRAPE-M position map is
realized as an orthogonal operator Gh,t ∈ SO(d) applied to (qt,h,kt,h):

q̃t,h = Gh,t qt,h, k̃t,h = Gh,t kt,h, ṽt,h = vt,h.

The headwise attention logits and outputs are then

ℓt,j,h =
q̃⊤
t,hk̃j,h√
d

=
q⊤
t,h

(
G⊤

h,tGh,j

)
kj,h√

d
, yt,h =

∑
j≤t

softmax
(
ℓt,·,h

)
j
ṽj,h, (A.1)

with the usual output projection applied after concatenation across heads.

Exact relative law. If Gh,t arises from a one-parameter subgroup Gh(n) = exp(nLh) (commuting
MS-GRAPE-M, including RoPE and learned commuting bases), then

G⊤
h,tGh,j = Gh(j−t) =⇒ ℓt,j,h =

q⊤
t,hGh(j−t)kj,h√

d
,

so logits depend only on the offset j−t (exact origin invariance).

Streaming cache. Applying the rotational map G(t) independently to each query and key vector is
the core property that enables an efficient streaming cache policy. For any type where Gt is known at
token arrival (non-contextual and phase-modulated), cache k̃j,h = Gh,jkj,h once and never rewrite
it; at step t, compute q̃t,h = Gh,tqt,h and use logits ℓt,j,h = q̃⊤

t,hk̃j,h/
√
d.
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B FORGETTING TRANSFORMER AS A SPECIAL ADDITIVE GRAPE

The Forgetting Transformer (FoX) introduces a scalar forget gate ft ∈ (0, 1] per head and timestep
and adds the cumulative log-gate as an additive bias in the attention logits. Concretely, for a head h,

ft,h = σ(w⊤
f,hxt + bf,h), Fij,h =

i∏
ℓ=j+1

fℓ,h, Dij,h = logFij,h =

i∑
ℓ=j+1

log fℓ,h,

and the attention is
Oh = softmax

(
1√
d
QK⊤ +Dh

)
V. (FoX)

We now show that Eq. (FoX) is exactly realized by our GRAPE-A framework using the
endpoint-independent path-additive specialization of Section 5.

FoX as GRAPE-AP with endpoint-independent edges. In GRAPE-AP (Section 5), a head-wise
additive logit bh(t, j) arises as a causal path sum

bh(t, j) =

t∑
ℓ=j+1

ψh(t, ℓ).

If the edge potentials do not depend on the endpoint, i.e. ψh(t, ℓ) ≡ aℓ,h, then bh(t, j) reduces to a
difference of per-time potentials:

bh(t, j) =

t∑
ℓ=j+1

aℓ,h = Ut,h − Uj,h, Uu,h :=
∑
ℓ<u

aℓ,h.

FoX corresponds to the choice aℓ,h = log fℓ,h ≤ 0, yielding

bh(t, j) ≡ Dij,h =

t∑
ℓ=j+1

log fℓ,h.

Thus the FoX forgetting bias Dh is precisely the GRAPE-AP path-integral additive bias with
endpoint-independent edges.

Unipotent GL lift (GRAPE-A view). Let E := ed+2e
⊤
d+1 be the rank-1 nilpotent used in Sec-

tion 4.2. For a fixed head h and endpoint t, define per-link unipotent factors

H
(t)
h (ℓ) = I+ ψh(t, ℓ)E, ψh(t, ℓ) = log fℓ,h.

Since E2 = 0, the path product collapses:
t∏

ℓ=j+1

H
(t)
h (ℓ) = I+

( t∑
ℓ=j+1

log fℓ,h

)
E = I+Dij,h E.

Scoring in homogeneous coordinates as in Section 4 with the paired inverse-transpose,

q̃⊤
t,h k̃j,h = q̂⊤

t,h

(
I+Dij,hE

)−⊤
k̂j,h = q⊤

t,hkj,h + Dij,h,

recovers Eq. (FoX) exactly (up to the standard 1/
√
d factor we include throughout). Hence

FoX is an exact GRAPE-A / GRAPE-AP instance realized by a rank-1 unipotent path with
endpoint-independent edges.

Streaming and complexity. Compute prefix sums Ut,h =
∑

ℓ<t log fℓ,h once per step; then
Dij,h = Ui,h−Uj,h is obtained by subtraction, preserving theO(L) rowwise cost and the streaming
cache policy from Section 4–Section 5. The headwise gates ft,h addO(1) parameters and negligible
computation.

Special cases and composition. If ft,h ≡ e−βh (constant per head), then Dij,h = −βh(i−j)
and FoX reduces to exact ALiBi (Section 4.2). More generally, FoX composes additively with the
multiplicative (orthogonal) GRAPE acting on (q,k) as in Eq. (5.3), preserving norm-preservation
of the rotational part while adding bounded, non-positive, content-adaptive path biases.
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C NON-COMMUTING MULTIPLICATIVE GRAPE

Consider the thin compression L = ELrE
⊤ with E ∈ Rd×r orthonormal and Lr ∈ so(r). Then

σ(L) = σ(Lr) ∪ {0}d−r, σ
(
exp(nL)

)
= σ

(
exp(nLr)

)
∪ {1}d−r.

If Lr = T(
⊕r/2

t=1 θtJ)T
⊤ is the real-Schur form, then the nontrivial eigenvalues are {±iθt}r/2t=1

and e±inθt for the exponential. Thus, the expressive power of non-contextual non-commuting MS-
GRAPE is captured by the r/2 mode angles {θt}; the ambient lifting via E preserves the spectrum.

D COMPOSITION OF ADDITIVE GRAPE AND MULTIPLICATIVE GRAPE

For the unipotent forms of Additive GRAPE, applying Gadd(m)−⊤ requires one inner product and
one scalar-vector multiplication per active component. Thus, the per-head overhead is O(d) and
typically negligible relative to attention matmuls. Multiplicative GRAPE (Section 3) and Additive
GRAPE (Section 4) compose naturally, either additively at the logit level

ℓt,j,h = 1√
d
q⊤
t,hGh(j−t)kj,h +

[
q̂⊤
t,hGadd,h(j−t)−⊤k̂j,h − q⊤

t,hkj,h

]
,

or as a single block-upper-triangular GL action in homogeneous coordinates. Concretely, define the
joint lift

q̂ = [q; 1], k̂ = [k; 1], Ĝ(m) =

[
exp(mL) mω u

0⊤ 1

]
∈ GL(d+1),

which combines the orthogonal rotation exp(mL) on features with a unipotent translation along the
homogeneous axis. Scoring with the paired inverse-transpose as in Eq. (4.2) yields

q̂⊤ Ĝ(m)−⊤k̂+ = q⊤ exp(mL)k − mω u⊤k + const,

exactly reproducing the sum of multiplicative (rotary) and additive (bias) components up to a
softmax-invariant constant. In both formulations, exact relativity and streaming caches are retained.

E COMPARISON WITH LIERE

Lie Rotational Position Encodings (LieRE) (Ostmeier et al., 2025) encode positional information
by learning a skew-symmetric generator in SO(d). The method then applies the matrix exponential
of this generator to get a rotational position map. For each attention head, the method learns one
skew matrix. Its exponential gives a dense orthogonal operator on queries and keys. Positions then
match elements of a one-parameter subgroup on the rotation manifold. This picture is a compact Lie
theoretic version of RoPE style encodings. Different heads can learn distinct rotational geometries
and the map keeps the norm and an exact relative position law.

Formally, for head h the generator is Gh ∈ so(d). The positional map is x 7→ exp(nωhGh)x. A
direct implementation has cost TLieRE(d) = Θ(d3) per head for the matrix exponential and needs
Θ(d2) parameters and the same order of memory.

Multiplicative GRAPE and LieRE both use rotations in SO(d) that come from skew-symmetric
generators. LieRE gives each head a dense or block skew matrix. It forms the positional operator
with the full matrix exponential exp(G). This creates very rich rotations but needs O(d3) time for
the exponential andO(d2) parameters and memory per head. GRAPE-M restricts the generator to a
sum of rank 2 planes and uses a closed form Rodrigues-type formula for the exponential (Section 2).
For one token, the positional mapping then reduces to a few inner products and vector updates. So
the cost is O(d) time and O(d) memory per head.

This choice of parametrization has two main effects in practice. First, the GRAPE-M scale cleanly
translates to contextual versions where frequencies or phases depend on the token content. The
closed-form expression can be computed fastly for each token and there is no large matrix expo-
nential. In the LieRE setup, one needs a new dense matrix exponential for each content-dependent
generator. This step is much more costly and makes such contextual use harder to deploy in real
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models. Second, GRAPE gives a single group-theoretic picture for multiplicative and additive mech-
anisms. The multiplicative part lives in SO(d) and additive or forgetting style terms (ALiBi, FoX,
GRAPE-A, GRAPE-AP) come from unipotent actions in GL with the same relative law and the
same streaming cacheability (Sections 4-5). LieRE only targets rotational encodings and does not
model additive logit biases or forgetting terms.

F 2D AND 3D GRAPE FOR VISION AND MULTIMODAL POSITION
ENCODING

Extending GRAPE beyond one-dimensional token positions is easy. The construction only needs a
chosen group action on coordinates.

For images with integer pixel coordinates (u, v) ∈ Z2 we pick two generators L(x) and L(y). A
token at (u, v) then gets the encoding

G2D(u, v) = exp
(
uωxL

(x)
)
exp

(
v ωyL

(y)
)
∈ SO(d).

The two generators act on 2D planes that can be disjoint in the base design. In that case, the map
reduces to a RoPE-style separable encoding. A learned choice of planes inside Rd gives the GRAPE-
M variant again.

For 3D coordinates (u, v, w) that mark video space time tokens or point clouds, we follow the same
pattern. We introduce three commuting generators and define

G3D(u, v, w) = exp
(
uωxL

(x)
)
exp

(
v ωyL

(y)
)
exp

(
wωzL

(z)
)
.

In the non-commuting case, we use the thin Schur mode compression from Appendix C. The closed-
form rank 2 matrix exponential from the main text still applies. The per token cost stays O(d) even
for higher-dimensional coordinate spaces.

On the additive side, GRAPE-A and GRAPE-AP handle 2D or 3D structures through the scalar
offset m. The value m can be any function of coordinate differences. For an image, we can take

m = αx(ut − uj) + αy(vt − vj),

and this keeps the same algebraic template. For 3D settings, we can set

m = ∥rt − rj∥

with rt and rj in R3. The update matrix then stays unipotent, and the exact relative composition
law still holds. This gives a clear way to impose axis-aligned or radial recency bias in vision and
multimodal models.

G ALGORITHMIC DETAILS AND PSEUDO CODE

This appendix contains the detailed pseudocode.

Algorithm 1 Commuting Multi-Subspace GRAPE-M

Require: Q,K ∈ RB×L×H×d, orthogonal E ∈ Rd×d, frequencies {ωh,j}d/2j=1, positions n ∈ ZL

1: for h = 1 to H do
2: Q′[:, :, h, :]← Q[:, :, h, :]E; K′[:, :, h, :]← K[:, :, h, :]E
3: for ℓ = 0 to L− 1 do
4: for j = 1 to d/2 do
5: θ ← nℓ ωh,j ; apply 2 × 2 rotation G2(θ) to coords (2j−1, 2j) of Q′[:, ℓ, h, :] and

K′[:, ℓ, h, :]
6: end for
7: end for
8: Q̃[:, :, h, :]← Q′ E⊤; K̃[:, :, h, :]← K′ E⊤

9: end for
10: return (Q̃, K̃)
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Algorithm 2 Fast Contextual Non-commuting MS-GRAPE-M via Schur-Mode Rotation
Require: Q,K ∈ RB×L×H×d; planes {(ah,j ,bh,j , ωh,j)}mj=1; positions n

1: for h = 1 to H do ▷ one-time per head
2: Build Uh = span{ah,j ,bh,j}; orthonormalize bh ∈ Rd×rh

3: LU,h ← b⊤
h

(∑m
j=1 ωh,jL(ah,j ,bh,j)

)
bh ∈ so(rh)

4: Orthogonally Schur-decompose: LU,h = Th

(⊕rh/2
t=1 θh,tJ

)
T⊤

h

5: Eh ← bhTh ∈ Rd×rh ; precompute (ch,t, sh,t) = (cos θh,t, sin θh,t)
6: end for
7: for ℓ = 0 to L− 1 do ▷ token loop
8: for h = 1 to H do
9: yQ ← E⊤

hQ[:, ℓ, h, :]; yK ← E⊤
hK[:, ℓ, h, :]

10: for t = 1 to rh/2 do
11: (Ch,t,Sh,t)← PHASETO(nℓ; ch,t, sh,t) ▷ (C,S) from (cos θ, sin θ) via

angle-addition or binary exponentiation
12: Apply

(
Ch,t −Sh,t

Sh,t Ch,t

)
to coordinates (2t−1, 2t) of yQ, yK

13: end for
14: Q̃[:, ℓ, h, :]← Q[:, ℓ, h, :] +Eh(yQ −E⊤

hQ[:, ℓ, h, :])

15: K̃[:, ℓ, h, :]← K[:, ℓ, h, :] +Eh(yK −E⊤
hK[:, ℓ, h, :])

16: end for
17: end for
18: return (Q̃, K̃)

Algorithm 3 Additive GRAPE (GRAPE-A) with streaming cache
Require: Q,K ∈ RB×L×H×d; per-head additive generators {Ah} with A2

h = 0; positions n ∈
ZL

1: Augment: Q̂← [Q;1;0], K̂← [K;0;1] as needed (Section 4.2)
2: for j = 0 to L−1 do ▷ cache once on arrival
3: for h = 1 to H do
4: K̂⋆[:, j, h, :]←

(
I− nj A

⊤
h

)
K̂[:, j, h, :]

5: end for
6: end for
7: for t = 0 to L−1 do
8: for h = 1 to H do
9: Q̃[:, t, h, :]←

(
I+ nt Ah

)
Q̂[:, t, h, :]

10: Compute additive logits: λt,j,h ← Q̃[:, t, h, :]⊤K̂⋆[:, j, h, :]
11: end for
12: end for
13: return {λt,j,h} (to be added to orthogonal GRAPE/RoPE logits)

H DIFFERENTIATION AND FAST APPLICATION OF RANK-2 MATRIX
EXPONENTIAL

Differentiation and stability. Let f1(z) = sin z
z and f2(z) = 1−cos z

z2 with z = nωs. Then

exp(nωL) = I+ f1(z)L+ f2(z)L
2.

For any scalar parameter θ ∈ {ω} ∪ {entries of a, b},

∂θ exp(nωL) = f1(z) ∂θL+ f2(z) (L ∂θL+ ∂θLL) + ∂θz
(
f ′1(z)L+ f ′2(z)L

2
)
,

∂θz = nω ∂θs+ ns ∂θω, ∂θs =
1
2s

−1∂θ(αβ − γ2).

Use series for |z| < ε: f1(z) = 1 − z2

6 + O(z4) and f2(z) = 1
2 −

z2

24 + O(z4). These formulas
enable mixed-precision backprop with small-s guards.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Fast application. For any x ∈ Rd,

Lx = a⟨b,x⟩ − b⟨a,x⟩, L2x = γ(a⟨b,x⟩+ b⟨a,x⟩)− β a⟨a,x⟩ − αb⟨b,x⟩.

Thus G(n)x = x+ f1Lx+ f2L
2x with f1 = sin(nωs)

s and f2 = 1−cos(nωs)
s2 , which is evaluable in

O(d) time via a few inner products. By the minimal polynomial λ(λ2+s2), L3 = −s2L; expanding
exp(ηL) and regrouping yields the rank-2 update form used throughout

I SPECTRAL ANALYSIS OF GRAPE AND OTHER METHODS

In this section, we discuss eigenvalue-level results for GRAPE-M generators/exponentials and sum-
marize the unipotent spectra of GRAPE-A/GRAPE-AP. Throughout, L(a,b) = ab⊤ − ba⊤ ∈
so(d), and α = ∥a∥2, β = ∥b∥2, γ = a⊤b, ∆ = αβ − γ2, s =

√
∆ as in Section 2.

I.1 RANK-2 PLANE: EXACT SPECTRUM AND GEOMETRIC INTERPRETATION

Lemma I.1 (Rank-2 spectrum). For L = L(a,b), the eigenvalues are {±is} ∪ {0}d−2, and there
exists B ∈ SO(d) such that

B⊤LB =

[
sJ 0
0 0d−2

]
, J =

(
0 −1
1 0

)
.

Moreover, s = ∥a∥∥b∥ sinϕ, where ϕ ∈ [0, π] is the angle between a and b.

Proof. From Section 2, L2 = −s2PU with U = span{a,b}, whence the minimal polynomial is
λ(λ2 + s2) and σ(U) = {±is, 0}. Choosing an orthonormal basis aligned with U ⊕ U⊥ yields the
claimed form. Finally, ∆ = αβ − γ2 = ∥a∥2∥b∥2(1− cos2 ϕ) = (∥a∥∥b∥ sinϕ)2.

Corollary I.2 (Phase bounds and orthogonality). The per-step rotation angle of exp(ηK) on U
equals θ = ηs and satisfies 0 ≤ θ ≤ η∥a∥∥b∥, with equality when a ⊥ b. If b = J a (Section 2.4)
and ∥a∥ = 1, then s = 1 and θ = η.

Exponential spectrum. For any n ∈ Z,

σ
(
exp(nL)

)
= {e±ins} ∪ {1}d−2.

Hence ρ(exp(nL)) = 1, the map is unitary (orthogonal), and all Lyapunov exponents are zero.
Periodicity holds with fundamental period T = 2π/s when s/π ∈ Q; otherwise, the trajectory is
quasi-periodic on the unit circle.

I.2 MULTI-SUBSPACE GRAPE-M AND ROPE

Let L =
∑m

j=1 θjLj with mutually orthogonal planes (hence [Li,Lj ] = 0 for i ̸= j) and Lj =

UjJU
⊤
j . Then

B⊤LB =

m⊕
j=1

θjJ⊕ 0d−2m, σ(L) = {±iθj}mj=1 ∪ {0}d−2m,

for some Q ∈ SO(d). Consequently,

σ
(
exp(nL)

)
= {e±inθj}mj=1 ∪ {1}d−2m.

This recovers RoPE when the planes are the coordinate pairs and {θj} follow the canonical log-
uniform spectrum (Proposition 3.1).
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I.3 ADDITIVE GRAPE

We now analyze the spectral properties of the additive lifts in GL introduced in Sections 4 and 5.
The key structural fact is unipotency: all per-step factors are identity plus a rank-1 (or few-rank)
nilpotent update of index 2.

Setup. Let A ∈ gl(d+1) (or gl(d+2) for ALiBi) satisfy A2 = 0 as in (4.1) and (4.6). For a scalar
path parameter s ∈ R, define the unipotent factor

H(s) := exp(sA) = I+ sA, H(s)−1 = I− sA, detH(s) = 1.

For Additive GRAPE (GRAPE-A) with offset m = j−i, s = mω; for GRAPE-PA, s = sh(t, j) :=∑t
ℓ=j+1 ψh(t, ℓ) from Eq. (5.2).

Proposition I.3 (Eigenvalues and Jordan structure of additive lifts). Let A ∈ gl(D) satisfy A2 = 0
and A ̸= 0. Then for every s ̸= 0,

σ
(
H(s)

)
= {1}D, (H(s)− I)2 = 0, detH(s) = 1, ρ(H(s)) = 1.

Hence, the minimal polynomial of H(s) is (λ − 1)2, and the Jordan form consists of size-2 Jordan
blocks for the 1-eigenspace, with the number of nontrivial blocks equal to rank(A).

Proof. Since A2 = 0, exp(sA) = I + sA and (H(s) − I)2 = s2A2 = 0. The characteristic
polynomial is (λ− 1)D for H(s), so all eigenvalues equal 1. The determinant equals the product of
eigenvalues, hence 1; the spectral radius is therefore 1.

Dictionary closure. If {Ar}Rr=1 satisfy A2
r = 0 and ArAs = 0 for all r, s, then(∑

r

θrAr

)2

=
∑
r

θ2rA
2
r +

∑
r ̸=s

θrθsArAs = 0,

so the combined generator is also index-2 nilpotent and yields the same unipotent spectrum.

Singular values. Although H(s) is not orthogonal, its deviation from I is rank-limited and exactly
analyzable. We first give a sharp, explicit formula for the canonical rank-1 case (ALiBi block), then
a general bound.

Lemma I.4 (Exact singular-value pair for a canonical rank-1 unipotent). LetE := ep e
⊤
q with p ̸= q

and define H(s) := I+ sE ∈ RD×D. Then D − 2 singular values equal 1, and the remaining two
are

σ±(H(s)) =

√
1 + s2

2 ± |s|
√

1 + s2

4 , σ+(H(s))σ−(H(s)) = 1. (I.1)

In particular, κ2(H(s)) = σ+(H(s))/σ−(H(s)) = 1 + 2|s|+O(s2) as s→ 0.

Proof. The action of H(s)⊤H(s) is identity on span{ep, eq}⊥. In the basis {eq, ep} it equals(
1+s2 s

s 1

)
, whose eigenvalues are 1 + s2

2 ± |s|
√
1 + s2

4 . Taking square roots yields (I.1). The

product equals
√
det(H⊤H) = |detH| = 1.

Corollary I.5 (ALiBi and Additive GRAPE (GRAPE-A) conditioning numbers). For the exact AL-
iBi generator in Eq. (4.6), E = ed+2e

⊤
d+1 and s = mβh, so the only nontrivial singular values

of Gadd,h(m) = I + sE are given by Eq. (I.1). For the single-vector additive lift Eq. (4.1) with
A =

(
0 u
0⊤ 0

)
and ∥u∥ = 1, the same formula holds with E replaced by an orthogonally similar

rank-1 update and s = mω.

Lemma I.6 (General operator-norm bounds for index-2 unipotents). For any A with A2 = 0 and
any s ∈ R,

1− |s| ∥A∥2 ≤ σmin(I+ sA) ≤ σmax(I+ sA) ≤ 1 + |s| ∥A∥2.

When rank(A) = 1 and ∥A∥2 = 1, these bounds are tight and coincide with Lemma I.4 at first
order in |s|.
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Proof. Use the triangle inequality ∥(I + sA)x∥2 ≤ ∥x∥2 + |s| ∥A∥2∥x∥2 and its reverse form
applied to (I + sA)−1 = I − sA; see also Weyl inequalities for singular values under rank-1
perturbations.

Cancellation in the relative logit. While H(s) can be anisotropic (Lemma I.4), the Additive
GRAPE (GRAPE-A) scoring uses a paired inverse-transpose (Eq. (4.2)), which cancels all mul-
tiplicative distortions and yields a pure additive term:

q̃⊤
i k̃j = q̂⊤

i

(
I+ iA

)⊤(
I− jA⊤) k̂j = q̂⊤

i

(
I+ (i−j)A⊤)k̂j = q̂⊤

i Gadd(j−i)−⊤k̂j ,

since (A⊤)2 = 0. This reproduces the exact relative law Eq. (4.3) and the closed form Eq. (4.4)
(e.g. Eq. (4.5)), independently of σ±(H(s)).

GRAPE-AP as a path-integral unipotent. Fix a head h and endpoint t. The per-row path product
in Section 5 is

t∏
ℓ=j+1

(
I+ ψh(t, ℓ)E

)
= I+

( t∑
ℓ=j+1

ψh(t, ℓ)
)
E = I+ sh(t, j)E,

because E2 = 0. Thus GRAPE-AP inherits the unipotent spectrum of Prop. I.3 with row-dependent
s = sh(t, j) ≤ 0 (since ψh ≤ 0 by construction). Its only two nontrivial singular values are
exactly (I.1) with s 7→ sh(t, j); the rest equal 1. Consequently,

κ2
(
PA factor

)
=

σ+
(
sh(t, j)

)
σ−

(
sh(t, j)

) = 1 + 2 |sh(t, j)|+O
(
sh(t, j)

2
)
,

while the determinant remains 1 and eigenvalues are all 1. As in Additive GRAPE (GRAPE-A), the
paired inverse-transpose used in the bilinear scoring removes any multiplicative anisotropy, leaving
the bounded additive term bh(t, j) in Eq. (5.2).

Implications. Now we summarize the implications of previous results. For all s, H(s) is invertible
with H(s)−1 = I − sA; eigenvalues do not grow with offset length (spectral radius = 1). The
operator norm grows at most linearly in |s| (Lemma I.6) and is exactly characterized in the rank-1
canonical cases (Lemma I.4).

Secondly, detH(s) = 1 implies no net volume change; any expansion along one direction is ex-
actly balanced by contraction along its paired direction (product σ+σ− = 1). Despite anisotropy,
the GRAPE-A and GRAPE-AP logits remain exactly relative because the key transform uses
H(s)−⊤, algebraically eliminating multiplicative distortion and yielding the closed-form additive
bias (Eqs. (4.3), (4.4), (5.2)).

I.4 COMPARISON TO PATH ATTENTION

PaTH Attention (Yang et al., 2025b) proposes a contextual multiplicative position map given by a
cumulative product of identity-plus-rank-one matrices

Ht = I− βt wtw
⊤
t , ∥wt∥2 = 1, βt ∈ (0, 2),

applied along the path between key position j and query position i as
∏i

s=j+1 Hs (see Section 2 of
the PaTH paper). In contrast to GRAPE-M factors, each Ht is not orthogonal unless βt ∈ {0, 2}.
This has immediate spectral consequences.

Per-step spectrum. Since Ht is symmetric rank-1 perturbation of the identity with projector Pt :=
wtw

⊤
t ,

σ(Ht) = { 1− βt, 1, . . . , 1︸ ︷︷ ︸
d−1

}, det(Ht) = 1− βt, ∥Ht∥2 = max{1, |1− βt|} = 1.

Thus Ht is norm nonexpansive (operator norm 1) but not norm-preserving unless βt ∈ {0, 2}.
Singular values equal the absolute eigenvalues because Ht is symmetric; the component along wt

is scaled by |1 − βt| < 1 for any βt ∈ (0, 2) \ {0, 2}, and flips sign when βt > 1 (a design choice
in PaTH to allow negative eigenvalues for state-tracking).
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Path product is contractive and near-singular. Let Pj→i =
∏i

s=j+1 Hs. Submultiplicativity of
singular values gives

σmax(Pj→i) ≤
i∏

s=j+1

∥Hs∥2 = 1, σmin(Pj→i) ≥
i∏

s=j+1

σmin(Hs) =

i∏
s=j+1

|1− βs|.

Hence Pj→i is (at best) nonexpansive, with a worst-case exponential lower bound on the smallest
singular value governed by the path-length product of |1 − βs|. Whenever some βs is close to 1,
Hs is nearly singular (and exactly singular if βs = 1), driving σmin(Pj→i) toward zero. Volume
contraction is quantified by

det(Pj→i) =

i∏
s=j+1

(1− βs),

which typically decays exponentially in i − j unless βs concentrates at the orthogonal endpoints
{0, 2}.
Aligned-plane special case. If the directions are time-invariant, ws ≡ w, then Pt = ww⊤ is an
idempotent projector and the factors commute:

i∏
s=j+1

Hs =

i∏
s=j+1

(
I− βsP

)
= I−

(
1−

i∏
s=j+1

(1− βs)
)
P,

so the eigenvalue along w is exactly
∏i

s=j+1(1− βs), making the contraction along w explicit and
exponential in path length unless βs ∈ {0, 2}.
Implications for long-context modeling. Because the PaTH transport multiplies the Q/K bilinear
by Pj→i, any persistent deviation of βt from {0, 2} yields cumulative energy loss along a moving
one-dimensional subspace. This concentrates mass in progressively fewer directions and can flatten
or attenuate long-range logits q⊤

i Pj→ikj as i − j grows, unless additional renormalizations or
forget-gates are introduced. In contrast, GRAPE-M maps lie in SO(d), so for both non-contextual
and contextual types, all singular values are 1; volumes and norms are preserved, and Lyapunov
exponents are 0, avoiding contraction-induced degradation of long-range interactions.
Lemma I.7 (Orthogonality condition for PaTH factors). For Ht = I − βtwtw

⊤
t with ∥wt∥ = 1,

Ht is orthogonal iff βt ∈ {0, 2}. For βt ∈ (0, 2) \ {0, 2}, Ht is symmetric, diagonalizable with
eigenvalues in (−1, 1] ∪ {1}, and strictly contractive on span{wt}.
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