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ABSTRACT

Existing fusion methods are tailored for high-quality images but struggle with de-
graded images captured under harsh circumstances, thus limiting the practical po-
tential of image fusion. In this work, we present a Degradation and Semantic Prior
dual-guided framework for degraded image Fusion (DSPFusion), utilizing degra-
dation priors and high-quality scene semantic priors restored via diffusion models
to guide both information recovery and fusion in a unified model. In specific, it
first individually extracts modality-specific degradation priors and jointly captures
comprehensive low-quality semantic priors from cascaded source images. Subse-
quently, a diffusion model is developed to iteratively restore high-quality semantic
priors in a compact latent space, enabling our method to be over 200× faster than
mainstream diffusion model-based image fusion schemes. Finally, the degrada-
tion priors and high-quality semantic priors are employed to guide information
enhancement and aggregation via the dual-prior guidance and prior-guided fu-
sion modules. Extensive experiments demonstrate that DSPFusion mitigates most
typical degradations while integrating complementary context with minimal com-
putational cost, greatly broadening the application scope of image fusion.

1 INTRODUCTION

Image fusion is a fundamental enhancement technique designed to combine complementary context
from multiple images, thereby overcoming the limitations of single-modality or single-type sen-
sors (Zhang et al., 2021). Infrared-visible image fusion (IVIF) is a key research area in image fusion,
integrating essential thermal information from infrared (IR) images with the rich textures of visible
(VI) images for comprehensive scene characterization (Zhang & Demiris, 2023). The complete
information integration and visually pleasing results make IVIF widely applied in military detec-
tion (Muller & Narayanan, 2009), security surveillance (Zhang et al., 2018), assisted driving (Bao
et al., 2023), object detection (Jain et al., 2023), semantic segmentation (Zhang et al., 2023), etc.

Recently, IVIF has garnered significant attention, leading to rapid advancements in relevant algo-
rithms. These algorithms can be classified based on network architecture into convolutional neu-
ral network-based (Ma et al., 2021; Zhao et al., 2023a), autoencoder-based (Li & Wu, 2019; Li
et al., 2023a), generative adversarial network-based (Ma et al., 2019; Liu et al., 2022), Transformer-
based (Ma et al., 2022; Zhang et al., 2022), and diffusion model (DM)-based (Zhao et al., 2023b; Yi
et al., 2024a) methods. Alternatively, from a functional perspective, these algorithms can be catego-
rized into visual-oriented (Ma et al., 2019; Tang et al., 2022c), degradation-aware (Tang et al., 2023;
Yi et al., 2024b; Zhang et al., 2024), semantic-driven (Tang et al., 2022b; Liu et al., 2023a), and joint
registration-fusion (Tang et al., 2022a; Xu et al., 2023) approaches. Despite the satisfactory fusion
performance achieved by these methods, several challenges still remain. On the one hand, while dif-
fusion models with powerful generative abilities could bring gains, DM-based fusion methods (Zhao
et al., 2023b; Yue et al., 2023) are often computationally intensive and time-consuming, making it
unapplicable in real-time tasks such as assisted driving and security surveillance. On the other hand,
although some degradation-aware methods have been proposed to address imaging interferences,
they still struggle with complex fusion scenarios. For example, DIVFusion (Tang et al., 2023) and
PAIF (Liu et al., 2023b) are tailored for specific degradations (e.g., low-light or noise) but fail to
generalize to others. Additionally, there are some general degradation-aware methods that handle
multiple degradations within a single framework assisted by additional semantic context, such as
text prompts (Yi et al., 2024b). However, they are sensitive to text prompts and struggle to han-
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dle cases where degradations occur simultaneously in both infrared and visible images. Moreover,
tailoring text descriptions for each fusion scenario is challenging.

To overcome the above challenges, we propose a degradation and semantic prior dual-guided im-
age fusion framework, abbreviated as DSPFusion, which incorporates degradation suppression and
information aggregation into a unified model without additional assistance. The proposed method
involves two training phases. In Stage I, the semantic prior embedding network (SPEN) captures the
semantic prior from cascaded high-quality sources, while the degradation prior embedding network
(DPEN) extracts distinct degradation priors from two degraded images separately. A Transformer-
based restoration and fusion network, guided by semantic and degradation priors via the dual prior
guidance module, synthesizes high-quality fusion results. Note that the scene semantic prior is
jointly derived from both modalities, enabling our model to enhance one using high-quality context
from the complementary modality. A contrastive mechanism is employed to constrain the training
of DPEN, thus ensuring the degradation priors effectively characterize various degradation types.
Since high-quality source images are unavailable in practical situations, we deploy a diffusion model
to restore high-quality semantic priors from low-quality ones in Stage II. The diffusion process is
performed in a compact latent space, making our model computationally efficient and lightweight.
Ultimately, DPEN adaptively identifies different degradation types and a diffusion model refines se-
mantic priors, assisting the restoration and fusion model in synthesizing high-quality fusion results.
In summary, our main contributions are as follows:

- We propose a novel restoration and fusion framework with dual guidance of degrada-
tion and semantic priors, effectively handling most typical degradations (e.g., low-light,
over-exposure, noise, blur, and low-contrast) while aggregating complementary informa-
tion from multiple source images in one unified model. To our knowledge, it is the first
model that comprehensively addressing various degradations in image fusion.

- A diffusion model is devised to restore high-quality semantic priors in a compact latent
space, providing coarse-grained semantic guidance with low computational complexity.

- A contrastive mechanism is employed to constrain DPEN to adaptively perceive degrada-
tion types from source images, thereby guiding the restoration and fusion network as well
as the semantic prior diffusion model to purposefully handle degradations without requiring
additional auxiliary information.

- Extensive experiments on normal and degraded scenarios demonstrate the superiority of our
method in degradation suppression and complementary context aggregation. Remarkably,
it is two orders of magnitude more efficient than mainstream DM-based fusion algorithms.

2 RELATED WORK

Image Fusion. Earlier visual-oriented fusion methods focus on integrating cross-modal comple-
mentary context and enhancing visual quality, which rely on elaborate network architectures and
loss functions to preserve complementary information that remains faithful to source images. Ini-
tially, mainstream network architectures primarily include CNN (Liang et al., 2022; Zhao et al.,
2023a), AE (Li & Wu, 2019; Li et al., 2023a), and GAN (Ma et al., 2019; Liu et al., 2022). With
the rise of Transformers (Vaswani et al., 2017) and diffusion models (Ho et al., 2020), these archi-
tectures gradually dominate fusion model design (Ma et al., 2022; Yue et al., 2023). However, as a
compute-intensive process, the time cost of diffusion models remains a contentious issue.

Furthermore, several schemes, including joint registration and fusion (Xu et al., 2022b; Wang et al.,
2022; Xu et al., 2023), semantic-driven (Tang et al., 2022b; Liu et al., 2022; Sun et al., 2022), and
degradation-aware (Tang et al., 2023; Liu et al., 2023b) methods are proposed to broaden the practi-
cal applications of image fusion. Particularly, under some extreme conditions, environmental factors
like low light and noise inevitably affect imaging. Thus, Tang et al. (2023) proposed an illumination-
robust fusion method, achieving low-light enhancement and complementary context aggregation si-
multaneously. Liu et al. (2023b) developed a perception-aware method by leveraging adversarial
attack and architecture search to boost the robustness of the fusion network and downstream tasks
against noise. However, these methods are tailored to specific degradations and struggle with com-
plex and diverse interferences. To this end, Yi et al. (2024b) leveraged CLIP to extract semantic
embedding from text descriptions to assist the fusion network in addressing multiple degradations.
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Figure 1: The framework of our degradation and semantic prior dual-guided image fusion network.

However, customizing text for each scenario is costly and impractical. Therefore, it is urgent and
challenging to directly identify degradation types from source images, allowing a unified network to
effectively handle diverse degradations and achieve optimal information aggregation.

Unified Image Restoration. With advancements in deep learning technology, the field of image
restoration is evolving beyond designing specialized models for specific degradation factors. Ini-
tially, researchers modeled different degradations uniformly and trained task-specific headers (Chen
et al., 2021) or separate models (Zamir et al., 2022; Xia et al., 2023) to address various degradations.
Furthermore, PromptIR (Potlapalli et al., 2024) and AutoDIR (Jiang et al., 2024) interpret textual
user requirements via the CLIP encoder (Radford et al., 2021), guiding the general restoration mod-
els to deal with diverse degradations. To avoid reliance on user input, Li et al. (2022) employed
contrastive learning to identify degradation types from corrupted images and guide restoration mod-
els in addressing corruptions via feature modulation. Similarly, Luo et al. (2024) fine-tuned CLIP
on their mixed degradation dataset to develop DA-CLIP, which directly perceives degradation types
and predicts high-quality content embeddings from corrupted inputs, aiding restoration networks in
handling various degradations. Note that these unified restoration models are designed for natural
images and usually not applicable to multi-modal images, such as infrared and visible images.

Diffusion Model. Benefiting from their powerful generative capabilities, diffusion models (DMs)
have been applied to diverse applications such as text-to-image generation (Rombach et al., 2022),
image restoration (Xia et al., 2023), super-resolution (Saharia et al., 2023), deblurring (Chen et al.,
2024b), deraining (Özdenizci & Legenstein, 2023), and low-light image enhancement (Yi et al.,
2023), consistently delivering impressive results. DMs have also been applied to the image fusion
task. Yue et al. (2023) utilized the denoising network of DMs to enhance feature extraction. Zhao
et al. (2023b) integrated a pre-trained DM into the EM algorithm, achieving multi-modal fusion
with generative priors from natural images. However, these schemes perform the diffusion process
in the image domain, making DM-based approaches time-consuming. To improve efficiency, some
approaches, such as Stable Diffusion (Rombach et al., 2022), PVDM (Yu et al., 2023), and Hi-
Diff (Chen et al., 2024b), transfer the diffusion process into a latent space.

3 METHODOLOGY

3.1 OVERVIEW

Our workflow is illustrated in Fig. 1. Given low-quality visible image I lqvi and infrared image I lqir ,
we first extract global low-quality semantic prior (p̂s) and degradation priors (pvid and pird ) via the
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semantic prior embedding network (SPEN, N s) and degradation prior embedding network (DPEN,
N d), described as:

p̂s = N s(I
lq
vi, I

lq
ir ; θs), {pvid , pird } = {N d(I

lq
vi; θd),N d(I

lq
ir ; θd)}. (1)

Then, a semantic prior diffusion model (SPDM, N dm) is designed to restore high-quality semantic
prior (p′s) from p̂s guided by degradation priors, which is formulated as:

p′s = N dm(p̂s, p
vi
d , p

ir
d ; θdm). (2)

Finally, p′s, p
vi
d , and pird are employed together to assist the restoration and fusion network (N ef ) in

synthesizing high-quality fused images (If ):

If = N ef (I lqvi, I
lq
ir , p

vi
d , p

ir
d , p

′
s; θef ). (3)

N ef is a successor of Restormer (Zamir et al., 2022). During feature extraction, we develop two par-
allel branches to extract multi-scale visible and infrared features, while integrating the semantic and
degradation priors to counteract various degradations. The k-th level feature extraction is defined
as Fkx = Ek(F k−1

x , pxd , ps), where x ∈ {ir, vi}, Ek denotes the k-th level prior-modulated encoder
layer. Then, the semantic prior-guided fusion module (PGFM, Mf ) is employed to aggregate the
complementary information on each level and output Ff , formulated as:

Fkf = Mf (Fkir,Fkvi, ps). (4)

A series of prior-modulated decoder layers then refine the fused features from coarse to fine-grained.
Finally, a fusion header generates high-quality fusion results (If ). Following previous practice (Xia
et al., 2023; Chen et al., 2024b), we train our DSPFusion with a two-stage training strategy, where
Stage I focuses on prior extraction and modulation, and Stage II optimizes the SPDM.

3.2 STAGE I: PRIOR EXTRACTION AND MODULATION

In Stage I, our purpose is to compress the high- and low-quality images into a compact latent space
to characterize scene semantics and degradation types, guiding the restoration and fusion process.

3.2.1 NETWORK ARCHITECTURES

Semantic and Degradation Embedding. As shown in Fig. 1 (b), high-quality images Ihqvi and Ihqir
are concatenated and fed into the semantic prior embedding network (SPEN) to obtain a compact se-
mantic prior ps. Similarly, I lqvi and I lqir are processed separately by the degradation prior embedding
network (DPEN) to capture degradation priors pvid and pird . SPEN and DPEN share a similar struc-
ture with residual blocks to generate prior embeddings p ∈ RN×C′ , where N and C ′ represent the
token number and channel dimension. Notably,N is much smaller thanH×W , resulting in a higher
compression ratio (H×WNs

) compared to previous latent diffusion models (e.g., 8) (Rombach et al.,
2022), significantly reducing the computational burden of subsequent SPDM. Additionally, the dis-
tribution of the latent semantic space (RN×C′ ) is simpler than that of the image space (RH×W×3),
which can be approximated with fewer iterations. Thus, our SPDM only requires fewer sampling
steps (T � 1000) to infer semantic priors compared to mainstream image-level DM-based fusion
schemes (Zhao et al., 2023b), further decreasing computational overhead.

Dual Prior Guidance Module. We integrate these priors into N ef via a dual prior guidance mod-
ule, consisting of a degradation prior modulation module (DPMM) and a semantic prior integration
module (SPIM). Given input features Fx, they first pass through parallel DPMM and SPIM. As
shown in Fig. 1 (c), Fx is compressed into a vector matching the size of pxd and then multiplied by
pxd . The resulting product passes through a linear layer to output the modulation parameters αxd and
βxd . Then, referring to (Li et al., 2022; Yi et al., 2024b), DPMM is formulated as:

Fdpmx = (αxd ⊗Fx)⊕ βxd . (5)

As a result, DPMM adaptively enhances the features based on the degradation type, enabling var-
ious degradations to be addressed with unified model parameters. In parallel, the semantic prior
is integrated into Fx through SPIM to enhance its global perception of high-quality scene context.
As shown in Fig. 1 (d), Fx is mapped as a query QF ∈ RĤŴ×C′ , and ps is mapped as the key
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Ks ∈ RNs×C′ and value Vs ∈ RNs×C′ . Then, cross-attention is applied to perform semantic prior
integration and generate the semantic-modulated features as:

Fspix = Fx ⊕ softmax
(
QFK

T
s /
√
dk

)
Vs, (6)

where dk is a learnable scaling factor. Then, we also employ the cross-attention mechanism
to aggregate Fdpmx and Fspix to generate final reinforcement features with Fdpgx = Fspix ⊕
softmax

(
QspiK

T
dpm/

√
dk

)
Vdpm, where Qspi is mapped from Fspix , and Kdpm and Vdpm are

mapped from Fdpmx . Importantly, ps provides global semantic guidance, and pd explicitly indicates
the degradation types, thereby reducing the overall training difficulty of restoration.
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Figure 2: The architecture of the PGFM.

Prior-guided Fusion Module. Consider-
ing that ps is jointly extracted from multi-
modal inputs, implicitly integrating high-
quality and comprehensive scene contexts, we
utilize semantic channel attention to generate
the channel-wise fusion weight (wcir or wcvi) as
shown in Fig. 2. Moreover, we employ spatial
attention to perform spatial activity level mea-
surements. The infrared (or visible) features are
compressed via global max pooling (GMP) and
global average pooling (GAP). The pooled re-
sults are then concatenated along the channel
dimension and fed into a convolutional layer to
generate spatial weights (wsir or wsvi). Subsequently, we comprehensively integrate the channel- and
spatial-wise attention to obtain the final fusion weight of the k-th layer, formulated as:

wkir = σ(wcir ⊗ wsir), wkvi = σ(wcvi ⊗ wsvi), (7)

where ⊗ denotes element-wise multiplication with broadcasting, and σ is the sigmoid function.
Finally, the fusion process is defined as: Fkf = wkirFkir ⊕ wkviFkvi.

Fusion Header. The multi-scale fused features are refined from coarse to fine using prior-modulated
decoder layers, which utilize the semantic prior integration module rather than the dual-prior guid-
ance module, relying exclusively on high-quality scene semantic priors to enhance feature rein-
forcement. Subsequently, a fusion header, structurally similar to the decoder layer, generates If
from enhanced fused features (F0

f ). More details can be found in Appendix A.

3.2.2 LOSS FUNCTIONS

Since semantic and degradation priors are abstract high-dimensional features without ground-truth
constraints, we use the fusion and contrastive losses to jointly optimize N ef , N s, and N d. Fol-
lowing Ma et al. (2022) and Yi et al. (2024b), the fusion loss involves the content, structural simi-
larity (SSIM), and color consistency losses. To counteract degradations, we construct these losses
with manually obtained high-quality source images. The content loss is defined as:

Lcont =
1

HW

(∥∥∥If −max(Ihqvi , I
hq
ir )
∥∥∥

1
+ γ ·

∥∥∥∇If −max(∇Ihqvi ,∇I
hq
ir )
∥∥∥

1

)
, (8)

where∇ denotes the Sobel operator, max(·) is the maximum selection for preserving salient targets
and textures, ‖ · ‖1 and γ are the l1-norm and trade-off parameter. The SSIM loss is applied to
maintain the structural similarity between the fused image and high-quality sources, formulated as:

Lssim =
(

1− SSIM(If , I
hq
vi )
)

+
(

1− SSIM(If , I
hq
ir )
)
, (9)

where SSIM(·, ·) measures the structural similarity between two images. Referring to Xu et al.
(2022a) and Ma et al. (2022), we construct the color consistency loss to encourage fused images to
preserve color information from high-quality visible images. It is defined as:

Lcolor =
1

HW

∥∥∥ΦCbCr(If )− ΦCbCr(I
hq
vi )
∥∥∥

1
, (10)
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where ΦCbCr(·) converts RGB to CbCr. Additionally, our DPEN aims to adaptively identify various
degradation types. For inputs with different degradations, the corresponding pd should be distinct,
even if the image contents are the same. To achieve this, we devise a contrastive loss Lcl that pulls
together priors characterizing the same degradations while pushing apart priors representing various
degradations. For a degradation prior pd, q+

k and q−m are the corresponding positive and negative
counterparts. Then, Lcl is formulated as:

Lcl =

K∑
k=1

− log
exp(pd · q+

k /τ)∑M
m exp(pd · q−m/τ)

, (11)

where K and M denote the number of positive and negative samples, and τ is a temperature param-
eter. Specifically, if pd is extracted from an image with a specific degradation, then q+

k is extracted
from other scenes with the same degradation, while q−m is extracted from the same scene but with
various degradations or modalities. Finally, the total loss in Stage I for constraining N ef , N s, and
N d is the weighted sum of the content, SSIM, color consistency, and contrastive losses:

LI = λcont · Lcont + λssim · Lssim + λcolor · Lcolor + λcl · Lcl, (12)
where λcont, λssim, λcolor, and λcl are hyper-parameters for controlling tradeoff.

3.3 STAGE II: SEMANTIC PRIOR DIFFUSION MODEL

In Stage II, we develop a semantic prior diffusion model (SPDM) to restore high-quality semantic
prior from low-quality ones, thereby guiding restoration and fusion. Our SPDM builds on condi-
tional denoising diffusion models, involving the forward diffusion and reverse denoising processes,
as shown in Fig. 1 (e). In the diffusion process, we first embed Ihqvi and Ihqir into a high-quality
semantic prior ps, which is simply marked as x0 in this section. x0 serves as the starting point of a
forward Markov chain, and gradually adds Gaussian noise to it over T iterations as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
αtxt−1, βtI), (13)

where xt is the t-step noisy variable, βt governs the variance of noises, and αt = 1 − βt. Through
iterative derivation with reparameterization, the forward Markov process can be reformulated as:

q(xt|x0) = N (xt,
√
ᾱtx0, (1− ᾱt)I), (14)

where ᾱt = Πt
i=1αi. As t approaches a large value T , ᾱT tends to 0 and q(xT |x0) approximates

the normal distribution N (0, I), thus completing the forward process.

The reverse process starts from a pure Gaussian distribution and progressively denoises to generate
the high-quality semantic prior via a T-step Markov chain, defined as:

p(xt−1|xt) = N (xt−1;µ(xt, t), σ
2
t I), µ(xt, t) =

1
√
αt

(xt −
βt√

1− ᾱt
ε), (15)

where σ2
t = (1−ᾱt−1)

(1−ᾱt)
βt. Following previous works (Ho et al., 2020; Rombach et al., 2022; Chen

et al., 2024b), we deploy a denoising U-Net (εθ) with the aid of the low-quality semantic prior p̂s
and degradation priors pvid and pird to estimate the noise ε. Utilizing the reparameterization trick and
substituting ε in Eq. (15) with εθ(xt, p̂s, pvid , p

ir
d , t), we can get:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, p̂s, p
vi
d , p

ir
d , t)

)
+ σtz. (16)

Traditionally, the objective for training εθ is defined as the weighted variational bound:
∇θ‖εt − εθ(

√
ᾱtx0 +

√
1− ᾱtεt, p̂s, pvid , pird , t)‖22. (17)

Since the distribution of the latent semantic space (RNs×C′ ) is simpler than that of the image
space (RH×W×3), the semantic prior (p′s) can be generated with fewer iterations (Chen et al., 2024b).
Thus, we run complete T (� 1000) iterations of the reverse process to infer p′s. Consequently, we
use Ldiff = ‖p′s − ps‖1 to train SPDM. We also apply content, SSIM, and color consistency losses
to collaboratively constrain the training of SPDM. Thus, the total loss of Stage II is defined as:

LII = λdiff · Ldiff + λcont · Lcont + λssim · Lssim + λcolor · Lcolor, (18)
where λdiff is a hyper-parameter for balancing various losses.

6
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Table 1: Quantitative comparison results on typical fusion datasets. The best and second-best results
are highlighted in Red and Blue, respectively.

MSRS LLVIP RoadScene TNO
Methods EN MI VIF Qabf EN MI VIF Qabf EN MI VIF Qabf EN MI VIF Qabf
DeFus. 6.350 3.054 0.736 0.505 7.112 3.196 0.683 0.487 6.910 3.018 0.537 0.404 6.581 2.917 0.596 0.384
PAIF 5.830 2.907 0.470 0.329 6.937 2.533 0.432 0.286 6.750 2.919 0.387 0.248 6.198 2.561 0.421 0.243
MetaFus. 6.355 1.693 0.700 0.476 6.645 1.400 0.629 0.429 7.363 2.195 0.517 0.416 7.184 1.815 0.615 0.362
LRRNet 6.197 2.886 0.536 0.451 6.006 1.749 0.397 0.281 7.051 2.649 0.463 0.344 6.944 2.577 0.577 0.352
MURF 5.036 1.516 0.403 0.311 5.869 2.017 0.355 0.317 6.961 2.492 0.498 0.468 6.654 1.912 0.528 0.378
SegMiF 6.109 2.472 0.774 0.565 7.172 2.819 0.837 0.651 7.254 2.657 0.615 0.543 6.976 3.036 0.876 0.589
DDFM 6.182 2.661 0.721 0.468 6.814 2.590 0.632 0.475 7.111 2.84 0.587 0.482 6.878 2.408 0.691 0.466
EMMA 6.713 4.129 0.957 0.632 7.160 3.374 0.740 0.572 7.383 3.140 0.605 0.461 7.203 3.038 0.755 0.472
Text-IF 6.648 4.283 1.031 0.692 6.961 3.142 0.855 0.648 7.299 2.988 0.698 0.588 7.168 3.524 0.918 0.583
DSPFusion 6.695 4.736 1.044 0.726 7.314 4.390 0.943 0.717 7.363 3.962 0.755 0.667 7.152 4.680 0.931 0.640

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Implementation Details. Our restoration and fusion network inherits Restormer (Zamir et al.,
2022), which is a 4-level encoder-decoder Transformer architecture with degradation and semantic
prior modulation. From level-1 to level-4, the numbers of Transformer blocks are set as [2, 2, 4, 4],
and the channel number is set as [32, 64, 128, 256]. The SPEN contains 6 residual blocks, whose
token number and channel dimension are set to Nc = 16 and C ′c = 256. The DPEN contains 4
residual blocks, whose token number and channel dimension are set to Nd = 16 and C ′d = 128.
The time-step of SPDM is set as T = 10. We train our DSPFusion with the AdamW optimizer
with β1 = 0.9 and β2 = 0.99. The learning rate is initialized to 2× 10−4 and gradually reduced to
1× 10−6 with cosine annealing. In both Stages I and II, the training involves 50k iterations. In the
initial 30k iterations, the patch and batch sizes are set to 224 and 4, and in subsequent 20k iterations,
the patch and batch sizes are set to 256 and 3. The hyper-parameters are empirically set as γ = 0.75,
λcont = 15, λssim = 2, λcolor = 20, λcl = 1, λdiff = 10. The numbers of positive and negative
samples are set to K = 3 and M = 7. Our training data is construed on the EMS dataset (Yi et al.,
2024b), including 2, 210 scenarios, with 8, 804 and 10, 318 low-quality infrared and visible images.

Experiment Configurations. We first demonstrate the fusion performance on four typical datasets,
i.e., MSRS (Tang et al., 2022c), LLVIP (Jia et al., 2021), RoadScene (Xu et al., 2022a), TNO (Toet,
2017), with four quantitative metrics, including EN, MI, VIF, andQabf . The numbers of test images
in the MSRS, LLVIP, RoadScene, and TNO datasets are 361, 50, 50, and 25, respectively. We
compare our DSPFusion with nine SOTA fusion methods, including DeFusion (Liang et al., 2022),
PAIF (Liu et al., 2023b), MetaFusion (Zhao et al., 2023a), LRRNet (Li et al., 2023a), MURF (Xu
et al., 2023), SegMiF (Liu et al., 2023a), DDFM (Zhao et al., 2023b), EMMA (Zhao et al., 2024),
Text-IF (Yi et al., 2024b). We validate the performance of DSPFusion under various degradations,
including blur, rain, low-light, over-exposure, and random noise in visible images (VI), as well as
low-contrast, random noise, and stripe noise in infrared images (IR). We also evaluate the robustness
of DSPFusion under mixed degradations, i.e., rain or low-light in VI, and low-contrast or stripe noise
in IR. All scenarios include 100 test samples, except for the over-exposed scenario in visible images,
which contains 50 test samples. Four no-reference metrics, i.e., MUSIQ, PI, TReS, and SD (or EN
or SF), are utilized to evaluate the quality of the fused images. Some SOTA image enhancement
algorithms are deployed to pre-enhance low-quality sources for fair comparisons. In particular, Hi-
Diff (Chen et al., 2024b) for deblurring, NeRD-Rain (Chen et al., 2024a) for deraining, Spadap (Li
et al., 2023b) for denoising, QuadPrior (Wang et al., 2024) for low-light enhancement, IAT (Cui
et al., 2022) for exposure correction, WDNN (Guan et al., 2019) for stripe noise removal, and the
method in Tang et al. (2022c) for low-contrast enhancement.

4.2 FUSION PERFORMANCE COMPARISON

Comparison without Pre-enhancement. Table 1 shows quantitative results on typical fusion
datasets. DSPFusion achieves superior performance in MI and Qabf, effectively transferring com-
plementary and edge information into fused images. The optimal VIF indicates that our fused images
exhibit excellent visual perception quality, while the comparable EN suggests that our fusion results
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Table 2: Quantitative comparison results in degraded scenarios with enhancement.
VI (Blur) VI (Rain) VI (Low-light, LL) VI (Over-exposure, OE)

Methods MUSIQ PI TReS SF MUSIQ PI TReS SD MUSIQ PI TReS SD MUSIQ PI TReS SD
DeFus. 38.971 4.368 36.968 8.765 44.182 3.575 44.516 40.471 43.645 3.510 42.961 36.326 46.316 3.367 45.972 38.649
PAIF 39.363 5.431 40.298 9.102 45.685 4.720 46.819 38.593 42.432 4.725 45.248 39.239 37.032 5.261 35.094 52.062
MetaFus. 36.674 4.946 34.451 18.167 41.160 4.127 39.105 49.808 38.775 4.061 33.915 46.852 43.590 3.217 38.889 52.473
LRRNet 41.490 4.074 41.774 11.084 48.591 3.218 50.646 42.612 44.037 3.391 47.584 31.204 48.263 2.803 51.459 44.852
MURF 45.860 3.379 46.603 12.374 48.703 3.131 49.965 25.117 44.979 3.144 46.383 21.418 52.484 2.518 56.603 33.128
SegMiF 42.907 4.02 41.349 12.636 47.850 2.909 50.016 46.861 45.16 3.049 46.311 45.614 51.282 2.688 54.419 50.445
DDFM 42.005 3.928 42.765 9.474 47.117 3.229 49.757 36.140 44.022 3.346 47.090 32.197 52.182 2.435 59.047 41.834
EMMA 41.442 4.128 37.81 14.036 48.315 3.078 45.750 55.989 45.124 3.201 42.383 45.881 49.446 2.651 48.389 54.538
Text-IF 44.536 3.665 47.524 15.153 50.109 2.775 56.966 54.842 46.015 2.994 50.279 51.537 52.048 2.290 56.979 52.200
DSPFusion 47.137 2.972 49.750 15.693 50.467 2.557 56.528 55.599 48.500 2.768 54.090 45.940 52.812 2.206 57.198 54.840

VI (Random noise, RN) IR (Low-contrast, LC) IR (Random noise, RN) IR (Stripe noise, SN)
Methods MUSIQ PI TReS EN MUSIQ PI TReS SD MUSIQ PI TReS EN MUSIQ PI TReS EN
DeFus. 34.661 4.883 30.837 7.028 44.378 3.538 45.154 39.753 40.463 3.735 43.565 7.065 42.603 3.593 42.966 6.968
PAIF 33.875 6.306 33.362 6.731 47.192 4.525 47.946 38.499 47.198 4.456 49.016 6.772 47.403 4.482 48.921 6.747
MetaFus. 32.918 4.969 27.623 7.362 40.136 4.224 39.847 55.705 40.236 4.304 39.461 7.419 39.543 4.215 38.837 7.448
LRRNet 34.856 4.642 32.07 7.108 48.540 3.189 50.456 42.697 46.625 3.327 49.883 7.015 47.382 3.248 48.708 7.016
MURF 40.866 3.386 42.447 6.233 48.958 3.063 51.079 26.875 49.799 3.276 49.431 6.204 47.135 3.202 47.908 6.223
SegMiF 37.362 4.081 31.640 6.975 48.335 2.803 51.976 50.813 47.909 2.977 50.489 6.997 46.971 2.852 49.394 7.080
DDFM 37.325 4.351 36.870 6.940 48.039 3.222 51.181 37.090 46.829 3.512 48.653 6.960 45.310 3.361 47.234 6.908
EMMA 34.754 4.432 29.364 7.44 48.721 2.978 46.842 58.299 45.870 3.124 45.667 7.453 47.286 3.036 45.717 7.439
Text-IF 39.200 3.930 36.588 7.406 50.022 2.794 55.203 56.117 48.795 2.944 54.003 7.402 49.376 2.829 53.717 7.440
DSPFusion 47.718 2.954 52.787 7.343 50.597 2.623 56.988 56.060 50.752 2.852 57.266 7.349 51.055 2.787 57.243 7.353

VI (Rain) and IR (LC) VI (Rain) and IR (SN) VI (LL) and IR (LC) VI (LL) and IR (SN)
Methods MUSIQ PI TReS SD MUSIQ PI TReS EN MUSIQ PI TReS SD MUSIQ PI TReS EN
DeFus. 44.168 3.727 44.601 35.803 41.933 3.808 42.020 6.827 42.000 3.654 41.607 30.416 40.279 3.684 38.722 6.788
PAIF 46.172 4.817 46.361 37.658 46.013 4.778 47.135 6.661 42.671 4.639 46.503 30.425 41.686 4.796 44.084 6.616
MetaFus. 40.528 4.221 39.237 51.363 40.175 4.214 38.272 7.339 38.832 3.833 33.506 43.002 37.957 4.086 31.719 7.194
LRRNet 48.396 3.248 50.05 42.434 47.151 3.335 48.290 6.999 43.231 3.414 45.943 31.170 42.730 3.564 44.534 6.630
MURF 49.221 3.082 50.669 26.013 47.048 3.271 47.253 6.148 44.943 3.117 45.792 18.915 43.006 3.300 42.568 5.910
SegMiF 48.392 2.915 50.802 46.525 46.548 2.998 47.923 6.989 44.512 2.965 45.744 40.511 43.337 3.218 43.201 6.982
DDFM 47.513 3.318 50.074 36.381 44.869 3.447 46.338 6.873 43.242 3.473 46.691 29.616 41.600 3.788 43.711 6.722
EMMA 48.864 3.017 46.307 54.659 47.216 3.119 45.023 7.366 44.251 3.211 41.010 43.038 43.652 3.233 39.788 7.209
Text-IF 50.380 2.765 56.429 56.381 48.221 2.885 53.446 7.400 47.815 2.915 49.334 45.733 39.866 3.272 39.043 7.095
DSPFusion 50.672 2.607 56.362 55.686 50.883 2.737 57.098 7.349 48.547 2.819 53.892 46.144 48.711 3.020 54.598 7.263

Infrared
(Deg.\ En.)

Visible
(Deg.\ En.)

PAIF
(ACM MM’23)

MetaFusion
(CVPR’23)

LRRNet
(TPAMI’23)

MURF
(TPAMI’23)

DDFM
(ICCV’23)

EMMA
(CVPR’24)

Text-IF
(CVPR’24)

DSPFusion
(Ours)

Figure 3: Visualization of fusion results in degraded scenarios with enhancement.

retain abundant information. In summary, the quantitative results demonstrate the remarkable fusion
performance of our method. Some visual fusion results are provided in Appendix C.

Comparison with Pre-enhancement. It is worth mentioning that almost all fusion algorithms
apply state-of-the-art image restoration methods to pre-enhance source images for fair comparisons.
Notably, Text-IF utilizes its built-in enhancement module for low-light and overexposed visible
images, as well as low-contrast and random noise in infrared images, while applying pre-processing
algorithms for other degraded scenarios. Moreover, when source images are affected by random
noise, PAIF does not employ additional denoising algorithms for pre-enhancement, as its fusion
network is inherently robust to noise. The quantitative results in degraded scenarios are shown in
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Table 3: Quantitative results of detection.
Fusion in nighttime scenarios with enhancement

Methods Prec. Recall AP@50 AP@75 AP@95 mAP
DeFus. 0.983 0.831 0.911 0.802 0.057 0.684
PAIF 0.989 0.848 0.919 0.799 0.071 0.683
MetaFus. 0.958 0.871 0.927 0.806 0.116 0.697
LRRNet 0.989 0.811 0.902 0.783 0.040 0.668
MURF 0.980 0.884 0.935 0.809 0.095 0.707
SegMiF 0.981 0.835 0.910 0.799 0.092 0.687
DDFM 0.983 0.842 0.917 0.801 0.067 0.679
EMMA 0.971 0.846 0.916 0.791 0.085 0.685
Text-IF 0.989 0.782 0.887 0.778 0.043 0.667
Ours 0.974 0.884 0.936 0.822 0.169 0.726

Table 4: Results of computational efficiency.
Fusion Fusion with enhancement

Methods parm.(m) flops(g) time(s) parm.(m) flops(g) time(s)
DeFus. 7.874 71.55 0.075 234.81 869.24 0.478
PAIF 44.86 122.12 0.052 271.80 919.80 0.455
MetaFus. 0.812 159.48 0.028 227.74 957.16 0.431
LRRNet 0.049 14.17 0.085 226.98 811.86 0.488
MURF 0.120 31.50 0.205 227.05 829.19 0.608
SegMiF 45.04 353.7 0.147 271.97 1151.4 0.550
DDFM 552.7 5220. 34.50 779.59 6018.2 34.91
EMMA 1.516 41.54 0.037 228.45 839.23 0.440
Text-IF 89.01 1518.9 0.157 89.01 1518.9 0.157
Ours 13.99 254.34 0.119 13.99 254.34 0.119

Table 2. Our DSPFusion achieves the best MUSIQ, PI, and TReS in almost all degraded scenarios,
demonstrating its effectiveness in mitigating degradation, aggregating complementary context, and
producing high-quality fused images. We apply various no-reference statistical metrics, i.e., SD,
EN, or SF, to evaluate fusion results on different degraded scenarios according to the properties of
degradations. DSPFusion exhibits comparable performance to other methods on these metrics.

Qualitative comparison results are presented in Fig. 3. When source images are affected by noise,
denoising algorithms can remove noise but often at the cost of blurring fine details, such as the text
on the wall and the license plate. By contrast, DSPFusion preserves rich texture while suppressing
noise. Moreover, in blurry scenarios, although HI-Diff can partially mitigate the blur, DSPFusion
delivers sharper visual clarity. This advantage arises from the fact that our method can enhance
the degraded modality by leveraging comprehensive semantic priors from both infrared and visible
sources, offering a more complete scene representation. Conversely, single-modality enhancement
approaches rely solely on limited intra-modality information to infer degradation-free images, which
naturally limits their enhancement performance. As shown in Fig. 3 (e) and (f), our method can ef-
fectively handle challenging scenarios where both infrared and visible images suffer from degrada-
tions. This is achieved by employing modality-specific degradation priors in a divide-and-conquer
manner to modulate the features of each modality individually, ensuring that the feature enhance-
ment is precisely adapted to the unique characteristics of each modality. Both quantitative and
qualitative results demonstrate the superiority of our DSPFusion in suppressing degradations and
integrating complementary information across various degraded scenarios within a unified model.

4.3 EXTENDED EXPERIMENTS AND DISCUSSIONS

(a) t-SNE of CLIP embeddings (b) t-SNE of DA-CLIP embeddings (c) t-SNE of our degradation prior embeddings

Low contrast in IR Normal IR Random noise in IR Stripe noise in IR Blur in VI Normal VI Rain in VI Random noise in VI Low-light in VI Over-exposure in VI

Figure 4: t-SNE plots of degradation types.

Degradation Prior Visu-
alization. Figure 4 shows
t-SNE visualizations illus-
trating the ability of differ-
ent models to distinguish
degradation types. While
DA-CLIP can partially sep-
arate degradations in vis-
ible images, it performs
poorly on infrared images. In contrast, our DPEN effectively distinguishes degradations across
modalities, laying a solid foundation for subsequent information restoration and fusion.

(a) Infrared (b) DeFusion (c) PAIF (d) MetaFusion (e) LRRNet (f) MURF

(g) Visible (h) SegMiF (i) DDFM (j) EMMA (k) Text-IF (l) DSPF

Figure 5: Visual comparison of object detection.

Object Detection. We
also evaluate object detec-
tion performance on LLVIP
to indirectly assess the
fusion quality using re-
trained YOLOv8 (Redmon
et al., 2016). Qualitative
and quantitative results are
shown in Fig. 5 and Tab. 3.
Owing to superior informa-
tion restoration and integration, the detector identifies all pedestrians in our fusion results with higher
confidence and achieves the best average precision (AP) across various confidence thresholds.
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The image exhibits a slight reduction in contrast, 
resulting in a flatter appearance. Additionally, there is a 
slight presence of noise, which introduces graininess, 
slightly degrading the image clarity. Overall, the image 
maintains a fair level of quality despite the contrast and 
noise distortions. The scene is still recognizable, but 
the visual experience is somewhat diminished due to the 
reduced contrast and added noise.

The image exhibits a significant darkening effect, 
reducing visibility and obscuring details. Additionally, 
there is a slight blur, softening edges and textures, 
which further diminishes the clarity of the scene. 
Overall, the image quality is compromised, with the 
darkness severely impacting the ability to discern 
details and the blur affecting the sharpness, resulting 
in a loss of visual information and aesthetic appeal.

IR image with random noise

VI image with Low-light

The evaluated image has a slight 
darkening distortion, reducing 
its brightness but not 
obscuring details. Overall, the 
image quality remains high, 
with the scene still clearly 
discernible despite the slight 
reduction in luminance.

Moderate noise distortion is present, 
reducing detail clarity, especially in 
darker areas, and giving the image a 
grainy appearance. Overall, the image 
quality is compromised but still 
recognizable, with the main subject 
and environment discernible despite 
the noise.Fusion result of Text-IF

Fusion result of DSPFusion

Figure 6: Evaluation results with DepictQA.

Evaluation with Depic-
tQA. We introduce Depic-
tQA (You et al., 2024), a
descriptive image quality
assessment metric based on
the vision language mod-
els, to evaluate our fused
image quality. As shown
in Fig. 6, the infrared im-
age suffers from significant
noise, while the visible image is affected by low-light. DepictQA not only accurately identifies
these degradations but also describes their severity. Although Text-IF only mildly suppresses degra-
dations, thanks to effective information aggregation, DepictQA judges that while its fusion result
experiences moderate noise distortion, it remains recognizable. In contrast, DSPFusion successfully
achieves low-light enhancement and noise reduction, along with effective information aggregation.
Therefore, DepictQA assesses our image quality as remaining high.

Computational Efficiency. We conduct the diffusion process in a compact space, greatly reducing
computational costs. As shown in Tab. 4, compared to DDFM, which performs diffusion in the im-
age space, DSPFusion exhibits a significant advantage in computational efficiency, being over 200×
faster than DDFM. Moreover, in comparison to Text-IF, which relies on an additional CLIP model
for degradation prompting, DSPFusion also offers a notable improvement in efficiency. Specifically,
in degraded scenarios, it offers a clear advantage by obviating the need for additional pre-processing.

(e) t-SNE of our degradation embeddings(a) IR (b) VI with LL&RN (c) Text-IF (d) DSPFusion

Figure 7: A schematic of the failure cases.

Discussion on Compound
Degradations. As men-
tioned above, our DSPFu-
sion can effectively han-
dle scenarios with a sin-
gle degradation type across
multiple modalities in a
unified model. However, as
shown in Fig. 7, when one
modality experiences compound degradations, it only addresses the dominant degradation, despite
DPEN encoding degradation priors into a distinct feature space. Notably, although we prompt Text-
IF that the visible image suffers from both noise and low-light degradations, it still struggles to
resolve these issues because the coupled text embeddings are unfamiliar to the model.

Table 5: Quantitative results of ablation study.
VI (Low-light, LL) IR (Low-contrast, LC) VI (LL) and IR (LC)Deg.

prior
Sema.
prior MUSIQ PI Tres SD MUSIQ PI Tres SD MUSIQ PI Tres SD

I % % 47.71 2.83 52.34 46.41 50.35 2.74 56.17 55.31 47.67 2.89 52.24 46.05
II ! % 48.39 2.78 53.51 45.13 50.53 2.68 56.71 55.96 48.35 2.84 52.98 45.16
III % ! 48.26 2.75 53.87 45.24 50.29 2.50 57.03 55.15 47.77 2.61 53.52 42.08

Ours ! ! 48.50 2.77 54.09 45.94 50.60 2.62 56.99 56.06 48.55 2.82 53.89 46.14

Ablation Studies. In or-
der to demonstrate the ef-
fectiveness of our specific
designs, we conduct abla-
tion studies by individually
removing either DPEN or
SPEN in various degraded scenarios, including low-light in visible images, low-contrast in infrared
images, and their combination. From Tab. 5, one can find that both DPEN and SPEN play crucial
roles in improving the performance of DSPFusion. Particularly, our method better reconciles degra-
dation suppression with information aggregation by integrating degradation and semantic priors.

5 CONCLUSION

This work presents a degradation and semantic prior dual-guided framework for degraded image
fusion. A degradation prior embedding network is designed to extract modality-specific degradation
priors, guiding the unified model to purposefully address degradations. A semantic prior embedding
network is developed to capture semantic prior from cascaded source images, enabling implicit
complementary information aggregation. Moreover, we devise a semantic prior diffusion model
to restore high-quality scene priors in a compact space, providing global semantic guidance for
subsequent restoration and fusion. Experiments on multiple degraded scenarios demonstrate the
superiority of our method in suppressing degradation and aggregating information.
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A MORE DETAILS ABOUT METHODOLOGY DESIGNS

In this section, we provide more details and interpretations about our methodology designs. As
illustrated in Fig. 1 (a), unlike the prior-modulated encoder layer, the prior-modulated decoder layer
employs the semantic prior integration module instead of the dual-prior guidance module, relying
solely on high-quality scene semantic priors to support feature reinforcement. This design aims
to effectively eliminate the influence of degradation factors during the feature encoding stage with
the assistance of degradation and semantic priors. After feature fusion, if the fused features still
contain mixed degradations, their distribution will differ from that of a single degradation, making
it challenging for the degradation prior to accurately characterize them.

Anchor

Positive
Negatives

Negatives

Degradation Prior Embedding Space

Positive

Blur

Low-Light

Random 
Noise

Striped 
Noise

Rain

Low-
Contrast

Normal

Figure 8: Schematic diagram of the contrastive mechanism.

Figure 8 presents the schematic di-
agram of our contrastive mechanism
for constraining the degradation prior
embedding network. The basic con-
struction process of the contrastive
loss is outlined in Section 3.2.2. This
section focuses on the criteria for se-
lecting the positive and negative sam-
ples. The number of positive sam-
ples, K, is set to 3, and the number
of negative samples, M , is set to 7.
For instance, the degradation types of the anchors in visible and infrared images are low-light and
low-contrast, respectively. For visible images, the positive samples consist of 3 low-light visible
images from different scenes, while for infrared images, the positive samples are 3 low-contrast in-
frared images from different scenes. We then select 6 negative samples for both visible and infrared
anchors from the remaining visible or infrared images with the same scene content as the anchors,
where the visible images suffer from over-exposure, blur, rain, random noise, or no degradation,
while the infrared images are affected by random noise, stripe noise, or no degradation. Moreover,
the infrared anchor is added as the negative sample for the visible anchor, and vice versa. Therefore,
for each anchor, there are 3 positive samples and 7 negative samples.

B MORE EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS

We construct the training data on the EMS dataset 1, where the degradation types for visible images
include blur, rain, low-light, over-exposure, and random noise, and the degradations for infrared
images include low-contrast, random noise, and stripe noise. We further extend this dataset by in-
troducing low-light scenes from the MSRS dataset, where the visible images are enhanced by Quad-
Prior (Wang et al., 2024). Finally, our training dataset consists of 2, 210 paired high-quality infrared
and visible images. The source infrared images include 2, 210 degradation-free images, 2, 210 low-
contrast images, 2, 210 images with random noise, and 2, 210 images with stripe noise. The source
visible images involve 2, 210 degradation-free images, 2, 210 blurred images, 2, 210 rain-affected
images, 2, 210 images with random noise, 1, 316 low-light images, and 136 over-exposed images.

B.2 EXPERIMENT CONFIGURES

In the degraded scenarios, we first use no-reference image quality assessment metrics, i.e., MUSIQ,
PI, and TReS, with a lower value indicating better performance for the PI metric. We also utilize
statistical metrics frequently employed in the image fusion field to assess performance based on the
properties of degradations. In detail, when source images are affected by blurring, textures become
obscured. Therefore, we use the SF metric to evaluate the richness of details in the fusion results.
Additionally, when source images suffer from issues such as low light, overexposure, or low contrast,
the overall contrast diminishes. Consequently, we use the SD metric to assess the effectiveness of
the fusion results in counteracting these degradations. Furthermore, when images are affected by
noise or rain, both SF and SD values may be artificially inflated, so we employ the EN metric to

1https://github.com/XunpengYi/EMS
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(a) Infrared (b) PAIF (c) MetaFusion (d) LRRNet (e) MURF

(f) Visible (g) DDFM (h) EMMA (i) Text-IF (j) DSPFusion
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(f) Visible (g) DDFM (h) EMMA (i) Text-IF (j) DSPFusion

Figure 9: Visualization of fusion results on the typical fusion datasets.
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Figure 10: Visualization of fusion results in degraded scenarios with pre-enhancement.

evaluate the fusion performance accurately. All experiments are conducted on the NVIDIA RTX
4090 GPUs and 2.50 GHz Intel(R) Xeon(R) Platinum 8180 CPUs with PyTorch.

C MORE RESULTS AND ANALYSIS

Figure 9 presents representative visual fusion results on the MSRS and LLVIP datasets. We can find
that MetaFusion, LRRNet, MURF, and DDFM diminish the prominence of thermal targets, while
PAIF, EMMA, and Text-IF struggle to outline streetlights and headlights in overexposed conditions.
In contrast, DSPFusion simultaneously highlights significant targets and preserves abundant tex-
tures. Overall, the quantitative and qualitative results in Tab. 1 and Fig. 9 collectively demonstrate
the impressive fusion performance of our DSPFusion.

Figure 10 provides more fusion results in the degraded scenarios with enhancement. From Figs. 3
and 10, one can find that PAIF obscures texture details within the scenes, particularly in promi-
nent infrared targets, despite the excessive enhancement of these targets. This is attributed to PAIF
attempting to counteract noise. Additionally, MetaFusion introduces artificial textures during the
fusion process, which is the primary factor for its higher SF metric. We believe this is caused by
MetaFusion paying more attention to the object detection task, resulting in insufficient consideration
for visual perception. LRRNet, MURF, and DDFM seem to simply neutralize infrared and visible
images, resulting in their fusion results that reduce the prominence of infrared targets and cause a
loss of texture details in the visible images. EMMA relies on manually selected fused images from
existing fusion algorithms for supervision, which limits its performance potential. For instance,
while EMMA can aggregate complementary information from source images across most scenar-
ios, it may slightly diminish the prominence of infrared targets. Although Text-IF demonstrates good
fusion performance, it still has several notable shortcomings. Firstly, Text-IF is highly sensitive to
text prompts. As shown in Fig. 3 (f), when we prompt it that the visible and infrared images suffer
from degradations (such as low-light and low-contrast) simultaneously, it fails to mitigate the ef-
fects of degradations, even though it handles individual degradations effectively, as demonstrated in
Fig. 10 (C) and (D). This may be caused by the fact that the feature embedding of such coupled text
prompts is unfamiliar to the pre-trained model. Moreover, it is limited to addressing only a few spe-
cific types of degradations, such as low-light and over-exposure in visible images as well as random
noise and low-contrast in infrared images. In contrast, our method adaptively identifies degradation
types from source images, enabling it to effectively handle the common degradations and achieve
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Figure 11: Visualization of fusion results in degraded scenarios without pre-enhancement.

complementary information aggregation within a unified model. Moreover, by employing a divide-
and-conquer manner to address degradations in infrared and visible images separately, it remains
effective even when both infrared and visible images suffer from degradations simultaneously.

Figure 11 presents the qualitative comparison results in degraded scenarios without pre-
enhancement. It is evident that although most fusion algorithms can effectively aggregate com-
plementary information, they are hindered by degradations and cannot provide satisfactory fusion
outcomes. PAIF is capable of handling noise-related degradations, but it tends to blur the structures
and details in the scene, resulting in suboptimal results. Text-IF can address illumination degra-
dation in visible images, as well as low-contrast and random noise in infrared images, but it is
ineffective against other common degradations. In contrast, our DSPFusion is able to consistently
synthesize impressive fusion results across all degradation conditions. This is attributed to the fact
that our degradation prior embedding network can adaptively identify degradation types, and the
semantic prior diffusion model effectively recovers high-quality semantic priors. The degradation
priors and high-quality semantic priors complement each other, jointly guiding the restoration and
fusion model.

Table 6 illustrates the computational efficiency of different pre-enhancement algorithms. From the
results, we can find that some pre-enhancement algorithms, such as Spadap, IAT, and WDNN, are
computationally efficient, while others, like Hi-Diff, NeRD-Rain, and QuadPrior, introduce heavy
computational burdens. In particular, QuadPrior incurs significant computational costs as it conducts
the diffusion process in the image domain. Our semantic prior diffusion model recovers high-quality
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Table 6: Computational efficiency of pre-enhancement algorithms.

Task Deblurring Deraining Denoising Low-light
enhancement

Exposure
correction

Stripe noise
remove Average

Method Hi-Diff NeRD-Rain Spadap QuadPrior IAT WDNN

Parm. (M) 24.152 22.856 1.084 1313.39 0.087 0.013 226.93
Flops (G) 529.359 693.649 81.875 3473.413 6.728 1.105 797.688
Time (s) 0.359 0.299 0.003 1.745 0.007 0.003 0.403

semantic priors in a compact latent space, which greatly conserves computational overhead. We em-
ploy task-specific SOTA image enhancement methods for pre-enhancement, rather than relying on
general approaches. On the one hand, general methods cannot simultaneously handle degradations
in both infrared and visible modalities. On the other hand, general methods exhibit poor generaliza-
tion on the infrared and visible image fusion datasets.
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